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Guncel bilgi modelleri bilgiyi olusturan kelimelerin Jgarflerin frekanslari,
kelime uzunluklar ve bilginin sikistiriimasi gibi bilgn sozdizimsel 6zelliklerin
incelenmesiyle ilgilenmektedir. Bilginin analizini vedd edinimini gelistirmek igin
semantik ozellikler tizerinde c¢alisan yeni hesaplamdetieri tanimlanmalidir.

Bu calismada bilginin ve yeni hesaplama modellerinimtdanmasina elverisli
yapilar olarak turevlenebilir manifoldlara yer verilftits Tanimlari geregi mani-
foldlar global dicekte bakildigind@klidyen olmayan dzellikler gosterirken lokal
Olceklerde oklidyen uzaylara benzemektedirler. Ballilderi sayesinde dngorilen
yeni modellerinOklidyen modeller iizerinde calisan giincel modellerkdpsamasi
s0z konusudur.

Bilginin bilgisayar bilimlerindeki en yaygin modelleried biri graf yapilaridir.
Graf yapilari tanimlari itibariyle ayrik ve hesaplanatelidir. Bu tezin temel amaci
graflardan manifoldlara bagintilar kurulmasini araséik graf olarak tanimlanan
bilginin yeni ve surekli modellere tasinabilirliginimamaktir. Bu amag dahilinde
bilginin geometrik ozelliklerinin tanimlanmasina biriad daha yaklasiimis ola-
caktir.

Anahtar Kelimeler: Bilgi, Bilginin modellenmesi, Laplacian, Laplace - Bel-
trami Operatoril, Graf, Manifold, Tirevienebilir GeomgeOklidyen olmayan ge-
ometri.



ABSTRACT

SOFTWARE DEVELOPMENT FOR TRANSITIONS OF
GRAPHS FROM DISCRETE STATE INTO THE
CONTINOUS STATE

YUCEL, Cdjatay

MSc in Computer Engineering
Supervisor: Assoc. Prof. Ahmet Hasan KOLTUKSUZ, Ph.D.

June 2012, 75 pages

The contemporary information model deals only with syntacof informa-
tion, such as frequency of the occurances of charactergtieri words and com-
pression amount of documents. Computable models targeéin@ntic properties
of information, such as relations between words, shoulddimed and studied in
order to improve the analysis and the retrieval of informati

Manifolds are suitable differentiable mathematical otgdor information to
be defined on. By their very definition they are non-euclideatine global view
but in local scales they resemble euclidean spaces. Thiegyoprovides that the
contemporary models can also be defined within the prewasiorew models of
information models.

One of the most basic representation of information is thhographs. They
are discrete and highly computable mathematical bojectshi$ thesis, the main
aim is to investigate methods of embedding this simple pagdaformation onto
manifolds. This aim is supposed to lead us to defining the g&ocal aspects of
information.

Keywords: Information, Information Modeling, Laplacian, Laplace elB
trami Operator, Graph, Manifold, Differential GeometrypiN- Euclidean Geome-

try.
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Chapter 1

Introduction

The information model is the representation of informatiora way that it can
be analyzed, measured, processed and transferred. Thargmorary information
model can deal only with the syntactics of information, sashfrequency of the
occurances of characters, length of words and compressrorptage of plain texts.
The model was introduced by Claude E. Shannon in his 1948 darpaper “A

Mathematical Theory of CommunicationB]|

In this information model, the definition of information isged on probabil-
ity theory and statisticsSThe Shannon Entropyhe most striking concept within this
model, is given by the quantification of the expected valuefoirmation contained
in a message. This model contains nothing about the semariticformation. For
the semantic properties to be modeled, ontology based aetomatic information
retrieval models have been proposed. These models relyynarsthe human in-

teraction to define the relations between words, in orderetive their meanings

[6].
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Information Retrieval (IR) is the process of searching gmetformation

either as

e text, sound, image, video, data or metadata in some docuworent

e specific documents within a collection.

IR systems are designed with the objective of providing,esponse to a query,

references to documents that would contain the informatesired by the usef].

In IR systems, documents and queries are represented irhamatical model
where an operation regarding to the closeness of documenfsranally defined.
There must be a conversion of documents and queries intdeheent set of the
system to retrieve which documents the user should readresibect to the query

user provided.

The process begins when user enters a query into the systbmsybtem
converts this query into an element in the model and relatesth some other
elements with the closeness function of the system. Claeseniactionf is defined

as.

fVxQ—oU (1.1)

where V is the mathematical model of document collections ¢he set of queries
for the information needs of the user and U is the subset ol&/aat to the query

of the user.

The Vector Space Models (VSM’s) has been the standard modgifbrma-
tion retrieval since 1975. In this model, each unique worgame subset of unique
words within document collection represents a dimensi@pace and called terms.
Choosing the terms depends on the application. Each doduandmuery repre-

sents a vector within that multi-dimensional spa8e |
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1.1 Motivation and Aims

VSM terms are assumed to be orthogonal. This assumptioedeait the semantic
relationship between terms. The terms which representsdbalinate system of
the document space, can be related and the angles betweeogheary depending
on the relation instead of being orthogonal. This problemaited “The Problem
of Dimensionality” P]. Regarding the coordinate system as constant is yet anothe
problem in addition to the problem of dimensionality. Thelas between terms
can vary depending on the document. This variation amongrdeats leads to

new document spaces defined by different sets of basis gector

The aforementioned problems lead to the assumption thattheture of in-
formation is non-linear, and should be defined in continunashematical objects
instead of vector spaces. Therefore the models relatectménifolds are studied
in this research. Manifolds are suitable differentiableghmeenatical objects for in-
formation to be defined on. By their very definition they ar@+guclidean in the
global view but in local scales they resemble euclideanepaBS a consequence,
the contemporary models can also be defined within the poevad new models of

information models.

One of the most basic representation of information is thhographs. Graphs
are discrete and highly computable. In this thesis, the rammis to investigate
methods of embedding information onto manifolds using lgsadhe methodology

is constructed as follows;

e The graph should be constructed from points which are bediéy be samples

from a manifold, so that the geometry of information is preed.

e The relation between the properties of the graph and thefoldrshould be
defined.

¢ And finally, the embedding map should be constructed.

Transition of graphs onto manifolds enables a series ofiegipins such as

graph matching and dimensionality reduction to be donegugmphs along with
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the manifold properties. Image, text and sound analysimpies can be found at

[3], [2], [4].

For the aim of examining graph embedding methods, pythaptgmogram-
ming language based software are developed in this theéssinportant to state
that the transition methods can be useful after the noratimgormation properties

are inputted.

1.2 Outline

The rest of this thesis is structured as follows.

Chapter2 consists of the definitions of mathematical structureshis ¢hap-

ter, manifolds and graphs are defined and their properteeprasented.

Chapter3 defines the relation between manifolds and graphs usingapat

cian Operator.
Chapterd and Chapteb present the graph embedding methods.

Chapterb, the final chapter, concludes the thesis and summarizesfutarks

in the direction of this research.



Chapter 2

Mathematical Background

In this chapter the necessary definitions including madd€a@nd graphs are given.

The structure of this chapter is as follows:

Vectors, basis vectors, tensors and transformation lawpkmed briefly.

The notion of maps, its properties, and more importantlynthigon of conti-

nuity are stated.

Definition of coordinate charts, manifolds, and their pries are presented.

Definition of graphs and properties of graphs are provided.
The notations used in this chapter is from the “Einstein'm8ation Nota-

tion” [10].

2.1 \ectors, Basis Vectors, Tensors and Transforma-
tion Law
2.1.1 Vectors, Vector Spaces and Vector Fields

In euclidean spaces, vectors are the line elements equipiple@ direction. Each

vector has a magnitude and a definite direction. A vector earepresented as a
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graphical arrow which has an initial and terminal point.

e Avector may possess a constant initial point and terminatp8uch a vector

is called a bound vector.

e When only the magnitude and direction of the vector matterthe vector is

called a free vector.

