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ABSTRACT
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In this study, two variants of permutation flow shop scheduling problem

with sequence dependent setup times are considered. The first problem studied in

this thesis is the permutation flow shop problem with sequence dependent setup

times under makespan criterion. A new iterated greedy algorithm and a new local

search algorithm is developed for this problem. The new local search includes

insertion neighborhood and swap neighborhood. A new speed up technique is

developed to reduce the cost of the swap neighborhood search, which is inspired

-known speed-up method for the insertion neighborhood. The

developed speed up technique can save fifty percent CPU time in average. The

developed iterated greedy algorithm utilizing the new swap speed-up method is

tested on the benchmark instances from the literature and new best-known

solutions are found for 250 out of 480 problem instances. The second problem

considered is the permutation flow shop scheduling problem with sequence

dependent setup times under total flow time criterion. This problem is studied for

the first time in the literature to best of our knowledge. NEH_EDD and LR

heuristics as well as speed-up methods for problems without the sequence

dependent setup times for insertion and swap neighborhoods are adapted to this

problem. Several metaheuristics are developed and executed on a benchmark set.

The performances of the developed algorithms are compared and the results are

presented.

Keywords Sequence-dependent setup times, flow shop scheduling problem,

metaheuristics, iterated greedy algorithm, variable neighborhood search,

makespan, total flow time.
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1. INTRODUCTION

Scheduling is determining the order of the jobs to be handled on machines. A

schedule can be considered as a plan for the execution of jobs on machines. Efficient

scheduling is very important for production and manufacturing. Benefits of an

efficient schedule can be increased resource utilization and production process

efficiency, reduced inventory and more accurate handling of due dates.

Characteristics of the jobs such as their sizes and routes through machines greatly

influence the result of the scheduling process. Also all technological constraints

should be considered for a feasible schedule. According to Wight (1984), there are

two important decision criteria for manufacturing system scheduling; which are

. These are the answers for two questions

? Cox et al. (1992) define scheduling as the actual

assignment of starting and/or completion dates to operations or groups of operations

to show when these must be done if the manufacturing order is to be completed on

d a type of bar chart for illustrating job schedules in

1910s, which is called as a Gantt chart. Even today, Gantt charts are widely used for

presenting the schedules. In the early years, the term scheduling was only used for

scheduling of the manufacturing systems. Now, scheduling is also very important for

non-manufacturing areas.

Fundamental structure in scheduling is generally called as jobs and this term is

also used for non-manufacturing environments.  Jobs may consist of one or more

tasks. The main problem in scheduling is to determine the order of the tasks

according the priorities and availability of the resources. Scheduling can be

considered as decision-making process of ordering the tasks according to some

constraints in order to optimize one or more criteria. For manufacturing systems,

scheduling plays an important role in production planning. Better scheduling allows

to use the production environment more efficiently and to make better resource

allocation.
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Nowadays, fast growing markets and manufacturing systems deal with higher

customer expectations in terms of quality of the product, cost of the product and

finally its arrival time. Satisfying these conditions is getting harder each day with the

increasing customer demands. To catch up with current situation, manufacturing

enterprises focus on two main issues. The first issue is using more technological

production lines for increasing the production rate and lowering the production time.

Also new technologies are important for producing more reliable products with lower

unit costs.  Flexibility is another important production requirement for the market in

order to make changes fast enough to catch up with custo

Second issue is adopting a more utilized production structure that respects resource

utilization, inventory costs, and production and manufacturing times. Under these

circumstances, manufacturers spend their efforts on achieving production goals that

are best for themselves and customers. As it is mentioned above, these goals are also

important for non-manufacturing markets or industries.

Scheduling is considered as a decision-making process regarding the current

situation of the system. It tries to optimize the system with respect to one or more

objectives considering the state of the resources. Resources can be crew in an airport,

nurses in a hospital or production components in production lines. Tasks of the

operations may differ with the scheduling environment or industry. Schedules also

might have different objectives to satisfy the needs and demands; in order to increase

the production utility, the objective can be obtaining minimum make span, while in

order to minimize the inventory, the objective can be minimizing total flow time or in

order to catch the specific production time, the objective can be minimizing tardiness.

Inadequate scheduling causes inefficient utilization of production facilities and

employees. Moreover, it increases the idle time in production. As a result, this will

increase the costs.

1.1 Classification of Scheduling Problems

Scheduling is the process of finding a feasible order for processing in order to

optimize the production or system. In 1981, Graves classified the scheduling
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problems and put them into three main and two additional categories. In 2012,

Dhingra summarized these categories as follows:

Requirement generation

Processing complexity

Scheduling criteria

Parameter variability

Scheduling environment

In the first category, jobs are categorized by their stocking attribute. If orders

are not stocked and produced with demand of the customer, this kind of jobs are

there is no inventory in this kind of scheduling.  In

closed shops, production is not only going to be determined by customer demands, it

will also produce inventory after production. For closed shop type problems, host

sequencing problem and lot-sizing decision has to be made for current inventory. Job

shop and flow shop problems are considered in closed shop category. Scheduling

problems can also be divided into categories by their processing complexity as

follows (Graves,1981):

One-stage, one processor (facility)

One-stage, parallel processors (facilities)

Multistage, flow shop

Multistage, job shop

In single machine problems, there is only one processing step. All jobs have

only one non-repeated task to be processed on the single machine. One stage, parallel

processors can be described similar to single machine parallel shops. Again, all jobs

have a single task but this single task can be processed on parallel machines. This

means, two or more jobs can be processed at the same time (on different machines) in

parallel machine systems. In multistage problems, each job has more than one task to

be processed on different facilities or machines. Flow shop problem is a special case
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of the multistage problems in which all tasks in all jobs follow the same order

through each facility or machine. In the more general case of the multistage problem,

named as job shop problem, again all jobs have more than one operation to be

processed on the machines but each job has a different operation order (route)

through the machines.

The third classification category for the scheduling problems is the scheduling

objective according to Graves (1981). In this scheme, scheduling problems are

classified according to their schedule cost and schedule performance. Schedule cost

includes all expenses for production such as production setup or changeovers in

inventory holding cost, etc. Performance of the schedule gives information about

optimization criteria, which is the objective for the current state of the system. These

performance measures can be utilization of the production lines, in other words

minimizing the makespan of the schedule, total completion time of all jobs named as

total flow time or average or maximum tardiness with respect to the due dates of the

products.

There are two more schemes that can be used for classification of scheduling

problems: parameter variability and scheduling environment. In parameter

variability, scheduling problems can be divided into two groups as deterministic and

stochastic schedules.  In scheduling environment, schedules can be categorized as

static and dynamic schedules. In static schedules, all requirements are fully specified

before the scheduling process and no additional requirements will be added to

problem set later. Most of the scheduling problems are deterministic and static. A

classification of the scheduling problems is given in Figure 1-1.
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Figure 1-1 A classification of scheduling problems (Dhingra, 2012)

1.2 Permutation Flow Shop Problem

Scheduling problems are keeping their popularity since 1950s when the first

seminal publications (Smith, 1956), (Johnson S. , 1954) (Jackson, 1955) began to

appear. There are various kinds of scheduling problems that are being studied since.

The most general scheduling problem is the job shop scheduling problem. In job shop

scheduling problem, there is a finite set of jobs and these jobs consist of ordered

operations. There are machines and each can handle at most one operation at a

time. Each operation is processed on the machines without interruption. Main

purpose is to find a schedule, which optimizes a chosen objective. For job shop

scheduling problem there are possible sequences. Gantt chart of a sample

schedule for abz06 instance is shown in Figure 1-2.
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Figure 1-2 Gantt chart for a sample schedule for sample instance

Flow shop scheduling problem is one of the most popular scheduling problems.

Permutation flow shop problem is a special kind of job shop problem in which all

jobs visit each machine in the same sequence. Several criteria can be used to consider

the performance of the decision making problem for scheduling, such as makespan

which deals with maximum completion time of jobs in all machines, total tardiness

which deals with tardiness of the jobs in all machines and total flow time which deals

with minimizing inventory costs. Makespan criteria is important for machine

utilization (Pan & Ruiz, 2013), while flow time criteria focuses on minimizing the in-

process in reserves (Dipak & Sarin, 2008), and tardiness criteria satisfies the

customer due dates as a hard deadline constraint (VictorFernandez-Viagas, 2015).

There are possible sequences for jobs in permutation flow shop problem. Gantt

chart of a sample schedule for Ta001 instance is shown in Figure 1-3.

Figure 1-3 Gantt chart for a sample schedule for Ta001 instance
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1.3 Set up time and Sequence Dependent Set up Time

In real life, preparation of the production environment (changing the operator

controls for new parts, cleaning up the production line for new order, adjusting the

production line etc.) takes some time, which is called as set up time. Changing the

blades for new paper size or preparing the paint tank for new color production can be

considered as real life examples. Actually, most of the production systems that deal

with different kinds of products need such setup times in order to make some

adjustments for the new piece of product. In some cases, the time spent on adjusting

the production line or cleaning up the production environment may show differences

with respect to job order to be processed on the machine. For example, in paint

production, it takes more time to produce white color paint in a tank which was

already used for black color paint production, than producing a dark blue color paint

in the same tank. In the former case, in addition to required setup time, more water

will be needed to wash the tank. If the setup time changes with respect to the previous

task that was executed on the machine and the next task that will be executed, then

this kind of setup time is called as sequence dependent set up time.

Sequence dependent setup times have significant importance for the production

systems. Luh et al. (1998) ed switchgears

(GIS). In this study, it is reported that model performance in handling of the sequence

dependent setup time has a critical effect. As Pinedo (2008) mentions, machine

efficiency can be improved up to 20% with correctly handling the sequence

dependent set up times in flow shop problems. There is more research on the effect of

the sequence set up times in production such as Yi and Wang (2003) and Gendreaua

et al. (2001) that showed the significance (impact) of sequence dependent set up

times in different cases.

Setup time means preparation of the machine in order to start production and it

includes the time needed for setting up the environment, adjusting the system etc.

(Allahverdi et.al, 1999). In some applications, this setup time is added to the

processing time and neglected. When dealing with separate set up times, two kinds of
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setup times can be seen in the literature. In the first kind, the job type determines the

setup time, so it can be named as sequence-independent setup time. In the second

kind, both job and machine determines the setup time, so this can be named as

sequence dependent set-up (Allahverdi et.al, 1999).

Permutation flow shop scheduling problem with sequence dependent setup time

(PFSP - SDST), is also be named as the sequence-dependent setup time flow shop

scheduling problem (SDST - FSP) in the literature. In SDST - FSP, setup times

(costs) are processed separately instead of being added to processing times of the

jobs. While the permutation flow shop problem is popular among researchers,

sequence dependent setup time version of the problem has not been studied much.

However, set up times have significant effects as shown by many researchers.

Wilbrecht and Prescott (1969) showed that SDST has a reasonably large amount of

effect when the system operates near the limits.

Maximizing throughput is one of the important goals of scheduling. High

utilization and high throughput can be achieved by achieving the optimum makespan

schedule for the machines. So, machines will have less idle time and this will lead to

higher equipment efficiency.

Flow time can be described as the time consumed by the processes (jobs) on

machines. Minimizing the flow time as a scheduling criteria makes fewer inventories

for the system and minimizes the mean number of processes (jobs) in the system

(Baker & Trietsch, 2009) . In addition, minimum flow time values lead to less cycle

time for manufacturing (Ciavotta, Minella, & Ruiz, 2010).
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Figure 1-4 Gantt chart of a sample schedule for Ta001 instance with SDST

Gantt chart of a sample schedule for T with large

sequence dependent setup times is shown in Figure 1-4. The effect of the sequence

dependent setup time is obvious when Figure 1-3 and Figure 1-4 are compared.

Figure 1-3 shows the Gantt chart of the same instance without sequence dependent

setup times. As observed from Figure 1-4, the total completion of all of the operations

has been delayed from 1300 to 2050 when the setup times are considered.

1.4 Scope of the Work

In this thesis; metaheuristic approaches for permutation flow shop problem with

sequence dependent set up times have been studied. Two different optimization

criteria are considered. The first optimization criterion is the minimization of make

span. A novel speedup method for the swap neighborhood is developed for this

problem. The proposed speedup method is inspired from the well-

speedup method for the insertion neighborhood. A new iterated greedy (IG) algorithm

with a local search procedure that utilizes the developed speed up calculation

technique for swap neighborhood in addition to insertion neighborhood is developed.

The developed IG algorithm is compared to other metaheuristics from the literature.

The second optimization objective considered in the thesis is total flow time

minimization for permutation flow shop problem with sequence dependent set up

times. For this problem, (Li, Wang, & Wu, 2009) speed-up calculation method

as well as NEH_EDD and LR heuristics are adapted to consider the sequence
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dependent set up times and new local search algorithms are proposed. Experiments

are carried out in order to tune the parameters of the implemented metaheuristics. The

results of the performances of all implemented algorithms are presented in

computational results section and new local minimum values that are obtained by

proposed methods are given in appendices.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: in the second chapter, formal

problem descriptions and literature review for the permutation flow shop problem for

make span and total flow time criteria are presented. Details of the developed speed-

speed-up method (Li, Wang, & Wu, 2009) are given in chapter 3 along with

examples. In chapter 4, heuristic and metaheuristic methods that are used in this

thesis are explained. Chapter 5 gives brief information about the design of

experiments method. Chapter 6 gives the details of the algorithms that are developed

in this thesis along with the details of the design of experiment approach used for

tuning the algorithm parameters. In chapter 7, computational results of the proposed

algorithms are given and compared to state of the art algorithms from the literature.

Conclusions and future suggestions about the problems are presented in chapter 8.
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2 PROBLEM DEFINITIONS AND LITERATURE REVIEW

2.1 SDST Permutation Flow shop Problem under MakeSpan
Optimization Criteria

2.1.1 Problem Definition

SDST permutation flowshop scheduling problem under minimum makespan

criterion, which is denoted as (Pinedo, 2008) is shown to be NP

- hard (Gupta & Darrow, 1986). It is assumed that the job order in each machine is

same. So, this problem can be considered as a feasible subset set of the general

flowshop shop problem in which job order does not have to be same on all machines.

Objective of this problem is to find minimum completion time for all jobs, known as

makespan or . Minimizing the makespan leads to maximum machine utilization.

In SDST - PFSP, there are jobs to be processed on machines. All jobs have

non-negative processing times on each machine which are denoted as

. All jobs has to visit all machines and a machine is able to

handle at most one job at a time. Operations do not have priorities. Processing

sequence of the jobs is the same for all machines and a sequence is represented by a

permutation of jobs, i.e. where is the first job to be processed, and

so on.

Each job consists of same number of operations.  When a machine starts

handling a job, no other job can interrupt the processing of the job. For all jobs and

machines, ready times are required to be zero at start of processing. Sequence-

dependent setup time is the machine preparation time for the next task to be handled

and is denoted by where is the machine, is the previous job that was processed

on machine and is the current job to be handled. This setup time is required for

setting up the processing environment for the next task in real life. Switching

production environment or preparation cost for the next job will be different for

different jobs in sequence dependent set up time problems. Cleaning a paint tank in
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which black paint was produced takes more time than cleaning a tank in which white

color paint was produced if the next job is producing white color paint. denotes

the completion time of job on machine . Total completion time or makespan is the

finishing time of the last job on the last machine.  For simplicity, total completion

time is denoted as or . Completion time of job on machine can be

calculated as:

( 1 )

where for and .

2.1.2 Previous Works

In the literature, flow shop is one of the most studied scheduling problems since

it was introduced by Johnson (1954). The literature on SDST flow shop scheduling

problems has been extensively summarized in Allahverdi et al. (1999), Yang and

Liao (1999), Cheng et al. (2000) and Potts and Kovalyov (2000). More recently

Allahverdi et al. (2008) published a survey.

Even though exact algorithms are proposed in Corwin and Esogbue (1974),

Rios-Mercado and Bard (1998a), Rios-Mercado and Bard (1999a), Rios-Mercado and

Bard (2003), Tseng and Stafford (2001), Stafford and Tseng (2002), they are able to

optimally solve problems up to 10 jobs and 6 machines or 9 jobs and 9 machines. For

this reason, efforts have been devoted to heuristic and metaheuristic algorithms for

larger problems that involve more jobs and machines.

Regarding heuristic algorithms, in Simons (1992), two general heuristics called

TOTAL and SETUP have been developed. In Das et al. (1995), a heuristic based on a

saving index is proposed. A well-known heuristic for the permutation flowshop

scheduling problem without SDST is the NEH heuristic proposed by Nawaz et al.

(1983).  In Rios-Mercado and Bard (1998b), the NEH heuristic is modified in order to

consider sequence dependent setup times and the new heuristic is called NEH_RMB.
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In Rios-Mercado and Bard (1999b), some modifications are proposed to the heuristics

in Simons (1992) and a new hybrid heuristic is developed and is called HYBRID.

As to metaheuristic approaches, in Rios-Mercado and Bard (1998b), a greedy

randomized adaptive search procedure (GRASP) and another modification of the

NEH algorithm called NEHT-RB was proposed. Ruiz et al. (Ruiz, Maroto, &

Alcaraz, 2005) proposed genetic and memetic algorithms for the SDST flowshop

scheduling problem under makespan criterion.  Genetic algorithms and hybrid

versions with new constructive population algorithms were tested. Performance of the

proposed algorithms were compared to Osman and Potts simulated annealing

(Osman & Potts, 1989) search, Rios-

GRASP.

Gajpal et al. (2006) proposed a new algorithm based on ant colony

optimization. Artificial ants are used to initialize solutions and three different local

search procedures are used to improve the initial solution. Result of the proposed

algorithm is compared to SI (Das, Gupta, & Khumawala, 1995), GRASP (Rios-

Mercado and Bard, 1998b) and MMAS (Stuetzle, 1998). The proposed algorithm

showed better performance by reducing mean and relative percentage deviation.

proposed an iterated greedy algorithm

(IG) with excellent results for the flowshop scheduling problem. In 2008, Ruiz and

another IG algorithm for PFSP with SDST .

A new test set was constructed by adding sequence dependent set up times with

different distributions changing from 10 to 125 . Total weighted

tardiness criterion was also considered in the same paper. They also extended the IG

by adding a local search. The proposed IG_RSLS algorithm has a simple structure and

is easy to implement. IG_RSLS was compared against 5 different algorithms including

PACO, MA, IG_RS, GA and MALS. Statistically IG_RSLS shows better results than

the other tested algorithms with respect to ARPD for makespan minimization

criterion.
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In 2011, Mirabi proposed a new ant colony optimization technique for solving

flow shop problem with sequence dependent setup times. The proposed local search

algorithm was a combination of three techniques; forward insertion, backward

insertion and pairwise interchange neighborhood. Results are compared to GA and

HGA by Ruiz et al. (2005) (2008). In

2014, Mirabi published another paper that proposed a new hybrid genetic algorithm

for PFSP with SDST problem.

R. Vanchipura and R. Sridharan (2013) proposed two constructive heuristics for

PFSP with SDST that were named as setup ranking algorithm (SRA) and fictitious

job setup ranking algorithm (FJSRA) and compared them to NEH_RMB. The

proposed algorithms were based on ordering the jobs according to their setup times.

NEH_RB order the jobs by their total processing times before sequencing and using

them to construct partial schedules. Computational results showed that SRA

algorithm did not show better performance than NEH_RB algorithm. However,

FJSRA outperformed NEH_RB for smaller number of machines, but the performance

of the proposed algorithm decreases for larger number of machines.

Li and Zhang (2012) developed three adaptive hybrid genetic algorithms and

three local search methods are used in the proposed algorithms. These local search

methods are based on hybrid neighborhood, insertion neighborhood and swap

neighborhood. In addition, results were compared to IG_RS .

Proposed algorithms achieved varying performance for different distribution of setup

times. AHA1 as the distribution range of the setup times

increase. In contrast, AHA3 as the distribution range of the

setup times increase. No new best results were reported.

Victor Fernandez-Viagas and Jose M. Framinan (2014) proposed a new tie

breaking mechanism for NEH and IG algorithms. NEH and IG algorithms were

reported as notably efficient algorithms for flowshop problem

with makespan optimization. The original proposed algorithm did not suggest any

mechanism for solving ties in construction phase; so the first position which makes
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the makespan minimum is accepted as the insertion point of the job. Kalczynski and

Kamburowski showed the importance of the tie-breaking mechanism for NEH

heuristic (Kalczynski & Kamburowski, 2007). A new tie-breaking mechanism based

on estimation of idle times was embedded into IG_RSLS, NEH and IGRIS. The results

are compared to (Dong, Huang, & Chen, 2008) and Kalczynski &

(2007) tie-breaking mechanism. Performance of the proposed tie-

breaking mechanism showed better performance.

