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ABSTRACT 
AUTOMATIC ELECTROCARDIOGRAM (ECG) BEAT CLASSIFICATION 

SYSTEM USING HYBRID TECHNIQUE 
Sani SAMINU 

MSc in Electrical and Electronics Engineering 
 

Supervisor: Asst. Prof. Dr. Nalan ÖZKURT 
June 2014 

Heart is one of the critical organs in the human body. Electrocardiography (ECG) 
signal is a bioelectrical signal which record the electrical activity of the heart, it is a 
technique used primarily as a diagnostic tool for various cardiac diseases by 
providing necessary information on the electrophysiology and changes that may 
occur in the heart. To reduce mortality rate associated with cardiac diseases, early 
detection of these diseases is of paramount important. In this thesis, automated ECG 
beat detection system using a hybrid technique has been proposed for classifying 
four ECG beats as normal, right bundle branch block (Rbbb), paced beat and left 
bundle branch block (Lbbb) using the signals from Massachusetts Institute of 
Technology Beth Israel Hospital (MIT-BIH) arrhythmia database and processed using 
signal processing toolbox, wavelet toolbox and neural network toolbox found in Matlab 
2013 environment. 

In the preprocessing and QRS detection stage, a well known and acceptable Pan-
Tompkins algorithm has been used to remove noise and detect R-peaks. Equivalent R-T 
interval samples between R-R intervals have been extracted as a time domain features, 
these features have been decomposed using discrete wavelet transform (DWT) and 
stationary wavelet transform (SWT) as time-frequency features, statistical parameters 
have been  calculated as mean, median, standard deviation, maximum, minimum, energy 
and entropy using time-frequency features and classification has been performed using 
neural network. The hybrid method gives a promising result as equivalent R-T interval 
features gives average accuracy of 98.22% and 94.18%, the DWT with statistical 
features gives average accuracy of 99.84% and 97.59% for reduced and large number of 
samples respectively. However, an improvement was recorded when employing SWT 
for wavelet decomposition using large number of samples with average accuracy of 
98.33%. Also comparative performance has been carried out between different wavelet 
families in which db4, coif5 and sym8 give higher performance. Wavelet time and 
frequency entropy using SWT have been calculated as a new feature; based on the 
classification results wavelet time entropy gives average accuracy of 98.21% against 
frequency entropy of 97.77%. Based on the comparative analysis among all the 
proposed methods combined SWT with statistical features gives higher and 
satisfactory results. 

Keywords: ECG, DWT, SWT, Pan-Tompkins, ECG beat classification 
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ÖZET 
KARMA BİR TEKNİK KULLANARAK OTOMATİK 

ELEKTROKARDİOGRAM VURU SINIFLANDIRMA SİSTEMİ 

Sani SAMINU 
Elektrik ve Elektronik MühendisliğiYüksek Lisans 

 
Danışman: Yard.Doç. Dr. Nalan ÖZKURT 

Haziran 2014 
 

Kalp insan vücudundaki kritik organlardan biridir. Elektrokardiografi (EKG) işareti 
kalbin elektriksel aktivitesini kaydeden biyoelektrik bir işarettir ve bu teknik kalbin 
elektrofizyolojisi ve meydana çıkabilecek değişiklikler hakkında gerekli bilgileri 
toplayarak birçok kalp hastalığı için birincil tanı aracı olarak kullanılmaktadır. Kalp 
hastalıklarından kaynaklanan ölüm oranını azaltmak için bu hastalıkların erken tanısı 
büyük önem taşımaktadır. Bu tezde, Massachusetts Teknoloji Enstitüsü Beth Israel 
Hastanesi (MIT-BIH) ritm bozukluğu veri tabanından alınan işaretler kullanılarak 
EKG vurularını normal, sağ dal bloğu (Rbbb), kalp pili vurusu, sol dal bloğu (Lbbb) 
olmak üzere dört sınıfa ayırmak için Matlab 2013 ortamında bulunan işaret işleme, 
dalgacık dönüşümü ve yapay sinir ağları araç kutularını kullanan karma bir sistem 
önerilmektedir. 

Önişleme ve QRS kompleksinin sezilmesi aşamasında, gürültüyü azaltmak ve R-
tepelerini tespit etmek amacıyla Pan-Tompkins algoritması kullanılmıştır. Zaman 
ortamı öznitelikleri olarak R-R aralıkları arasındaki R-T eşdeğer aralığı örnekleri 
alınmış ve bu örneklere ayrık dalgacık dönüşümü (ADD) ve durağan dalgacık 
dönüşümü (DDD) uygulanarak zaman-frekans öznitelikleri elde edilmiş, bu 
büyüklüklerin ortalama, medyan, standart sapma, en büyük, en küçük, enerji ve 
entropi gibi istatistiksel parametreleri hesaplanarak yapay sinir ağları ile 
sınıflandırılmıştır. Sırasıyla azaltılmış ve geniş veri seti için R-T eşdeğer aralığı 
öznitelikleriiçin %98.22 ve %94.18 ortalama doğruluk elde edilirken, ADD 
öznitelikleri için %99.84 ve%97.59 ortalama doğruluk elde edilmiştir. Geniş veri 
setinde DDD için %98.33 ortalama doğruluk oranı ile bir iyileştirme sağlanmıştır. 
Ayrıca, farklı dalgacık aileleri arasında da karşılaştırma yapılmış ve db4, coif5 ve 
sym8 dalgacıkları için daha yüksek başarım elde edilmiştir. Yeni bir öznitelik olarak 
DDD zaman ve frekans entropisi önerilmiş, %98.21 ile zaman entropisi %97.77 
doğruluk oranı olan frekans entropisinden daha iyi bir sonuç vermiştir. Tüm 
öznitelikler karşılaştırıldığında, DDD istatistiksel parametreleri daha iyi sonuçlar 
vermiştir.   

Anahtar Kelimeler: EKG, ADD, DDD, Pan-Tompkins, EKG vuru sınıflandırma 
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CHAPTER ONE 

INTRODUCTION 

This chapter discusses the general background information about the 

principles, benefits and challenges associated with electrocardiogram (ECG) 

acquisition, processing and classification. Also this part discusses the general health 

issues in ECG analysis especially in terms of wireless acquisition, ECG features 

extraction techniques and automatic beats detection system which encourages the 

present research. Then a brief review and problem definition from the previous 

studies, the research significance, its aim and objectives, scopes of the present works 

and thesis outlines are presented. 

1.1 Background 

Human body consists of different organs that are interconnected together for 

proper and efficient body function.  Heart is one of the most critical organs in the 

human body because it supply blood to different part of the body organs, therefore 

there is highly need in the development of methods and systems for monitoring its 

functionality. One of the most powerful diagnostic tools in medical application that is 

commonly used for the assessment of the functionality of the heart is 

Electrocardiography. The ECG is a real-time non-invasive and conventional method 

for interpretation of the electrical activity of the heart. By attaching electrodes at 

different outer surface of the human skin, electrical cardiac signals can be recorded 

by an external device. These currents cause the contractions and relaxations of heart 

by stimulating cardiac muscle (Guyton and Hall, 2006) and travel as electrical 

signals through the electrodes to the ECG device, which records them as 

characteristic waves. Different waves and fiducial points of ECG reflect the activity 

of different parts of the heart which generate the respective flow of electrical 

currents. Figure 1 shows a schematic representation of a normal ECG and its various 

waves. 
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Generally, healthcare is one of the emerging areas of research in this century 

and in hospital and health care community, there are considerable commercial 

interests in the wireless and automatic classification of the ECG signals. Because 

cardiovascular diseases (CDV) remains as the dominant causes of death all over the 

world with an estimated of 17.3 million people died from CDV in 2008 which 

account to 30% of all global death and 23.6 million people will die from these 

diseases by the year 2030 based on the prediction and statistics from World Health 

Organization (WHO). Also, according to a recently published (2014) report by Heart 

failure Working Group of the Turkish Society of Cardiology (TDK), there are 15 

million heart-failure patients in Europe and 6 million in the United States (US), in 

Turkey there are 1 million patients suffering from heart failure. With another 2 

million people who are at serious risk of this disease and those figures will increase 

about two fold within 10 years (Yuksel, 2014). It is very important to detect and 

diagnose as early as possible and accurately these cardiac arrhythmias since they 

usually cause sudden cardiac death. It is tedious and time consuming to used visual 

inspection in ECG analysis even for an expert cardiologist. Therefore, the usage of 

computer software to automatically detect the ECG beats and diagnose the ECG 

classes as well as simple and low cost acquisition system is cost effective and 

significantly improves diagnostic accuracy and patient healing outcomes (Bruce, 

1996;Krummen et al., 2010). 