Definition 2.1. Let v, vy, v3 be vectors andh;, n,, s € R. A vector space over a

field F' is a set with two binary operations (+,*) satisfying

v + (v9 + v3) = (v1 + v2) + v3(Associativity)

v + v = v9 + v; (Commutativity)

There exists an elemefte V, s.t.v + 0 = v for all v € V' (Identity)
s.(v1 +vy) = s.01 + 5.0y

(ny + ng)v = nqv + ngv

ni.(ny.s) = (n1.ns).s

For allv € V, there exists-v s.t.v + (—v) = 0 (Inverse)

Foralls € I, 1s = s, 1 € F'is the multiplicative identity

Definition 2.2. Although the terms “scalar field” and “vector field” contaitie

term “field”, the definitions below should not be mixed up wikie algebraic defi-

nition of fields.

e A scalar field is an assignment of a scalar to each point inulcéde=an sub-

space.

e A vector field is an assignment of a vector to each point in thaigean

subspace.
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2.1.2 Basis Vectors and Vector Expansion on Basis

Definition 2.3. A basis of a vector space is the set of linearly independestbve
which can be used to generate every vector in that space. Waeamgles between
them are not perpendicular, they are called skew-angukis b&®rthogonal other-

wise.

Definition 2.4. A coordinate system is a basis complemented with a fixed point

called origin.

When our vectors reaching to infinity and perpendicular tcheather, the
space is called €artesian Coordinate SystertwWhenever the angles different than
perpendicular, then the space is still calledclidean Coordinate Systebut the
basis is no more orthogonal. If the angles between basi®ngeate changing at
every point, more precisely if instead of lines as basisorscthere are curves then

the space is said to be aurvilinear coordinatesystem.

A vector in curvilinear coordinates is not curved as it carmoerrectly inter-
pretted. Instead we have different basis vectors at eactt, pEtermined by partial
derivatives of the curves at the point. In that case, at epeiyt there exists a vec-
tor space called tangent space. Tangent spaces will béedkitaithe properties of

manifolds in sectior2.2.3 The Figure2.lillustrates the definition of basis vectors.

Letey, eq,..., e, be the basis vectors angl, a-, . . ., a,, be the coefficients of
the components of a vector. Once we have the basis vectgrseator within the

space that the basis vectors span can be represented as

a=a'e; +a’ey +ades+ ...+ a", = d'e; (2.1)

where nis the dimension of the space. This notation is caetbr expansion

over the basis e.



FIGURE 2.1: The basis vectors of the tangent space at the point p.
X1

X2

2.1.3 Basis Transformations

Every vector has a unique vector expansion on any basisalyetes have three basis
vectorse;, e, andes in R2. These three basis vectors define all the three dimensional

vectors in the spadg? in the form ofa’e;.

In order to have simple coefficients for your vectors in yoector space, it is
needed to change the basis. Changing the basis is the samgaaslieg a vector

on a basis.

Let's define new basis vectors as é, andés. The old basis vectors can be
defined on the new space that is constructed by the new basmsel et’s take one

of the old basis vectors .

14 24 34
e1 = S161 + sjés + sjes

The second and third vector can be expanded as well;

14 24 34
€9 = S561 + S5€3 + S5€3
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15 24 34
€3 = S3€1 1+ 5362 1 S3€3

When considered jointly, these three formulas called ttmmsormulas. They

can be grouped and called tagnsition matrixor direct transition matrix{11];

51 s1 s
1l .2
S = S 55 Sy

1 2 3
S3 S3 S3

We can also define a transition from the new basis to the old one

é1 =tiey + ties + ties
6y = they + taeg + thes (2.2)
é3 = tye + taey + thes (2.3)
This time the matrix is callethverse transition matrix11].
ty t7 ]

=t 4

ty 3 13

Theorem 2.5. The inverse transition matrix T is the inverse of the direghsition

matrix S.

2.1.4 \ectors - Covectors or Contravariant - Covariant Vecbrs

A vector does not change when the basis of the vector changéeleir coordinates

change according to the change of the bakl [

Suppose we have a vectoexpanded on the basis sgand let’s try to change

the basis.

a=a'e; +a’ey +ades+ ...+ a", = d'e; (2.4)
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Basis is changed according to our previous forntefa written again, this time
stating the Einstein summation indices also.

e =TI¢; (2.5)

Substituting?.5into 2.4 yields:

d'e; = a'(T)¢;) = (a'T))é; = d'e;

Hence the direct vector transition formuls as below] 1]:

As it can be seen easilihe inverse vector transition formuis:

al = &iSf
Mathematically, we can construct a vectorial object in tways: one that
transforms as (vectors) and one that transforms opposiselgovectors) aforemen-

tioned transformations.

For a vector to be coordinate system invariant, the cootegaf the vector
must contravary under a change of basis. That is, the cadsfirmust vary in
the opposite way (with the inverse transformation) as trengk of basis. For this
being so, they are also called contravariant vectors. Matie in Einstein’s notation,

contravariant components are stated as upper indices.

Definition 2.6. A geometric object in each basis by a set of coordinatgsas, . . ., a,
and such that its coordinates obey the below transformaties under a change of
basis is called &ector (contravariant vectof)l1]:

a'=a'T!



and

a'=a's}

For a covector, (such as a gradient) to be coordinate systeaniant, the
coordinates of the vector must covary under a change of tmsisintain. That is,
the coordinates must vary by the same transformation ashidnege of basis. For
this being so, they are also called covariant vectors. Istéin’s notation, covariant

components are stated as lower indices.

Definition 2.7. A geometric object in each basis by a set of coordinatgsas, . . ., a,
and such that its coordinates obey the below transformatiles under a change of

basis is called aovector (covariant vectof).1]:
a' =a's!

and

@N
I

=
3

2.1.5 Tensors and Their Properties

Before giving the general definition of tensors, it is impoittto give the definition

of the linear operators for understanding the concept.

Definition 2.8. A geometric object” in each basis represented by a square matrix
FJZ and such that components of its matrix obeys the below tamsiftion rules

under a change of basis is calletireear operatof11]:

A .

Fy=T,-51-FF

J p

Fj= 8,17 B

As stated in the definition, there is one covariant index amdHat being so,
there is one inverse transition matrix in the transfornralzav and the same applies

to the contravariant index.
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Generalizing that idea will lead through the tensor defniti

Definition 2.9. A geometric objectX in each basis represented byra+ s) di-
mensional array(ﬁ;jj,:jg and such that components of its multidimensional array

obeys the below transformation rules under a change of ssélled atensorof

rank (r, s)[11]:

11,82, Q11,8200 k1,k2,....ks x-h1,ha,....hp
J15725--3]s hi,h2,.he ™ 41,52,00s k1,k2,....ks
01,0250 01,02,y Sk‘l,kg,...,k‘s hi,h2,....hy
J15725--3]s hiho,.. hr™= 51,92, 078 k1,k2,....ks

2.1.5.1 Tensor Addition and Multiplication by a Scalar

Tensor addition and multiplication by a scalar are the moshiive operations.

The addition formula is as below:

11,8200 0lp _Xil,iQ,---,ir + 11,0200 0ylp
J15025--5]s J15J25--43]s J1,J25--5]s

As it can be seen from the formula that tensors must be of thre sank in
order to perform an addition. The tensor multiplication bscalar is given by the

formula:

11,02,000r ay?l,?z,---7?7-
J15]25+5]s J15025+43]s

Scalar multiplication doesn’t change the rank of the tensor

2.1.5.2 Tensor Product

Tensor products given by the formula:

i1 yi2ir kP il yizyeein it L4 2,4
I B G S LD S M
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This formula is denoted by the symb®l As can be seen from the formula, it takes
two tensors with rank respectivelly, s), (p, ¢) and generates a new tensor with rank

(r + p,q + s). This operation increases the rank of the tensdr§. [

2.1.5.3 Contraction

This operation reduces the rank of a tensor of rank) to (r—1, s—1). Contraction
is performed by summing over one contravariant and one @vandex. So the

formula is:

11,82,00ir—1 01,82, ke
J15J25e-Js—1 71,025 Ky ds

Replacing an upper and a lower index with the summation irdexus sum

all free indices and reduce the summation index.

2.1.5.4 Raising and Lowering Indices

Raising and lowering indices includes two operations: depsoduct and contrac-
tion. Before explaining these two concepts, it is importaninderstand what the

metric tensor is.

The metricg,, is the tensor that defines the inner geometry of the space. The
metric is used when calculation of the shortest path betweervectors or points
needed and also it allows the computation of the shortehtlpetiveen two points

in a certain geometry. This concept will be considered iidlet the Sectior2.2.5

The raising procedurés as below, the first tensor product by the metric is
taken and then the second index and the index to be raisedtisacted. For that
operation being so, the covariant indices are increaseatyre contravariant in-

dices decreased by one.

.......