Most recently, A. Allahverdi (2015) published a survey which puts together the

recent studies that deal with sequence dependent setup times. This paper is the third

survey for problems with sequence dependent set up times by the same author.

Previous ones were in (Allahverdi, Gupta, & Aldowaisan, 1999) and (Allahverdi, Ng,

Cheng, & Kovalyov, 2008).

2.2 SDST Permutation Flow shop Problem under Total Flowtime
Criterion

2.2.1 Problem Definition

SDST permutation flowshop problem under total flow time minimization

criterion is denoted as (Pinedo, 2008) and is proven to be -

hard (Gray, Johnson, & Sethi, 1976) for the case without SDST. The typical flowshop

structure is same with this version of the problem. Given jobs will be processed on

each machine with the same order. Jobs cannot be interrupted during the process, i.e.,

there is no preemption. One job can be processed only on one machine and a machine

can process only one job at a time. The objective of this problem is to find an

optimum schedule which makes the total flow time minimum. The version of the

problem studied in this thesis has sequence dependent set up times.

There are jobs to be processed on machines. All jobs have non-negative

processing times on each machine, denoted as . A

solution (schedule) is represented by a permutation of jobs. i.e. .
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Each operation has sequence dependent setup time shown as where is

the machine, is the next job that will be processed on machine and is the last job

processed on machine . denotes the completion time of job on machine . The

goal is to find a sequence, which make the total flow time minimum. Completion

times on each machine are calculated as follows:

(2)

where for and

Total flow time is calculated as follows:

(3)

2.2.2 Previous works

Garey et al. (1979) proved that the mean flowtime (total flowtime) problem is

NP-complete. Since then, many researchers developed heuristics for the problem.

Some of the pioneers of these researchers are Gupta (1972) and Miyazaki et al.

(1978).

Ho (1995) proposed a heuristic algorithm based on sorting, to minimize the

total flow time. In this paper, Ho states that SPT (smallest processing time) rule gives

better results for single machine problem. So, it is better to place jobs having smaller

total processing time into early slots of the schedule. At the initial step of the

heuristics, all jobs are sequenced in ascending order and an index is calculated and

assigned to each job. In the second phase of the heuristic, indexes assigned to the jobs

are used to obtain optimal schedules by using exchange sort and bubble sort. The

heuristic shows a good performance for large instances.
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Wang

indexes. In their first heuristic, researchers tried to keep idle times small. The idea is;

if completion time of the current machine to be scheduled is smaller than the arrival

time of the scheduled job, then an idle time will occur on this machine. Idle times

lead to delays in job completion times and also increase total flow time. In the first

heuristic to keep idle times low, the job with earliest starting time is chosen to be

scheduled. This heuristic is named as LIT (less idle times). Second heuristic aims to

minimize machine idle time and job queuing times. Two metrics were calculated

using Euclidean distance and linear distance. According to calculated values, an index

is assigned to each job. By choosing the smallest distance, an optimal schedule was

constructed. This heuristic is named as smallest process distance (SPD) rule. Their

computational experiments showed that the results of the proposed methods are very

close to optimal values.

In 1997, C. Rajendran and H. Ziegler proposed an algorithm for minimizing the

total weighted flowtime for flowshop problems. They stated that, the objective of

minimizing the total weighted flowtime of jobs is the same as minimizing the mean

weighted flow time of jobs objective. The proposed algorithm has two steps. A seed

sequence is constructed according to shortest weighted total processing time in the

first step. Second step is the improvement step. First job is taken from the sorted job

list and it is inserted to all possible slots in a fashion similar to NEH. After placing

the first job, next job is taken from the list and inserted to all possible slots and it is

inserted to position where the total flow time is minimum. In literature, this algorithm

is called the RZ (Rajendran & Ziegler, 1997) algorithm.

In 1998, Woo and Yim developed an algorithm for total flow time minimization

problem.  The algorithm starts with calculating the total flow time of the jobs and

puts jobs into the sequence which has the minimum flow time value. The algorithm

then picks a job from the unscheduled job list and inserts it to all possible slots. This

process continues until all jobs are scheduled.  Framinan and Leisten (2003) stated

that, RZ algorithm outperforms WY for small instances. However, WY algorithm

outperforms RZ algorithm for larger instances.
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(Liu & Reeves, 2001), which is named as LR

algorithm was developed in 2001. This heuristic proposed a new initial solution

construction method for total flow time minimization problem. The constructive

algorithm is combined with a local search procedure. Construction of an initial

solution consists of two phases. In the first phase, the weighted total machine idle

time index is calculated for all unscheduled jobs. In the second phase, artificial total

flow time is calculated for these jobs and an index value is assigned to them. Finally,

calculated index from the first phase and second phase is added in order to find the

final index values of the jobs. These calculations are repeated for all unsorted jobs.

The job with the lowest index value is added to the schedule. In the local search

procedure, pairwise exchanges are applied to the schedule that is obtained in the

constructive phase.

J.M.Framinan et al. (2002) proposed an improved version of the NEH

algorithm which extends the current algorithm for total flow time objective. Their

work focus on both makespan and flow time minimization. The proposed algorithm

basically changes the first phase of the NEH algorithm. In the original NEH

algorithm, jobs are ordered with respect to descending sum of their total processing

times on machines, while the new algorithm changes this ordering to ascending sum

of total processing times on machines. Computational results show that the algorithm

gives superior results for multi objective version of the problem.

Allahverdi and Aldowaisan (2002) proposed seven heuristics for this problem.

These seven heuristic were developed by combining previously proposed heuristics

such as WY (Woo & Yim, 1998), NEH (Nawaz, Enscore, & Ham, 1983) and RZ

(Rajendran & Ziegler, 1997). The results obtained by the proposed algorithms were

compared to results of earlier heuristics. One of the proposed algorithms, IH6, which

is the combination of the RZ and WY algorithm, gave superior results with respect to

the compared algorithms. Adding a local search procedure (pair-wise exchange) for

NEH, WY, IH2, RZ and IH6 yielded significant improvements. They claimed that

poor performance of RZ algorithm in large instances became better with their

proposed new algorithms.
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Framinan and Leisten (2003) proposed a heuristic based on NEH algorithm for

total flowtime minimization objective. In this paper, Framinan and Leisten

recalculated that complexity of WY algorithm (Woo & Yim, 1998), claiming that it

was miscalculated. Woo & Yim (1998) calculated the complexity of their algorithm

as . Framinan and Leisten (2003) calculated the complexity as .  In WY

algorithm, after sequencing the jobs in ascending order with respect to their total

process time, a job is added to the partial sequence and to find its final position, the

inserted job is pair-wised exchanged with the other jobs which are already sequenced.

The new algorithm proposed by Framinan and Leisten (2003) only differs from the

WY algorithm in insertion procedure of the newly inserted job to the partial

sequence, the position of the new job is determined by interchanging the all possible

sequences for partial schedule. This constructive step also increases the complexity of

the NEH algorithm from to Computational results of that research

show that, the proposed new algorithm outperforms WY (Woo & Yim, 1998) and RZ

(Rajendran & Ziegler, 1997) algorithms. Besides FL construction heuristic, a new

algorithm was proposed in this paper. The new algorithm is named as IH7-

proposed .  The new algorithm is inspired from IH7 (Allahverdi & Aldowaisan,

2002). IH7-proposed gave better results than IH7.

Li et al (2009) proposed an algorithm which speeds up the calculation of total

flow time. General Flowtime Computing (GFC) algorithm presented in this paper

basically divides the sequence into two parts as changed and unchanged part. For next

calculation steps, only the jobs which are in the changed part of the sequence are

considered in computations. The proposed algorithm does not reduce the complexity

of the procedure, but it reduces the CPU time required for calculations. A minimum

of 33.3% of CPU time is saved with the new calculation method.  The speed-up

technique is applied to LR (Framinan & Leisten, 2003) and IH7 (Allahverdi &

Aldowaisan, 2002) heuristics and the proposed algorithm achieved better results. In

this study, this acceleration technique (Li et al. 2009) is adapted and used to speed-up

the calculation of total flow time.
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(Framinan & Leisten,

2003) heuristic was proposed. The proposed algorithm modified the iterative step of

adding a new job to the partial schedule. The modified algorithm did not change

computational complexity of FL algorithm. The modified algorithm outperformed the

previous methods for large and small size problems.

Quan-

flow shop problems and proposed heuristics. Authors implemented the major

heuristics and evaluated their computational results with respect to relative

percentage increase (RPI) performance criterion and CPU time in detail. Five new

algorithms were proposed and compared against existing heuristics. The proposed

algorithms were mostly combinations of the previously proposed heuristics. A total

number of 22 heuristics were implemented and their results are compared

statistically. A simple heuristic (Laha and Sarin, 2009) has a good performance. As a

composite heuristic, authors proposed an algorithm called LR_NEH(x) which

represents a better trade-off in CPU time and quality than other heuristics.

V. Fernandez and J. Framinan (2015) recently proposed a new heuristic based

on Liu and Reeves heuristic (LR). The newly proposed constructive heuristic is

reported to decrease the computational complexity by one. The new algorithm has

better results in terms of ARPD and CPU time than LR algorithm.
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3 SPEED-UP METHODS

In this chapter, the speed-up methods developed and adapted for the SDST-

PFSP under makespan and total flow time minimization criteria are explained in

detail. The novel speed-up method for the swap neighbourhood is given in section

3.1. The details of the how the speed-up methods for the total flow time calculations

without sequence-dependent setup times are adapted to sequence dependent setup

times version of the problem are explained in section 3.2.

3.1 Speed-up Methods for Makespan Calculation

Nawaz et al. (1983) , known as the NEH heuristic, is recognized to

be the best performing heuristic for the regular PFSP under makespan criterion (Ruiz

. In the NEH heuristic, jobs are arranged by a descending order of

their total processing times on machines and the first two jobs are considered for

insertion into an empty permutation in order to minimize the partial makespan. Then,

the remaining jobs are inserted into each available position in the partial solution and

the position that minimizes the partial makespan is selected as the insertion position.

All jobs are considered in order such that each job is inserted in the position with a

minimum partial makespan. Time complexity of the NEH algorithm is .

However, Taillard (1990) proposed a well-known speed-up method for the NEH

heuristic, which reduces the time complexity of the NEH algorithm from to

The details of the Taillard speedup method for the NEH heuristic for the

permutation flowshop scheduling problem (PFSP) without sequence-dependent setup

times under the makespan minimization criterion is well described in Taillard (1990)

and Fernandez-Viagas and Framinan (2014). The speed-up method of Taillard for

insertion of a job into a position in the partial permutation can be adapted to the

SDST permutation flowshop scheduling problem using a notation similar to

Fernandez-Viagas and Framinan (2014) as follows:
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Assume that a partial schedule of jobs has been established and an

unscheduled job with processing times will be inserted in position

.  The earliest completion time of job on machine before inserting the

unscheduled job can be calculated as follows:

(4)

where (i.e., the starting time of the first job on the first

machine is 0 and the setup time for the first job is 0 on all machines).

The duration between the starting time of the job on the machine and the

end of all operations (also known as the tail) before insertion can be calculated as

follows:

(5)

where

The earliest relative completion time , which is the completion time of job

on machine that will be inserted into position can be calculated as follows:

( 6 )

where

The makespan value of the new permutation after inserting job to position

can be calculated as follows:

( 7 )

The above procedure for the insertion neighborhood reduces the computational

complexity of calculating the makespan by using the Eq. (1) from to .
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It is possible to extend the above speed-up method to swap neighborhood,

which follows:

Suppose that two jobs in positions and will be exchanged. In order to

calculate the new makespan value, first calculate the earliest completion time of

job on machine before the first swapping position as:

( 8 )

where (i.e., the starting time of the first job on the first

machine is 0 and the setup time for the first job is 0 on all machines).

Before swapping two jobs, calculate the tail , which is the duration between

the starting time of job on machine and the end of the operations:

( 9 )

where .

Then, calculate the earliest relative computation times of the jobs starting from

prior to position (the changed part of the permutation after exchanging the jobs in

positions and ):

( 10 )

where

Finally, the new makespan value after exchange of jobs in positions and can

be calculated as:

( 11 )
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In order to explain the proposed new speed-up method more clearly, an

example with an 8 job-2 machine instance is given in Figure 3-1, where job 3 and job

5 will be interchanged in an identity permutation. Assume that, the size of jobs

between two swap positions is denoted by . First, the earliest completion times

and is calculated. Then, and can be easily calculated up to position .

It is clear that, after swapping jobs at positions 3 and 5, the earliest completion times

of all jobs prior to 3 will not be changing. Note that the third step is provided in

Figure 3-1 in order to explain how values are updated in the fourth step. Briefly,

the completion times and from position 3 to position 5 should be re-

calculated in the fourth step by using Eq. (8). This step, which is not present in

-up for the insertion neighborhood, is required for the swap

neighborhood since the completion times of the jobs within the positions and will

be changed. In the fourth step, since we have and already calculated before,

and can be calculated starting from position 3 up to position 5. Finally, the

makespan value after interchanging job 3 with job 5 can be obtained by taking the

maximum of additions as follows:

.
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Figure 3-1 : Swapping job 3 with job 5

As known, the size of interchange neighborhood structure is . Since

each objective function evaluation takes time, the computational complexity

of interchange neighborhood structure is . The proposed speed-up method

can provide 53% decrease in CPU time in average as shown experimentally in Table

7-1. However, it should be noted that the proposed speed-up method cannot decrease

the time complexity of swap neighborhood structure from to .

A numerical example for swap speed-up procedure is presented below.

SDST_TA001 instance is used in this example. For simplicity, only the first 8 jobs

with 5 machines are considered. The processing times and setup times matrices for

each machine are given in Table 3-1 to 3-6.
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1 2 3 4 5
1 54 79 16 66 58
2 83 3 89 58 56
3 15 11 49 31 20
4 71 99 15 68 85
5 77 56 89 78 53
6 36 70 45 91 35
7 53 99 60 13 53
8 38 60 23 59 41

Table 3-1. The processing times matrix

1 2 3 4 5 6 7 8
1 0 27 41 8 36 39 18 27
2 47 0 39 2 6 49 28 35
3 2 38 0 8 44 24 8 44
4 37 38 20 0 33 29 15 34
5 27 38 25 15 0 29 28 10
6 44 29 9 34 14 0 11 4
7 43 36 23 48 4 43 0 34
8 31 21 18 22 4 42 4 0

Table 3-2. The setup times matrix for machine 1

1 2 3 4 5 6 7 8
1 0 11 41 49 23 28 8 49
2 34 0 26 14 37 49 4 42
3 17 7 0 10 34 13 47 6
4 45 35 9 0 28 19 2 19
5 41 14 25 8 0 17 25 21
6 11 38 27 28 45 0 37 41
7 30 40 19 21 2 9 0 13
8 20 19 27 17 29 22 25 0

Table 3-3. The setup times matrix for machine 2
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1 2 3 4 5 6 7 8
1 0 30 43 8 26 14 39 3
2 32 0 40 6 36 17 32 9
3 25 35 0 33 10 48 26 41
4 14 16 30 0 42 22 9 45
5 15 22 27 13 0 19 47 18
6 32 6 28 1 6 0 17 1
7 16 31 14 46 13 2 0 8
8 34 2 3 49 37 24 41 0

Table 3-4. The setup times matrix for machine 3

1 2 3 4 5 6 7 8
1 0 37 3 42 3 22 32 34
2 28 0 5 25 44 31 46 12
3 32 19 0 34 19 3 37 37
4 1 20 27 0 40 17 22 49
5 17 6 13 45 0 23 42 42
6 40 8 40 11 27 0 1 36
7 4 15 6 17 14 15 0 17
8 46 43 7 11 24 20 31 0

Table 3-5. The setup times matrix for machine 4

1 2 3 4 5 6 7 8
1 0 23 12 21 18 45 1 7
2 13 0 40 17 1 12 2 6
3 2 29 0 5 17 47 10 4
4 34 35 22 0 32 15 17 17
5 32 33 17 30 0 44 23 32
6 28 39 46 3 46 0 49 15
7 39 47 1 48 21 16 0 44
8 2 33 9 25 45 16 20 0

Table 3-6. The setup times matrix for machine 5

Suppose that, the current permutation is , and jobs 4 and

5 are to be interchanged to obtain the new permutation .

In order to calculate the new makespan, first and matrices are

constructed for permutation which are given in Table 3-7 and 3-8.
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1 2 3 4 5 6 7 8
1 36 60 - - - - - -
2 106 144 - - - - - -
3 151 228 - - - - - -
4 242 313 - - - - - -
5 277 343 - - - - - -

Table 3-7. matrix for permutation

1 2 3 4 5 6 7 8
1 - - - - - - 366 278
2 - - - - - - 312 225
3 - - - - - - 194 126
4 - - - - - - 178 66
5 - - - - - - 112 53

Table 3-8. matrix for permutation

Since , and .

Then, can be calculated as:

.

The remaining matrix can be calculated similarly by using equation 8. The

matrix for is shown in Table 3-9.

1 2 3 4 5 6 7 8
1 - - 181 302 375 468 - -
2 - - 237 305 435 567 - -
3 - - 327 438 470 582 - -
4 - - 410 496 567 650 - -
5 - - 463 552 608 735 - -

Table 3-9. matrix for permutation

Now, the makespan on each machine can be calculated by using Eq. (9) and the

results are given in Table 3-10.
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1 468 366 37 871
2 567 312 45 924
3 582 194 14 790
4 650 178 1 829
5 735 112 34 881

Table 3-10. Calculation of final makespan value

Finally, the new make span value for is the maximum of values,

which is 924.

3.2 Speed-up Methods for Total Flow Time Calculation

Li et al. (2009) proposed General Flow time Computing (GFC) speed-up

method for total flowtime calculation. In order to calculate the objective function,

finishing times of each job on the last machine must be calculated. While applying

the search operations like swap and insertion, new permutations carry similar sub

sequences from their parent permutations. As an outcome of this fact, the proposed

GFC suggests dividing the resulting schedule into changed and unchanged parts.

Partial fitness values for the unchanged part of the permutation values do not have to

be calculated again; they can be used directly in further calculations.

Total flow time calculation starts from the first job of the permutation. In each

perturbation, all completion times of the jobs are calculated for the new permutation

using Eq. (2). If completion times of all jobs on each machine are calculated initially,

the new fitness value after a perturbation is applied to current schedule can be

calculated in a quicker way. Consider the example given in Figure 3.2 where job 5 is

removed from the permutation and inserted after job 3. Completion times of the first

three jobs remain unchanged; there is no need to calculate them again.
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Figure 3-2 Total Flowtime Insertion operation of job 5

The total flow time calculation procedure can be modified as follows in order to

speed up the fitness computation:

The fifth job is inserted between third and fourth jobs (Figure 3-2). Finishing

times up to third job are already available from the previous calculations and they are

stored in matrix. Completion times of the new sequence can be calculated as:

where and , i.e.,

fitness calculation starts from position 4 instead of position 1.

Finally, the total flowtime will be calculated using Eq. (2) using new

completion times. As a result, completion times of the unchanged part are not

calculated again, the number of calculation steps is decreased.

Li et al. (2009) showed that the fitness calculation times can be reduced up to

speed-up algorithm can be adapted for both swap and insertion

neighborhoods. However, the computational time complexity remains the same.

An example for swap neighborhood is presented below. SDST_TA001 instance

is used in this example. For simplicity, only the first 8 jobs with 5 machines are

considered.  This is the same problem instance which is used for SDST PFSP under

optimization criterion example. Suppose that, the current permutation is

and the job 4 and job 7 are to be interchanged as shown in Figure

3-3, to obtain new permutation .



31

Figure 3-3 Total Flowtime swap of job 4 and job 7

In order to calculate the new total flowtime, previously calculated machine

finishing time ( ) matrix for permutation shown in Table 3-11 will be used.