In order to address some of the challenges mentioned above, This thesis has 

focused on developing cost effective, intelligent and easy-to-use ECG wireless 

acquisition and automatic diagnostic system based on a hardware and software that 

  Figure 1.1: Normal ECG wave (Murugavel, 2005) 
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uses signal processing and search for effective ECG features extraction techniques to 

obtain the critical characteristics and useful clinical signatures of ECG waves which 

can represents different cardiac conditions and classifying these conditions by using 

application of pattern recognition in artificial neural networks. Unification and 

implementing of this system in the future will be able to provide patients and doctors 

with self diagnosis systems that can be used to minimize mortality rates associated 

with CDVs especially in developing and underdeveloped countries where there is 

poor doctor to patient ratio, improper health care policies, inadequate of qualified 

medical experts and lack of health care equipments. 

Figure 1.2 below shows a block diagram of a general process of ECG signal 

processing and analysis. 

 

 

 

 

 

 

 

 

ECG signal processing and analysis comprises a sequence of steps among which the 

most essential include 

 Amplification of signal and its Analog to digital (A/D) conversion 

 Noise elimination 

 Feature extraction and selection 

 Arrhythmia classification. 

  
Figure1.2: Main phases of ECG signal processing and analysis (Adam and Witold, 2012) 
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The quality of the overall process of acquisition, classification and 

interpretation of ECG signals depends on the quality and effectiveness of the 

methods used at these steps. Both signal amplification and A/D conversion are 

realized in hardware while all filtering and noise elimination are realized through the 

use of advanced technologies of information processing. 

Different unwanted signals called artifacts heavily affect the recording process. 

In addition, the ECG signals collected from different people are heterogeneous, 

generally reflected by the variations in the different clinical signatures of the beats. 

Hence, computationally intensive preprocessing is required for beat detection and 

feature extraction. The most important features include the information lying in the 

P, Q, R, S, and T waves of the ECG signal (Wolter, 2011). ECG beats should be 

classified based on these features in order to detect different types of CVD. Different 

kinds of noises interfere with ECG signals are 

 Baseline wandering, 

 Electromyogram (EMG) noise, 

 Motion artifact, 

 Power-line interference (PLI), and 

 Electrode pop or contact noise etc. 

After ECG acquisition by suitable electrode, instrumentation amplifiers and 

filters, the next step is preprocessing which generally takes care of eliminating or 

minimizing the unwanted signal; a process called denoising. Several works have 

been reported in the area of ECG denoising. Prior to 1980s noise filtering was based 

on digital filters (Hirano et al., 1974), to reduce PLI (Hamilton, 1996) makes a 

comparative analysis between adaptive and non-adaptive notch filters. (Tompkins 

and Ahlstrom, 1985) implemented an adaptive filtering which was found to be more 

effective than non-adaptive counterpart. Long computation time as a result of large 

number of multiplication is a common problem in linear phase filtering. (Mneimneh 

et al., 2006) proposed a method for baseline removal using adaptive Kalman 

technique. Other ECG denoising techniques includes using Principal component 

analysis (PCA) and Independent component analysis (ICA) (Chawla, 2011), Neural 
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network method (Farahabadi et al., 2009) and multi resolution wavelet based analysis 

(Pal and Mitra, 2010). 

The studies in computerized interpretation of ECG was started with the 

introduction of digital computer by Caseres and others (Milliken et al., 1969) was 

able to acquire ECG data from a patient using portable machine. Microprocessor 

standalone units for automated interpretation were in used in 1970s (Murray, 1982). 

Gradient –based algorithm and time domain morphology was presented (Mazomenos 

et al., 2012). Also, (Chatterjee et al., 2011) described statistical method of 

comparison between relative magnitudes of ECG samples and their time domain 

slope. Another classifier based on ECG morphological features was reported in 

(Chazal et al., 2004) and (Chazal and Reilly, 2006). Wavelet transform finds 

application in ECG beats detection and feature extraction as reported in (Li et al., 

1995), (Saxena et al., 2003) and (Martinez et al., 2004). Also, (Mahesh, 2010) used 

wavelet and Pan-Tompkins to extract time-frequency features for ECG beat detection 

system. In (Marlar and Aung, 2014), they presented classification of normal and 

abnormal signal using R-R interval features of ECG waveform. Wavelet entropy 

analysis of high resolution ECG signal using continuous wavelet transform (CWT) 

and discrete wavelet transform was presented (Natwong et al., 2006). 

So far, several techniques such as support vector machines (Martis et al., 

2012), neural networks (Inan et al., 2006), self organizing map (Lagorholm et al., 

2000), hybrid fuzzy neural network (Osowski and Linh, 2001) and probabilistic 

neural network (Martis et al., 2013) have been introduced for the ECG beat 

classification. The area of automated arrhythmia detection system is still an active 

area of research in order to provide high classification accuracy for inter and intra 

patient variation cases due to the fact that these machine learning techniques map 

new data instances based on the information extracted from the annotated training 

data in the learning phase and provide a global classifier that may not be always 

accurate for patient-specific cardiac variations.  
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1.2 Significance of the Study 

Information about the behavior of the heart can be extracted from P, QRS, and 

T peaks, time domain amplitude and ECG clinical features. Subtle changes in these 

peaks and their positions however cannot be clearly deciphered by the naked eye. 

The time domain features cannot provide high discrimination among different 

normal and abnormal beats. In order to increase the discrimination among classes, 

various transform domains need to be used .Various contributions have been made in 

literature regarding beat detection and classification of ECG signal. Most of them use 

either time or frequency domain representation of the ECG waveforms, on the basis 

of which many specific features are defined, allowing the recognition between the 

beats belonging to different classes. The most difficult problem faced by today’s 

automatic ECG analysis is the large variation in the morphologies of ECG 

waveforms. Moreover, we have to consider the time constraints as well. Thus our 

basic objective is to come up with a simple method having less computational time 

without compromising with the efficiency. With this objective in mind, various 

techniques of ECG preprocessing, R-peak detection, future extraction, feature 

enhancement and classification has been searched and experimented. In this thesis, 

R-peak detection of ECG signal is implemented using Pan-Tompkins algorithm and 

the features were extracted from time, frequency and statistical domain for a precise 

and robust feature extraction and classification. The classification has been done 

using neural network back propagation algorithm, taking the features as temporal 

features, heart beat interval features and ECG statistical features. 

1.3 Aim and Objectives 

The main aim of this thesis is to develop a simple and reliable automatic ECG 

beat detection and classification system using a hybrid algorithm by combining a 

well known Pan Tompkins algorithm with discrete wavelet and stationary wavelet 

decomposition combined with statistical parameters in order to increase the accuracy 

of detection and classification, the ECG diagnostic system can recognized four ECG 

waveforms (Normal, Paced, Rbbb and Lbbb) and classify them accordingly. The 

above aim would be achieved through the following objectives 
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1. To review the literature on ECG preprocessing, feature extraction, and classification 

techniques 

2. To extract morphological features from Pan-Tompkins algorithm as R-T interval 

after QRS detection 

3. To apply wavelet transform for extraction of the transform coefficients using DWT 

and SWT as well as to search for a suitable wavelet.  

4. To calculate statistical parameters from the DWT and SWT coefficients as a new 

feature for classification  

5. To search for other feature extraction methods by looking at other ECG 

characteristics like R-R time intervals and R-peak amplitude 

6. To use artificial neural networks for ECG waveform classification 

7. To carry out comparative performance analysis with different methods developed in 

order to find a robust and efficient feature extraction and classification technique 

8. To explore the features of eZ430-RF2500 wireless development tool by designing 

simple low cost wireless ECG acquisition system 

9. To make suggestions on the feature improvement of the system and the development 

of the system into a real time diagnostic system. 

 

1.4 Organization of the Report 

In order to provide a continuous and smooth flow of information about the 

whole work, this thesis consists of seven chapters and organized as follows: 

Chapter one is an introduction of the project. This chapter discusses the general 

research background information, challenges and problems associated with the study 

and proposed solution. Thesis significance, aim and objectives were presented. 