X......,p,... — gpkyk

[RRY, 7NN
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The inverse operation is callgtie lowering procedurend it is using the

inverse metric.

More information about tensors and tensor operations cdowel at fL1], and in
the first two chapters oflZ]. Tensor’s properties and their differentiation will be
given after the definition of manifold and the smoothness ahifolds are under-

stood. The following section constructs the definition ohfads.

2.2 Manifolds

2.2.1 Maps and Continuity

To construct the definition of the manifold and its propesrtd being smooth and
locally euclidean, some preliminary definitions are regadirOne of the most basic

definitions is the definition of map notion.
Definition 2.10. Given two sets M and N, a magM — N is a relationship that
assigns each element of M to exactly one element of N.
The composition of given two maps ¢ is defined below:
Definition 2.11. Given two maps):M — N, ¢): N — K, the composition{ o ¢):

M — K is defined by the operation/(c ¢)(@) = @ ( ¢))(a).

A map¢ is called one-to-one or injective if each element of N has@sgtone
element of M mapped into it and a map is called onto or suxjectieach element

of N has at least one element of M mapped into it.

In the case of the map the set M is calledlomain and the set N is called

image
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The notion ofcontinuity of a map given here is the notion of continuity in
ordinary functions which are maps defined fr@&o R. One can extend the idea to

the higher dimensional euclidean spades,

Definition 2.12. Amap¢ in R is continuous at x = a if and only if;

1. ¢(a) is defined.

2. lim,_,, ¢(z) exists.

3. lim, ,, ¢(x) = ¢(a)

The left hand derivative o is given bylim;,_,- M provided that
this limit exists and the right hand derivatilien;, o+ M, again, provided
that this limit exists. We say that a majis differentiableat x = a if the left hand
derivative equals the right hand derivative. Any calculoslbcan be checked in
order to understand this notions therefore no referencéswiprovided for this

notions.

To extend these notions towards more general euclidearesphitear map

notion must be given.

Definition 2.13. A linear maps : R™ — R” takes a poinfz!, 2%, ..., 2™) in R™ to
a point(y!, %2, ..., y") in R™ while preserving the operations of addition and scalar
multiplication. The map : R™ — R” can be thought as collection of following

maps [L2]:

yl :¢1($1,$2, ’xm)
y2:¢1<$1,l’2, ’xm>
yn:d)1<x1’x27 ’xm)

If p'* derivative of a map exists and is continuous, that map igddl. A
linear map is called” if all of its component'sy"” derivative exists and is contin-
uous. AC® map is continuous but not differentiable and’@ map is continuous

and can be differentiated infinitelg:* maps are calledmooth12].
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With the definition of smoothness, we can now defiifteomorphisms

Definition 2.14. Two sets M and N are called diffeomorphic if there exists“a
map¢ : M — N with an inversey~! : N — M which is alsoC*. Here, the map
¢ is calleddiffeomorphisni12].

The notion of diffeomorphisms is useful when considerirgequivalence of

manifolds.

2.2.2 Coordinate charts and manifold definition

Definition 2.15. An open ball is a set of all pointsin R™ such thatz — y| < r for

some fixedy € R™ andr € R, where|x — y| is euclidean distance.

In other words, an open ball is the interior of arsphere with a radius
centered ay. This definition directly inherits the meaning of a metriasp. Here,

the metric is the euclidean distance.

Definition 2.16. A setV is called an open set if for anye V/, there is an open ball

centered ay such thaty € V.
An open set can be thought as an interior of sgme 1) dimensional closed
surface L2]. Along with a map onto an open setlit? leads to a definition of charts.

Definition 2.17. A chartor coordinate systens a one-to-one map

6 U=V (2.6)

whereU is a subset ofi/ andV is an open set ikR".

Since any map is onto its image, U is an also open sét/ inFinally, with

these ingredients in hand, manifold definition can be given.

Definition 2.18. An atlas for a setV/ is an indexed collectioU,, ¢, ) of charts
on M such thal JU, = M. If the images of charts ane-dimensional Euclidean

spaces, then M is said to be ardimensional manifold[2].
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The manifold definition comprises two important properti€be first one is
being locally euclidean. The images of charts are euclidpaces and since all the
charts are consisting of an open set and a map, the chartlskesethe euclidean

space of the same dimension. This property is called beralioeuclidean.

The other important property among charts is being smodaiyn together.
The meaning of this property is smooth maps can be definedeketthe inter-
sectioned parts between the euclidean spaces that theplatal of the manifold

resembles.

2.2.3 Directional Derivatives and Tangent Spaces

A tangent space at poiptcan be imagined as the collection of vectors that is tangent
to all the curves passing A derivative definition of manifolds on curves should be

given next in order to define the concept of “being tangent anifolds”.

Definition 2.19. Let F' be the space of all curves through a pgirdn a manifold.
For each differentiable curvgin F, there is an operator calletirectional deriva-
tive such that:

f—df/dX

where) is the parameter along the curve.

Being differentiable for a curve on a manifold means thatdbeve is dif-
ferentiable at every chart of the manifold. With the defomtiof a derivative on
manifolds, we can claim that a tangent space is the spaceaddtidinal derivative
operators along the curves througlil2]. The tangent space definition is as the

following:

Definition 2.20. Tangent space is a real vector sp&etangentially attached to a
pointp of a differentiablen-manifold M/, denoted byl M. If ~ is a curve passing

throughp then the derivative of atp is a vector inZ}, M.
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FIGURE 2.2: Tangent space of a manifald

2.2.4 Riemannian Manifolds and The Metric Tensor

At every point of a manifold, there is a tangent space thahdsfihe tangent vectors
of that point. The tangent space at a pgirttas the same dimensionality as the
manifold. There are two properties for a manifold toRiemannianit should have
an inner product defined in every tangent space of the marmsiath that one can
compute the norm of a vector and the distance between twongdtom that space.
The other property is that the inner product should vary giig@and inner product
of two tangent spaces should specify a smooth functiononThis inner product

property is allowed byhe metric tensar

Since the basis vectors of the tangent space can be coestusing the par-
tial derivatives of the manifold at a poipt the metric can also be different at every
point on the manifold and the metric should vary smoothlyrfrooint to point on
the manifold as the coordinate system changes. That meansgly, given any
open subset/ on manifold M, at each poinp in U, the metric tensor assigns a
metricg, » and this assignment is a smooth mapping\énFurthermore, it can be

seen as a bilinear operator on vecttrs UV and also denoted ag(V*, U?).

The properties of the metric are provided as follows:

e The metric is symmetric. Wheré andV are vectors in a tangent space.

GV = g9 UV
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e The metric is bilinear. Where a, b are scalars,
Guo(aV* + DU YW = a - g V' W* + b g,U W
GuW(aV* +bU") = agyWV* + bgasWU"

e The metric is non-degenarate. That means the determiném ofietric does

not vanish, therefore we can calculate the inverse metrib&yormula:
gmg% — g)\og)\ﬂ — 52_” = 5;

Further reference can be found a#], [13].

2.2.5 Length of Curves on a manifold and Geodesics

Assume that there exists a curyg) : [0, 1] — M. On each poinp on the curve
v, there exists a tangent vecté“dti@. Since we have the metric in each tangent
space, we can calculate each tangent vectors norm. Movowundrthe curve by
infinitesimal steps and summing up this vectors as in fiQuBgives us the length

of the curve. We can denote the length of the curnas L(~).

zo) = [ 12 @7)

Although the geometry is curved, the notion of the straigine Iremains.
The generalization of straight line is callggodesics A Riemannian manifold
is geodesicaly complete. This means that for every paibion manifoldy, there
exists a geodesic joining them. This theorem is catlegf - Rinow theoremThe

details on this theorem can be found 3|

Geodesic distances are shortest paths between two poitsnamifold. To
give the mathematical definition of the geodesioyariant derivativeshould be

defined first.
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FIGURE 2.3: Tangent vectors of a curve on a manifald

2.2.6 Affine Connection, Covariant Derivative and Geodesg

Covariant derivatives are important in this study since deénition of geodesic
depends on this notion. Given a parametric cuyite on M, as~(t) moves on\/,
the tangent spacg, )M changes. This change can be defined with the notion of

covariant derivative$15|.

Definition 2.21. Let (M, g) be a Riemannian Manifold/ equipped with a smooth
metric g and letV be the set of all vector fields in/ and letf : M — R is any

smooth function.