1 2 3 4 5 6 7 8
1 54 164 218 297 407 472 536 608
2 133 167 229 396 480 567 703 776
3 149 268 357 411 569 633 763 799
4 215 326 388 490 647 761 776 858
5 273 382 442 575 700 796 898 983

Table 3-11 Completion times matrix for

There is no need to recalculate the finishing times of the first three jobs in order

to calculate the new fitness permutation for . So, they will simply be reused as

shown in Table 3-12.

1 2 3 4 5 6 7 8
1 54 164 218 - - - - -
2 133 167 229 - - - - -
3 149 268 357 - - - - -
4 215 326 388 - - - - -
5 273 382 442 - - - - -

Table 3-12 Completion times matrix for first three jobs
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New completion times for the jobs after the third position will be calculated

using Eq. (3), starting from position 4.

Jobs in the remaining part of the permutation can calculated similarly and total

flow time will be calculated using these new values. The results are shown in Table

3-13.

1 2 3 4 5 6 7 8
1 54 164 218 279 360 425 530 602
2 133 167 229 378 436 523 650 729
3 149 268 357 443 545 609 665 752
4 215 326 388 456 623 737 816 924
5 273 382 442 509 676 772 901 965

Table 3-13 The new finishing times matrix

Total flow time can be calculated by using equation 2 as follows

.

The new fitness value is calculated using 25 operations instead of

operations, hence saving 15 calculations, resulting in 15/40 = 37.5% less CPU time
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4 HEURISTIC AND METAHEURISTIC ALGORITHMS USED IN

THESIS

Optimization problems can be divided in two classes. A solution can be

developed in polynomial time for the first class of problems. So, an optimum solution

can be found efficiently.  On the other hand, for the second class of optimization

problems, finding an optimum solution in polynomial time is considered impossible

and these kinds of problems are named as (nondeterministic polynomial time)

problems. For these types of problems, brute force or exhaustive search can be

infeasible for even moderate problem sizes. Thus, alternative algorithms are needed

for finding optimum or near optimum solutions for problems in reasonable amount of

time. Stochastic optimization is general category of algorithms and techniques which

use some level of randomness to achieve optimal solutions (Luke, 2015).

Heuristics are alternative ways to find solutions for hard problems. Some

problems can be solved by using heuristic algorithms that are tailored for the problem

in hand. Heuristic approaches do not guarantee to find optimum solutions but they

can generally find near optimal solutions in reasonable time. However, it may not be

straightforward to develop a heuristic for a given problem. Besides not guaranteeing

the optimal solution, heuristics have more tradeoffs such as incompleteness, loss in

accuracy and precision and long execution times.

Other important tradeoff of heuristics approaches is being problem specific. It

means that, a good heuristics for a given problem cannot be applied to the other

problems in most cases. At this point, metaheuristic approaches can offer more

generic solution methods for different kinds of problems. Metaheuristic is a term for

representing an extensive subfield of stochastic optimization (Korst, Aarts, &

Michiels, 2005). Metaheuristics are derived by abstracting the heuristic methods for

different problems (Johnson C. G., 2008). Another way to come up with new

metaheuristics is observations from nature. Some metaheuristics, such as Genetic
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Algorithms (Mitchell, 1996) and Ant Colony Optimization (Dorigo & Gambardella,

1997) are inspired from nature.

Metaheuristic methods become very useful when they are hybridized them with

local search methods (Osman & Laporte, 1996). Neighborhood search algorithms can

be a good option for optimization problems for finding local optimums. The current

best value can be taken as initial starting point for the local search algorithm. In each

iteration, neighborhood of the current solution is searched. If a neighboring solution

having better fitness value is found, the current best solution is replaced with the

neighbor. This process can continue until a local optimum value is found. This

operation is called as local search. This neighborhood search continues until some

finishing criteria is met or a local optimum is reached. However, this local optimum

value can be far away from the optimum value as stated by Osman and Laporte

(1996). Other techniques, such as picking a good starting point (solution), using

learning systems like tabu search or an adaptive acceptance criterion as in simulated

annealing may be needed in order to get better results.

A hypothetical state space landscape is demonstrated in Figure 4-1 (Russell &

Norvig, 2010). In the figure, current state represents the current best solution and

elevation is value of the objective function. Objective function can aim to find the

highest peak (global maximum) or lowest valley (global minimum). Local search

algorithms aim to search through the solution space to find a local optimum value.
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Figure 4-1 A one-dimensional state-space landscape in which elevation
corresponds to the objective function (Russell & Norvig, 2010)

Some algorithms are greedy and this may cause them to become stuck in local

minimum or maximum. A pure random move can be useful to avoid such

circumstances, but this may be very expensive and sometimes it may not be useful.

Various techniques to avoid being stuck in local hills and valleys are proposed. One

of such techniques is used in the simulated annealing algorithm, which has been

applied to many problems successfully. Annealing is the process of heating up metals

to high temperatures, and then leaving them to cooling for a while and heating them

up again. While increasing the temperature of the metal for a small period of time, the

process allows metal to move in opposite direction. Stuart and Norvig (2010) gave a

ball example to explain the simulated annealing approach. If a ball is thrown to the

search space, ball will get stuck in the first local optimum. If ground (search space) is

shaken, ball can move out of its current state and advance to the next valley. In most

simulated annealing implementations, the size of the shake is bigger at the beginning

of the search. The size of the shake decreases gradually as the algorithm runs.

4.1 NEH Algorithm

NEH (Nawaz, Enscore, & Ham, 1983) is the best known and most efficient

heuristic for flowshop scheduling problem. NEH algorithm aims to insert new jobs

into best position in the permutation of partially scheduled jobs. The best position is

the position that results in minimum partial fitness function value. The worst-case
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complexity of the algorithm is . In 1990, Taillard (Taillard, 1990) proposed a

new calculation method for makespan calculation in flowshop problems that

decreases the computational complexity of the algorithm from to .

NEH algorithm became more efficient and popular in flowshop problems with this

improvement for makespan minimization criterion.

Basic NEH algorithm consists of two stages. In the first stage, jobs are sorted

according to their total processing times on all machines. In the second stage, the jobs

are considered one by one in order for insertion into the partial schedule. The jobs are

inserted in all possible positions in the partial schedule and the position that

minimizes the partial fitness value is selected for insertion. The pseudo-code of the

NEH algorithm is given in Figure 4-2.

Figure 4-2 Pseudocode of the NEH algorithm

(Taillard, 1990) constructs earliest completion times ( )

and tail ( ) matrices before executing Step 3.2 in order to calculate partial makespan

values in one operation instead of using operations.

Adaptations and modifications to NEH algorithm has been proposed for

different versions of the flowshop problem. For example, Rios-Mercado and Bard

(Rios-Mercado & Bard , 1998b) extended the algorithm to consider sequence

dependent setup times (SDST) in the calculation and named their algorithm as

NEHT-RB (Nawaz-Enscore-Ham, Taillard, Rios-Mercado and Bard). and

matrixes are calculated

new job in all positions in the partial sequence and by considering SDST as follows:
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and

Computational complexity of NEHT-RB is calculated as (Rios-

Mercado & Bard, 1998b).

4.2 Iterated Greedy (IG) Algorithm

Ruiz and (2007) presented Iterated Greedy (IG) algorithm for

permutation flowshop scheduling problem and later extended the algorithm for the

same problem to include sequence dependent set up times . IG

can produce good solutions in a short time limit. IG algorithm consists of two phases:

destruction and construction. In the first phase (destruction phase), a previously

determined number of elements are removed from the current incumbent solution.

After this phase, construction phase is started. In the construction phase, the elements

(jobs) that were removed in the previous phase are inserted into the solution again, by

considering them in the order they were removed. The position that minimizes the

partial makespan for the current considered job is selected. After all removed jobs are

reinserted and a new full solution is generated, the new solution is considered for

acceptance to be used in the next iteration. As its name suggests, IG algorithm is

greedy; the new solution is always accepted if it is better than the current solution.

However, since greedy algorithms can get stuck at local minima, a Metropolis type

acceptance criterion (Metropolis, Rosenbluth, Rosenbluth, & Teller, 1953) similar to

simulated annealing can be used. IG algorithm continues to iterate until a stopping

criteria such as time limit or predetermined number of iterations, is met. IG algorithm

has been successfully applied to many other problems, such as set covering problem

(Jacobs & Brusco, 1995) and airline crew scheduling (Marchiori & Steenbeek, 2000).

The pseudo code of the IG algorithm is given in Figure 4-3.
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Figure 4-3 Iterated Greedy Algorithm pseudo code

Initial solution for IG is obtained by using the NEH algorithm. In destruction

phase of IG, randomly selected jobs are removed from . is a very important

performance parameter for IG. Selection of jobs is totally random and without

repetition. After the destruction phase, jobs will be remained in the partial

solution and jobs will be in removed jobs sequence . The construction phase is

the process of inserting the removed jobs into the partial schedule until all of the

removed jobs are placed in the partial job sequence in order to obtain a full solution

again.

A local search step can be added to IG to improve its performance. Ruiz and

(2007) added a simple and effective local search algorithm to the proposed IG

algorithm which is based on insertion neighborhood. The insertion operation is
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applied to all jobs in the current solution. In the local search method, named as

iterative improvement insertion, one job is selected from without repetition and it

is inserted into all possible positions in the permutation. The algorithm uses first

improvement pivoting rule. The pseudo code of the local search method is shown in

Figure 4-4 .

Figure 4-4 Iterative Improvement procedure using insertion neighborhood

The IG simulated annealing-like

acceptance criterion. The Temperature value is calculated as shown in Eq. 12.

(12)

value is again an important parameter for the performance of the IG algorithm

and needs to be calibrated carefully. also used the same IG

algorithm for PFSP with sequence dependent set up times and

obtained superior results.
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4.3 Variable Neighborhood Search

Variable neighborhood search (VNS) is a popular metaheuristic algorithm

proposed by Mladenovic and Hansen (Mladenovic & Hansen, 1997) . VNS algorithm

visits the neighbor solutions of the current solution and updates the current solution if

a better solution is found. The Basic VNS algorithm developed by Mladenovic and

Hansen is given in Figure 4-5 .

is a finite set of pre-defined neighborhood structures and the set of solutions

in the neighborhood of .

Figure 4-5 Basic VNS Algorithm

Neighborhood search methodologies can be different; either random or

predetermined neighbors can be visited to escape from local optimum values.

Different solution sets can be constructed by using different neighborhood structures.

Figure 4-6 (El-Ghazali, 2009) shows different local optima and global optima for two

different neighborhoods.
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Figure 4-6 VNS using different neighborhoods

There are two main implementations of Variable Neighborhood Search (VNS)

algorithm. The first implementation is Variable Neighborhood Descent (VND)

which is the deterministic version of VNS. In VND, successive neighborhoods are

used in iterative searching methodology. Initially, neighborhood structures are

determined as . First, an initial value is generated. Then in a

loop, all neighbors of respect to neighborhood is generated. If  the best neighbor

is better than , then is replaced with and is set to . When there is no

improvement, VND algorithm switches to neighborhood . At the end of the

algorithm, the reported best solution will be a local optimum with respect to

neighborhoods. Determination of the neighborhood structures that will be used in

VND is very crucial for the performance of the algorithm. Pseudocode of the VND

algorithm is given in Figure 4-7 (El-Ghazali, 2009).

Figure 4-7 Pseudocode of the VND algorithm
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The second common implementation of the VNS algorithm is the General

Variable Neighborhood Search (GVNS) algorithm. In contrast to VND, GVNS is a

stochastic algorithm. Neighborhood structures to be used for shaking and local search

are determined first. GVNS algorithm consists of three phases: shaking, local search

and changing the neighborhood. A new iteration starts with shaking step using the

current neighborhood to generate a new solution randomly. Local search is applied

to in the second phase. Last phase is determination and comparison. If is better

than the current best solution, then the current neighborhood to be used in the next

iteration to generate a new solution is set to the first neighborhood. If is not better,

then algorithm moves to new neighborhood. The pseudo code for GVNS algorithm is

given in Figure 4-8 (El-Ghazali, 2009).

Figure 4-8 Pseudocode for GVNS algorithm

Local search phase allows to find better local optimum solutions, whereas

shaking phase may lead to a jump to better regions of the search space to find better

solutions. In local search phase, the algorithm mostly looks for local optimum values
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in a narrow search space. If the shake values are big, then after each shake phase, the

algorithm starts over from a new point away from the local optimum value which

may cause the algorithm to steer away from a promising region in the search space.

Determination of the neighborhood structures and the strength of the shake are crucial

for the performance of the GVNS algorithm.
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5 DESIGN OF EXPERIMENTS APPROACH

Designing an experiment is a procedure of planning to how collect convenient

data, which can be analyzed using statistical methods. Statistical methods are

necessary for creating valid and accountable results from the collected data. There are

two major considerations in designing an experiment; creating an adequate

experiment environment and analyzing the data with proper statistical analysis

methods. Both factors play important roles in producing correct experiment results.

Experimental design has three fundamental factors: replication, randomization

and blocking (Montgomery, 2001). Replication means repeating the test several

times. Experimental assumption errors and variance of the results will be decreased

with repetition of the experiments. Randomization means selecting the experimental

material randomly. Randomization allows lowering the effects of boundary values in

computations. Blocking is used for improving correctness of the experiment by

creating comparable test environments.

A correctly planed experiment can give good and meaningful statistical results

for showing the response of a variable. In many studies certain factors are held

constant and the effect of a single factor is examined. This kind of approach called as

one factor at a time (OFAT). Nevertheless, this approach is not sufficient for a system

in which factor values change over time.

For systems whose planning concerns more than two factors, factorial design is

more efficient. Factorial design is more efficient in showing effects of more than one

factor on the output. By using factorial design, effects of the factors can be seen

statistically in the results and cross interaction of the factors can be determined.

Number of experiments to be carried out can be lowered by testing more than

one factor concurrently in one experiment by using factorial design. As an example to

factorial design, let an independent factor A has number of levels and

independent factor B has number of levels. Factorial design will have all
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combinations of independent factors A and B and will include all combinations of

.  Factorial design also shows the main effect and interaction effects of the

independent factors. However, main effect and interaction effects only give

analogous result of factors. In order to make a more adequate analysis, statistical

methods such as regression should be applied.  On the other hand, in factorial design,

more than one factor is tested, but not all of these independent factors have to have an

effect on the result. Therefore, it is also important to decide which of the independent

factors are significant.

Main effect is the direct effect of the independent factor on the result. In some

cases, the effect of the independent factor may change in relation to another

independent factor. This is called as interaction effect. Both effects can clearly be

seen at the end of the statistical analysis of factorial design experiment result.

To demonstrate factorial design, and main effect and interaction effect, an

example is presented (ReliaSoft Corporation, 2015). Let and be two

independent factors. Moreover, let responses and represent the high and

low values of and and represent the high and low values for independent

factor . There are two independent factors and two level design is planned. A two

by two matrix is constructed for all four possible combinations as shown in Table 5-

1.

25 35

45 55

Table 5-1 Two factor factorial design - First example
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The main effect of the factor can be found by calculating the average of

the results when is high and low. The change in the result caused by is called the

main effect of .

As the factor changes from to , experiment results change by 20

units regardless of values. As it is seen from the interaction plot in Figure 5-1, lines

of the two factors go parallel, meaning that, there is no interaction between these two

factors for this experiment.

Figure 5-1 Interaction Plot of Factor X and Factor Y

There is no interaction between factor and in the first example. Suppose

that, a new experiment is designed for a different system. The result of the new

experiment is shown in Table 5-2.
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20 30

40 10

Table 5-2 Two factor Factorial design - Second example

For this experiment, main effect of can be calculated as follows:

Effect of the independent factor is calculated as zero. However, with different

values of , response of the experiment differs (for and ). But

this effect on the response is dependent on the level of . Interaction between

can be calculated using the above formulation as follows:

An intersection in interaction plot means that there is an interaction between

factors. In Figure 5-2, there is an interaction between factors and , so the effect of

one factor depend on the other factor.

Figure 5-2 Interaction Plot of Factor X and Factor Y for second example
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6 ALGORITHMS DEVELOPED TO SOLVE PERMUTATION FLOW
SHOP PROBLEM WITH SEQUENCE DEPENDENT SETUP

TIMES

In this chapter, the algorithms developed for solving the SDST-PFS problem

under makespan and total flow time are presented. The design of experiment (DOE)

approach used to fine tune the parameters of the proposed algorithms and the results

of the DOE are given in detail.

6.1 Iterated Greedy Algorithm with Iteration Jumping for Makespan
Minimization

The VND algorithm changes neighborhoods systemically; it moves from one

neighborhood structure to another in the search space to find a solution which is a

local optimum with respect to all neighborhood functions used in the search. In the

literature it is proposed that, insertion neighborhood structure is more effective than

swap neighborhood structure for makespan minimization (Grabowski & Wodecki,

2004) (Nowicki & Smutnicki, 1996) . Implementing both

neighborhood structures in a VND algorithm can increase the computational cost of

the algorithm in terms of CPU time. However, using the swap neighborhood can help

to escape local optimum values found using insertion neighborhood by traversing

different points in the search space. Using swap neighborhood can increase the

time. So, swap neighborhood should be used much less than insertion. In this thesis,

an iteration jumping structure is used to control when the swap neighborhood will be

invoked in the local search phase. In the proposed iteration jumping scheme, a

random number is generated at the start of the local search phase in order to

determine whether to use the insertion or swap neighborhood. The probability of

using the swap neighborhood is generally very small since the swap neighborhood is

costly in terms of CPU time as described before. An IG algorithm using iteration

jumping in the local search is proposed and named as Iterated Greedy algorithm with
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Iteration Jumping (IG_IJ). The pseudo code of proposed IG_IJ algorithm is given in

Figure 6-1.

Figure 6-1 The proposed IG_IJ algorithm

An initial solution is generated using the NEH_RMB algorithm and local search

(2007) can be considered as a special case of the IG_IJ algorithm with jumping

probability set to zero.  Unlike VND, IG_IJ algorithm does not always switch to swap

neighborhood, but it uses the swap neighborhood with a small predetermined

probability, thus giving more chance to the insertion neighborhood structure that is

very effective under makespan optimization criterion. The local search with the

iteration jumping probability is given Figure 6-2.



50

Figure 6-2 Local Search algorithm used in IG_IJ

The Proposed local search algorithm uses both insertion and swap

neighborhoods with an iteration jumping probability . The reason for using an

iteration jumping probability to control the usage of the swap neighborhood is the

computational cost of the swap neighborhood structure. The cost of swap operation is

still high even with the new speed-up technique. However, usage of swap

neighborhood has positive effects as shown in computational results. The proposed

local search is simple in a way that if a uniform random number is smaller than the

iteration jumping probability , the swap neighborhood-based local search is

employed. Otherwise, the insertion neighborhood-based local search is carried out.
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The size of the insertion neighborhood is and its complexity is

in the proposed local search algorithm -up method reduces

the complexity to as explained in previous chapters. The size of the swap

neighborhood is and each evaluation takes operations to calculate

the objective function, so total computational complexity is . The proposed

calculation technique does not reduce the computational complexity, but it decreases

the average computational time by 50%. So, the computational time required for the

swap operation can still be high for large values.

6.2 Iterated Greedy Algorithm with Variable Neighborhood Search for
Makespan Minimization

As considered before, VNS algorithm plays an important role in escaping from

local optima (valleys) by switching the neighborhood structures systematically. Two

different versions of the IG algorithm with VNS based local search is proposed. The

first version uses insertion as the first neighborhood and swap as the second

neighborhood and is called IG_VNS1, while the second version named IG_VNS2

uses swap neighborhood as the first neighborhood and insertion neighborhood as the

second neighborhood. Both algorithms use destruction and construction procedure for

shaking. The general structure of both algorithms in given in Figure 6-3. As

mentioned above, the difference of the two IG_VNS versions is in the application

order of the neighborhood structures used in local search phase of the VNS algorithm.
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Figure 6-3 The pseudo code of the proposed IG_VNS algorithms

6.3 Experiment Design for Make Span Minimization Criterion

created a new benchmark set for permutation flow shop

problem with sequence dependent setup times which is

benchmark suite. The o suite does not have sequence

dependent setup times. It has 120 instances in total in twelve groups. The groups

contain different combinations, which are ,

and

are generated from a uniform distribution in the range .

using different uniform distributions

whose ranges are and . These new test instance groups

are named as SDST10, SDST50, SDST100 and SDST125 respectively. There are 480

test instances in total in four different SDST groups.