Chapter two presents the anatomy of human heart, its physiology, ECG leads and 

theories of arrhythmias used in the thesis. Chapter three gives a theoretical 

background information about wavelet transform including discrete wavelet 

transform and stationary wavelet transform, it also discuss a literature of wavelet 

entropy and artificial neural networks. Chapter four presents all the methods 

developed in realizing the feature sets. Also, it explains the tools used in this thesis 
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including Matlab toolboxes. Chapter five presents the results of the proposed system, 

discussion and comparative analysis. Chapter six gives information on hardware 

implementation of wireless ECG acquisition circuit, including background 

information, features of the components used, design and the result of the system. 

Lastly, chapter seven concludes the research and gives further suggestions and 

recommendations for future development and improvement.  
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CHAPTER TWO 

ANATOMY OF THE HEART AND ELECTROCARDIOGRAPHY 

2.0 Overview 

A main study of this research is to detect abnormal signals generated by the 

human heart; hence, a substantial understanding of the source of this signal is 

essential. The human heart is at the center of the cardiovascular system, which is 

responsible for oxygenating blood and delivering it to different parts of the human 

body. Electrodes placed on the body’s surface can detect electrical activity, which 

occurs in the heart. The recording of these electrical events comprises an 

electrocardiogram. Comparison of the information obtained from electrodes, placed 

in different positions on the body, enables electrical activity to be monitored and so 

the performance of different areas of cardiac tissue. This chapter commences with a 

review of the cardiovascular system and electrophysiology. This is followed by an 

examination of the conduction system of the heart, electrocardiogram, ECG leads, 

heart problems, and the brief information about the arrhythmias used in this study 

with their related literature. 

2.1 The Heart Anatomy 

The heart contains four chambers that is right atrium, left atrium, right 

ventricle, left ventricle and several atrioventricular and sinoatrial node as shown in 

Figure 2.1. The two upper chambers are called the left and right atria, while the 

lower two chambers are called the left and right ventricles. The atria are attached to 

the ventricles by fibrous, non-conductive tissue that keeps the ventricles electrically 

isolated from the atria. The right atrium and the right ventricle together form a pump 

to circulate blood to the lungs. Oxygen-poor blood is received through large veins 

called the superior and inferior vena cava and flows into the right atrium. The right 

atrium contracts and forces blood into the right ventricle, stretching the ventricle and 

maximizing its pumping (contraction) efficiency. The right ventricle then pumps the 

blood to the lungs where the blood is oxygenated. Similarly, the left atrium and the 
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left ventricle together form a pump to circulate oxygen-enriched blood received from 

the lungs (via the pulmonary veins) to the rest of the body (Acharya re al., 2012). 

 

 

 

 

 

 

 

 

 

 

2.1.1 Heart valves 

There are 4 heart valves that dictate the blood flow through the human heart. 

The valves are unidirectional to prevent back flow of blood into the atria or 

ventricles. The valves open when there is a change of pressure in the chambers. The 

valves can be distinguished as two groups, the atrioventricular (AV) and the 

semilunar  (SL) valves. Atrioventricular (AV) valves are relatively small compared 

to the semilunar valves. Their function is to ensure that blood does not flow back into 

the atrium from the ventricles during systole, the contraction of the heart. The mitral 

valve, in the left chamber, and the tricuspid valve, in the right chamber are 

considered as atrioventricular (AV) valves. The Aortic and Pulmonary valve are 

considered to be the Semilunar (SL) valves, which prevents blood flowing back from 

the arteries into the ventricles during systole. The Aortic valve is located between the 

left ventricle and the aorta, as the pulmonary valve is between the right ventricle and 

the pulmonary artery (Texas, 2014). 

 

 Figure 2.1: A full view of Human Heart, with chambers and valves (T.H, 2012) 
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2.1.2 Circulatory system 

A single cardiac cycle is the time between the start of one heartbeat and the 

beginning of the next. It, therefore, includes alternating periods of contraction and 

relaxation. For each of the heart chambers the cardiac cycle can be divided into two 

phases. During contraction, or systole, the chamber contracts and blood is pushed 

into an adjacent chamber or arterial trunk. Diastole follows systole. During diastole, 

the chamber fills with blood and prepares for the next cardiac cycle. The pressure 

within each chamber rises during systole and falls during diastole. The valves help to 

ensure that the blood flows in the correct direction. However, blood will only flow 

from the first to the second chamber, if the pressure in the first chamber is greater 

than that of the second. The correct pressure relationship is dependent on the timing 

of contractions. Blood movement would not occur if the atria and ventricle contacted 

together. 

The heart, like other organs, also requires an adequate supply of oxygen and 

nutrients. These are supplied from arterial branches that arise from the ascending 

aorta. The flow of blood that supplies the heart tissue itself is called the coronary 

circulation. The heart pumps about 380 litres of blood to its own muscle tissue every 

day (Molly, 2000). 

2.1.3 The Electrical Conduction System of the Heart 

During a single heartbeat, the entire heart contracts in a coordinated manner. 

Thus blood flows in the right direction at the proper time. Contractile cells, and the 

conducting system, are the cardiac muscle cells involved in a normal heartbeat. Gap 

junctions connect all heart muscle cells, including the cells of the conduction system, 

to each other. These gap junctions make it easier for impulses to spread between 

adjacent cells. So, immediately after a heart cell depolarizes, the cells around it 

depolarize. In this way, a wave of excitation and contraction spreads over the entire 

heart (Wolters, 2011). 
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The conduction system of the heart shown in Figure 2.2 consists of the sinoatrial 

(SA) node, bundle of His, atrioventricular (AV) node, the bundle branches, and 

Purkinje fibers. 

The SA node serves as a pacemaker for the heart, and it provides the trigger 

signal. It is a small bundle of cells located on the rear wall of the right atrium, just 

below the point where superior vena cava is attached. The SA node fires electrical 

impulses through the bioelectric mechanism. It is capable of self-excitation (firing on 

its own).  

When the SA node discharges a pulse, the electrical current spreads across the 

atria, causing them to contract. Blood in the atria is forced by the contraction through 

the valves to the ventricles. There is a band of specialized tissue between the SA 

node and the AV node, however, in which the velocity of propagation is faster than it 

is in atrial tissue. This internal conduction pathway carries the signal to the 

ventricles. 

It would not be desirable for the ventricles to contract in response to an action 

potential before the atria are empty of their contents. A delay is needed, therefore, to 

prevent such an occurrence; this is the function of the AV node. The action potential 

will reach the AV node 30 to 50 ms after the SA node discharges, but another 110 ms 

will pass before the pulse is transmitted from the AV node. The AV node operates 

like a delay line to retard the advance of the action potential along the internal 

electroconduction system toward the ventricles. Conduction into the bundle branches 

is rapid, consuming only another 60 ms to reach the furthest Purkinje fibers. The 

muscle cells of the ventricles are actually excited by the Purkinje fibers. The action 

potential travels along these fibers at a much faster rate, on the order of 2 to 4 m/s. 

The fibers are arranged in two bundles, one branch to the left and one to the right.  

The normal rhythm of the heart is disturbed if the conducting pathways are 

damaged. If the SA or internodal pathways are damaged, the AV node will take over. 

The heart will beat at a slower rate. If a conducting cell or ventricular muscle cell 

generates an action potential more rapidly than the SA or AV node, then this is called 
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an ectopic pacemaker. This will bypass the conducting system and disrupt the timing 

of ventricular contraction. This will result in a reduction of the efficiency of the 

heart, and may be diagnosed with an electrocardiogram (Molly, 2000). 

 

 

 

 

 

 

 

 

 

2.2 Electrocardiogram 

Electrocardiogram (ECG) is a diagnosis tool that reported the electrical activity 

of heart recorded by skin electrode. The morphology and heart rate reflects the 

cardiac health of human heart beat (Acharya, 2012). It is a noninvasive technique 

that means this signal is measured on the surface of human body, which is used in 

identification of the heart diseases (Germann, 2002). Any disorder of heart rate or 

rhythm, or change in the morphological pattern, is an indication of cardiac 

arrhythmia, which could be detected by analysis of the recorded ECG waveform. The 

amplitude and duration of the P-QRS-T wave contains useful information about the 

nature of disease afflicting the heart. The electrical wave is due to depolarization and 

repolarization of Na+ and k ions in the blood. The ECG signal provides the following 

information of a human heart (Moss, 1996): 

 heart position and its relative chamber size 

 impulse origin and propagation 

 heart rhythm and conduction disturbances 

Figure 2.2:  Conduction system of the heart (T.H., 2012) 
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 extent and location of myocardial ischemia 

 changes in electrolyte concentrations 

 drug effects on the heart. 