A connection onV/ is an operatoV : V x V' — V that satisfies the following

conditions:

VX1+X2Y = VX1Y + VXQY

VxY1 +Y, =VxY +VxYs,

VixY = fVxY

VxfY =X(f)Y + fVxY

In addition to those properties, if a connection satisfiedgioperties below,

it becomesonnection with respect to the metric

e X(gV,2))=9(VxY,Z)+g(Y,VxZ)foranyX,Y,Z € V

e VyY — VyX = [X,Y], the lie bracket ofX, Y
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Theorem 2.22(The Fundamental Theorem of Riemannian Geometrg)y any
smooth manifold// with a smooth Riemannian metrcthere exists a unique Rie-
mannian connection o/ corresponding tgy. This connection is nameldevi -

Civita Connection

For the proof of this theorem, se®].

The unique connection given above can be constructed fremé#tric, and it

is encapsulated in an object called leristoffel Symbglgiven by

1 ag
= 207000 + 1 + 0,0,

The use of this symbol is fundamentally for taking covaridetivativesV ,.

The covariant derivative of a vector field" is given by [L2]:

VWV =0V T,V

This notion is the generalization of the partial derivasio® manifolds. The
formula can be interpreted as the partial derivative plusreection specified by a
set ofn matricesl,,. The covariant derivative of a tensor of rafik /) is given by

the formula [L2]:

N, THb2 bk — ) TPHR2--fok

V1V2...0] V1V2...0]
B Ap2... M2 oA
—"_FU)\TUlUQ...Ul + FO’)\TUlUQ...UZ +.. (28)
A H1H2-- [l A M2 [
Favl T)\vg...vl Favz Tvl)\...vl t (29)

The concept oparallel transportis moving a vector or tensor along a path
while keeping it constant. In the flat space, there is no neexbihsider the point
that the vector or tensor to be moved on. However, In a curpades the result of
parallel transport depends on the underlying path betweengthat the vector or

tensor to be moved.
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For a tensor to be constant on a given cuyy¢®) is given by the formula:

2 H1p2- M ﬁ G THF21Ee — ()

d\ V]V3...U] d\ V1V2...0]

Specifying this formula for vectors yield47):

ivu + TH divp

d\ ooy Y

As stated in the previous sectiogeodesicsare the generalized notion of
straight line in the curved space. A straight line is the patihe shortest dis-
tance between two points. Also, a straight line can be seenpath that parallel

transports its own tangent vectdr.
The tangent vector to a patti)) is:
dxt

AN

The condition that it is parallel transported is as below #ng equation is

calledgeodesic equatiofi2):

d?yH dry? dy°
pn DT
2 e

2.2.7 Gradient and Exponential Map

The gradient of a scalar function @ is the vector directed at the greatest rate of

change and has magnitude of the greatest rate of changeystittie.

grad(f,) = (ﬁ o )

ox, Oz,
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Gradients can also be applied to tensor fields. Applyingigrado a tensor
field with rank(k, [) yields a tensor with rankk, [ + 1)

11,802,000k 01,82y sl
Y, , = grad, (X; )

@:J1,325-+5J1 J15J25eJ1

Another definition should be given in order to defireplace - Beltrami Operator
which is the main object of study in this thesis. With the us¢he definition of
geodesics we can define the exponential map of a vector ingenaispace of a

manifold.

Definition 2.23. The exponential mapzp, at a pointp in M maps the tangent
space€l, M into M by sending a vectos in 7),M to the point inM a distancguv|

along the geodesic fromin the direction ofv [16].

The exponential map takes a vector from the tangent spacenapdt onto
another point on the manifold using the geodesic along trextion fo the vector.

Figure2.4 depicts the map from the tangent spacg anto the poing.

FIGURE 2.4: Exponential magzp, of a vectorv at pointp
TpM

2.2.8 Laplace-Beltrami Operator

The Laplace Operator, named after Pierre Simon Laplace agerie Beltrami,
is the operator on surfaces that maps functions to functitihsan be defined as

exponential map of the gradient of a scalar function defimredame manifold\/.
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In euclidean spaces, this operator can geometrically eegrdéted as the map
from a pointp to another poing so that from the poing, the direction of the greatest

rate of change with a magnitude of the greatest rate of chiartge pointy.

Exponential maps are defined on tangent spaces. From tlae &oadtionf at
pointp the tangent vector is defined naturally by tirad operator. After obtaining
this tangent vector, we can apply exponential map and mavegalith the geodesic

in the direction of this tangent vector.

Definition 2.24. The Laplace-Beltrami operator is denoted/asand defined in

euclidean spaces as

Akff(p)zzw

i 7

and on any manifold as
1 0 . 6f)
JAN :7-5—,\/dt E v
m f(p) det(g) j B ( et(g) i g a2

wheref : M — R is a scalar functiory® is the metric of the manifold.

2.2.9 Curvature and Sectional Curvature

The curvature of a manifold is defined by tReemann Curvature TensoParallel
transportation of a vector defined in a tangent space of thefatd, will linearly
transform the vector. The Riemann curvature tensor dyeuntasures the trans-
formation in a general Riemannian manifold. This transgarh is known as the

holonomyof the manifold. 4]

Assume that we have vectora andb, a andb are direction vectors and
is the vector that we want to calculate the curvature of. IRAtaansport it in the
direction ofa and then in the direction df. When the vector comes back to its
original point, there will be a linear transformation reflag the curvature around
a andb of the vecton. For that being so, the curvature tensor should be repregent

by a tensor of rank1, 3) [12].
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The Riemann Curvature Tensor is given by the formula:

Ry, = 0,0, — 0,0, + 10T, —T0,T),

opv

The sectional curvature can be defined as the deviation minguiof the
geodesic to the euclidean distance between these two poiis sectional of a
surface can be defined using the Riemann Curvature Tensdwanekctors. These

two vectors are for constructing the surface. Sectionalature is denoted witlx

[17].
CuF P eyl C
Rpvo - uly - 08 - ug - vg

K(S) = K(ug,v) =

P
Gpgrs * Ua - Va - UL - VS

WherEqurs = GprYqs — GpsYqr-

2.3 Graphs and Their properties

2.3.1 Graphs

Definition 2.25. A graph is a finite nonempty set of objects calledrticesto-
gether with a set of unordered pairs of distinct vertices7ofalled edges The

vertex set is denoted by and the edge set is denoted By

The edge: = u, v of a graph is said to join the verticesandv and they are

calledadjacentif they are joined by an edge.

A weighted graphs a graph where each edge has a real number associated to

it. A directed graphis a graph where each edge has a direction.

Degreeof a vertex is the number of vertices that it connects andgierident
to an edge means that vertex is connected to the edge. Tvoesdtiat is connected

by an edge is calleddjacenf18§].
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2.3.2 Matrix Structures of Graphs

Another way of representing a graphadjacency matrix The definition is as fol-

lows:

Definition 2.26. Let n be the number of vertices. Adjacency matrix isramx n

matrix where

1 if ViUj eFr
CLZ'j =
0 ifov, ¢ E

Also one can define the Incidence matrix.

Definition 2.27. Let n be the number of vertices and be the number of edges.

Incidence matrix is an x m matrix such that:

1 if v,e; are incident
0 otherwise

Weight matrixs similar to the adjacency matrix but instead of 1’s the eadti

the matrix is decided by the weight of the edges.

Definition 2.28. Let n be the number of vertices. Weight matrix isqamx n matrix

where

W(eij) if ViU; ek
0 if viv; ¢ B

Diagonal Weight Matrixof a graph is a matrix whose sums are row-sums of

Dn’ = 0 Wij (210)

Degree matrixis a diagonal matrix where the diagonal represents the degk

vertices.
deg(v; ifi=74
0 otherwise
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2.3.3 Graph Laplacian

Laplacian of a graph is another matrix representation of graphs, maiséd in

spectral graph theory.
The Laplacian can be defined As= D — W

Definition 2.29.

(

dy — Wy, fu=v
L(’U,,’U) = — Wy if Qg5 7£ 0 (212)

0 otherwise

\

In this study, the Laplacian carries an important role fa tfansitions of

them, which is explained in detail in the next section.
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Chapter 3

Convergence of Graph Laplacian to

Laplace-Beltrami Operator

In this chapter, the convergence and relation between tepland Laplace-Beltrami
operator is inspected. This intuition will be the key cortdagghe process of transi-
tion of the graphs to the manifolds. The theorems and coa@@gen in this chapter
forms a solid ground to the applications and algorithms enpnted in this study.
Mentioned theorems and proofs are provided by the studi&sldfail Belkin and

Partha Niyogi 19]. Briefly, in this chapter:

e The Heat Kernel which is a solution for Heat Equation is gireterms of

Laplacian.
e The convergence for the uniform distribution is provided.

e The convergence for an arbitrary probability distributisprovided.