A new benchmark suite is created by following the same construction

procedure used in in order to carry out experiments. New test

instances are generated with combinations of
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. 75 new test instances are generated with

sequence dependent setup times that are uniformly distributed between .

The first proposed IG algorithm (IG_IJ) for makespan optimization problem

has three parameters: destruction size , iteration jumping probability and

temperature adjustment parameter . A full factorial design is created by using the

Design of Experiments (DoE) approach of Montgomery (2001). In the first step, the

effects of three factors with different levels are examined. Destruction size has five

levels ( 4,5,6,7,8),  iteration jumping probability also has five levels (0.0, 1.0, 0.1,

0.01, 0.001) and temperature adjustment parameter has ten levels (0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Note that, when the iteration jumping probability is equal

to 0.0, it means that only the insertion neighborhood structure is used in local search,

whereas, when equals to 1.0, it means that, only swap neighborhood structure will

be used in local search. When equals to 0, IG_IJ is equivalent to IG_RSLS.

A full factorial design is conducted, resulting in treatments.

Each instance in the generated test set is run for 250 treatments with a maximum

CPU limit set to milliseconds for each run. The performance

variable, relative percent deviation, is calculated as follows:

(13)

where is the makespan value generated in each run and is the minimum

makespan obtained amongst 250 treatments. Ten replications are carried out for each

treatment. RPD values are calculated and averaged for each treatment. Then, the

response variable is obtained by averaging the RPD values of 75 different job-

machine combinations for each treatment.

The main effects plot is given in Figure 6-4. Figure 6-4 suggests that the

destruction size should be taken at 3rd level as 6, the iteration jumping probability

should be taken at 5th level as 0.001 and the temperature adjustment parameter should

be taken at 10th level as 1.0. The main effects plot of the iteration jumping probability

suggests some insights about the neighborhood structures. The first observation is
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that, insertion neighborhood structure is significantly much more effective than swap

neighborhood structure.  However, giving a little chance to swap neighborhood

structure can enhance solution quality without jeopardizing the effectiveness of

insertion neighborhood structure. RPD values with achieves almost the

same level of using only insertion neighborhood structure.

Figure 6-4 Main effect plots of parameters

Next, ANOVA test is carried out for this experiment. Note that, all three

hypotheses of the ANOVA method (normality, homoscedasticity and independence

of the residuals) were checked and accepted. The results of the ANOVA test is given

in Table 6-1. As observed from the table, and interactions are

significant, since the calculated values are less than level. For this reason,

interaction plots should be analyzed in order to support the judgment inferred from

main effects plots. The interaction plot for is given in Figure 6-5.
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Source DF Seq SS Adj SS Adj MS F

4 2.364 2.364 0.591 111.080 0.000

4 312.814 312.814 78.204 14699.740 0.000
9 0.077 0.077 0.009 1.610 0.119

16 2.718 2.718 0.170 31.930 0.000

36 0.385 0.385 0.011 2.010 0.002

36 0.215 0.215 0.006 1.120 0.309

Error 144 0.766 0.766 0.005

Total 249 319.339

Table 6-1 ANOVA table of IG_IJLS

Figure 6-5 Interaction plot for destruction size versus jumping probability

In Figure 6-5, destruction size in the third level ( ) generates the lowest

RPD value (RPD = 0.762966) with at the fifth level . Note that,

level 1 and level 4 of iteration jumping probability are competitive, since their RPD

values are 0.769684 and 0.767644, respectively.
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The interaction plot for is given in Figure 6-6. From Figure 6-6, it is

interesting to see that the temperature adjustment parameter should be selected as

, unlike the one suggested in the main effects plot.

Figure 6-6 Interaction plot for destruction size versus temperature adjustment
parameter

In Figure 6-7, it is observed that, levels 1, 4 and 5 have no statistical

significance, so any of the three values can be selected.
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Figure 6-7 Interval Plot of (jumping probability)

Figure 6-8 suggests that different values do not have statistical significance.

After the above analysis, the following parameters parameter values will be used:

and .

Figure 6-8 Interval Plot of size
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6.4 Variable Local Search Algorithm for Total Flow Time Minimization

Variable local search is a local search technique which gives opportunity for

implementing different local searches using a specified criterion.  Shi et al. (2007)

implemented Variable meta Heuristic Local Search (VHLS) algorithm for multi

objective flow-shop problem. Ribas et al. (2015) developed a variable local search

algorithm for blocking flow shop problem. They have developed a new variable local

search algorithm called VLSRCT and employed it in a discrete artificial bee colony

algorithm. VLSRCT is developed for finding so called good food sources in DABC

algorithm framework.

VLSRCT is a combination of two local search algorithms which are named as

LS1 and LS2.  VLSRCT procedure uses both local search algorithms in its

implementation. The interesting approach in their implementation is that, the first

algorithm to be executed first is determined randomly, and the other algorithm is

executed if the current algorithm can find a better solution than the current best

solution. This process continues in a loop that terminates if the current algorithm

cannot find an improvement and both of the algorithms have executed at least once.

The pseudocode for the VLSRCT is given in Figure 6.9.
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Figure 6-9 VLSRCT algorithm

LS1 algorithm generates a new schedule by swapping a randomly selected job

with all other jobs that comes after it. If the new solution is better than the current

best solution, then best solution so far is updated with the new solution. This process

continues until all jobs are swapped with other jobs. The job to be swapped is

determined randomly in order to consider different schedules in each local search

iteration. LS2 uses insertion neighborhood. In LS2, a job is selected randomly and is

removed from the permutation. Then, this job is placed in all possible positions and

the best position for insertion is selected. This procedure continues until all jobs are

removed and inserted.

A new VLS algorithm based on VLSRCT is developed and is named as VLSIKT.

The proposed VLSIKT algorithm uses both insertion and swap neighborhoods.

Following the notation used in VLSRCT, local search algorithms are named as LS1

and LS2. Local search algorithm LS1 is the swap neighborhood structure as in

VLSRCT. However, usage of the swap neighborhood structure is different from the

VLSRCT. LS1 algorithm in VLSIKT does not select the job to be swapped randomly,

instead, it first considers the first job, then the second job, and so on. If a better

schedule is found, the current best permutation is updated with the new schedule and

swap operation is terminated. Hence, first improvement pivoting rule is used.

Implementation of the LS2 algorithm is same as it is in VLSRCT: a randomly selected

job is removed from the current permutation and is inserted to the all possible
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positions. The best insertion position is selected and if the new permutation is better

than the current permutation, current best permutation is replaced.

The VLSIKT is used as the local search method in an iterated greedy algorithm

named as IG_VLSIKT which is almost identical to IG_RS algorithm

2008). The difference in IG_VLSIKT is that, it uses VLSIKT in the local search phase

instead of iterated insertion local search in IG_RS. The pseudocode for IG_VLSIKT is

given in Figure 6-10.

Figure 6-10. The proposed IG_VLSIKT algorithm
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6.5 Design of Experiment for Total Flow Time Minimization

DoE approach is used again in order to identify the parameter values for IG_RS

algorithm , IG_VLSRCT and IG_VLSIKT. A full factorial

design similar to the make span optimization problem is implemented. Full factorial

design allows to observe the effect of the individual algorithm parameters and also

interaction between them. The same test instances used in makespan minimization

DoE are again used in the experiments. The same experiment design is used for three

algorithms since their parameters are the same, however, results are evaluated

separately.

All three algorithms have two parameters: destruction size and temperature

adjustment parameter . Eleven levels (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0) are considered for destruction size , and five levels (4, 5, 6, 7, 8) are

considered for temperature adjustment parameter . There are 5 x 11 = 55 different

treatments in total. Maximum CPU time is set to

milliseconds for each run. The response variable relative percentage deviation is

computed according to equation (5) in which is the total flow time found in each

run and is the minimum total flow time found amongst all runs for the

considered test instance. After all results are evaluated for each treatment, results are

analyzed separately for each algorithm in order to determine their parameter values.

Main effect plots for destruction size and temperature adjustment parameter for

IG_RS are shown in Figure 6-11 and Figure 6-12. The main effect plots suggest that,

destruction size value should be taken as 8 and temperature adjustment parameter

should be selected as 0.5 for IG_RS algorithm.
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Figure 6-11 Main effect plots of d size for IG_RS algorithm

Figure 6-12 Main effect plots of temperature adjustment parameter for IG_RS
algorithm

In order to determine whether the parameters and their interaction are

significant, ANOVA analysis is used and the results of the analysis is given in Table

6-2. From the ANOVA table it is clear that, is significant because its value is less

than .
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Source DF Sum Sq Mean Sq F

1 0.61385 0.61385 174.139 0.0001171

1 0.01590 0.01590 0.4510 0.5048763

1 0.13026 0.13026 36.953 0.0601616

Residuals 51 179.779 0.03525

Table 6-2 ANOVA table of parameters in IG_RS

Interaction plot for destruction size and temperature adjustment parameter is

shown in Figure 6-13. In the interaction plot, the RPD values are lowest when

and and also when and .

Figure 6-13. Interaction plot of temperature adjustment parameter and
destruction size for IG_RS algorithm

Finally, interval plots of the two parameters destruction size and temperature

adjustment parameter are given in Figure 6-14 and Figure 6-15. These plots suggest

that the observed differences of RPD for different parameter values are not

statistically significant. So, any value for the parameters can be chosen. The

parameter combination and is chosen for IG_RS.
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Figure 6-14 Interval plot of d size for IG_RS algorithm

Figure 6-15 Interval plot of temperature adjustment parameter for IG_RS
algorithm

The same procedure is followed for determining the parameters of IG_VLSRCT

and IG_VLSIKT. When the main effect graphs in Figure 6-16 and 6-17 are analyzed, it

is observed that the lowest RPD values are achieved when and .
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Figure 6-16 Main effect plots of d size for IG_VLSRCT algorithm

Figure 6-17 Main effect plots of temperature adjustment parameter for
IG_VLSRCT algorithm

In order to see the significance of the parameters, ANOVA analysis is used

again and the results are given in Table 6-3. It is seen that, only destruction size

parameter is significant, while and interaction is not significant.
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Source DF Sum Sq Mean Sq F

1 0.89496 0.89496 14.9734 0.0003109

1 0.00620 0.00620 0.1037 0.7487798

1 0.00090 0.00090 0.0151 0.9026852

Residuals 51 3.04825 0.05977

Table 6-3 ANOVA table for IG_VLSRCT

When the interaction plot shown in Figure 6-18 is examined, it can be seen that

lowest RPD values are observed when and . This value of is

consistent with its value observed in main effect plot.

Figure 6-18 Interaction plot of temperature adjustment parameter and
destruction size for IG_VLSRCT algorithm

For more detailed analysis for the parameters, interval plots are examined. In

Figure 6-19, it is clear that increasing destruction size gives better results. However,

intervals are overlapping, meaning that, none of the results have significant

superiority to others. When the Figure 6-20 is examined, it is observed that, there is

no significant value since the intervals overlap again. So, parameters are selected as

and .
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Figure 6-19. Interval plot of d size for IG_VLSRCT algorithm

Figure 6-20. Interval plot of t size for IG_VLSRCT algorithm

The same procedure is followed for determining destruction size and

temperature adjustment parameter for IG_VLSIKT algorithm. Main effect plots for
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and are presented in Figure 6-21 and Figure 6-22, respectively. It is observed that,

and yield to lowest RPD values, while, setting for temperature

adjustment parameter gives the lowest RPD results.

Figure 6-21. Main effect plots of d size for IG_VLSIKT algorithm

Figure 6-22 Main effect plots of t for IG_VLSIKT algorithm
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ANOVA analysis results are given in Table 6-4. The result is the same as it is

for IG_RS and IG_ VLSRCT algorithms: only destruction size parameter is statistically

significant.

Source DF Sum Sq Mean Sq F

1 0.37579 0.37579 7.0001 0.01081

1 0.00271 0.00271 0.0505 0.82304

1 0.02262 0.02262 0.4214 0.51914

Residuals 51 2.73788 0.05368

Table 6-4 ANOVA table for IG_VLSIKT

Interaction plot for destruction size and temperature adjustment parameters for

IG_VLSIKT algorithm is given in Figure 6-23. Lowest RPD values are observed

when and .

Figure 6-23 Interaction plot of temperature adjustment parameter and
destruction size for IG_VLSIKT algorithm

Similarly, interval plots for destruction size and temperature adjustment

parameters given in Figure 6-24 and Figure 6-25 are analyzed finally, in order to
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determine the parameter values. Again, none of the values for and parameters are

better than the other for 95% confidence interval, so any of the values can be chosen.

So, parameters are selected as and .

Figure 6-24 Interval plot of destruction size for IG_VLSIKT algorithm

Figure 6-25 Interval plot of temperature adjustment parameter for IG_VLSIKT
algorithm
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7 COMPUTATIONAL RESULTS

The results of the computational experiments that are carried out are presented

in this chapter. The parameters for all algorithms are determined using Design of

Experiments approach as detailed in Chapter 6.

7.1 Permutation Flow Shop Problem under Make Span Optimization

Before analyzing the computational results of the proposed algorithms, the

impact of the speed-up method that is developed for the lowering the CPU time for

the swap neighborhood is analyzed. A simple composite heuristic is developed for

this purpose. The algorithm starts with an initial solution generated by NEH_RMB

heuristic and applies one pass swap local search with objective function

evaluations. The experiment is carried out on SDST125 instances. CPU time

requirements with and without the developed speed-up method and time saved ratios

are given Table 7-1. It can be seen that speed-up method saves up to almost 53%

average CPU reduction when carrying out a full swap neighborhood.
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Problems

CPU time

without speed-up

(seconds)

CPU time

with speed-

up(seconds)

Time saved ratio (%)

20x5 0.0007 0.0005 68.44

20x10 0.0011 0.0007 58.74

20x20 0.0022 0.0014 64.23

50x5 0.0085 0.0041 48.41

50x10 0.0166 0.0088 53.07

50x20 0.0338 0.0182 53.92

100x5 0.0710 0.0343 48.31

100x10 0.1376 0.0711 51.65

100x20 0.3097 0.1490 48.10

200x10 1.2676 0.5954 46.97

200x20 2.8035 1.3752 49.05

500x20 58.9363 26.5107 44.98

Average 5.2991 2.3974 52.99

Table 7-1. The impact of the speed-up method on CPU times on SDST125
instances

The proposed algorithms were executed on 480 benchmark instances that are

available from http://www.upv.es/gio/rruiz. Ten runs were conducted for each

problem instance and the performance parameter which is average percentage

deviation (RPD) is calculated as follows:

(14)

where is the makespan value generated in the th replication of the IG algorithms

and BKS is the best makespan values achieved so far in the literature, which are also

provided in http://www.upv.es/gio/rruiz along with the problem instances. R is the

total number of replications.
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The previous best performing algorithms for SDST flowshop scheduling

problem under makespan criterion are memetic algorithm (MA) with local search

(MALS) and IG_RS with a local search (IG_RSLS (Ruiz &

007). For this reason, these two algorithms will be used in comparing the

performances of the developed IG algorithm version. Three different IG versions are

developed as mentioned in Chapter 6: IG_VNS1, IG_VNS2 and IG_IJLS. These

algorithms are implemented in Java language. IG_RSLS

algorithm is re-implemented in Java language and is run on the same computer as the

other three algorithms to be able make a more fair comparison. The re-implemented

IG_RSLS is named as IG*_RSLS.

The computational results are given Table 7-2 and Table 7-3, together with the

results of the proposed IG algorithms. IG_RSLS and MALS results are taken from

. Note that, IG_RSLS and MALS are coded and run in different

computers. Table 7-2 and Table 7-3 give the average results achieved by each

algorithm for the stated instance set. The three values separated by slashes correspond

to results obtained by three different CPU limits set to

milliseconds where is taken as 30, 60 and 90, respectively. The average of best

results for each SDST problem set are shown in bold fonts.

Destruction size and temperature adjustment parameter values are set to

=0.4 for IG*_RSLS as in . is set to 6 and is set to 0.2 for

IG_IJ. These values are determined by an experiment whose details are given in

Chapter 6. The third parameter, iteration jumping probability , is set to 0.001. All

algorithms are executed 10 times for each problem instance. There are 10 different

problems in 12 sets, so average results are calculated over a total of 120

problem instances and 1200 independent runs.
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MALS IG_RSLS IG*_RSLS IG_VNS1 IG_VNS2 IG_IJLS

SDST10

20x5 0.12/0.10/0.08 0.08/0.05/0.04 0.02 / 0.01 / 0.01 0.02 / 0.02 / 0.01 0.02 / 0.02 / 0.01 0.02 / 0.02 / 0.02

20x10 0.13/0.13/0.13 0.08/0.05/0.04 0.04 / 0.01 / 0.01 0.04 / 0.01 / 0.01 0.04 / 0.01 / 0.01 0.01 / 0.01 / 0.00

20x20 0.14/0.09/0.10 0.07/0.05/0.04 0.03 / 0.01 / 0.00 0.03 / 0.03 / 0.02 0.03 / 0.02 / 0.02 0.04 / 0.03 / 0.02

50x5 0.43/0.31/0.30 0.37/0.32/0.27 0.24 / 0.18 / 0.16 0.31 / 0.24 / 0.20 0.34 / 0.27 / 0.25 0.28 / 0.21 / 0.20

50x10 1.12/0.83/0.81 0.76/0.60/0.53 0.41 / 0.26 / 0.19 0.57 / 0.39 / 0.30 0.67 / 0.48 / 0.37 0.44 / 0.32 / 0.19

50x20 1.16/0.96/0.82 0.91/0.64/0.60 0.61 / 0.40 / 0.28 0.82 / 0.57 / 0.43 0.9 0/ 0.66 / 0.48 0.56 / 0.33 / 0.20

100x5 0.54/0.40/0.31 0.43/0.38/0.33 0.30 / 0.24 / 0.20 0.38 / 0.31 / 0.27 0.50 / 0.39 / 0.36 0.31 / 0.24 / 0.21

100x10 0.78/0.60/0.48 0.61/0.44/0.38 0.27 / 0.13 / 0.06 0.42 / 0.26 / 0.18 0.58 / 0.43 / 0.34 0.30 / 0.16 / 0.09

100x20 1.27/0.97/0.82 0.88/0.71/0.54 0.47 / 0.27 / 0.15 0.78 / 0.52 / 0.37 0.98 / 0.72 / 0.57 0.42 / 0.23 / 0.12

200x10 0.79/0.61/0.48 0.58/0.43/0.32 0.26 / 0.13 / 0.05 0.50 / 0.34 / 0.25 0.69 / 0.53 / 0.43 0.27 / 0.15 / 0.06

200x20 1.11/0.87/0.76 0.79/0.53/0.38 0.43 / 0.23 / 0.10 0.69 / 0.51 / 0.39 1.04 / 0.78 / 0.65 0.37 / 0.23 / 0.07

500x20 0.69/0.54/0.43 0.46/0.31/0.21 0.14 / -0.01 / -0.08 0.39 / 0.27 / 0.20 0.69 / 0.64 / 0.57 0.14 / 0.03 / -0.09

Avg 0.69/0.53/0.46 0.50/0.38/0.31 0.27 / 0.15 / 0.09 0.41 / 0.289 / 0.21 0.54 / 0.41 / 0.33 0.26 / 0.16 / 0.09

SDST50

20x5 0.37/0.35/0.30 0.26/0.18/0.10 0.18 / 0.11 / 0.08 0.13 / 0.07 / 0.05 0.12 / 0.05 / 0.04 0.10 / 0.07 / 0.07

20x10 0.41/0.31/0.32 0.28/0.20/0.19 0.20 / 0.12 / 0.09 0.15 / 0.09 / 0.06 0.15 / 0.09 / 0.06 0.15 / 0.08 / 0.07

20x20 0.20/0.16/0.16 0.1/0.09/0.07 0.09 / 0.06 / 0.03 0.07 / 0.04 / 0.03 0.09 / 0.04 / 0.04 0.07 / 0.03 / 0.02

50x5 1.79/1.39/1.13 1.41/1.13/1.04 1.15 / 0.91 / 0.78 1.25 / 0.97 / 0.80 1.46 / 1.16 / 0.99 1.08 / 0.83 / 0.69

50x10 1.49/1.24/1.08 1.33/1.17/0.92 1.00 / 0.77 / 0.65 1.14 / 0.80 / 0.66 1.21 / 0.93 / 0.79 0.91 / 0.65 / 0.55