2.3 Leads in ECG 

There are 3 general types of ECG, the 3-Lead, 5-Lead and 12-Lead, each type 

differs in the number of electrodes used and the positioning of the electrodes.  

The 3-lead ECG is the most basic type of monitoring, adopting the Einthoven’s 

triangle arrangement where 3 electrodes are required. This group of electrodes is 

known as limb lead. According to the American Heart Association (AHA), the 3 

electrodes are colored: white, black and red, and is labeled as the right-arm (RA), the 

left-arm (LA) and the left-limb (LL), respectively. Each electrode has different 

electrical polarity; hence, the direction of the current flow has to be addressed for 

each lead. The RA electrode has negative polarity and it is physically placed at the 

right collarbone area of the subject. The LL electrode has positive polarity and it is 

placed at the bottom left area of the ribcage. The LA electrode is negative polarity 

when paired with LL and positive polarity when paired with RA; it is physically 

placed at the right collarbone area of the subject. RA-LA (lead 1), RA-LL (lead 2) 

and LA-LL (lead 3) denotes the 3 lead pairings, each monitors different parts of the 

heart, as shown in Figure 2.3.  

Table 2.1: types of leads used in ECG monitoring 

Standard leads Limb leads Chest leads 

Bipolar leads Unipolar leads Unipolar leads 

Lead I 

Lead II 

Lead III 

AVR 

AVF 

AVL 

V1 

V2 

V3 

V4 

V5 

V6 
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Einthoven leads: 

Lead I: records potentials between the left and right arm, 

Lead II: between the right arm and left leg, and 

Lead III: those between the left arm and left leg 

 

 

 

 

 

 

 

 

  

Another ECG monitoring type is the 5-lead ECG. This method uses the limb 

leads (RA, LA and LL) with two additional electrodes lead pairings. The additional 

electrodes are the chest lead (V1) and the right-limb (RL). The chest lead (V1) 

electrode is colored brown and has negative polarity; it is physically placed at the 4th 

interscostal space on right sternal border. Lead V1 captures the best waveform that 

can be used reliably to determine between SVT and VT. The right-limb (RL) 

electrode is colored green and has positive polarity; it is physically placed on the 

opposite side of the left-limb (LL) electrode. Lead RL is used as a complement to 

lead V1, to provide positive polarity. The advantages of the 5-lead ECG are that it 

provides a more comprehensive electrical view of the heart with additional leads; 

another advantage is that it helps to increase detection of an episode in ischemic 

monitoring.  

 

 
 

Figure 2.3: (a)The Einthoven Triangle for 3-lead ECG configuration(Klabunde, 2008) 
(b)12-lead ECG configuration(Tompkins, 2008) 
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The 12-lead ECG monitoring of the heart is the most comprehensive technique, 

it allows the electrical activity of the heart to be observed from three areas, anterior, 

interior and lateral. It uses the 3 limb leads (RA, LA, LL) and the 6 chest leads (V1-

6) to acquire the ECG signal. The limb leads are used as bipolar and unipolar leads to 

complete 6 orientation of the frontal plane. The chest leads are unipolar and are 

placed across the patient mid-chest area; this lead placement captures the horizontal 

plane electrical activity of the heart. The placement for 12-lead ECG is shown in 

Figure 2.3b. The advantage of the 12-lead ECG is that medical experts can diagnose 

more specific arrhythmias with the full observation of the heart from three areas. 

Another advantage is that changes in the ECG segments from different lead can help 

to locate the cause of the arrhythmia (Fook, 2012). 

 

2.4 ECG waves and interval 

Figure 2.4 shows useful clinical signatures of ECG, durations and intervals 
commonly used for clinical diagnosis. 

 

Figure 2.4: Typical shape of ECG signal and its essential waves and characteristic points (Adam and 
Witold 2012) 

 



17 
 

2.4.1 The P wave 

The propagation of the SA action potential through the atria results in 

contraction of the atria, producing the P wave. The magnitude of the P wave is 

normally low (50-100uV) and 100msec in duration. 

2.4.2 The PR interval 

The PR interval begins with the onset of the P wave and ends at the onset of 

the Q wave. It represents the duration of the conduction through the atria to the 

ventricles. Normal measurement for PR interval is 120ms-200ms. 

The PR segment begins with the endpoint of the P wave and ends at the onset 

of the Q wave. It represents the duration of the conduction from the atrioventricular 

node, down the bundle of its end through the bundle branches to the muscle. 

2.4.3 The QRS complex 

The QRS complex corresponds to the period of ventricular contraction or 

depolarization. The atrial repolarization signal is swamped by the much larger 

ventricular signal. It is the result of ventricular depolarization through the Bundle 

Branches and Purkinje fibre. 

The QRS complex is much larger signal than the P wave due to the volume of 

ventricular tissue involved. If either side of the heart is not functioning properly, the 

size of the QRS complex may increase.QRS can be measured from the beginning of 

the first wave in the QRS to where the last wave in the QRS returns to the baseline. 

Normal measurement for QRS is 60ms-100ms. 

2.4.4 The ST segment 

The ST segment represents the time between the ventricular depolarization and 

the repolarization. The ST segment begins at the end of the QRS complex (called J 

point) and ends at the beginning of the T wave. Normally, the ST segment measures 

0.12 second or less. The precise end of the depolarization (S) is difficult to determine 

as some of the ventricular cells are beginning to repolarise. 
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2.4.5 The T wave 

The T wave results from the repolarization of the ventricles and is of a longer 

duration than the QRS complex because the ventricular repolarization happens more 

slowly than depolarization. Normally, the T wave has a positive deflection about 

0.5mv, although it may have a negative deflection. It may, however, be of such low 

amplitude that it is difficult to read. The duration of the T wave normally measures 

0.20 sec or less. 

2.4.6 The QT interval 

The QT interval begins at the onset of the Q wave and ends at the endpoint of 

the T wave, representing the duration of the ventricular depolarization/repolarization 

cycle. 

 

Table 2.2 Amplitude and duration of waves, intervals and segments (Frank, 2014) 

 

 

 

 

 

 

 

 

The normal QT interval measures about 0.38 second, and varies in males and 

females and with age. As a general rule, the QT interval should be about 40 percent 

of the measured R-R interval (Dubowik, 1999). 

 

s/n Features Amplitude(mV) Duration(ms) 

1 P wave 0.1-0.2 60-80 

2 PR-segment - 50-120 

3 PR-interval - 102-200 

4 QRS complex 1 80-120 

5 ST-segment - 100-120 

6 T-wave 0.1-0.3 120-160 

7 ST-interval - 320 

8 RR-interval - (0.4-1.2)s 



19 
 

2.5 Heart Diseases 

In the early 1980, according to the Centers for Disease Control and Prevention, 

United States (2007), heart disease is the leading cause of death for both women and 

men almost in the world and it is also a major cause of disability. In the worldwide, 

coronary heart disease kills more than 7 million people each year. Heart disease is a 

broad term that includes several more specific heart conditions which are coronary 

heart disease, heart attack, ischemia, arrhythmias, cardiomyopathy, congenital heart 

disease, peripheral arterial disease (PAD). The most common heart condition is 

coronary heart disease, which can lead to heart attack and other serious conditions 

and the research from PubMed Central Journals (2007) shows that the Ischemia is the 

most common cause of death in the industrialized countries. So the earliest diagnosis 

and treatment using electrocardiography (ECG) has been developed to observe the 

disease signal. (Papaloukas et al. 2003) has indicated that the development of 

suitable automated analysis techniques can make this method very effective in 

supporting the physician’s diagnosis and in guiding clinical management. 

2.5.1 Heart Problems in This Thesis 

Changes from the normal morphology of the ECG can be used to diagnose 

many different types of arrhythmia or conduction problems. ECG can be split into 

different segments and intervals, which relate directly to phases of cardiac 

conduction. Limits can be set on these to diagnose abnormality. 

There are lots of heart problems which can be diagnosed from different ECG 

waveforms. This thesis aims at classifying 4 different waveforms. They are: Normal 

(N), Right Bundle Branch Block (R or RBBB) Paced Beats (P) and Left Bundle 

Branch Block (L or LBBB). They will be explained as follows (Wartak J., 1978). 