3.1 Heat Equation

The Heat Equatiors a partial differential equation which describes therdhstion

of heat in a given region or surface over time.
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Definition 3.1. Letxy, xo, . . ., x,, be the spatial variables ands time variable. The

heat equatiorior R" is:

ou (82u+82u+ +82u)_0
ot ox?  0x3 T 012
or alternatively:
ou
— —Au=0
o~
whereA is the Laplace-Beltrami operator f&" andu(xy, zs, . . ., z,, t) is the heat

function inRR™.

The Laplace-Beltrami operator as can be seen in the defirctasely related

to the heat flow over a space.

Let f : M — R be the initial heat distribution. The valuéz, t) is the heat
distribution at the time. In this caseyu(x, 0) = f(z). The heat kernel solutiof¥{;)
is one of the main solution to the heat equation problem. Dhisn is given by

the formula:

u(a, 1) = /M H(w,y)f ()

and in a local coordinate system on a manifold, the solutipns approxi-

mately the Gaussiai§).

n o \I*y‘Q

Hi(z,y) = (4nt)ze” s (f(z,y) + O(1)) (3.1)

wheref(x,y) is a smooth function on manifold witf(z, z) = 1 andO(t) is
the error value. When, y are close, i.e. in the same neighbourhood, @aisdmall,

H, is approximately 2]:

no_ \w—y\2

Hy(z,y) =~ (4mt)ze” =
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So for euclidean spaces, the heat kernel is typically given b

_lz—y|?

H'f = (4rt)} / =5 Fy)dy

n

where the limit of H* f whent — 0 is given by

f(z) =lim H' f(x).

t—0

We know that this equation satisfies the heat equ%on Au = 0, leaving

the Laplace-Beltrami alone yields:

A u(x,t) = —aug? )
Att =0
0
Af(r) = —Sule 1
t=0

a t

= _@H f(z) -

= lim (f(x) — H'f(2))

The Heat Kernel is Gaussian and integrates to 1

. 1 n _lz—y)? _n _la—y?
= 11m——((47rt) 2 / e % f(y)dy — f(x)(4nt)" 2 / e~ dy)
—0 t n n
The integrals can be approximated using summations ovet af ggints
(1,9, ..., x;) Which are assumed to be sampled on a manifold, then the leaplac

Beltrami operator becomes:
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If the weights of the graph which is constructed from sampiefs are chosen

2
|z;—z;|

to bew;; = e~ ~—, then the above expression simplifies to:

1

t(4mt)z Laf (@)

wherelL is the Graph Laplacian of identical points9]. These set of equations and
convergence construct the mathematical basis for the geagdeddings to mani-
folds. The heat kernel provides us a smooth approximatia@ugés between sam-

pled discrete points of manifolds.

3.2 Convergence Theorems

3.2.1 Convergence for Points from a Uniform Distribution

Consider a manifold embeddedli¥t. Given data point$,, = =1, zo, ..., x, Sam-
pled i.i.d. from a uniform distribution. The Laplacian cam tonstructed from this
sample point by taking, z», ..., x, as vertices and taking edges by the formula

2
_ |z;— ]

w;; = e~ 4 . The below theorem shows that for a fixed functjpre C>°(M)

and for a fixed poinp € M, after appropriate scaling (according to the heat equa-
tion, explained in the previous sectioh)converges to Laplace-Beltrami Operator (
N).

Theorem 3.2.Let data pointsy, . . ., x,, be sampled from a uniform distribution on
a manifoldM C R". Putt, = n %%, wherea > 0 and letf € C>(M). Then

the following equation holds:

1

Ly f(x) = ol (M) Ay f(o)

lim -
n—o00 f;(47rt) 2

where the limit is taken in probability andbi()/) is the volume of the manifold

with respect to the canonical measure.

The proof of this theorem is irip).
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3.2.2 Convergence for Points from an Arbitrary Probability Dis-

tribution

Above theorem for an arbitrary probability distributiéhof a set of sampled points

can be stated as follows:

Theorem 3.3.Let P : M — R be a probability distribution function oi/ ac-
cording to which data points,, ..., z, are drawn in independent and identically

distrubuted fashion. Then foy = n‘k+5+a, a > 0, we have

L (@) = s P@) S f(2)

lim -
n—o00 t(477t) 2

whereA p: is the weighted Laplacian.

In the algorithms in this study, the intuition is always ttieg graph is a proxy
to the manifold. Therefore, to justify this intuition, treetheorems are provided in
this section. For further reference about Laplacian anddcap- Beltrami operator,
see L9, [20], [21], [22].
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Chapter 4

Constructing Graphs from Point

Clouds

This chapter aims to describe the methods used to constaaihg) fromn dimen-

sional data. In this thesis, two methods are used for theticat®n:

e k-Nearest Neighbours

e c-Neighbourhoods

This chapter contains the analysis of these two methods, rmifications
and advantages in the process. At the end of this chapterjs2alizations of the

graphs constructed using these methods from random datasgbrovided.

4.1 k-Nearest Neighbours Method £ — nn)

This method has been studied and widely used in the fieldsttdrpaecognition,
statistical classification, computer vision and machirsrang. As the name sug-
gests, this method produces a graph in which every pointisected to it¢ nearest
neighbors. The distance function used in this study is Bealn Distances of the

data points.
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Algorithm 1 Computation ok — nn Graphs

Input: X: Dataset of n dimensions, k: The parametek ef nn
Output: Undirected graph in which-nearest neighbours are connected

Euc« [n][n] > Calculate Euclidean Distances
for i < 1tondo
for j « 1tondo
Eucli][j] < Distance(X[i], X[j])
end for
end for

for i < 1ton do
for j « 1tokdo > Find £ minimum for each node iX
minindex= min{Eucfi]}
Adj[i][minindex] = 1
Euc[i][minindex] = maxint
end for
end for

The Algorithm is given below:

This is the brute force version of this algorithm and its aptatic tight bound
is O(kn?). There are many optimizations and parallel implementattbat can be
applied on this algorithm. Wheh = 1, the nearest neighbor for each data point
is connected. This particular case is called the all neaghbors problem. The
optimization for thel — nn problem can be found in the reference numbeg3j. [
Furthermore, relaxation based versions of this algoritamlee inspected in order
to approximatek — nn. The optimizations and parallel implementations are not

included in this research. For further reading for optiriaas refer to 4], [25],

[26].

Thek —nn algorithm does not make any geometrical assumptions ortiae d

The only assumption is that the data lies on a metric space.

4.1.1 Parameter Selection

The parameter of the — nn guarantees that there will Beedges for each node

in the graph. Therefore, wrong choice of the parameter doekead to significant
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geometrical mistakes in this algorithm. The best choicénefgarameter generally

depends on the data. However, smaller values generategparhs.

4.1.2 Visualization

This chapter includes visualizations of the- nn algorithm with respect to the
different choices ok in the random datasets for 20, 30 and 40 nodes. The generated
random numbers are within the open interva{@fl). These visualizations intends

to give intuitive notion about constructed graphs.

FIGURE 4.1: Graph constructed from 20 nodes and with a paranketeB.

FIGURE 4.2: Graph constructed from 20 nodes and with a paranketeb.

Even though it is a small possibility to construct separapegphs with this
method, as can be seen in the Figdire.2 two discrete graphs are constructed as a

result of this algorithm with the parameter choiceiof 3.
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FIGURE 4.3: Graph constructed from 20 nodes and with a parametef;.

4.2 € -neighbourhoods

e-graph is a graph where pairwise nodes are connected if sheendie in between is
less than a predefined parameterThe e-graph is more geometrically motivated
than thek — nn algorithm since the choice of the parameter is more geoocadiri

dependent on the data set.

Thee - graph algorithm with wrong choice of parametewith respect to the
data may yield to disconnected grapBk However, if chosen wisely, this algorithm

yields to graphs that are geometrically symmetric.
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Algorithm 2 Computation of - Graphs

Input: X: Dataset of n dimensions,: The parameter of — nn

Output: Undirected graph in which pairwise points are connectetefdistance
in between less than or equals4o

for i «+— 1ton do
for j « 1tondo

if Distance(X[i], X[j]) <€ then  © Calculate Euclidean Distances and
connect

Adjlili] =1
end if
end for
end for

The e-graph method is studied extensively in the literature. fEidher opti-

mizations and literature points, s&], [28].