50x20 1.33/1.07/0.89 1.16/0.93/0.82 0.98 / 0.75 / 0.62 1.14 / 0.82 / 0.67 1.18 / 0.91 / 0.81 0.93 / 0.70 / 0.60

100x5 2.23/1.72/1.38 1.51/1.27/1.09 1.13 / 0.82 / 0.67 1.73 / 1.33 / 1.08 2.08 / 1.58 / 1.35 1.22 / 0.83 / 0.65

100x10 1.84/1.53/1.21 1.37/1.04/0.88 0.91 / 0.56 / 0.42 1.29 / 0.93 / 0.71 1.65 / 1.26 / 1.04 0.99 / 0.68 / 0.51

100x20 1.73/1.35/1.03 1.29/0.96/0.81 0.68 / 0.41 / 0.28 1.12 / 0.75 / 0.58 1.39 / 1.04 / 0.83 0.73 / 0.43 / 0.29

200x10 1.88/1.43/1.21 1.33/0.88/0.63 0.47 / 0.11 / -0.07 1.19 / 0.81 / 0.58 1.84 / 1.33 / 1.08 0.60 / 0.19 / 0.00

200x20 1.61/1.17/1.02 1.10/0.74/0.53 0.38 / 0.09 / -0.08 0.94 / 0.60 / 0.45 1.44 / 1.05 / 0.84 0.47 / 0.13 / -0.04

500x20 1.23/0.96/0.79 0.86/0.50/0.31 0.22 / -0.08 / -0.26 0.92 / 0.65 / 0.48 1.49 / 1.29 / 1.15 0.27 / -0.08 / -0.26

Avg 1.34/1.06/0.88 1.00/0.76/0.62 0.61 / 0.39 / 0.27 0.92 / 0.65 / 0.51 1.17 / 0.89 / 0.75 0.63 / 0.38 / 0.26

Table 7-2 Average relative percentage deviations for SDST10 and SDST50
instances
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MALS IG_RSLS IG*_RSLS IG_VNS1 IG_VNS2 IG_IJLS

SDST100

20x5 0.43/0.37/0.39 0.30/0.25/0.17 0.25 / 0.17 / 0.17 0.20 / 0.08 / 0.05 0.23 / 0.13 / 0.09 0.21 / 0.15 / 0.10

20x10 0.31/0.28/0.29 0.35/0.25/0.18 0.31 / 0.22 / 0.19 0.22 / 0.14 / 0.11 0.27 / 0.15 / 0.14 0.20 / 0.15 / 0.13

20x20 0.29/0.26/0.17 0.27/0.18/0.17 0.27 / 0.19 / 0.15 0.16 / 0.08 / 0.04 0.19 / 0.11 / 0.07 0.16 / 0.10 / 0.07

50x5 2.37/2.24/1.99 1.95/1.95/1.82 2.06 / 1.76 / 1.54 2.02 / 1.61 / 1.41 2.36 / 1.89 / 1.74 1.98 / 1.65 / 1.46

50x10 1.98/1.66/1.50 1.57/1.48/1.30 1.60 / 1.30 / 1.20 1.62 / 1.26 / 1.09 1.89 / 1.53 / 1.32 1.57 / 1.29 / 1.15

50x20 1.66/1.35/1.18 1.41/1.28/1.11 1.49 / 1.29 / 1.12 1.41 / 1.09 / 0.91 1.52 / 1.16 / 1.00 1.25 / 1.02 / 0.94

100x5 3.20/2.69/2.16 2.16/1.95/1.63 2.01 / 1.53 / 1.28 2.65 / 2.09 / 1.77 3.20 / 2.47 / 2.11 1.90 / 1.40 / 1.17

100x10 2.26/2.01/1.61 1.61/1.44/1.02 1.36 / 0.87 / 0.67 1.80 / 1.27 / 0.98 2.2 / 1.59 / 1.25 1.16 / 0.76 / 0.59

100x20 2.12/2.03/1.53 1.41/1.35/1.05 1.02 / 0.72 / 0.59 1.42 / 1.01 / 0.74 1.90 / 1.41 / 1.16 1.09 / 0.74 / 0.58

200x10 2.53/2.19/1.77 1.67/1.25/0.92 0.78 / 0.23 / -0.06 1.85 / 1.20 / 0.86 2.79 / 2.09 / 1.69 0.85 / 0.34 / 0.01

200x20 1.93/1.68/1.40 1.26/0.93/0.76 0.63 / 0.14 / -0.07 1.35 / 0.84 / 0.57 2.00 / 1.52 / 1.21 0.68 / 0.29 / 0.05

500x20 1.53/1.35/1.14 0.96/0.73/0.46 0.44 / -0.06 / -0.28 1.29 / 0.87 / 0.65 2.00 / 1.73 / 1.50 0.46 / 0.00 / -0.26

Average 1.72/1.51/1.26 1.24/1.09/0.88 1.02 / 0.70 / 0.54 1.33 / 0.96 / 0.76 1.71 / 1.31 / 1.15 0.96 / 0.66 / 0.50

SDST125

20x5 0.67/0.34/0.32 0.46/0.35/0.3 0.28 / 0.16 / 0.13 0.26 / 0.13 / 0.07 0.29 / 0.18 / 0.09 0.30 / 0.23 / 0.17

20x10 0.51/0.42/0.37 0.53/0.41/0.36 0.56 / 0.40 / 0.33 0.39 / 0.24 / 0.16 0.33 / 0.24 / 0.20 0.31 / 0.20 / 0.19

20x20 0.28/0.22/0.24 0.26/0.22/0.19 0.26 / 0.19 / 0.16 0.14 / 0.07 / 0.06 0.13 / 0.09 / 0.06 0.15 / 0.11 / 0.08

50x5 2.97/2.47/1.97 2.37/2.18/2.01 2.33 / 1.91 / 1.73 2.61 / 2.11 / 1.83 2.67 / 2.19 / 1.94 2.01 / 1.77 / 1.56

50x10 2.07/1.78/1.5 1.94/1.67/1.54 1.71 / 1.45 / 1.33 1.99 / 1.55 / 1.26 2.02 / 1.62 / 1.44 1.68 / 1.41 / 1.25

50x20 1.59/1.43/1.26 1.42/1.45/1.18 1.54 / 1.30 / 1.16 1.58 / 1.24 / 1.05 1.76 / 1.41 / 1.22 1.34 / 1.15 / 1.03

100x5 3.55/3.02/2.52 2.41/2.27/1.91 2.44 / 1.78 / 1.52 3.24 / 2.62 / 2.29 3.85 / 2.94 / 2.63 2.34 / 1.80 / 1.47

100x10 2.78/2.37/1.94 2.07/1.65/1.34 1.67 / 1.16 / 0.91 2.24 / 1.58 / 1.26 2.71 / 2.09 / 1.82 1.66 / 1.12 / 0.87

100x20 2.31/1.8/1.50 1.52/1.22/1.00 1.03 / 0.62 / 0.39 1.51 / 1.06 / 0.81 1.91 / 1.39 / 1.17 0.91 / 0.55 / 0.36

200x10 2.73/2.51/2.14 1.79/1.6/1.17 1.13 / 0.52 / 0.19 2.41 / 1.75 / 1.37 3.14 / 2.38 / 1.95 1.07 / 0.43 / 0.13

200x20 2.04/1.74/1.49 1.38/1.06/0.76 0.59 / 0.13 / -0.10 1.54 / 1.04 / 0.76 2.15 / 1.58 / 1.28 0.65 / 0.13 / -0.13

500x20 1.7/1.53/1.23 1.08/0.83/0.52 0.61 / 0.05 / -0.29 1.66 / 1.31 / 0.98 2.32 / 2.10 / 1.88 0.59 / 0.09 / -0.23

Average 1.93/1.64/1.37 1.44/1.24/1.02 1.18 / 0.81 / 0.62 1.63 / 1.22 / 0.99 1.94 / 1.51 / 1.31 1.08 / 0.75 / 0.56

Table 7-3 Average relative percentage deviations for SDST100 and SDST125
instances

It is obvious from Table 7-2 and Table 7-3 that, better overall average results

are achieved with higher values, as expected. On the algorithm comparison side, it
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is clear that IG*_RSLS and IG_IJ algorithms outperform IG_VNS1 and IG_VNS2,

MALS and IG_RSLS with significant margins. Among the best two performing

algorithms, IG_IJ achieves slightly better performance, especially for harder

SDST100 and SDST125 instances.

Line plot of the RPD values for different SDST sets (SDST10, SDST50,

SDST100 and SDST125) are presented in Figure 7-1, Figure 7-2, Figure 7-3 and

Figure 7-4 respectively.

In Figure 7-1, it is clear that IG*_RSLS and IG_IJLS outperform other

algorithms. And also IG_VNS1 and IG_VNS2 show better performance than MALS

and IG_RSLS. But it is hard to make a comparison between performances of

IG*_RSLS and IG_IJLS. Average RPD values are very close for and .

But for IG*_RSLS has slightly smaller RPD values, but it does not have much

statistical significance.

Figure 7-1 Plot of average percentage deviations for SDST10 instances

The results presented in Figure 7-2 are very similar to the outcomes of Figure

7-1. IG*_RSLS and IG_IJLS outperform the other algorithms but there is no significant
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difference between these two algorithms. IG*_RSLS shows slightly better

performance for . But it is hard to make such a verdict for and .

Figure 7-2 Plot of average percentage deviations for SDST50 instances

However, Figure 7-3 and Figure 7-4 show different characteristics. Both

algorithms IG*_RSLS and IG_IJLS again outperform the rest of the algorithms.

IG_IJLS has slightly better performance than IG*_RSLS.
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Figure 7-3 Plot of average percentage deviations for SDST100 instances

Figure 7-4 Plot of average percentage deviations for SDST125 instances

In order to make a more detailed performance analysis, Figure 7-5 to Figure 7-8

present the plots of average RPD values for each algorithm for the maximum CPU

limit

Figure 7-5 Plot of average percentage deviations for SDST10 instances with t=90
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Figure 7-6 Plot of average percentage deviations for SDST50 instances with t=90

Figure 7-7 Plot of average percentage deviations for SDST100 instances with
t=90
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Figure 7-8 Plot of average percentage deviations for SDST125 instances with
t=90

From the above figures, again it is obvious that IG*_RSLS and IG_JILS show

much better performance than rest of the algorithms. Performances of the IG*_RSLS

and IG_IJLS get better for larger instances like 100x5, 100x10 ,100x20, 200x20 and

500x20. Another observation is that, the performance of IG*_RSLS and IG_IJLS

algorithms are very similar, there is no clear difference between them.

Interval plots of average RPD values for IG*_RSLS, IG_IJLS, IG_VNS1 and

IG_VNS2 algorithms for four different SDST groups are presented in Figure 7-9 to

Figure 7-11 for different values. It can be seen from Figure 7-9 to Figure 7-11 that,

IG*_RSLS and IG_IJLS algorithms are equivalent in performance since their

confidence intervals coincide for SDST10, SDST50, SDST100 and SDST125

instances.
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Figure 7-9 Interval plot of algorithms for t=30

Figure 7-10 Interval plot of algorithms for t=60
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Figure 7-11 Interval plot of algorithms for t=90

However, IG*_RSLS and IG_IJLS algorithms are statistically better than

IG_VNS1 and IG_VNS2 algorithms since their confidence intervals do not coincide.

When two VNS algorithms are compared, it is observed that, IG_VNS1 is statistically

better than IG_VNS2 algorithm, suggesting that the first neighborhood should be

taken as insertion neighborhood structure.

Finally, the new best known fitness values are listed in Appendix A-1.

Ultimately, 246 out of 480 instances are improved by the proposed algorithms.

7.2 Permutation Flow Shop Problem under Total Flow Time
Optimization

As mentioned before, permutation flow shop scheduling problem with sequence

dependent set up times under total flow time minimization is a new problem, which

has not been studied in the literature before. Five different IG algorithm versions are

designed and implemented for this problem. The first algorithm is IG_RSLS algorithm

by and the second one is IG_VLSRCT which uses the VLS

algorithm (Ribas, Companys, & Tort-Martorell, 2015) in local search step. Three new

algorithms that use different versions of the VLS algorithm are also developed.
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IG_VLSRCT_1 uses insertion neighborhood in LS1 and swap neighborhood in LS2,

while, VLSRCT_2 uses swap neighborhood in in LS1 and insertion neighborhood

inLS2. In addition, both versions use first improvement pivoting rule instead of best

improvement pivoting rule in VLS algorithm. IG_VLSIKT uses the VLSIKT algorithm

in the local search step, whose details are given in Section 6.

All algorithms are coded in Java programming language and are run on the

same computers that are used for makespan minimization problem. The proposed

algorithms are executed on the same benchmark suite used for makespan

minimization criterion. The termination condition is again set to

milliseconds where is taken as 30, 60 and 90 respectively. Five

independent runs are conducted for each problem instance and the average percentage

deviation is calculated using Eq. (13).

The computational results that summarize the average relative percent

deviations for all algorithms are given in Table 7-4 and Table 7-5. Again, different

SDST groups are listed separately. The three values separated by slashes correspond

to results obtained by using three different CPU limits.
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IG_RSLS IG_VLSRCT IG_VLSRCT_1 IG_VLSRCT_2 IG_VLSIKT

SDST10

20x5 0,00 / 0,00 / 0,00 0,01 / 0,00 / 0,00 0,02 / 0,01 / 0,00 0,00 / 0,00 / 0,00 0,01 / 0,00 / 0,00

20x10 0,00 / 0,00 / 0,00 0,02 / 0,02 / 0,01 0,07 / 0,05 / 0,03 0,03 / 0,02 / 0,00 0,01 / 0,01 / 0,01

20x20 0,01 / 0,01 / 0,01 0,04 / 0,04 / 0,04 0,12 / 0,09 / 0,07 0,05 / 0,04 / 0,04 0,04 / 0,04 / 0,03

50x5 0,78 / 0,54 / 0,44 0,57 / 0,45 / 0,37 0,97 / 0,73 / 0,64 0,53 / 0,38 / 0,33 0,51 / 0,41 / 0,31

50x10 0,73 / 0,48 / 0,41 0,79 / 0,6 / 0,51 1,40 / 1,19 / 1,04 0,69 / 0,52 / 0,43 0,77 / 0,57 / 0,47

50x20 0,61 / 0,36 / 0,30 0,8 / 0,66 / 0,56 1,24 / 1,07 / 0,94 0,75 / 0,54 / 0,44 0,73 / 0,61 / 0,53

100x5 0,94 / 0,69 / 0,56 0,70 / 0,51 / 0,40 1,00 / 0,78 / 0,68 0,62 / 0,44 / 0,33 0,59 / 0,36 / 0,26

100x10 0,95 / 0,61 / 0,47 0,97 / 0,74 / 0,59 1,39 / 1,16 / 0,99 0,86 / 0,61 / 0,48 0,88 / 0,59 / 0,48

100x20 0,86 / 0,53 / 0,38 1,15 / 0,85 / 0,67 1,58 / 1,34 / 1,21 0,99 / 0,72 / 0,57 0,91 / 0,65 / 0,51

200x10 0,79 / 0,52 / 0,38 0,82 / 0,6 / 0,48 0,93 / 0,8 / 0,68 0,8 / 0,58 / 0,43 0,75 / 0,56 / 0,43

200x20 0,86 / 0,48 / 0,33 0,91 / 0,73 / 0,57 1,12 / 0,92 / 0,81 0,88 / 0,69 / 0,57 0,77 / 0,55 / 0,41

500x20 0,32 / 0,31 / 0,27 0,29 / 0,29 / 0,29 0,7 / 0,58 / 0,52 0,29 / 0,29 / 0,28 0,27 / 0,27 / 0,23

Avg. 0,57 / 0,38 / 0,30 0,59 / 0,46 / 0,37 0,88 / 0,73 / 0,63 0,54 / 0,40 / 0,32 0,52 / 0,39 / 0,31

SDST50

20x5 0,03 / 0,02 / 0,01 0,14 / 0,11 / 0,08 0,29 / 0,23 / 0,21 0,15 / 0,13 / 0,09 0,14 / 0,09 / 0,08

20x10 0,02 / 0,02 / 0,01 0,03 / 0,01 / 0,01 0,19 / 0,16 / 0,11 0,02 / 0,00 / 0,00 0,03 / 0,02 / 0,01

20x20 0,00 / 0,00 / 0,00 0,02 / 0,01 / 0,01 0,17 / 0,12 / 0,08 0,01 / 0,01 / 0,01 0,01 / 0,01 / 0,01

50x5 1,02 / 0,68 / 0,49 1,28 / 0,95 / 0,78 2,33 / 1,9 / 1,73 1,25 / 1,00 / 0,83 1,17 / 0,97 / 0,84

50x10 0,87 / 0,59 / 0,48 1,16 / 0,88 / 0,77 2,0 / 1,75 / 1,59 1,18 / 0,89 / 0,75 1,02 / 0,86 / 0,75

50x20 0,62 / 0,51 / 0,45 0,96 / 0,74 / 0,6 1,47 / 1,28 / 1,2 0,91 / 0,81 / 0,67 0,87 / 0,72 / 0,59

100x5 1,78 / 1,22 / 0,94 1,85 / 1,39 / 1,17 2,92 / 2,44 / 2,22 1,84 / 1,34 / 1,05 1,8 / 1,31 / 1,08

100x10 1,33 / 0,90 / 0,67 1,60 / 1,34 / 1,11 2,46 / 2,1 / 1,91 1,41 / 1,02 / 0,81 1,43 / 1,1 / 0,92

100x20 1,05 / 0,68 / 0,54 1,12 / 0,91 / 0,74 1,95 / 1,54 / 1,39 1,08 / 0,82 / 0,62 0,98 / 0,75 / 0,57

200x10 1,30 / 0,92 / 0,72 1,48 / 1,12 / 0,93 2,28 / 1,93 / 1,71 1,46 / 1,06 / 0,87 1,35 / 1,06 / 0,85

200x20 0,94 / 0,65 / 0,48 1,08 / 0,84 / 0,66 1,7 / 1,39 / 1,17 1,03 / 0,7 / 0,54 1,03 / 0,71 / 0,54

500x20 0,51 / 0,46 / 0,38 0,46 / 0,44 / 0,44 1,15 / 0,93 / 0,93 0,46 / 0,45 / 0,42 0,42 / 0,38 / 0,32

Avg 0,79 / 0,55 / 0,43 0,93 / 0,73 / 0,61 1,57 / 1,31 / 1,19 0,90 / 0,69 / 0,56 0,86 / 0,66 / 0,55

Table 7-4 Average relative percentage deviations for SDST10 and SDST50
instances
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IG_RSLS IG_VLSRCT IG_VLSRCT_1 IG_VLSRCT_2 IG_VLSIKT

SDST100

20x5 0,07 / 0,03 / 0,03 0,29 / 0,20 / 0,10 0,57 / 0,43 / 0,42 0,17 / 0,15 / 0,15 0,19 / 0,11 / 0,1

20x10 0,04 / 0,02 / 0,02 0,13 / 0,10 / 0,05 0,29 / 0,22 / 0,17 0,12 / 0,11 / 0,08 0,11 / 0,08 / 0,08

20x20 0,04 / 0,04 / 0,04 0,15 / 0,09 / 0,08 0,28 / 0,24 / 0,21 0,13 / 0,1 / 0,09 0,11 / 0,08 / 0,06

50x5 1,63 / 1,15 / 1,05 2,15 / 1,78 / 1,60 3,62 / 3,11 / 2,83 1,97 / 1,37 / 1,18 1,98 / 1,55 / 1,38

50x10 1,22 / 0,80 / 0,68 1,57 / 1,22 / 1,10 2,58 / 2,18 / 2,04 1,48 / 1,17 / 0,99 1,36 / 1,13 / 1,01

50x20 0,99 / 0,72 / 0,65 1,31 / 1,14 / 1,03 1,94 / 1,70 / 1,53 1,24 / 1,01 / 0,87 1,17 / 1,03 / 0,9

100x5 2,53 / 1,46 / 1,29 2,86 / 2,17 / 1,88 4,06 / 3,52 / 3,27 2,41 / 1,67 / 1,37 2,51 / 2,01 / 1,67