2.5.2 Normal Waveform 

This is the normal adult human waveform with features described as in 

previous section. 
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2.5.3 Right Bundle Branch Block 

Right Bundle Branch Block (RBBB) shown in Figure 2.5 has the following 

ECG characters (KCUMB, 2006): 

 The QRS duration between 0.10 and 0.11 sec (incomplete RBBB) or 0.12sec or 

more (complete RBBB) as shown in Figure 2.6 and 2.7. 

 Prolonged ventricular activation time or QR interval (0.03sec or more in V1-V2) 

 Right axis deviation (Figure 2.8). 

Incomplete RBBB often produce patterns similar to those of right ventricular 

hypertrophy. 

The ECG pattern of RBBB is frequently associated with ischemic, hypertensive, 

rheumatic and pulmonary heart disease, right ventricular hypertrophy and some drug 

intoxication; occasionally it may be found in healthy individuals. 

 

 

Figure 2.5: Right bundle branch block (Wolters, 2011) 
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Figure 2.6: Right bundle branch block with markup (Emedu, 2012) 

 

 

Figure 2.7: Sinus rhythm with intermittent Right bundle branch block (Emedu, 2012) 

  

 

 

Figure 2.8: Right bundle branch block and left anterior fasicular block (Emedu, 2012) 
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2.5.4 Paced Beats 

This is the artificial beat form from the device called pacemaker. A pacemaker 

is a treatment for dangerously slow heart beats. Without treatment, a slow heart beat 

can lead to weakness, confusion, dizziness, fainting, shortness of breath and death. 

Slow heart beats can be the result of metabolic abnormalities or occur as a result of 

blocked arteries to the heart’s conduction system. These conditions can often be 

treated and a normal heart beat will resume. Slow heart beats can also be a side effect 

of certain medications in which case discontinuation of the medicine or a reduction 

in dose may correct the problem. It can be characterized in ECG by a large peak after 

QRS complex.(intelligent recognition) 

2.5.5 Left bundle branch block 

In this condition, activation of the left ventricle is delayed, which causes the 

left ventricle to contract later than the right ventricle as shown in Figure 2.9. It has 

the following characteristics (KCUMB, 2006): 

 

 A complete LBBB has a QRS of greater than 0.12sec (Figure 2.10) 

 Normally the septum is activated from left to right, producing small Q waves in the 

lateral leads.  

 As the ventricles are activated sequentially (right, then left) rather than 

simultaneously, this produces a broad or notched (‘M’-shaped) R wave in the lateral 

leads as shown in Figure 2.11.  

 Normally the septum is activated from left to right, producing small Q waves in the 

lateral leads.  

Amongst the causes of LBBB are: 

 Aortic stenosis 

 Dilated cardiomyopath 

 Acute myocardial infarction 
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 Extensive coronary artery disease 

 Primary disease of the cardiac electrical conduction system 

 Long standing hypertension leading to aortic root dilatation and subsequent 

aortic regurgitation 

 Lyme disease 

Treatment 

 Patients with LBBB require complete cardiac evaluation, and those with LBBB 

and syncope or near-syncope may require a pacemaker. 

 Some patients with LBBB, a markedly prolonged QRS (usually > 150 ms), and 

systolic heart failure may benefit from a biventricular pacemaker, which allows for 

better synchrony of heart contractions (Stevenson et al., 2011).  

 

 

Figure 2.9: Left bundle branch block (Wolters, 2011) 
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Figure 2.10: Left bundle branch block with markup (Emedu, 2012) 

 

 

Figure 2.11: Sinus tachycardia with Left bundle branch block (Emedu, 2012) 

 

 

Figure 2.12: Atrial fibrillation with Left bundle branch block(Emedu, 2012 
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CHAPTER THREE 

WAVELET TRANSFORM AND NEURAL NETWORK 

3.0 Overview  

Wavelet Transform has been proposed as an alternative way to analyze the 

non-stationary biomedical signals, which expands the signal onto the basis functions. 

The wavelet method act as a mathematical microscope in which we can observe 

different parts of signal by just adjusting the focus. A conventional application of 

wavelet methods to processing of a medical waveform uses a wavelet transform 

based on the application of a single wavelet, rather than a basis set constructed from 

a family of mathematically related wavelets. Again, the choice of a wavelet with 

appropriate morphological characteristics relative to the physiological signal under 

consideration is crucial to the success of the application. Therefore this chapter gives 

a brief review of wavelet transforms and its application to biomedical signals. Also, 

the chapter discusses the theory of wavelet entropy and artificial neural network. 

 3.1 Mathematical Transformation 

 Mathematical transformations are applied to signals to obtain further 

information from that signal that is not readily available in the raw signal. There are 

a number of transformations that can be applied, among which the Fourier transforms 

are probably by far the most popular. When we plot time-domain signals, we obtain a 

time-amplitude representation of the signal. This representation is not always the best 

representation of the signal for most signal processing related applications. In many 

cases, the most distinguished information is hidden in the frequency content of the 

signal. The frequency spectrum of a signal is basically the frequency components 

(spectral components) of that signal. The frequency spectrum of a signal shows what 

frequencies exist in the signal.  

The Fourier transform is defined mathematically as: 

(߱)ܨ = ∫ ௝ఠ௧ି݁(ݐ)݂  (3.1)        ݐ݀
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(ݐ)ܨ = ଵ
ଶగ
∫ ݂(߱)݁௝ఠ௧ ݀߱        (3.2) 

3.1.1 Why do we need the frequency information? 

Often times, the information that cannot be readily seen in the time-domain can 

be seen in the frequency domain. Let's give an example from biological signals. 

Suppose we are looking at an ECG signal (ElectroCardioGraphy, graphical recording 

of heart's electrical activity). The typical shape of a healthy ECG signal is well 

known to cardiologists. Any significant deviation from that shape is usually 

considered to be a symptom of a pathological condition.  

This pathological condition, however, may not always be quite obvious in the 

original time-domain signal. Cardiologists usually use the time-domain ECG signals 

which are recorded on strip-charts to analyze ECG signals. Recently, the new 

computerized ECG recorders/analyzers also utilize the frequency information to 

decide whether a pathological condition exists. A pathological condition can 

sometimes be diagnosed more easily when the frequency content of the signal is 

analyzed. 

The big disadvantage of a Fourier expansion however is that it has only 

frequency resolution and no time resolution. This means that although we might be 

able to determine all the frequencies present in a signal, we do not know when they 

are present. To overcome this problem in the past decades several solutions have 

been developed which are more or less able to represent a signal in the time and 

frequency domain at the same time. 

Although FT is probably the most popular transform being used (especially in 

electrical engineering), it is not the only one. There are many other transforms that 

are used quite often by engineers and mathematicians. Hilbert transform, short-time 

Fourier transform, Wigner distributions, the Radon Transform, and of course our 

featured transformation, the wavelet transform, constitute only a small portion of a 

huge list of transforms that are available at engineer's and mathematician's disposal. 

Every transformation technique has its own area of application, with advantages and 

disadvantages, and the wavelet transform (WT) is no exception. 
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3.2 Stationarity of a Signal 

Signals whose frequency content does not change in time are called stationary 

signals. In other words, the frequency content of stationary signals does not change 

in time. In this case, one does not need to know at what times frequency components 

exist, since all frequency components exist at all times. 

For example, consider the following signal 

(ݐ)ݔ = cos(2ݐ10ߨ) + cos(2ݐ25ߨ) + cos(2ݐ50ߨ) + cos	(2ݐ100ߨ)  (3.3) 

is a stationary signal, because it has frequencies of 10, 25, 50, and 100 Hz at any 

given time instant. This signal is plotted below: 

 

Figure 3.1: Time domain plot of signal in equation 3.1 (Robi, 2006) 

And the following is its FT: 

 

Figure 3.2: Fourier transform plot of signal in equation 3.1(Robi, 2006) 
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Figure 3.3: Time domain plot of non-stationary signal (Robi, 2006) 

 

Contrary to the signal in the Figure above, Figure below plots a signal with four 

different frequency components at four different time intervals, hence a non-

stationary signal. The interval 0 to 300 ms has a 100 Hz sinusoid, the interval 300 to 

600 ms has a 50 Hz sinusoid, the interval 600 to 800 ms has a 25 Hz sinusoid, and 

finally the interval 800 to 1000 ms has a 10 Hz sinusoid. 