4.2.1 Visualizations

FIGURE 4.5: Graph constructed from 20 nodes and with a paramete0.5.

In the Figure4.2.1, there is a dangling node which is not connected to any
other node in the graph.
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FIGURE 4.6: Graph constructed from 20 nodes and with a paraneted.c.

FIGURE 4.7: Graph constructed from 20 nodes and with a paranaeted.7.
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Chapter 5

Transition to Manifolds

The justification of the relation between graph Laplaciat Baplace-Beltrami op-
erator is given in Chapter 3. The methods of calculating taplécian of a graph
is given in Chapter 4. This chapter introduces the methodisaositions of graphs

onto manifolds. With this aim, there are 4 methods to be desdmext.

1. ISOMAP (Tenenbaum, de Silva, Langford, 2001)

N

. Locally Linear Embeddings (Roweis, Saul, 2001)

w

. Laplacian Eigenmaps (Belkin, Niyogi, 2002)

4. Riemannian Approach (Antonio Robles-Kelly, 2007)

Each of these methods are based on different key ideamaptries to im-
plement the shortest path algorithm for calculating theatises and it does not
depend on the Laplacian matrix to transit the nodes of thehgitaaplacian Eigen-
mapsmethod is making use of the heat equation method and the thefthmcally
Linear Embeddingnethod also comprises a relation with the Laplaci@n In the
Riemannian Approacimethod, the distances between nodes are calculated with the

predefined constant curvature and points are mapped asgaalthese distances

[4].
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The first three algorithm aims to reduce the dimensionafithe data lies on
a nonlinear manifold. Yet, the relation of these algorithamsl this study is about
the graph mappings of these algorithms. These algorithestemappings from
graphs onto manifolds in the process of reducing the dinoeasity. Therefore,
these algorithms constitutes a framework for the aim ofes@nting data on mani-
folds.

5.1 Software Development and Technologies Used

The following part of this thesis contains information abthe methods of trans-
mission and the visualizations of the aforementioned nutha 3-dimensional

space.

In this study, these methods are coded in the programmiggé&ye oPython
version 2.7 Pythonlanguage is chosen because of the fagsimensional matrix
manipulation libraryNumPyand the scientific library of PythoBciPy The versions
of NumPyandSciPyare respectively 1.6.1 and 0.9.0.

The integrability of the open source mathematical softv@A&Eis also one
of the reasons of choosing the Python language. Graph zatiahs of this study
is from the graph library of th&AGE The version ofSAGEused in this thesis is
version 4.8. The-dimensional manifold visualizations are from the surfaxter-
polation library of SAGE All the manifold visualizations in this study have the aim

of providing a geometrical idea of these methods.
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5.2 Graph Embedding Methods

5.2.1 ISOMAP

Isomap algorithm, as mentioned in the introduction of ttagpter, uses shortest
path algorithm to compute the distances between nodes. &ieam of this al-
gorithm to reduce the dimensionality of the data on nondimaanifold. The algo-
rithm tries to find a low dimensional representation covgtire geometrical aspects
of the data. Isomap tries to combine the major algorithmatiees of Principal
Component Analysis (PCA) and Multi-Dimensional ScalingdB) with the flexi-
bility to learn a broad class of nonlinear manifolds. PCA $rzdlow-dimensional
embedding of the data with respect to the variance of thesttarhile MDS tries
to find a appropriate embedding with respect to the intetpmiclidean distances.
PCA and MDS, are simple to implement, efficiently computahiel guaranteed to
discover the true structure of data lying on or near a linelspace of the high-

dimensional input spaceg].

As explained in the introduction of this chapter, the altion creates a graph
from the data set and maps it onto manifolds. The interpastadces are calcu-
lated as euclidean distances and the shortest paths nehwdes constitutes the

embedding.

The first part of the algorithm is the construction of graphsme of the two
methods explained in Chaptdr After generating the graph, the graph structure
for the embedding is constructed. The initialization is ety definingd, (i, j) =
d,(j,7) and if node; and nodej are linkedd, (i, j) = oo.

The second phase is to define the shortest paths. For eaehofdiun the
interval of 0, ..., N, whereN the number of nodes, replace all entrig$i, j) by
min(dy (i, j), dy(i, k)+d,(k, 5)). The matrix of final values will contain the shortest
paths in the graph. Those values are regarded as the geodésio points on the

manifold.

The final phase the algorithm is to compute the embeddingsran#old. Let
A, be thep™ eigenvalue of the matrix(d,) wherer (D) = —HSH/2 whereS is the
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square of the matri¥, and [ is the centering matrix defined &5, = d,; — 1/N.
Let v be thei” component of the" eigenvector. The' component of thel

dimensional data vectgy; is computed ag/\,v),.

Algorithm 3 ISOMAP
Input: X: Dataset of n dimensions.

1. Compute the graph using one of the methods in Chdpter
2. Compute the shortest path distances between all the modesph.

3. Returned data poings on manifold computed ag/A,v;,.

The Isomap Method may not be stable according to the georoéthe un-
derlying data since the curvature and the metric of the ro&hié not regarded in
this method. However, this method is very efficient. For tieason, this algorithm
is mentioned in this thesis as one of the methods that prexadasometric trans-
mission of graphs onto manifolds. Yet, the distances betweeles are calculated
as shortest path in the graph and these distances are régedgodesic. How-
ever, the shortest path distance concept is not equivalgaoalesic definition on a
smooth manifolds. Therefore, the link between geodesicshndest path is weak

in this method of transmission.

5.2.2 Laplacian Eigenmaps Method

Laplacian Eigenmaps method considers the constructiorometric representa-
tion of data on a low dimensional manifold. The geometria&lition behind this
method is inspired by the convention of heat in the natures fitethod constructs
a natural link between the Graph Laplacian and the Lapladedd@ Operator by

the heat equation.

In this method, locality of the nodes with respect to therlelean distances
are preserved. Locality property means that the embeddirgskthe local points
near on the manifold. The neighbourhood information alsyphk key role in the
construction of the graph from datasets. The graph is cactstl by one of the two

methods described in Chapi&rwhich arek — nn or e-neighbourhood. In either
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case the locality is tried to be preserved and the near paiatsied to be connected,

which ensures the neighbourhood information also to beepvesd.

Algorithm 4 explains the method explicitly. The heat kernel weight cele

Algorithm 4 Laplacian Eigenmap<].

1. Constructing the adjacency graph using

e k— NN or
e ¢ — Neighbourhood.

2. After constructing the adjacency graph. The graphs wegiould be chosen.
Two ways defined in the Laplacian Eigenmaps method. These are

e Simple minded weight selection:

1 ifnodeiand jare connected
Wij = .
’ 0 otherwise

e The heat kernel weight selection, which is:

lei—egl? . ,

we = € w ~ ifnodeiand jare connected

1) T .
0 otherwise

3. Construct the Graph Laplacian and compute the eigersvahe eigenvectors
for the problem of:

L-f=\-D-f (5.1)

Let fo, f1,..., fxr_1 be the solutions of the problet1l The solutions are
ordered according to their eigenvalues:

L-fo=X-D-fo

L'flz)\l'D‘fl
L-fioi=Xe—1-D- fra
O=X <A <A< < Ny

The embedding is constructed by omitting tfaesince it is the trivial solution
of the problenb.1 [2]

tion naturally provides us a smooth approximation of edgetsveen the sampled
discrete points of the manifolds. Heat kernel, as explainethe Chaptei3, is
the smooth convention of heat between two discrete points ¢pgodesic. Conse-

guently, the intuition of defining geodesic provides theragpnation.
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This method also related with the spectral clustering bl Since, the
Laplacian and its eigenvalues can be used to describe gecahgiroperties of
graphs, they also bares information about connectednaekslasters of graphs.