100x10 1,64 / 1,01 / 0,82 1,98 / 1,53 / 1,26 3,05 / 2,64 / 2,36 1,82 / 1,32 / 0,94 1,82 / 1,32 / 1,1

100x20 1,27 / 0,84 / 0,71 1,64 / 1,30 / 1,10 2,5 / 2,05 / 1,87 1,46 / 1,11 / 0,94 1,4 / 1,09 / 0,95

200x10 1,45 / 1,00 / 0,81 1,79 / 1,32 / 1,04 2,52 / 2,06 / 1,82 1,60 / 1,09 / 0,81 1,61 / 1,14 / 0,86

200x20 1,26 / 0,81 / 0,62 1,27 / 0,96 / 0,79 1,94 / 1,60 / 1,43 1,16 / 0,88 / 0,58 1,11 / 0,87 / 0,67

500x20 0,57 / 0,52 / 0,48 0,61 / 0,60 / 0,56 1,18 / 0,96 / 0,96 0,61 / 0,58 / 0,50 0,53 / 0,49 / 0,43

Avg. 1,06 / 0,70 / 0,60 1,31 / 1,03 / 0,88 2,04 / 1,72 / 1,58 1,18 / 0,88 / 0,71 1,16 / 0,91 / 0,77

SDST125

20x5 0,14 / 0,12 / 0,11 0,27 / 0,20 / 0,19 0,84 / 0,60 / 0,47 0,23 / 0,22 / 0,22 0,22 / 0,19 / 0,18

20x10 0,04 / 0,03 / 0,02 0,11 / 0,06 / 0,06 0,33 / 0,29 / 0,23 0,10 / 0,08 / 0,06 0,09 / 0,06 / 0,06

20x20 0,01 / 0,01 / 0,01 0,08 / 0,05 / 0,03 0,28 / 0,21 / 0,20 0,07 / 0,05 / 0,04 0,08 / 0,05 / 0,03

50x5 1,71 / 1,25 / 0,92 2,47 / 2,00 / 1,84 4,08 / 3,28 / 2,90 2,10 / 1,57 / 1,39 2,32 / 1,71 / 1,54

50x10 1,39 / 0,92 / 0,78 1,87 / 1,41 / 1,20 2,88 / 2,49 / 2,29 1,76 / 1,37 / 1,19 1,61 / 1,27 / 1,07

50x20 1,04 / 0,84 / 0,74 1,28 / 1,09 / 0,95 1,97 / 1,74 / 1,56 1,18 / 0,95 / 0,83 1,16 / 0,99 / 0,92

100x5 2,56 / 1,83 / 1,36 2,86 / 2,15 / 1,69 4,29 / 3,67 / 3,39 2,64 / 1,85 / 1,48 2,40 / 1,72 / 1,27

100x10 2,04 / 1,49 / 1,14 2,46 / 1,86 / 1,63 3,41 / 2,91 / 2,71 2,08 / 1,54 / 1,21 2,09 / 1,53 / 1,31

100x20 1,28 / 0,94 / 0,72 1,47 / 1,16 / 0,88 2,22 / 1,86 / 1,69 1,37 / 0,91 / 0,71 1,18 / 0,88 / 0,67

200x10 1,71 / 1,17 / 0,84 1,99 / 1,52 / 1,23 2,56 / 2,16 / 1,91 1,87 / 1,40 / 1,03 1,68 / 1,15 / 0,82

200x20 1,39 / 1,01 / 0,78 1,58 / 1,17 / 0,95 2,19 / 1,84 / 1,63 1,48 / 0,97 / 0,70 1,40 / 1,02 / 0,80

500x20 0,71 / 0,63 / 0,57 0,54 / 0,53 / 0,47 1,19 / 1,15 / 0,97 0,54 / 0,54 / 0,47 0,57 / 0,50 / 0,45

Avg. 1,17 / 0,85 / 0,67 1,42 / 1,10 / 0,93 2,19 / 1,85 / 1,66 1,28 / 0,96 / 0,78 1,23 / 0,92 / 0,76

Table 7-5 Average relative percentage deviations for SDST100 and SDST125
instances

IG_RSLS achieved the best results as observed from the tables. Although

VLSRCT_2 and VLSIKT achieved results that are competitive or even slightly better

than IG_RSLS for SDST_10, IG_RSLS is clearly the best performing algorithm for the

other three SDST groups. IG_RSLS uses only the insertion neighborhood, therefore, it

may be concluded that insertion neighborhood based local search is better for total

flow time minimization in the presence of especially large SDST.
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Line plots of RPD values for SDST10, SDST50, SDST100 and SDST125

instances are presented in Figure 7-12, Figure 7-13, Figure 7-14 and Figure 7-15,

respectively. In Figure 7-12, Average RPD values for SDST10 instances which have

the smallest sequence set up time with values uniformly distributed between 1 and 9,

are presented. It is clear that, IG_VLSRCT_1 has got the worst performance for this

instance set and the other instances sets also. When VLSRCT, VLSRCT_2 and VLSIKT

algorithms are compared, it is observed that, none of the algorithms perform

significantly better than the others. The difference between the algorithms are less

than 0.01%.

Figure 7-12 Plot of average percentage deviations for SDST10 instances

Average RPD values are presented for SDST50 instances in Figure 7-13.

SDST50 instances have sequence dependent setup times uniformly distributed

between 1 and 49. Increasing effect of sequence dependent setup times can be

observed in the results for these instances. In original Taillard instances without setup

times, job processing times are also uniformly distributed between 1 and 99, as

mentioned before. Addition of SDST uniformly distributed between 1 and 49 begins

to effect the performance of the algorithms. IG_RSLS shows slightly better

performance than other algorithms. IG_VLSRST is worst again.
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Performance of IG_VLSRCT_2 and IG_VLSIKT are almost the same, whereas

IG_VLSRCT is slightly worse than these two.

Figure 7-13 Plot of average percentage deviations for SDST50 instances

Average RPD values for SDST100 and SDST125 instances are presented in

Figure 7-14 and Figure 7-15. Effect of the sequence dependent setup times is much

clearer for these instances. SDST are the same or even larger than processing times in

these instances. It means that sequence setup time plays an important role. Obviously,

IG_RSLS outperforms other algorithms, while IG_VLSRCT_1 is the worst algorithm

again. When the other algorithm performances are inspected, it is seen that,

IG_VLSRCT is slightly worse than IG_VLSRCT_2 and IG_VLSIKT.
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Figure 7-14 Plot of average percentage deviations for SDST100 instances

Figure 7-15 Plot of average percentage deviations for SDST125 instances
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Line plots of average RPD values of the algorithms for different problem sizes

and different SDST groups are given in Figure 7-16, Figure 7-17, Figure 7-18 and

Figure 7-19. These plots summarize the results of the algorithms for . Again,

IG_VLSRCT_1 shows the worst performance. However, performance of the

algorithms are variable in these plots. For example, IG_RSLS is almost the worst

algorithm for SDST10 instances. However, IG_RSLS is the best performing

algorithm for the most of the problem groups, especially for large SDST distributions.

Again, the conclusion is that swap neighborhood is not useful for problems with

SDST, especially large ones.

Figure 7-16 Plot of average percentage deviations of algorithms for SDST10
instances with t=90
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Figure 7-17 Plot of average percentage deviations of algorithms for SDST50 with
t=90

Figure 7-18 Plot of average percentage deviations of algorithms for SDST100
with t=90
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Figure 7-19 Plot of average percentage deviations of algorithms for SDST125
with t=90

Interval plots for the algorithms for different CPU limits are given in Figure 7-

20, Figure 7-21 and Figure 7-22 for detailed performance comparison of the

algorithms, in order to clarify whether the observed differences in average relative

percentage deviations are statistically significant. IG_VLSRCT_1 is clearly worse than

the other algorithms. Although IG_RSLS performs better than the other algorithms,

this difference does not have a statistical significance since the interval plots of

IG_RSLS collides with other algorithms.
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Figure 7-20 Interval plot of algorithms for t=30

Figure 7-21 Interval plot of algorithms for t=60
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Figure 7-22 Interval plot of algorithms for t=90

Finally, best known solutions found for each test instance is given in Appendix

A-2 for the permutation flow shop problem with sequence dependent setup times

under total flow time minimization objective.

At this point, in order to investigate the effect of the swap neighborhood search

in total flow time minimization with sequence dependent set up times, a new

experiment is carried out. IG_RSLS and IG_VLSIKT are executed on original Taillard

instances which do not have sequence dependent setup times using two different CPU

limits, using and . The results are presented in Table 7-6.
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t=60 t=90

IG_RSLS IG_VLSIKT IG_RSLS IG_VLSIKT

0.00 0.00 0.00 0.00

0.01 0.00 0.01 0.00

0.01 0.01 0.01 0.01

0.37 0.22 0.29 0.17

0.53 0.41 0.40 0.33

0.54 0.49 0.48 0.41

0.70 0.34 0.58 0.25

0.70 0.34 0.53 0.25

0.72 0.61 0.56 0.46

0.51 0.37 0.39 0.24

0.58 0.50 0.48 0.33

0.28 0.26 0.24 0.24

Average 0.41 0.30 0.33 0.22

Table 7-6 Average relative percentage deviations of IG_RSLS and VLSIKT algorithms for original
Taillard instances with t = 60 and t = 90

From the previous results, it is obvious that performance of IG_RSLS algorithm

is better than other IG versions in the presence of sequence dependent setup times.

However, the performance of IG_VLSIKT is better for problems without sequence

dependent setup times. This experiment shows that swap neighborhood does not work

well in the presence of sequence dependent setup times, especially with high values.

The results in Table 6-7 is also presented graphically in Figure 7-24 and Figure

7-25 where average relative deviations are plotted for each combination.
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Figure 7-23 Plot of average percentage deviations of IG_RSLS and IG_VLSIKS algorithms for
original Taillard instances with t=60

Figure 7-24 Plot of average percentage deviations of IG_RSLS and IG_VLSIKS algorithms for
original Taillard instances with t=90

Interval plot in Figure 7-25 shows that the observed performance difference

between IG_VLSIKT and IG_RSLS algorithm is statistically significant for instances

without sequence dependent setup times.
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Figure 7-25 Interval plot of algorithms for original Taillard instance with t=60 and t=90
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8 CONCLUSION

In this thesis study, metaheuristic algorithms for permutation flow shop

problem with sequence dependent setup time are developed for two different

optimization criteria. Permutation flow shop problem is one of the most studied

scheduling problem, in contrast, scheduling problems that include sequence

dependent setup times did not attract much attention from researchers. However,

proper handling of SDST plays important role in optimizing the performance of the

manufacturing systems. Researchers showed that, proper handling of SDST can

increase production efficiency up to 20% (Pinedo, 2008). Two optimization criteria

are studied in this thesis; makespan and total flow time minimization. Maximum

machine utilization and the total production time minimization can be achieved using

makespan optimization criterion. Total flow time optimization criterion on the other

hand, allows minimization of the in-process inventory and stabilize resource

utilization (Framinan, Leisten, & Ruiz-Usano, 2002).

Sequence dependent setup time for permutation flow shop problem under

makespan minimization criterion is studied as the first problem. A new speed-up

algorithm for swap neighborhood is developed for the first time in the literature for

this problem. It is important to present and use this neighborhood in the search

process. This speedup method allows swap neighborhood to be used in makespan

minimization. Search space traversal of swap and insertion neighborhoods have

different characteristics. Some points in the search space cannot be reached by

insertion neighborhood search, and vice-versa. The proposed speed-up algorithm can

be used to improve the search performance by visiting points that cannot be visited by

the insertion neighborhood. The speedup algorithm is

method decreases the complexity of the NEH algorithm from to .

The speed up technique presented in this thesis cannot decrease the complexity but it

decrements the required CPU time by 53% in average. Usage of swap neighborhood

is still expensive in terms of CPU cost even with the implementation of the proposed
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speed up algorithm. For this reason, a version of the IG algorithm named IG_IJLS is

developed. In this algorithm, swap neighborhood is applied with a predefined

probability in the local search phase. The value of this probability parameter and the

others parameters of the algorithm are determined by using the design of experiment

approach. The proposed algorithm is coded in Java. 75 new test instances are created

with random setup times that are uniformly distributed in the range [1,124].  Then,

the calibrated algorithms are run on a test set from the literature

2008). IG_RSLS and two other IG algorithm version that use variable neighborhood

search algorithm in the local search phase are also coded in Java, in order to make a

fair comparison. Experimental results show that IG_IJLS with a local search guided by

an iteration jumping probability outperforms two other variants of the IG algorithms.

Performances of IG_RSLS and IG_IJLS were almost identical. Ultimately, 250 out of

480 best known solutions provided in http://www.upv.es/gio/rruiz are further

improved by the proposed algorithms, together with 124 being equal and 106 being

inferior. These new best results are presented in Appendix A-1. The new best known

solutions also support our idea about the insertion neighborhood and swap

neighborhood is able to find different minimum values. Giving even a little chance to

swap neighborhood in local search may lead to better solutions.

The second problem studied in the thesis is total flow time minimization for

permutation flow shop problem with sequence dependent setup times. This problem

is studied for the first time in the literature. The speed up method for total flow time

computation that is proposed by Li and Wu (2009) is adapted to consider sequence

dependent setup times for this problem. This speedup method is used in the

implementation of the NEH heuristic, in construction phase of the destruction-

construction procedure of the IG algorithm, as well as, in the local search method that

utilizes insert and swap neighborhoods. While the speedup method of Li and Wu

(2009) cannot decrease the complexity, it reduces the required CPU time by 50% in

average. Five different algorithms are designed and implemented for this problem.

IG_RSLS, IG_VLSRCT, IG_VLSRCT_1, IG_VLSRCT_2 and IG_VLSIKT algorithms are

coded in Java. Design of experiment approach is used to determine values of the
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algorithm parameters. Experiments are carried out individually for each algorithm

and the results are analyzed in order to find the best parameter values. The results of

IG_RSLS are better than the other IG variants, however, there is no statistically

significant difference. The analysis of the algorithm performances show that insertion

neighborhood is better than swap neighborhood for total flow time minimization with

the presence of sequence dependent setup times. Another experiment showed that

using insertion and swap neighborhood is better than using only insertion

neighborhood for total flow time minimization for problems without sequence

dependent setup times. Best results found for total flow time minimization are listed

in Appendix A-2.

For future work, the developed swap speedup algorithm can be adapted to other

scheduling variants.
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APPENDIX

A-1) New best known solutions for Make Span Problem

Problem Instance BK
S

IG_VN
S1

IG_VN
S2

IG_I
J

IG*_
RS Problem Instance BK

S
IG_VN
S1

IG_VN
S2

IG_I
J

IG*_
RS

SDST10_ta001 (20 x
5) 1330 1330 1330 1330 1330 SDST50_ta001 (20 x

5) 1567 1567 1567 1567 1567

SDST10_ta002 (20 x
5) 1401 1401 1401 1401 1401 SDST50_ta002 (20 x

5) 1580 1580 1580 1580 1580

SDST10_ta003 (20 x
5) 1161 1161 1161 1161 1161 SDST50_ta003 (20 x

5) 1446 1446 1446 1446 1446

SDST10_ta004 (20 x
5) 1370 1370 1370 1370 1370 SDST50_ta004 (20 x

5) 1644 1644 1644 1644 1644

SDST10_ta005 (20 x
5) 1303 1303 1303 1303 1303 SDST50_ta005 (20 x

5) 1526 1526 1526 1526 1528

SDST10_ta006 (20 x
5) 1269 1269 1269 1269 1269 SDST50_ta006 (20 x

5) 1510 1510 1510 1510 1510

SDST10_ta007 (20 x
5) 1294 1294 1294 1294 1294 SDST50_ta007 (20 x

5) 1531 1531 1531 1531 1531

SDST10_ta008 (20 x
5) 1282 1282 1282 1282 1282 SDST50_ta008 (20 x

5) 1554 1554 1554 1554 1554

SDST10_ta009 (20 x
5) 1313 1313 1313 1313 1313 SDST50_ta009 (20 x

5) 1585 1585 1585 1585 1585

SDST10_ta010 (20 x
5) 1178 1178 1178 1178 1178 SDST50_ta010 (20 x

5) 1426 1426 1426 1426 1426

SDST10_ta011 (20 x
10) 1677 1677 1677 1677 1677 SDST50_ta011 (20 x

10) 2009 2009 2009 2009 2009

SDST10_ta012 (20 x
10) 1751 1751 1751 1751 1751 SDST50_ta012 (20 x

10) 2065 2065 2065 2065 2065

SDST10_ta013 (20 x
10) 1588 1588 1588 1588 1588 SDST50_ta013 (20 x

10) 1897 1897 1897 1897 1897

SDST10_ta014 (20 x
10) 1465 1465 1465 1465 1465 SDST50_ta014 (20 x

10) 1794 1794 1794 1794 1794

SDST10_ta015 (20 x
10) 1510 1510 1510 1510 1510 SDST50_ta015 (20 x

10) 1842 1842 1842 1842 1842

SDST10_ta016 (20 x
10) 1487 1487 1487 1487 1487 SDST50_ta016 (20 x

10) 1816 1816 1816 1816 1816

SDST10_ta017 (20 x
10) 1573 1573 1573 1573 1573 SDST50_ta017 (20 x

10) 1858 1858 1858 1858 1858

SDST10_ta018 (20 x
10) 1630 1630 1630 1630 1630 SDST50_ta018 (20 x

10) 1962 1962 1962 1962 1962

SDST10_ta019 (20 x
10) 1676 1676 1676 1676 1676 SDST50_ta019 (20 x

10) 1985 1985 1985 1985 1985

SDST10_ta020 (20 x
10) 1688 1688 1688 1688 1688 SDST50_ta020 (20 x

10) 2013 2013 2013 2013 2013

SDST10_ta021 (20 x
20) 2391 2391 2391 2391 2391 SDST50_ta021 (20 x

20) 2754 2754 2754 2754 2754

SDST10_ta022 (20 x
20) 2193 2193 2193 2193 2193 SDST50_ta022 (20 x

20) 2565 2565 2565 2565 2565

SDST10_ta023 (20 x
20) 2414 2414 2414 2414 2414 SDST50_ta023 (20 x

20) 2748 2748 2748 2748 2748

SDST10_ta024 (20 x
20) 2315 2315 2315 2315 2315 SDST50_ta024 (20 x

20) 2658 2658 2658 2658 2658

SDST10_ta025 (20 x
20) 2386 2386 2386 2386 2386 SDST50_ta025 (20 x

20) 2760 2760 2760 2760 2760

SDST10_ta026 (20 x
20) 2321 2321 2321 2321 2321 SDST50_ta026 (20 x

20) 2686 2686 2686 2686 2686

SDST10_ta027 (20 x
20) 2360 2360 2360 2360 2360 SDST50_ta027 (20 x

20) 2712 2712 2712 2712 2712

SDST10_ta028 (20 x
20) 2296 2296 2296 2296 2296 SDST50_ta028 (20 x

20) 2668 2668 2668 2668 2668

SDST10_ta029 (20 x
20) 2335 2335 2335 2335 2335 SDST50_ta029 (20 x

20) 2701 2701 2701 2701 2701

SDST10_ta030 (20 x
20) 2267 2267 2267 2267 2267 SDST50_ta030 (20 x

20) 2635 2635 2635 2635 2635

SDST10_ta031 (50 x
5) 2814 2816 2817 2816 2813 SDST50_ta031 (50 x

5) 3250 3256 3262 3258 3258

SDST10_ta032 (50 x
5) 2946 2949 2948 2949 2947 SDST50_ta032 (50 x

5) 3429 3433 3438 3427 3448

SDST10_ta033 (50 x
5) 2734 2738 2739 2739 2739 SDST50_ta033 (50 x

5) 3245 3259 3257 3244 3247
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SDST10_ta034 (50 x
5) 2883 2888 2888 2889 2888 SDST50_ta034 (50 x