And the following is its FT: 

 

Figure 3.4: Fourier transform of figure 3.3 (Robi, 2006) 

 

FT gives the spectral content of the signal, but it gives no information 

regarding where in time those spectral components appear. Therefore, FT is not a 

suitable technique for non-stationary signal, with one exception: FT can be used for 

non-stationary signals, if we are only interested in what spectral components exist in 

the signal, but not interested where these occur. However, if this information is 
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needed, i.e., if we want to know, what spectral component occur at what time 

(interval), then Fourier transform is not the right transform to use (Robi, 2006).  

For practical purposes it is difficult to make the separation, since there are a lot 

of practical stationary signals, as well as non-stationary ones. Almost all biological 

signals, for example, are non-stationary. Some of the most famous ones are ECG 

(electrical activity of the heart, electrocardiograph), EEG (electrical activity of the 

brain, electroencephalograph), and EMG (electrical activity of the muscles, 

electromyogram). 

3.3 The Short Term Fourier Transforms (STFF) 

The STFT is obtained by calculating the Fourier transform of a sliding 

windowed version of the time signal s(t). The location of the sliding window adds a 

time dimension and one gets a time-varying frequency analysis. 

The mathematical representation of STFT is: 

,ݐ)ܵ  ݂) = ∫ ߬)ݓ(߬)ݏ − ∞௝ଶగ௙௧ାି݁(ݐ
ିஶ ݀߬                                                    (3.2) 

Where ݓ(߬ −  it is the sliding window applied to the signal s(t) , f is the frequency (ݐ

and t is the time. 

The length of the window is chosen so that to maintain signal stationary in 

order to calculate the Fourier transform. To reduce the effect of leakage (the effect of 

having finite duration), each sub-record is then multiplied by an appropriate window 

and then the Fourier transform is applied to each sub-record. As long as each sub-

record does not contain rapid changes the spectrogram will give an excellent idea of 

how the spectral composition of the signal has changed during the whole time record. 

However, there exist many physical signals whose spectral content is so rapidly 

changing that finding an appropriate short-time window is problematic, since there 

may not be any time interval for which the signal is stationary. To deal with these 

time changes properly it is necessary to keep the length of the time window as short 
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as possible. This, however, will reduce the frequency resolution in the time-

frequency plane. Hence, there is a trade-off between time and frequency resolutions. 

   3.4 Wavelet Theory 

Wavelet theory is the mathematics associated with building a model for a 

signal, system, or process. A wavelet is a wave which has its energy concentrated in 

time. It has an oscillating wavelike characteristic but also has the ability to allow 

simultaneous time and frequency analysis and it is a suitable tool for transient, non-

stationary or time-varying phenomena. WT has a varying window size, being broad 

at low frequencies and narrow at high frequencies, thus leading to an optimal time-

frequency resolution in all frequency ranges. 

 

Figure   3.5: Sinusoidal signal and Deubecheis wavelet (Michel et al. 1996) 

 

From the figure above, the signals with sharp changes might be better analyzed with 

an irregular wavelet than with a smooth sinusoid, as quoted in (Mahmoodabadi et al. 

2005). Also, local features can be described better with wavelets that have local 

extent. 

3.4.1 Continuous Wavelet Transform (CWT) 

The continuous wavelet transform was developed as a method to obtain 

simultaneous, high resolution time and frequency information about a signal. The 

CWT rather than the STFT uses a variable sized window region .Because the wavelet 

may be dilated or compressed; different features of the signal are extracted. While a 

narrow wavelet extracts high frequency components, a stretched wavelet picks up on 

the lower frequency components of the signal. 
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The CWT is computed by correlating the signal s(t) with families of time-

frequency atoms Ψ (t), it produce a set of coefficients C(߬,s) given by : 

,߬)ܥ (ݏ = ଵ
√ఛ
∫ Ψ(ݐ)ݏ ∗ (௧ି௦

ఛ
)ା∞

ିஶ  (3.3)      ݐ݀

Where 

 ߬ is the time location(translation parameter) 

 s is called scale factor and it is inversely proportional to the frequency (s > 0) 

 *dénotes a complexe conjugate. 

 Ψ (t) is the analysing wavelet (mother wavelet). 

The term mother implies that the functions with different region of support that are 

used in the transformation process are derived from one main function, or the mother 

wavelet. In other words, the mother wavelet is a prototype for generating the other 

window functions. 

The analyzing wavelet function Ψ(t) should satisfy some properties. The most 

important ones are continuity, integrability, square integrability, progressivity and it 

has no d.c component (Hannu, 2011). 

    3.4.2 Discrete Wavelet Transform 

 
The Discrete Wavelet Transform (DWT), which is a time-scale representation 

of the digital signal is obtained using digital filtering techniques, is found to yield a 

fast computation of wavelet transform. It is easy to implement and adopts dyadic 

scales and translations in order to reduce the amount of computation time, which 

results in better efficiency of calculation. 

The DWT which also referred to as decomposition by  wavelet filter banks is 

computed by successive low pass filter (LPF) and high pass filtering (HPF) of the 

discrete time-domain signal as the process shown graphically in figure below 
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Figure 3.6: Filter banks signal decomposition (Nor, 2010) 

 

The different cutoff frequencies are used for the analysis of the signal at 

different scales to measure the amount of detail information in the signal and the 

scale is determined by upsampling and downsampling process where D and A 

denoting for details and approximations, while c representing coefficients. The 

approximations of the signal are what define its identity while the details only 

imparts nuance. 

 

Figure 3.7: Three level Wavelet decomposition tree (Nor and Binti, 2010) 

 

Figure 3.7 show the decomposition process is iterative. It connects the 

continous-time multiresolution to the discrete-time filters. The signal is denoted by 

the sequence input signals ݔ[݊], where n is an integer passed through a series of 

high-pass filters to analyze the high frequencies, and through a series of low-pass 

filters to analyze the low frequencies. Each stage consists of two digital filters and 
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two downsamplers by 2 to produce the digitized signal. The low pass filter is denoted 

by Go while the high pass filter is denoted by Ho. At each level, the high pass filter 

produces detail information; ݀[݊],   while the low pass filter associated with scaling 

function produces coarse approximations, ܽ[݊]. The downsampled outputs of first 

high pass filters and low-pass filters provide the detail, D1 and the approximation, A. 

the first approximation, A1 is decomposed again and this process is continued. The 

filtering and decimation process is continued until the desired level is reached. The 

maximum number of levels depends on the length of the signal. Only the last level of 

approximation is save among all levels of details, which provides sufficient data. The 

DWT of the original signal is then obtained by concatenating all the coefficients, 

ܽ[݊], and ݀[݊], starting from the last level of decomposition. The signal 

decomposition can mathematically be expressed in equation 3.4 and 3.5: 

[݇]௛௜ݕ = .[݊]ݔ∑ ݃[2݇ − ݊]  (3.4) 

[݇]௟௢ݕ = .[݊]ݔ∑ ℎ[2݇ − ݊]		     (3.5) 

With this approach, the time resolution becomes arbitrarily good at high 

frequencies, while the frequency resolution becomes arbitrarily good at low 

frequencies. 

In DWT the signals can be represented by approximations and details. The 

detail at level j is defined as equation 3.6: 

௝ܦ = ∑ ௝ܽ.௞௞⊂௭  (3.6)     (ݐ)௝.௞ߖ

Where, Z is the set of positive integers. 

Then, the approximation at level J is defined as Equation 3.7: 

௜ܣ = ∑ ௜௝வ௃ܦ 	     (3.7) 

Finally, the signal f(t) can be represented by Equation 3.8: 

(ݐ)݂ ௜ܣ = = ∑ ௜௝வ௃ܦ 					(3.8) 

In DWT where a scaling function is used, which are related to low-pass and high-

pass filters, respectively. The scaling function can be represented as Equation 3.9 and 

Equation 3.10: 

(݊)ߔ = ∑ ௝ܿ
ேିଵ
௝ୀ଴ 2݊)ߔ − ݆)    (3.9) 

(ݐ)௝.௞ߔ = 2
ೕ
మߔ൫2௝ݐ − ݇൯		    (3.10) 
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Discrete Wavelet analysis corresponds to windowing in a new coordinate 

system, in which space and frequency are simultaneously localized; this property can 

be helpful in pattern extraction. Wavelets as an alternative tool to analyze non-

stationary signal have been applied to ECG delination, to detect accurately the 

different waves forming the entire cardiac cycle, especially in areas of limited 

performance current techniques like QT and ST intervals, P and T-wave recognition, 

and to classify ECG waves in different cardiopatologies, identifying ECG waveforms 

from different arrhythmias, or discriminating between normal and abnormal cardiac 

pattern. In addition, DWT is able to detect specific detailed time-frequency 

components of ECG signal, for instance, the registers which are sensitive to transient 

ischemia and eventual restoration of electrophysiological function of the myocardial 

tissue. Moreover, methods for analyzing heart rate variability using wavelet 

transform can be used to detect transient changes without losing frequency 

information. The most common wavelets providing the orthogonality properties are 

daubechies, symlets, coiflets and discrete meyer in order to provide reconstruction 

using the fast algorithms. 