The justification of this relation is explained ig][

The method of Laplacian Eigenmaps is also a reduction of &x¢ method
Locally Linear embedding (LLE). The problem that the LLEeatps to minimize
is an equivalent of finding the eigenfunctions of the Grapplaeian in return. The

detailed justification is also given i2]

5.2.3 Locally Linear Embedding (LLE)

LLE method is one of the dimensionality reduction methodthwai different ap-
proach. LLE, instead of estimating pairwise distancesbajly reconstructs the
embedding using an error function on linear weights. Thisrdunction is used to
keep local points near in the embeddings. The linear weigtgsomputed as the

minimal value of the following error function:

e(W) = Z | X — Z Wi X[ (5.2)

The weights of the graph from the sample points are conguby min-
imizing these least square problem #.2). In this computation, there are two
constraints: only the connected points are accounted &oleidst square problem
and sum of all edge weights of each node is always 1. By theseonstraints,

the constructed graph presents invariant information eth@underlying geometry

[1].

The method is provided in Algorith®and Figureb.1depicts the LLE method.

What makes this method different than other methods in thidyss that LLE
tries to assign each node a weight that fits best among ithineigs with respect to

the cost function. The second important point of this metisdtat the embedding
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Algorithm 5 Locally Linear Embeddingd]

1. For each node in the dataset, the edges are defined by/eith&fN or € —
neighbourhood.

2. Each edge given a weight in the interval(@f1] by minimizing the function
>0 |Xi = 37, Wi; X;|? such that the sum of all weights of each node is 1.

3. Embedding is computed by takihgowest eigenvectors of the matrix:

E=I-W)(I-W)

FIGURE 5.1: Steps of Locally Linear Embedding)] [

(o]

o oq (1) select neighbors
® o
o] e ., .
o . @
o X
e @ ®
o
o e @ e
a o
—~
' @
Reconstruct with
linear weights

Map to embedded coordinates

is invariant under linear operations such as rotating aatirec The weights are
calculated under the assumption that the sum of linear weighlL for each node.
This assumption creates an equivalence between lineartifiex versions of the

data set. Therefore, any kind of linear operations do natgbahe embedding.

5.2.4 A Riemannian Approach for Graph Embedding

In this method the same relationship between Laplacian aplace - Beltrami
operator is used. However, the edge weights are chosentamsécurvatures of a

manifold with constant curvature. This method uses the gntags of Jacobi fields
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to compute an edge-weight matrix in which the elements aneected by curved

geodesics on the manifold between nodgs [

In general, manifolds can have rather complex structuras the constant
curved ones. However, the approach of this method is the gemsnetrically in-
tuitive one. Finding a manifold which encapsulates the dgyig geometry of
information is the main aim of this method. The embedded folkhassumed to
be of constant curvature. The curvature is represented layaaneter, such that
K € R. By altering this parameter, one can try to approach the gégrof under-
lying manifold of information. This method is proposed # for the aim of graph

matching.

The eigenvalue decomposition of Laplace - Beltrami openatovides many
useful information about the underlying geometry such assectional curvature,
volume or Euler characteristics of the geomettjy However, this method tries to
find a corresponding manifold given a constant curvaturelaatlaplacian with the

edge weights chosen to be that of the curvature.

The method first computes the edge weights between two ngdéeekiol-

lowing formulation.

.

fol(a(u, v)? + k(sin(y/ka(u,v)t)?))dt k>0
Wij = fol a(u,v)?dt k=0 (5.3)

\fol(a(U, v)? — k(sinh(y/—ra(u,v)t)?))dt k<0

The formulation §.3) is the representation of the geodesics on the manifold
with the constant curvature The functiona(u, v) is the Euclidean distance of the
two nodesu andv. Whenk = 0, that means the space is flat. On that ground,
the edge weights are equal to the weights of an Euclidearespgée # 0 then
the corrections which reflects the diversion from euclidgaace is included in the
formulation. This corrections are calculated as the JacoBield of a geodesic

from a manifold of constant curvaturd]|

The algorithm is summarized below:
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Algorithm 6 A Riemannian Approach for Graph Embeddirdg [

1. For each node in the dataset, the edges are defined by/eith&fN or € —
neighbourhood.

2. Each edge given a weight by the function:
fol(a(u, v)? + k(sin(y/ka(u,v)t)?))dt k>0

Wiy = Jy alu,v)2dt k=0 (5.4)
fol(a(U,v)2 — k(sinh(v/—ka(u,v)t)?))dt k<0

3. The embedding is calculated as the eigenvalues of thenGraplacian as
explained in the third step of the Algorithf

After the calculation of edge weights the procedure is vemyilar to the
Laplacian Eigenmaps method. The embedding is calculatéideasigenvalues of
the Graph Laplacian. However, this method constitutes @&meometrical intuition

since the sectional curvature between the nodes of the ggdaken into account.

The graph matching applications and discussions of thisaaetan be found
in [4]. However this study is only interested in the procedurgarisforming nodes
of the graphs into the points of the manifold. In the Apperdithe visualizations

of these methods iBd is provided.
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Chapter 6

Conclusion

This thesis aims to provide a framework for embedding grapite manifolds.
As stated in the introduction, the author claims that thisyptation of manifold
methods will be useful when the regarded non-Euclideanrimédion model and

computable non-Euclidean properties of information arfendd.

The point of origin of this thesis is that the information nebdhould be
smooth and nonlinear. To define a new information model, tbpgaties and analo-

gies between discrete and continuous worlds is inspectethid thesis.

In this thesis, the link between one of the main data strestaf computation
and smooth manifolds is investigated. Several methodsoareséd on for the pur-
pose of finding the link and the methods in Chajtare implemented to develop a

software for this aim.

Graphs, the very common data structure of computation, ajgped onto
manifolds in this thesis. Yet, it is important to state tr@tteate a mapping of a
graph, one should have the assumption that the data points wihil be consti-
tuting the graph are sampled from a manifold. The link andajygroximation to

continuous states then becomes meaningful in this study.

The link between Discrete Laplacian and Continuous Lapldeltrami op-

erator is studied in Chapt&r This link is the main connection between two states.
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Methods using this link are presented in Chaefhough, the methods in Chap-
ter 5 are borrowed from the areas of pattern recognition or m&hi&arning, the
perception of these methods in the process of modelingrirdgton is novel. This

study leads to further directions and they are discussdtkinéxt section.

One hidden outcomes of this thesis is to gain knowledge att@mutheory
of differential geometry. That is also one of the reasons$ &my application is
not included in this study. Grasping the theory to find newothé&cal basis for
information is the key in this study. This key is important fbe aims stated in the

future directions.

6.1 Further Directions

One of the future directions emerged from this study is tetigya non - Euclidean
information retrieval framework. The current Vector Spadedels (VSM) can be
expanded by the assumption that the vector space they asd@dangent space of a
point on a manifold. This assumption leads to create geodhsiances between
data points on manifold and with the geodesic distancegylteamsformations on

data points, there may be present optimizations on queries.

The second direction, which also makes this thesis meauingfto define
the geometry of information with the rather complex stroesuthan manifolds of
constant curvature. The timeliness, validity and such @irtogs of information can-
not be modeled through static geometries. Geometry ofimétion should evolve
with time to model those properties. The current computaiionodels which are
all based on the Turing’s model do not enclose the role of tmtlae information.
Though the time and space based evolving geometries isnwiitiei enclosure of

differential geometry, there is no computational modelhwuch properties.

The third and final direction is to find different features mfiarmation which
one cannot find when the information is in the discrete stagain to find such
features, the theory should be investigated to find simitdslto that of Laplacian

and Laplace - Beltrami.
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Appendix A

Visualizations of the Graph

Embedding Methods

In this part of the thesis, the visualizations of the methiod3haptel5 are included.
This visualizations are only surface interpolations fa tlata points generated by
these methods and by no means they are representing theemeaktty of mani-
folds. They are included in this thesis to provide an intuitabout the methods

explained in Chaptes.

Datasets generated in this part is random data sets in [Eadlispace. They
are tried to be embedded into manifolds using the methodshep@r5. Sage
version 4.8 uses GMP based random number generators fourtbgdns used to

create datasets.
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A.1 Visualizations of Laplacian Eigenmaps

FIGURE A.1: Graph embedding using Laplacian Eigenmaps with 20 siode

FIGURE A.2: Graph embedding using Laplacian Eigenmaps with 30 siode




A.2
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Visualizations of Locally Linear Embedding

FIGURE A.4: Graph embedding using LLE with 20 nodes

20 00

FIGURE A.5: Graph embedding using LLE with 30 nodes

20 00

FIGURE A.6: Graph embedding using LLE with 40 nodes
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A.3 Visualizations of Riemannian Approach

FIGURE A.7: Graph embedding using the Riemannian Approach withdziea

40 0.0

FIGURE A.9: Graph embedding using the Riemannian Approach withctka

40 0.0




57

Bibliography

[1] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimendignaduction by
locally linear embeddingScience290(5500):2323-2326, December 2000.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmapsr fdi-
mensionality reduction and data representation. Neural Compu-
tation, 15(6):1373-1396, June 2003. ISSN 0899-7667. URL
http://dx. doi.org/10. 1162/ 089976603321780317.