5) 3391 3396 3416 3395 3395

SDST10_ta035 (50 x
5) 2952 2957 2956 2956 2955 SDST50_ta035 (50 x

5) 3400 3411 3415 3403 3400

SDST10_ta036 (50 x
5) 2945 2947 2950 2948 2945 SDST50_ta036 (50 x

5) 3429 3452 3458 3453 3451

SDST10_ta037 (50 x
5) 2848 2850 2852 2848 2850 SDST50_ta037 (50 x

5) 3338 3349 3359 3351 3356

SDST10_ta038 (50 x
5) 2809 2813 2811 2812 2811 SDST50_ta038 (50 x

5) 3306 3313 3320 3308 3314

SDST10_ta039 (50 x
5) 2673 2675 2674 2674 2669 SDST50_ta039 (50 x

5) 3174 3170 3184 3159 3176

SDST10_ta040 (50 x
5) 2867 2871 2871 2869 2868 SDST50_ta040 (50 x

5) 3350 3362 3365 3351 3361

SDST10_ta041 (50 x
10) 3210 3211 3216 3209 3208 SDST50_ta041 (50 x

10) 3923 3948 3939 3927 3950

SDST10_ta042 (50 x
10) 3080 3083 3087 3081 3080 SDST50_ta042 (50 x

10) 3807 3811 3829 3794 3809

SDST10_ta043 (50 x
10) 3060 3055 3059 3055 3056 SDST50_ta043 (50 x

10) 3796 3815 3811 3785 3818

SDST10_ta044 (50 x
10) 3227 3232 3228 3228 3225 SDST50_ta044 (50 x

10) 3956 3967 3935 3962 3966

SDST10_ta045 (50 x
10) 3200 3201 3199 3203 3202 SDST50_ta045 (50 x

10) 3939 3939 3940 3932 3927

SDST10_ta046 (50 x
10) 3196 3204 3200 3201 3199 SDST50_ta046 (50 x

10) 3926 3935 3932 3935 3925

SDST10_ta047 (50 x
10) 3285 3287 3290 3281 3281 SDST50_ta047 (50 x

10) 3986 3987 3994 3986 3981

SDST10_ta048 (50 x
10) 3222 3224 3225 3223 3224 SDST50_ta048 (50 x

10) 3950 3949 3958 3939 3939

SDST10_ta049 (50 x
10) 3093 3096 3093 3090 3096 SDST50_ta049 (50 x

10) 3829 3841 3839 3833 3836

SDST10_ta050 (50 x
10) 3272 3274 3278 3268 3270 SDST50_ta050 (50 x

10) 3983 3979 4004 3988 3988

SDST10_ta051 (50 x
20) 4108 4107 4107 4101 4106 SDST50_ta051 (50 x

20) 4980 4977 4978 4991 4988

SDST10_ta052 (50 x
20) 3942 3947 3953 3934 3939 SDST50_ta052 (50 x

20) 4812 4833 4848 4820 4820

SDST10_ta053 (50 x
20) 3895 3909 3894 3883 3894 SDST50_ta053 (50 x

20) 4781 4787 4795 4781 4779

SDST10_ta054 (50 x
20) 3973 3985 3982 3981 3973 SDST50_ta054 (50 x

20) 4866 4858 4888 4873 4873

SDST10_ta055 (50 x
20) 3867 3873 3876 3865 3871 SDST50_ta055 (50 x

20) 4769 4788 4794 4791 4775

SDST10_ta056 (50 x
20) 3930 3943 3924 3933 3935 SDST50_ta056 (50 x

20) 4791 4807 4820 4796 4798

SDST10_ta057 (50 x
20) 3966 3960 3969 3956 3959 SDST50_ta057 (50 x

20) 4832 4852 4852 4825 4865

SDST10_ta058 (50 x
20) 3964 3962 3965 3964 3955 SDST50_ta058 (50 x

20) 4831 4844 4847 4842 4837

SDST10_ta059 (50 x
20) 3996 4003 3992 3985 3992 SDST50_ta059 (50 x

20) 4864 4854 4861 4866 4865

SDST10_ta060 (50 x
20) 4008 3998 4014 3995 4000 SDST50_ta060 (50 x

20) 4891 4919 4917 4909 4906

SDST10_ta061 (100
x 5) 5647 5662 5671 5654 5652 SDST50_ta061 (100

x 5) 6542 6577 6595 6558 6534

SDST10_ta062 (100
x 5) 5465 5471 5477 5473 5470 SDST50_ta062 (100

x 5) 6389 6409 6450 6388 6397

SDST10_ta063 (100
x 5) 5406 5411 5415 5411 5410 SDST50_ta063 (100

x 5) 6333 6383 6412 6346 6367

SDST10_ta064 (100
x 5) 5213 5219 5213 5219 5212 SDST50_ta064 (100

x 5) 6182 6201 6213 6167 6157

SDST10_ta065 (100
x 5) 5466 5477 5476 5475 5472 SDST50_ta065 (100

x 5) 6417 6465 6485 6423 6406

SDST10_ta066 (100
x 5) 5312 5320 5321 5321 5317 SDST50_ta066 (100

x 5) 6270 6324 6297 6254 6273

SDST10_ta067 (100
x 5) 5459 5472 5479 5471 5472 SDST50_ta067 (100

x 5) 6390 6420 6434 6383 6381

SDST10_ta068 (100
x 5) 5316 5321 5332 5323 5327 SDST50_ta068 (100

x 5) 6199 6275 6296 6249 6250

SDST10_ta069 (100
x 5) 5641 5648 5652 5646 5642 SDST50_ta069 (100

x 5) 6576 6590 6611 6579 6579

SDST10_ta070 (100
x 5) 5537 5540 5548 5540 5541 SDST50_ta070 (100

x 5) 6492 6540 6523 6490 6497

SDST10_ta071 (100
x 10) 6084 6088 6083 6083 6070 SDST50_ta071 (100

x 10) 7450 7458 7482 7435 7425

SDST10_ta072 (100
x 10) 5683 5683 5693 5681 5681 SDST50_ta072 (100

x 10) 7033 7076 7067 7050 7041
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SDST10_ta073 (100
x 10) 5931 5923 5928 5920 5921 SDST50_ta073 (100

x 10) 7262 7265 7275 7257 7245

SDST10_ta074 (100
x 10) 6182 6177 6185 6167 6175 SDST50_ta074 (100

x 10) 7549 7531 7608 7559 7542

SDST10_ta075 (100
x 10) 5842 5834 5855 5842 5842 SDST50_ta075 (100

x 10) 7240 7254 7253 7214 7230

SDST10_ta076 (100
x 10) 5607 5606 5605 5595 5589 SDST50_ta076 (100

x 10) 6964 7001 7020 6981 6973

SDST10_ta077 (100
x 10) 5884 5883 5898 5876 5879 SDST50_ta077 (100

x 10) 7126 7142 7144 7144 7125

SDST10_ta078 (100
x 10) 5958 5949 5969 5956 5961 SDST50_ta078 (100

x 10) 7290 7309 7333 7277 7281

SDST10_ta079 (100
x 10) 6177 6171 6195 6178 6171 SDST50_ta079 (100

x 10) 7452 7472 7465 7457 7450

SDST10_ta080 (100
x 10) 6081 6082 6080 6076 6076 SDST50_ta080 (100

x 10) 7364 7352 7393 7362 7367

SDST10_ta081 (100
x 20) 6744 6755 6750 6738 6747 SDST50_ta081 (100

x 20) 8437 8377 8448 8403 8395

SDST10_ta082 (100
x 20) 6701 6696 6717 6690 6688 SDST50_ta082 (100

x 20) 8387 8432 8423 8376 8392

SDST10_ta083 (100
x 20) 6770 6750 6788 6741 6751 SDST50_ta083 (100

x 20) 8422 8448 8439 8403 8418

SDST10_ta084 (100
x 20) 6734 6722 6737 6700 6714 SDST50_ta084 (100

x 20) 8389 8405 8406 8364 8352

SDST10_ta085 (100
x 20) 6785 6804 6813 6787 6789 SDST50_ta085 (100

x 20) 8471 8478 8495 8451 8444

SDST10_ta086 (100
x 20) 6867 6874 6884 6850 6850 SDST50_ta086 (100

x 20) 8548 8549 8567 8527 8528

SDST10_ta087 (100
x 20) 6779 6817 6801 6778 6782 SDST50_ta087 (100

x 20) 8482 8522 8546 8464 8511

SDST10_ta088 (100
x 20) 6954 6960 6971 6935 6943 SDST50_ta088 (100

x 20) 8662 8664 8666 8639 8648

SDST10_ta089 (100
x 20) 6808 6814 6815 6781 6796 SDST50_ta089 (100

x 20) 8473 8511 8533 8482 8494

SDST10_ta090 (100
x 20) 6870 6887 6895 6881 6879 SDST50_ta090 (100

x 20) 8519 8540 8523 8500 8508

SDST10_ta091 (200
x 10)

1135
4 11406 11411 1134

7 11340 SDST50_ta091 (200
x 10)

1400
5 14026 14045 1395

5 13891

SDST10_ta092 (200
x 10)

1122
6 11209 11242 1120

2 11208 SDST50_ta092 (200
x 10)

1390
2 13912 14000 1380

8 13841

SDST10_ta093 (200
x 10)

1152
1 11526 11525 1151

7 11491 SDST50_ta093 (200
x 10)

1408
7 14116 14164 1403

5 13992

SDST10_ta094 (200
x 10)

1129
4 11318 11350 1131

0 11282 SDST50_ta094 (200
x 10)

1387
3 13905 13960 1381

8 13838

SDST10_ta095 (200
x 10)

1120
7 11213 11226 1118

0 11187 SDST50_ta095 (200
x 10)

1384
9 13934 13996 1383

9 13840

SDST10_ta096 (200
x 10)

1097
4 10968 10983 1094

1 10933 SDST50_ta096 (200
x 10)

1365
3 13652 13716 1361

9 13561

SDST10_ta097 (200
x 10)

1142
3 11428 11441 1140

7 11407 SDST50_ta097 (200
x 10)

1411
5 14118 14187 1401

9 14046

SDST10_ta098 (200
x 10)

1136
2 11369 11385 1135

7 11353 SDST50_ta098 (200
x 10)

1401
8 14048 14114 1394

7 13961

SDST10_ta099 (200
x 10)

1109
8 11105 11124 1108

7 11082 SDST50_ta099 (200
x 10)

1385
7 13844 13910 1375

9 13763

SDST10_ta100 (200
x 10)

1128
4 11289 11303 1127

9 11271 SDST50_ta100 (200
x 10)

1389
4 13890 14038 1385

0 13851

SDST10_ta101 (200
x 20)

1216
8 12183 12225 1214

2 12150 SDST50_ta101 (200
x 20)

1545
0 15461 15540 1541

1 15389

SDST10_ta102 (200
x 20)

1227
8 12323 12339 1225

7 12267 SDST50_ta102 (200
x 20)

1564
4 15610 15727 1555

8 15556

SDST10_ta103 (200
x 20)

1233
7 12369 12371 1232

4 12316 SDST50_ta103 (200
x 20)

1568
9 15728 15751 1562

1 15613

SDST10_ta104 (200
x 20)

1230
0 12348 12354 1228

3 12303 SDST50_ta104 (200
x 20)

1562
7 15627 15704 1556

0 15556

SDST10_ta105 (200
x 20)

1219
6 12215 12247 1217

2 12173 SDST50_ta105 (200
x 20)

1547
0 15438 15542 1543

6 15364

SDST10_ta106 (200
x 20)

1222
0 12223 12245 1217

3 12189 SDST50_ta106 (200
x 20)

1551
4 15565 15622 1547

7 15469

SDST10_ta107 (200
x 20)

1232
9 12342 12381 1231

4 12331 SDST50_ta107 (200
x 20)

1566
9 15668 15744 1564

0 15604

SDST10_ta108 (200
x 20)

1236
2 12367 12391 1233

1 12338 SDST50_ta108 (200
x 20)

1564
5 15615 15678 1555

7 15602

SDST10_ta109 (200
x 20)

1222
8 12264 12274 1223

2 12208 SDST50_ta109 (200
x 20)

1554
4 15609 15663 1552

6 15540

SDST10_ta110 (200
x 20)

1233
0 12336 12372 1227

7 12302 SDST50_ta110 (200
x 20)

1569
4 15631 15760 1556

6 15587

SDST10_ta111 (500
x 20)

2849
1 28507 28625 2841

0 28380 SDST50_ta111 (500
x 20)

3672
9 36802 36950 3653

8 36520
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SDST10_ta112 (500
x 20)

2894
0 29036 29129 2892

2 28914 SDST50_ta112 (500
x 20)

3711
3 37225 37377 3697

4 36974

SDST10_ta113 (500
x 20)

2869
5 28679 28751 2861

1 28608 SDST50_ta113 (500
x 20)

3685
4 36849 37035 3662

7 36581

SDST10_ta114 (500
x 20)

2871
9 28711 28864 2865

0 28648 SDST50_ta114 (500
x 20)

3690
4 36973 37265 3669

1 36722

SDST10_ta115 (500
x 20)

2859
6 28650 28727 2852

6 28587 SDST50_ta115 (500
x 20)

3679
3 36816 37021 3657

2 36523

SDST10_ta116 (500
x 20)

2875
6 28763 28866 2867

9 28681 SDST50_ta116 (500
x 20)

3700
6 37079 37293 3684

0 36824

SDST10_ta117 (500
x 20)

2851
6 28554 28650 2844

7 28451 SDST50_ta117 (500
x 20)

3667
4 36711 37051 3649

9 36523

SDST10_ta118 (500
x 20)

2888
4 28864 28954 2878

0 28797 SDST50_ta118 (500
x 20)

3694
2 37111 37335 3680

3 36822

SDST10_ta119 (500
x 20)

2839
8 28391 28468 2836

6 28352 SDST50_ta119 (500
x 20)

3657
5 36724 37026 3647

4 36404

SDST10_ta120 (500
x 20)

2873
7 28741 28854 2867

4 28703 SDST50_ta120 (500
x 20)

3684
3 36875 37201 3672

9 36680

BKS VNS1 VNS2 IG_IJ IG*_R
S BKS VNS1 VNS2 IG_IJ IG*_R

S
SDST100_ta001 (20
x 5) 1891 1891 1891 1891 1891 SDST125_ta001 (20

x 5) 2065 2065 2065 2065 2065

SDST100_ta002 (20
x 5) 1881 1881 1881 1881 1881 SDST125_ta002 (20

x 5) 2040 2040 2040 2040 2040

SDST100_ta003 (20
x 5) 1758 1758 1758 1758 1758 SDST125_ta003 (20

x 5) 1933 1933 1933 1933 1933

SDST100_ta004 (20
x 5) 1973 1973 1973 1973 1973 SDST125_ta004 (20

x 5) 2137 2137 2137 2137 2137

SDST100_ta005 (20
x 5) 1813 1813 1813 1813 1813 SDST125_ta005 (20

x 5) 1979 1979 1982 1979 1979

SDST100_ta006 (20
x 5) 1824 1824 1824 1824 1824 SDST125_ta006 (20

x 5) 1979 1979 1979 1983 1979

SDST100_ta007 (20
x 5) 1855 1855 1855 1855 1855 SDST125_ta007 (20

x 5) 2002 2002 2002 2002 2002

SDST100_ta008 (20
x 5) 1894 1894 1894 1894 1894 SDST125_ta008 (20

x 5) 2060 2060 2060 2060 2060

SDST100_ta009 (20
x 5) 1879 1879 1879 1879 1879 SDST125_ta009 (20

x 5) 2005 2005 2005 2005 2005

SDST100_ta010 (20
x 5) 1732 1732 1732 1732 1732 SDST125_ta010 (20

x 5) 1876 1876 1876 1876 1876

SDST100_ta011 (20
x 10) 2444 2444 2444 2444 2444 SDST125_ta011 (20

x 10) 2656 2656 2656 2662 2656

SDST100_ta012 (20
x 10) 2458 2458 2458 2458 2458 SDST125_ta012 (20

x 10) 2661 2661 2661 2661 2661

SDST100_ta013 (20
x 10) 2303 2303 2303 2303 2303 SDST125_ta013 (20

x 10) 2515 2515 2515 2515 2515

SDST100_ta014 (20
x 10) 2212 2212 2212 2212 2212 SDST125_ta014 (20

x 10) 2415 2415 2415 2415 2433

SDST100_ta015 (20
x 10) 2282 2286 2286 2286 2286 SDST125_ta015 (20

x 10) 2502 2502 2502 2502 2502

SDST100_ta016 (20
x 10) 2231 2231 2231 2231 2231 SDST125_ta016 (20

x 10) 2445 2445 2445 2445 2445

SDST100_ta017 (20
x 10) 2282 2282 2282 2282 2282 SDST125_ta017 (20

x 10) 2485 2485 2485 2485 2485

SDST100_ta018 (20
x 10) 2381 2381 2381 2381 2381 SDST125_ta018 (20

x 10) 2586 2586 2586 2586 2593

SDST100_ta019 (20
x 10) 2376 2376 2376 2376 2376 SDST125_ta019 (20

x 10) 2588 2588 2588 2588 2588

SDST100_ta020 (20
x 10) 2443 2443 2443 2443 2448 SDST125_ta020 (20

x 10) 2655 2655 2655 2655 2655

SDST100_ta021 (20
x 20) 3244 3244 3244 3244 3245 SDST125_ta021 (20

x 20) 3498 3498 3499 3499 3499

SDST100_ta022 (20
x 20) 3047 3047 3047 3047 3047 SDST125_ta022 (20

x 20) 3290 3290 3290 3290 3290

SDST100_ta023 (20
x 20) 3207 3207 3207 3207 3207 SDST125_ta023 (20

x 20) 3475 3475 3475 3475 3475

SDST100_ta024 (20
x 20) 3164 3164 3164 3164 3164 SDST125_ta024 (20

x 20) 3437 3437 3437 3437 3437

SDST100_ta025 (20
x 20) 3242 3242 3242 3242 3242 SDST125_ta025 (20

x 20) 3514 3514 3514 3514 3514

SDST100_ta026 (20
x 20) 3168 3168 3168 3168 3168 SDST125_ta026 (20

x 20) 3442 3442 3442 3442 3442
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SDST100_ta027 (20
x 20) 3191 3191 3191 3191 3191 SDST125_ta027 (20