3.4.3 Stationary wavelet transform 

The Stationary wavelet transform (SWT) is a wavelet transform algorithm 

designed to overcome the lack of translation-invariance of the discrete wavelet 

transform (DWT). Translation-invariance is achieved by removing the downsamplers 

and upsamplers in the DWT and upsampling the filter coefficients by a factor 

of 2(௝ିଵ) in the jth level of the algorithm (Akansu, 1991; Tazebay, 1995). The SWT 

is an inherently redundant scheme as the output of each level of SWT contains the 

same number of samples as the input – so for a decomposition of N levels there is a 

redundancy of N in the wavelet coefficients. The major advantage of SWT is the 

preservation of time information of the original signal sequence at each level. This 

algorithm is more famously known as "algorithme à trous" in French 

(word trous means holes in English) which refers to inserting zeros in the filters. It 

was introduced by (Holdschneider et al, 1989). 
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Figure 3.8: A 3 level SWT filter bank (James, 2014) 

In the above diagram, filters in each level are up-sampled versions of the 
previous (see figure below). 

 

Figure 3.9: SWT filters (James, 2014) 

 

3.5 Wavelet Entropy (WE) 

The Shannon entropy (Shannon, 1948) gives a useful criterion for analyzing 

and comparing probability distribution, it provides a measure of the information of 

any distribution. We define the total WE (Blanco et al., 1998) as 

ܵ௪௧ ≡ ܵ௪௧(݌) = −∑ ௝௝ழ଴݌ . ln	[݌௝]        (3.11) 

The WE appears as a measure of the degree of order/disorder of the signal, so it 

can provide useful information about the underlying dynamical process associated 

with the signal. In fact, a very ordered process could be thought of as a periodic 

mono-frequency signal (signal with a narrow band spectrum). A wavelet 

representation of such a signal will be greatly resolved in one unique wavelet 

resolution level, i.e. all relative wavelet energies will be almost zero except for the 

wavelet resolution level which includes the representative signal frequency. For this 
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special level the relative wavelet energy will be almost one and in consequence the 

total WE will be near zero or of a very low value. 

A signal generated by a totally random process can be taken as representing a 

very disordered behavior. This kind of a signal will have a wavelet representation 

with significant contributions from all frequency bands. Moreover, one could expect 

that all the contributions will be of the same order. Consequently, the relative 

wavelet energy will be almost equal for all resolution levels and the WE will take 

their maximum values. 

3.5.1 Wavelet average entropy 

Transient signals have some characteristics such as high frequency and instant 

break, so wavelet transform is strong tool for them in feature picking-up, and it 

satisfies the analysis need of electric power transient signals. Usually wavelet 

transform of transient signal is expressed by multi-revolution decomposition fast 

algorithm which utilizes the orthogonal wavelet bases to decompose the signal to 

components under different scales. It is equal to recursively filtering the signal with a 

high-pass and low-pass filter pair. Filtering by high pass filter produces details and 

filtering by low-pass produces approximations. The band width of these two filters is 

equal. After each circle of decomposition, the sampling frequency is reduced by half. 

Then recursively decompose the low-pass filter outputs, both components of the next 

stage are produced. 

Given discrete signal x(n) being fast transformed, at instant k and scale j it has 

high-frequency component coefficient ௝݀(݇) and low-frequency component 

coefficient ௝ܽ(݇)	. The frequency band of the information contains in signal 

components ܦ௝(݇)	, ܣ௝(݇)  obtained by reconstruction is (Daubechies, 1990; Mallat, 

1989), 

ቊ
:(݇)௝ܦ ൣ2ି(௝ାଵ)ܨ௦, 2ି௝ܨ௦൧
:(݇)௝ܣ ൣ0,2ି(௝ାଵ)ܨ௦൧

� (݆ = 1,2,… ,݉)    (3.12)                                         
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Where ௦݂ is the sampling frequency. The original signal sequence ݔ(݊) can be 

represented by the sum of all components, namely 

(݊)ݔ = (݊)ଵܦ + (݊)ଵܣ = (݊)ଵܦ + (݊)ଶܦ + (݊)ଶܣ = ∑ (݊)௝ܦ
௃
௝ୀଵ  ௃(݊)   (3.13)ܣ+

For the purpose of unification, denote ܣ௃(݊) by ܦ௃ାଵ(݊) and we get 

(݊)ݔ = ∑ (݊)௝ܦ
௃
௝ୀଵ                (3.14) 

 at each scale (frequency (݊)ݔ ௝(݊) represents the component of transient signalܦ

band), it is also the multi-resolution representation of the signal which can act as 

feature subset of classification. 

For continuous wavelet transform, series of discrete wavelet coefficients Di under 

the different scales ݆(݆ = 1,… , ݉)	are obtained, which can reflect time-frequency 

distribution to some extent.  

3.5.2 Information entropy 

The uncertainty of any event is associated with its states and probabilities. The 

aggregation of all possible states is called sample space {ݔଵ, ,ଶݔ … ,  ௡} Each piece ofݔ

information has a probability ܲ(ݔ௜) = ௜ܲ , 0 ≤ ௜ܲ ≤ 1,				 ∑ ௜ܲ = 1. The self 

information quantity of the event ݔ௜	is, 

(௜ݔ)ܫ = − log௔ (௜ݔ)ܲ = − log௔ ௜ܲ       (3.15) 

 is a random variable changing with different information, so it is not suitable (x୧)ܫ

for measuring the whole information source. Therefore, we define the mathematical 

expectation of the self-information as the mean self-information of the information 

source, which is entropy denoted by ܪ(ܺ). 

(ܺ)ܪ = [(௜ݔ)ܫ]ܧ = −]ܧ log௔ [௜݌ = −∑ ௜ܲ௜ log௔               ௜     (3.16)݌

The base a of the logarithm defines the unit of the entropy. 

When a is 2, e and 10, the unit of the entropy is bit, nat and Hartely respectively. 

Customarily, we choose a=e. The information entropy above is used to measure the 
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mean information quantity of the information source. When all events have the same 

probabilities, the uncertainty of a certain event reaches its maximum, so does the 

entropy. The entropy of any certain event is zero. Therefore, entropy is the measure 

of the uncertainty. 

3.5.3 Spectrum entropy 

Based on conception of information entropy and power spectrum, the spectrum 

entropy is defined in the frequency domain [5].Given ܺ(߱) as the DTF of signal 

x(n), the power spectrum is ܵ(߱) = ଵ
ଶగ௡

|ܺ(߱)	|²  Because of the conversion of 

energy in time and frequency domain, namely 

ݐ∆(ݐ)ଶݔ∑ = ∑|ܺ(߱)|²∆߱, 		ܵ = {ܵଵ, ܵଶ , … , ܵ௡	} is a partition of original signal, so 

the proportion of i-th power spectrum occupied in whole is ௜ܲ =
ௌ೔

∑ ௌ೔೙
೔సభ

 The 

corresponding information entropy namely power spectrum entropy is the following, 

ܪ = −∑ ௜௡݌
௜ୀଵ log                   (3.17)	௜݌

Spectrum entropy is a measure of the signal complexity. Narrower the peak of 

the signal power spectrum is, smaller the spectrum entropy is. Which means the 

signal is more regular and less complex. Flatter the power spectrum is, larger the 

spectrum entropy is. For example, the white noise is irregular random signal, it has 

flat power spectrum and large spectrum entropy, which means the signal has high 

complexity (Zheng-You, et al. 2006). 

3.5.4 Wavelet time-frequency entropy 

There are various wavelet entropy measures such as wavelet energy entropy, 

wavelet time entropy, wavelet singular entropy, wavelet time-frequency entropy, 

wavelet average entropy and wavelet distance entropy. in each of the above, ܧ௝௞ =

หܦ௝(݇)ห² is the wavelet energy spectrum at scale j and instant k, ܧ௝ = ∑ ௝௞௞ܧ  is the 

wavelet spectrum at scale j. 