[3] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimendignaduction by

locally linear embeddingScience290(5500):2323-2326, 2000.

[4] Antonio Robles-Kelly and Edwin R. Hancock. A riemanniapproach to

graph embeddingPattern Recognitiop40(3):1042—-1056, 2007.

[5] Claude E. Shannon. A mathematical theory of commuracatMobile Com-

puting and Communications Reviegw(1):3-55, 2001.

[6] David Vallet, Miriam Fernandez, and Pablo CastellseBemantic web: Re-
search and applications. In Jérdme Euzenat Asuncitmezérérez, editor,
The Semantic Web: Research and Applicati@mspter An Ontology-Based
Information Retrieval Model, pages 455-470. Springer iBerHeidelberg,
2005. URLht t p: // dx. doi . or g/ 10. 1007/ 11431053_31.

[7] Sunny K. M. Wong, Wojciech P Ziarko, Vijay V. Raghavan,daRatrick CN
Wong. On modeling of information retrieval concepts in vecpacesACM
Trans. Database Sysfl2(2):299-321, June 1987. ISSN 0362-5915.

[8] Gerard M. Salton, K. C. Andrew, and Chung Shu Yang. A vecto
space model for automatic indexing.Commun. ACM 18(11):613-620,


http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1007/11431053_31

58

November 1975. ISSN 0001-0782. doi: 10.1145/361219.3612PRL
http://dx.doi.org/10. 1145/ 361219. 361220.

[9] Ahmet Koltuksuz and Selma Tekir. Intelligence analysisdeling. Hybrid
Information Technology, International Conference @rl46-151, 2006. doi:
http://doi.ieeecomputersociety.org/10.1109/ICHID2A57.

[10] Albert Einstein. The foundation of the general theofyaativity. Annalen
der Physik49(769-822):31, 1916.

[11] Ruslan Sharipov. Quick introduction to tensor anay#rXiv Mathematics
e-prints math:0403252, March 2004.

[12] Sean CarrollSpacetime and Geometry: An Introduction to General Retgtiv
Benjamin Cummings, 2003. ISBN 0805387323.

[13] Charles W. Misner, Kip S. Thorne, and John. A. Wheel@ravitation W. H.
Freeman, 1973.

[14] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces

Prentice-Hall, Englewood Cliffs, NJ, 1976.

[15] Jean Gallier. Advanced Geometric Methods in Computer Science Lecture

Notes Springer-Verlag, 2011.

[16] Frank Morgan.Riemannian Geometry: A Beginners Guide, Second Edition

A K Peters/CRC Press, 2009.

[17] Selma Tekir. Semantik Bilginin Analizi ve ModellenmesPhD thesis, Ege
University, 2010.

[18] Gary Chartrand and Linda M. Lesniak.Graphs and digraphs (5. ed.).
Wadsworth and Brooks - Cole Mathematics Series. Wadswae5. ISBN
978-0-534-06324-5.

[19] Mikhail Belkin and Partha Niyogi. Towards a theoretidaundation for
Laplacian-based manifold methods]l. Comput. Syst. S¢i74:1289-1308,
December 2008. ISSN 0022-0000. doi: 10.1016/}.jcss.Z@P06. URL
http://dl.acmorg/citation.cfni d=1460945. 1461325.


http://dx.doi.org/10.1145/361219.361220
http://dl.acm.org/citation.cfm?id=1460945.1461325

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

59

Bai Xiao and Edwin Hancock. Geometric characterisatibgraphs. In Fabio
Roli and Sergio Vitulano, editordmage Analysis and Processing — ICIAP
2005 volume 3617 ofLecture Notes in Computer Sciengages 471-478.
Springer Berlin, Heidelberg, 2005. ISBN 978-3-540-28%69-

Amit Singer. From graph to manifold Laplacian: The cergence rateAppl.
Comput. Harmon. Anak1:128-134, 2006.

Matthias Hein, Jean-Yves Audibert, and Ulrike von Lurdp
Graph Laplacians and their convergence on random neighbdrh
graphs. J. Mach. Learn. Res. 8:1325-1370, June 2007. URL
http://arxiv.org/abs/ mat h/ 0608522.

Jon Louis Bentley. Multidimensional divide-and-cargg. Commun. ACM
23(4):214-229, April 1980. ISSN 0001-0782. doi: 10.114841.358850.
URL http://doi.acm org/ 10. 1145/ 358841. 358850.

Michael Connor and Piyush Kumar. Fast constructiok-olearest neighbor
graphs for point cloudsIEEE Trans. Vis. Comput. Graphl6(4):599-608,
2010.

Michael Connor and Piyush Kumar. Practical neareggmsor search in the
plane. INSEA pages 501-512, 2010.

Antal Bosch and Ko Sloot. Superlinear parallelizatan:-nearest neighbor

retrieval.

Bernard Chazelle. An improved algorithm for the fixedtus neighbor prob-
lem. Inf. Process. Let}f.16(4):193-198, 1983.

Matthew Dickerson and Robert L. (Scot) Drysdale lll. xé&d-radius near
neighbors search algorithms for points and segmelmtis.Process. Lett.35

(5):269—273, 1990.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A
global geometric framework for nonlinear dimensional-
ity reduction. Science  290:2319-2323, 2000. URL

http://web. mt.edu/ cocosci/ Papers/sci_reprint. pdf.


http://arxiv.org/abs/math/0608522
http://doi.acm.org/10.1145/358841.358850
http://web.mit.edu/cocosci/Papers/sci_reprint.pdf

	Özet
	Abstract
	Acknowledgements
	Text of Oath
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation and Aims
	1.2 Outline

	2 Mathematical Background
	2.1 Vectors, Basis Vectors, Tensors and Transformation Law
	2.1.1 Vectors, Vector Spaces and Vector Fields
	2.1.2 Basis Vectors and Vector Expansion on Basis
	2.1.3 Basis Transformations
	2.1.4 Vectors - Covectors or Contravariant - Covariant Vectors
	2.1.5 Tensors and Their Properties
	2.1.5.1 Tensor Addition and Multiplication by a Scalar
	2.1.5.2 Tensor Product
	2.1.5.3 Contraction
	2.1.5.4 Raising and Lowering Indices


	2.2 Manifolds
	2.2.1 Maps and Continuity
	2.2.2 Coordinate charts and manifold definition
	2.2.3 Directional Derivatives and Tangent Spaces
	2.2.4 Riemannian Manifolds and The Metric Tensor
	2.2.5 Length of Curves on a manifold and Geodesics
	2.2.6 Affine Connection, Covariant Derivative and Geodesics
	2.2.7 Gradient and Exponential Map
	2.2.8 Laplace-Beltrami Operator
	2.2.9 Curvature and Sectional Curvature

	2.3 Graphs and Their properties
	2.3.1 Graphs
	2.3.2 Matrix Structures of Graphs
	2.3.3 Graph Laplacian


	3 Convergence of Graph Laplacian to Laplace-Beltrami Operator
	3.1 Heat Equation
	3.2 Convergence Theorems
	3.2.1 Convergence for Points from a Uniform Distribution 
	3.2.2 Convergence for Points from an Arbitrary Probability Distribution 


	4 Constructing Graphs from Point Clouds
	4.1 k-Nearest Neighbours Method (k-nn)
	4.1.1 Parameter Selection
	4.1.2 Visualization

	4.2  - neighbourhoods
	4.2.1 Visualizations


	5 Transition to Manifolds
	5.1 Software Development and Technologies Used
	5.2 Graph Embedding Methods
	5.2.1 ISOMAP
	5.2.2 Laplacian Eigenmaps Method
	5.2.3 Locally Linear Embedding (LLE)
	5.2.4 A Riemannian Approach for Graph Embedding


	6 Conclusion
	6.1 Further Directions 

	A Visualizations of the Graph Embedding Methods
	A.1 Visualizations of Laplacian Eigenmaps
	A.2 Visualizations of Locally Linear Embedding
	A.3 Visualizations of Riemannian Approach

	Bibliography