x 20) 3452 3452 3452 3452 3457

SDST100_ta028 (20
x 20) 3165 3165 3165 3165 3169 SDST125_ta028 (20

x 20) 3431 3431 3431 3431 3431

SDST100_ta029 (20
x 20) 3192 3192 3192 3192 3192 SDST125_ta029 (20

x 20) 3456 3456 3456 3456 3456

SDST100_ta030 (20
x 20) 3111 3111 3111 3111 3111 SDST125_ta030 (20

x 20) 3378 3378 3378 3378 3378

SDST100_ta031 (50
x 5) 3893 3944 3939 3928 3932 SDST125_ta031 (50

x 5) 4226 4269 4292 4239 4258

SDST100_ta032 (50
x 5) 4056 4067 4067 4073 4079 SDST125_ta032 (50

x 5) 4349 4399 4398 4396 4391

SDST100_ta033 (50
x 5) 3900 3928 3928 3905 3935 SDST125_ta033 (50

x 5) 4212 4230 4256 4251 4268

SDST100_ta034 (50
x 5) 4020 4049 4056 4035 4045 SDST125_ta034 (50

x 5) 4356 4390 4395 4375 4378

SDST100_ta035 (50
x 5) 4014 4018 4042 4055 4046 SDST125_ta035 (50

x 5) 4342 4364 4353 4358 4362

SDST100_ta036 (50
x 5) 4073 4124 4117 4118 4101 SDST125_ta036 (50

x 5) 4405 4453 4490 4465 4451

SDST100_ta037 (50
x 5) 3999 4038 4043 4019 4013 SDST125_ta037 (50

x 5) 4327 4366 4398 4322 4381

SDST100_ta038 (50
x 5) 3966 3985 3979 4005 3961 SDST125_ta038 (50

x 5) 4294 4336 4313 4298 4307

SDST100_ta039 (50
x 5) 3808 3815 3854 3843 3832 SDST125_ta039 (50

x 5) 4145 4170 4144 4155 4164

SDST100_ta040 (50
x 5) 4022 4040 4042 4016 4053 SDST125_ta040 (50

x 5) 4341 4394 4364 4374 4366

SDST100_ta041 (50
x 10) 4812 4819 4808 4844 4815 SDST125_ta041 (50

x 10) 5275 5281 5283 5283 5301

SDST100_ta042 (50
x 10) 4714 4710 4727 4712 4713 SDST125_ta042 (50

x 10) 5177 5186 5212 5193 5191

SDST100_ta043 (50
x 10) 4705 4725 4715 4725 4718 SDST125_ta043 (50

x 10) 5193 5158 5213 5189 5176

SDST100_ta044 (50
x 10) 4830 4856 4868 4880 4857 SDST125_ta044 (50

x 10) 5286 5291 5301 5301 5294

SDST100_ta045 (50
x 10) 4812 4822 4835 4805 4819 SDST125_ta045 (50

x 10) 5236 5270 5239 5240 5253

SDST100_ta046 (50
x 10) 4816 4839 4835 4824 4844 SDST125_ta046 (50

x 10) 5262 5281 5325 5293 5291

SDST100_ta047 (50
x 10) 4898 4910 4914 4914 4905 SDST125_ta047 (50

x 10) 5340 5370 5362 5365 5366

SDST100_ta048 (50
x 10) 4849 4881 4884 4861 4843 SDST125_ta048 (50

x 10) 5317 5350 5336 5340 5339

SDST100_ta049 (50
x 10) 4723 4732 4757 4778 4761 SDST125_ta049 (50

x 10) 5194 5210 5268 5241 5246

SDST100_ta050 (50
x 10) 4880 4899 4927 4906 4885 SDST125_ta050 (50

x 10) 5334 5344 5393 5353 5355

SDST100_ta051 (50
x 20) 6074 6084 6097 6098 6087 SDST125_ta051 (50

x 20) 6643 6651 6674 6652 6645

SDST100_ta052 (50
x 20) 5910 5918 5923 5939 5960 SDST125_ta052 (50

x 20) 6489 6509 6551 6538 6547

SDST100_ta053 (50
x 20) 5908 5924 5953 5941 5941 SDST125_ta053 (50

x 20) 6502 6535 6498 6514 6536

SDST100_ta054 (50
x 20) 5997 6007 6002 5997 5990 SDST125_ta054 (50

x 20) 6587 6586 6618 6582 6600

SDST100_ta055 (50
x 20) 5927 5925 5929 5932 5935 SDST125_ta055 (50

x 20) 6495 6527 6534 6528 6537

SDST100_ta056 (50
x 20) 5920 5946 5934 5938 5943 SDST125_ta056 (50

x 20) 6494 6548 6570 6500 6522

SDST100_ta057 (50
x 20) 5958 5963 6002 5952 5982 SDST125_ta057 (50

x 20) 6548 6564 6584 6550 6575

SDST100_ta058 (50
x 20) 5939 5956 5962 5978 5965 SDST125_ta058 (50

x 20) 6519 6539 6567 6562 6524

SDST100_ta059 (50
x 20) 5948 5935 5979 5992 5964 SDST125_ta059 (50

x 20) 6539 6568 6611 6556 6585

SDST100_ta060 (50
x 20) 6026 6029 6039 6027 6052 SDST125_ta060 (50

x 20) 6596 6630 6645 6647 6637

SDST100_ta061 (100
x 5) 7714 7789 7813 7691 7778 SDST125_ta061

(100 x 5) 8339 8430 8428 8357 8356

SDST100_ta062 (100
x 5) 7610 7684 7650 7650 7559 SDST125_ta062

(100 x 5) 8230 8280 8293 8248 8186

SDST100_ta063 (100
x 5) 7539 7610 7664 7618 7605 SDST125_ta063

(100 x 5) 8168 8286 8335 8188 8245

SDST100_ta064 (100
x 5) 7421 7490 7525 7394 7450 SDST125_ta064

(100 x 5) 8005 8129 8154 8050 8057

SDST100_ta065 (100
x 5) 7620 7679 7709 7656 7672 SDST125_ta065

(100 x 5) 8231 8294 8356 8280 8338
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SDST100_ta066 (100
x 5) 7468 7551 7496 7502 7466 SDST125_ta066

(100 x 5) 8082 8143 8199 8127 8087

SDST100_ta067 (100
x 5) 7611 7702 7722 7677 7640 SDST125_ta067

(100 x 5) 8267 8320 8399 8250 8290

SDST100_ta068 (100
x 5) 7424 7551 7470 7439 7403 SDST125_ta068

(100 x 5) 7993 8143 8182 8088 8138

SDST100_ta069 (100
x 5) 7773 7846 7831 7807 7769 SDST125_ta069

(100 x 5) 8393 8469 8518 8409 8347

SDST100_ta070 (100
x 5) 7735 7796 7830 7729 7766 SDST125_ta070

(100 x 5) 8290 8406 8394 8247 8357

SDST100_ta071 (100
x 10) 9201 9202 9245 9157 9202 SDST125_ta071

(100 x 10)
1007
0 10072 10149 1010

8 10124

SDST100_ta072 (100
x 10) 8794 8845 8867 8788 8811 SDST125_ta072

(100 x 10) 9631 9675 9671 9630 9663

SDST100_ta073 (100
x 10) 9004 9010 9041 8995 8995 SDST125_ta073

(100 x 10) 9808 9940 9997 9924 9887

SDST100_ta074 (100
x 10) 9276 9315 9363 9268 9299 SDST125_ta074

(100 x 10)
1016
8 10161 10172 1014

3 10163

SDST100_ta075 (100
x 10) 9002 9025 9009 8975 9019 SDST125_ta075

(100 x 10) 9852 9903 9907 9906 9853

SDST100_ta076 (100
x 10) 8689 8713 8736 8638 8671 SDST125_ta076

(100 x 10) 9529 9638 9602 9537 9588

SDST100_ta077 (100
x 10) 8858 8879 8805 8845 8837 SDST125_ta077

(100 x 10) 9696 9761 9881 9721 9729

SDST100_ta078 (100
x 10) 9028 9025 9074 8984 8961 SDST125_ta078

(100 x 10) 9891 9880 9933 9816 9795

SDST100_ta079 (100
x 10) 9133 9177 9191 9145 9114 SDST125_ta079

(100 x 10)
1000
4 10003 10059 9929 9950

SDST100_ta080 (100
x 10) 9114 9160 9187 9096 9126 SDST125_ta080

(100 x 10)
1001
3 10094 10078 1000

6 10012

SDST100_ta081 (100
x 20)

1057
8 10552 10627 1056

8 10572 SDST125_ta081
(100 x 20)

1169
4 11723 11752 1168

7 11622

SDST100_ta082 (100
x 20)

1053
5 10518 10569 1053

1 10544 SDST125_ta082
(100 x 20)

1167
9 11711 11737 1162

8 11640

SDST100_ta083 (100
x 20)

1055
2 10576 10602 1056

2 10600 SDST125_ta083
(100 x 20)

1170
1 11600 11780 1160

4 11618

SDST100_ta084 (100
x 20)

1047
9 10516 10596 1051

4 10518 SDST125_ta084
(100 x 20)

1163
4 11604 11691 1154

2 11498

SDST100_ta085 (100
x 20)

1053
9 10627 10583 1055

0 10554 SDST125_ta085
(100 x 20)

1167
5 11694 11726 1161

5 11614

SDST100_ta086 (100
x 20)

1067
9 10709 10659 1065

5 10690 SDST125_ta086
(100 x 20)

1174
0 11770 11808 1171

8 11729

SDST100_ta087 (100
x 20)

1064
5 10635 10661 1056

4 10593 SDST125_ta087
(100 x 20)

1178
4 11819 11804 1175

5 11782

SDST100_ta088 (100
x 20)

1079
4 10766 10863 1076

7 10751 SDST125_ta088
(100 x 20)

1188
3 11919 11979 1190

8 11863

SDST100_ta089 (100
x 20)

1061
2 10630 10662 1061

8 10608 SDST125_ta089
(100 x 20)

1173
1 11753 11788 1167

8 11714

SDST100_ta090 (100
x 20)

1065
1 10657 10720 1067

9 10629 SDST125_ta090
(100 x 20)

1175
3 11784 11800 1173

7 11710

SDST100_ta091 (200
x 10)

1730
7 17312 17408 1711

6 17145 SDST125_ta091
(200 x 10)

1893
0 18987 19179 1881

7 18842

SDST100_ta092 (200
x 10)

1721
0 17244 17427 1704

7 17068 SDST125_ta092
(200 x 10)

1887
6 19002 19059 1872

0 18707

SDST100_ta093 (200
x 10)

1738
6 17425 17597 1730

5 17265 SDST125_ta093
(200 x 10)

1905
9 19254 19333 1893

3 18933

SDST100_ta094 (200
x 10)

1720
6 17306 17421 1706

1 17079 SDST125_ta094
(200 x 10)

1893
4 18987 19077 1873

3 18749

SDST100_ta095 (200
x 10)

1724
4 17277 17343 1717

3 17032 SDST125_ta095
(200 x 10)

1890
6 19065 19137 1882

6 18767

SDST100_ta096 (200
x 10)

1702
2 17017 17222 1690

5 16876 SDST125_ta096
(200 x 10)

1865
9 18785 18919 1856

4 18528

SDST100_ta097 (200
x 10)

1742
8 17478 17630 1733

4 17306 SDST125_ta097
(200 x 10)

1911
8 19296 19437 1896

4 19087

SDST100_ta098 (200
x 10)

1740
7 17415 17419 1727

0 17241 SDST125_ta098
(200 x 10)

1905
8 19082 19168 1890

4 18893

SDST100_ta099 (200
x 10)

1719
4 17182 17327 1710

5 17116 SDST125_ta099
(200 x 10)

1881
9 18990 19094 1883

6 18844

SDST100_ta100 (200
x 10)

1726
3 17316 17450 1721

9 17196 SDST125_ta100
(200 x 10)

1879
3 19017 19065 1875

9 18688

SDST100_ta101 (200
x 20)

1961
8 19649 19750 1954

2 19455 SDST125_ta101
(200 x 20)

2176
5 21622 21917 2161

1 21653

SDST100_ta102 (200
x 20)

1981
6 19809 19916 1975

2 19760 SDST125_ta102
(200 x 20)

2197
3 22093 22143 2178

8 21882

SDST100_ta103 (200
x 20)

1988
1 19834 20035 1975

4 19673 SDST125_ta103
(200 x 20)

2197
5 22103 22150 2187

8 21907

SDST100_ta104 (200
x 20)

1981
0 19832 19943 1973

6 19761 SDST125_ta104
(200 x 20)

2198
4 22010 22017 2184

3 21798
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SDST100_ta105 (200
x 20)

1958
9 19651 19686 1952

2 19401 SDST125_ta105
(200 x 20)

2177
3 21807 21869 2160

7 21578

SDST100_ta106 (200
x 20)

1967
7 19630 19709 1957

9 19599 SDST125_ta106
(200 x 20)

2182
9 21830 21939 2158

3 21652

SDST100_ta107 (200
x 20)

1988
8 19935 19904 1975

0 19733 SDST125_ta107
(200 x 20)

2205
5 22017 22083 2187

3 21904

SDST100_ta108 (200
x 20)

1982
6 19865 19956 1968

0 19700 SDST125_ta108
(200 x 20)

2190
2 21954 21991 2184

0 21752

SDST100_ta109 (200
x 20)

1975
7 19837 19923 1966

4 19650 SDST125_ta109
(200 x 20)

2182
1 21971 22081 2186

3 21737

SDST100_ta110 (200
x 20)

1981
3 19839 19961 1970

0 19680 SDST125_ta110
(200 x 20)

2197
5 22001 22099 2179

8 21804

SDST100_ta111 (500
x 20)

4671
6 46758 47382 4646

0 46517 SDST125_ta111
(500 x 20)

5202
1 52060 52622 5151

1 51429

SDST100_ta112 (500
x 20)

4729
1 47499 47910 4689

3 47053 SDST125_ta112
(500 x 20)

5238
0 52763 53126 5211

0 52016

SDST100_ta113 (500
x 20)

4696
4 47171 47512 4676

4 46703 SDST125_ta113
(500 x 20)

5211
0 52326 52914 5174

9 51707

SDST100_ta114 (500
x 20)

4702
1 47177 47546 4679

2 46790 SDST125_ta114
(500 x 20)

5219
4 52388 52834 5177

6 51902

SDST100_ta115 (500
x 20)

4699
4 47028 47505 4655

3 46739 SDST125_ta115
(500 x 20)

5193
2 52287 52696 5159

9 51630

SDST100_ta116 (500
x 20)

4707
4 47277 47676 4686

2 46979 SDST125_ta116
(500 x 20)

5226
9 52710 53049 5199

5 51895

SDST100_ta117 (500
x 20)

4688
9 46794 47340 4647

7 46569 SDST125_ta117
(500 x 20)

5191
7 52162 52644 5156

4 51430

SDST100_ta118 (500
x 20)

4718
3 47150 47602 4686

2 46710 SDST125_ta118
(500 x 20)

5218
5 52629 53216 5208

5 51888

SDST100_ta119 (500
x 20)

4663
6 46842 47131 4634

5 46293 SDST125_ta119
(500 x 20)

5174
6 52004 52555 5149

5 51457

SDST100_ta120 (500
x 20)

4690
2 46984 47458 4663

6 46655 SDST125_ta120
(500 x 20)

5211
8 52388 52910 5187

3 51838
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A-2) Best known solutions for Total Flow time Minimization Problem

Problem Instance SDST10 SDST50 SDST100 SDST125

ta001 (20 x 5) 14875 17828 21490 23452

ta002 (20 x 5) 15998 18911 22207 23695

ta003 (20 x 5) 14261 17329 20666 22394

ta004 (20 x 5) 16230 19056 22601 24165

ta005 (20 x 5) 14436 17076 20433 21985

ta006 (20 x 5) 14070 17051 20216 21765

ta007 (20 x 5) 14372 17298 20797 22729

ta008 (20 x 5) 14736 18020 21395 23236

ta009 (20 x 5) 15286 18273 21396 23133

ta010 (20 x 5) 13759 16721 19708 21291

ta011 (20 x 10) 21900 25650 30259 32737

ta012 (20 x 10) 23435 26846 31570 33956

ta013 (20 x 10) 20722 23889 28619 31033

ta014 (20 x 10) 19517 22852 26910 29222

ta015 (20 x 10) 19565 23084 27716 30175

ta016 (20 x 10) 20088 23324 27666 29915

ta017 (20 x 10) 19178 22868 27568 29743

ta018 (20 x 10) 21127 24525 29427 31869

ta019 (20 x 10) 21270 24935 29298 31555

ta020 (20 x 10) 22198 25845 30488 32848

ta021 (20 x 20) 34733 38694 43954 46470

ta022 (20 x 20) 32510 36456 41728 44463

ta023 (20 x 20) 34801 38507 42998 45401

ta024 (20 x 20) 32628 36562 42034 45066

ta025 (20 x 20) 35459 39008 44363 47154

ta026 (20 x 20) 33428 37713 43305 46166

ta027 (20 x 20) 33837 37894 43292 46160

ta028 (20 x 20) 33306 37279 42796 45746

ta029 (20 x 20) 34581 38665 44209 47119

ta030 (20 x 20) 33143 36832 41804 44527

ta031 (50 x 5) 69903 85418 103194 112571

ta032 (50 x 5) 73318 90360 108652 117198

ta033 (50 x 5) 68714 84102 102162 111219

ta034 (50 x 5) 74157 90329 107981 115943

ta035 (50 x 5) 74515 89160 106639 115121

ta036 (50 x 5) 72286 88902 107760 116973
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ta037 (50 x 5) 71784 87879 106336 116011

ta038 (50 x 5) 69802 86132 104585 113005

ta039 (50 x 5) 68123 83998 102457 111372

ta040 (50 x 5) 74171 89003 107093 116298

ta041 (50 x 10) 93052 113780 138106 150780

ta042 (50 x 10) 89228 109376 134454 146253

ta043 (50 x 10) 85978 106836 131904 145264

ta044 (50 x 10) 92596 113710 138063 150532

ta045 (50 x 10) 92754 113856 138972 150913

ta046 (50 x 10) 92815 112872 137306 150399

ta047 (50 x 10) 94929 114871 139221 150749

ta048 (50 x 10) 93124 113130 136888 149844

ta049 (50 x 10) 91837 111361 135462 147495

ta050 (50 x 10) 94232 114575 138901 151539

ta051 (50 x 20) 132614 155781 185963 201756

ta052 (50 x 20) 125415 148907 179817 195646

ta053 (50 x 20) 122846 147175 178175 194389

ta054 (50 x 20) 127044 151147 181739 196666

ta055 (50 x 20) 124894 148717 179699 195707

ta056 (50 x 20) 127046 149901 180146 196185

ta057 (50 x 20) 129466 152607 182702 199223

ta058 (50 x 20) 129205 152358 182830 198377

ta059 (50 x 20) 128117 151497 180053 196638

ta060 (50 x 20) 130561 154273 184256 201101

ta061 (100 x 5) 275439 331503 401657 433446

ta062 (100 x 5) 264943 322771 383133 419408

ta063 (100 x 5) 259815 316880 383644 420447

ta064 (100 x 5) 248923 307457 378426 414200

ta065 (100 x 5) 262116 319807 390014 421523

ta066 (100 x 5) 254835 313885 382968 415877

ta067 (100 x 5) 262375 321259 388349 425422

ta068 (100 x 5) 253692 312864 382403 416271

ta069 (100 x 5) 270141 328563 397009 430184

ta070 (100 x 5) 264365 322097 390145 425174

ta071 (100 x 10) 325603 400663 497754 542145

ta072 (100 x 10) 300505 379595 474716 522170

ta073 (100 x 10) 313833 391991 485623 533185

ta074 (100 x 10) 328630 407329 504444 552165

ta075 (100 x 10) 310948 391514 488541 528558
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ta076 (100 x 10) 296344 374211 472840 520832

ta077 (100 x 10) 305371 385063 478189 529056

ta078 (100 x 10) 317042 394881 491548 534020

ta079 (100 x 10) 327521 402094 496114 546294

ta080 (100 x 10) 316921 397252 493400 540241

ta081 (100 x 20) 394418 484783 600212 661519

ta082 (100 x 20) 401716 494877 609845 666897

ta083 (100 x 20) 399318 492412 608238 669137

ta084 (100 x 20) 402653 492503 604868 663480

ta085 (100 x 20) 397236 487625 604096 666136

ta086 (100 x 20) 400348 492664 606046 671086

ta087 (100 x 20) 403511 494385 608838 672860

ta088 (100 x 20) 412752 502498 617446 679579

ta089 (100 x 20) 402837 492970 607588 669486

ta090 (100 x 20) 407864 499018 607456 671957

ta091 (200 x 10) 1146682 1441896 1807352 1986298

ta092 (200 x 10) 1138406 1429058 1792087 1991074

ta093 (200 x 10) 1149346 1445466 1813283 2004644

ta094 (200 x 10) 1131227 1429536 1785374 1976164

ta095 (200 x 10) 1137508 1432359 1812037 1981399

ta096 (200 x 10) 1112680 1415515 1774099 1954304

ta097 (200 x 10) 1158724 1460000 1836110 2006684

ta098 (200 x 10) 1147599 1451753 1816781 2004683

ta099 (200 x 10) 1126810 1427237 1789820 1971411

ta100 (200 x 10) 1132527 1435648 1802622 1984071

ta101 (200 x 20) 1341485 1694819 2136787 2378331

ta102 (200 x 20) 1359134 1719013 2162691 2393149

ta103 (200 x 20) 1380766 1735784 2179383 2406760

ta104 (200 x 20) 1351768 1710121 2168961 2398177

ta105 (200 x 20) 1340365 1695159 2145547 2364488

ta106 (200 x 20) 1344617 1698398 2151639 2369067

ta107 (200 x 20) 1357790 1706425 2163931 2397594

ta108 (200 x 20) 1354229 1712888 2166485 2398013

ta109 (200 x 20) 1345479 1705958 2155966 2379548

ta110 (200 x 20) 1363190 1719065 2167126 2394268

ta111 (500 x 20) 7356002 9512013 12201447 13581758

ta112 (500 x 20) 7457075 9614520 12314837 13660282

ta113 (500 x 20) 7394925 9560189 12266597 13628437

ta114 (500 x 20) 7443908 9584384 12231835 13641375
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ta115 (500 x 20) 7419538 9573874 12228518 13558514

ta116 (500 x 20) 7400282 9572786 12229388 13583976

ta117 (500 x 20) 7339338 9532073 12179786 13587496

ta118 (500 x 20) 7429258 9610969 12299046 13647700

ta119 (500 x 20) 7359471 9549719 12195424 13531394

ta120 (500 x 20) 7398971 9564768 12312740 13646101