In this thesis we used wavelet time-frequency entropy as a measure of entropy 

for ECG signal feature extraction and classification. 
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The discrete wavelet presentation ܦ௝(݇) is in fact a two dimension matrix. 

Along with variable k and j two vector sequences can be get. Therefore we define 

wavelet time frequenct entopy (WTFE) as, 

,݇)ܧܨܹܶ ݆) = ݐ)ݐܧܨܹܶ] = ܽ)݂ܧܨܹܶ,(ܶ݇ = 2௝)]                (3.18) 

Where 

ݐ)ݐܧܨܹܶ = ݇ܶ) = −∑ ܲ஽(௔ୀଶೕ)௝ ln ܲ஽(௔ୀଶೕ)            (3.19) 

൫݂ܽܧܨܹܶ = 2௝൯ = −∑ ஽ܲ(௧ୀ௞்)௞ ln ஽ܲ(௧ୀ௞்)              (3.20) 

Where    ܲ஽(௔ୀଶೕ) = หܦ௝(݇)ห²/∑ หܦ௝(݇)ห²௝  

஽ܲ(௧ୀ௞்) = หܦ௝(݇)ห²/∑ หܦ௝(݇)ห²௞                                            (3.21) 

The result of WTFE measure consists of two vectors or sequences. The first vector 

stretches on the whole time space and the second vector stretches on the whole 

frequency space. A large entropy value at instant kT indicates there are widely 

distributed wavelet coefficients extend all over the frequency space. On the other 

hand, a small entropy value indicates wavelet coefficients congregate at a few 

frequency points or segments. WTFE is able to measure the signal information 

feature at any given instant and frequency. Therefore it can be used to classify 

different signals and has potential in the fault detection and diagnosis field. 

 

Figure 3.10: Fundamental of wavelet time-frequency entropy (Zheng-You, et al. 2006). 
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3.6 Artificial Neural network  

Artificial neural networks (ANN) have been trained to perform complex 

function in various fields of application including pattern recognition, identification, 

classification, speech, vision and control system. A neural network is a massively 

parallel-distributed processor that has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two aspects 

(Chazal D.P., 1998): 

 Knowledge is acquired by the network through a learning process, 

 Inter-neuron connection strengths known as synaptic weights are used to store 

the knowledge. 

In theory, neural networks can do anything a normal digital computer can do. 

We can train a neural network to perform a particular input leads to a specific target 

output. Such a situation is shown in Figure 3.11 (Demuth H. and Beale M., 2001). 

There, the network is adjusted, based on a comparison of the output and the target, 

until the network output matches the target. 

Typically many such input/target pairs are used, in this supervised learning to train a 

network. 

 

Figure 3.11: Neural Network adjust system 
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In practice, neural network have been trained to perform complex function in 

various fields of application. They are especially useful for signal classification. If 

there are enough training examples and enough computing resources it is possible to 

train a feed-forward neural network to perform almost any mapping to an arbitrary 

level of precision. 

3.6.1 The neuron 

The simplest Neural Network is the single layer perceptron. It is a simple net 

that can decide whether an input belongs to one of two possible classes. Output of a 

perceptron usually passed through nonlinearity called a transfer function. This 

transfer function is of different types; the most popular is a sigmoidal function. 

A simple description of the operation of a neuron is that it processes the 

electric currents, which arrive on its dendrites, and transmits the resulting electric 

currents to other connected neurons using its axon. The classical biological 

explanation of this processing is that the cell carries out a summation of the incoming 

signals on its dendrites. If this summation exceeds a certain threshold, the neuron 

responds by issuing a new pulse, which is propagated along its axon. If the 

summation is less than the threshold the neuron remains in active. 

u୧ =෍ w୨୧x୧
ே

௜ିଵ
	        (3.22) 

௝݋ = ݂൫ݑ௝ −          (3.23)	௝൯ߠ

In these two equations, each set of synapses is characterized by a weight or 

strength of its own. A signal X, at the input of synapse i connected to neuron j is 

multiplied by synaptic weight ݓ௝௜ . It is important to make a note of the manner in 

which these subscripts of the synaptic weight ݓ௝௜ are written. The first subscript 

refers to the neuron in question and the other subscript refers to the input end of the 

synapse to which the weight refers. The weight ݓ௝௜  is positive if the associated 

synapse is excitatory, it is negative if the synapse is inhibitory. An adder sums the 

input signals, weighted by the respective synapses of the neuron. 
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The amplitude of the output of a neuron limits an activation function. The 

activation function is also referred to as a squashing function in that it squashes the 

permissible amplitude range of the output signal to some finite value. 

3.6.2 Transfer function 

Many transfer functions have been included in Matlab neural network toolbox. 

The most commonly used functions are log-sigmoid, tan-sigmoid and linear transfer 

functions. 

Multi-layer networks often use the log-sigmoid transfer function as shown in Figure 

3.12 

 

Figure 3.12:  Log-Sigmoid Transfer Function (Demuth H. and Beale M., 2001) 

 

Alternatively, multi-layer network may use the tan-sigmoid transfer function as 
shown in Figure 3.13 

 

Figure 3.13:  Tan-Sigmoid Transfer Function (Demuth H. and Beale M., 2001) 

 

Occasionally, the linear transfer function purelin is used as shown in Figure 3.14 
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Figure 3.14:  Linear Transfer Function (Demuth H. and Beale M., 2001) 

 

The sigmoid transfer function squashes the input, which may have any value 

between plus and minus infinity into the range of 0 to 1. This transfer function is 

commonly used in backpropagation networks, in part because it is differentiable. 

 

3.6.3 Single-layer feed-forward network 

 

 

Figure 3.15 Single-layer feed-forward network (Demuth H. and Beale M., 2001) 

 

A layered neural network is a network of neurons organized in the form of 

layers. Figure 3.15 shows the simplest form of a layered network, which has an input 

layer of source nodes that projects onto an output layer of neurons but not vice versa. 
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In other words, this network is strictly of a feed forward type. The input layer of 

source nodes does not count, because no computation is performed there. 

A one-layer network with R input elements and S neurons are shown in Figure 

3.15. In this network each element of the input vector p is connected to each neuron 

input through the weight matrix Wp. The ith neuron has a summer that gathers its 

weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S-element net input vector n. Finally, the neuron layer outputs form 

a column vector a. It is shown the expression for a at the bottom of the Figure. 

It is common for the number of inputs to a layer to be different from the number of 

neurons. 

A layer is not constrained to have the number of its inputs equal to the number of its 

neurons. 

3.6.4 Matrix-vector input 

A neuron with a single R-element input vector, p1,p2……..pR, is shown in 

Figure 3.15. The individual element inputs are multiplied by weights, w1,1, 

w1,2,………..w1,R as shown in equation 3.24. 

The weighted values are fed to the summing junction. Their sum is simply Wp, 

the dot product of the (single row) matrix W and the vector p. 

 

Figure 3.16: A neuron with a single R-element input vector (Howard Demuth, 2001) 
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The neuron has a bias b, which is summed with the weighted inputs to form the net input 

n. 

This sum, n, is the argument of the transfer function f. 

݊ = ଵ݌	ଵ,ଵݓ ଶ݌	ଵ,ଶݓ+ 	+ ோ݌	ଵ,ோݓ+⋯ + ܾ	     (3.24) 

A layer of a network is defined in Figure 3.16 shown above. A layer includes 

the combination of the weights, the multiplication and summing operation (here 

realized as a vector product Wp ), the bias b, and the transfer function f. The array of 

inputs, vector p, will not be included in or called a layer. 

The input vector elements enter the network through the weight matrix W. 

 

 

The row indices on the elements of matrix W indicate the destination neuron of the 

weight and the column indices indicate which source is the input for that weight. 

Thus, the indices in W12 say that the strength of the signal from the second source to 

the first (and only) neuron is W12 (Martin, 2002). 

3.6.5 Multi-layer feed-forward network 

 

Figure 3.17: Multi-layer feed-forward network (Demuth H. and Beale M., 2001) 

(3.25) 
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The second class of feed forward neural networks is multi-layer, shown in 

Figure 3.17. It may distinguish itself by the presence of one or more hidden layers, 

whose computation nodes are correspondingly called hidden neurons or hidden units. 

The function of the hidden neurons is to intervene between the external input and the 

network output. By adding one or more hidden layers, the network is enabled to 

extract higher-order statistics and is particularly valuable when the size of the input 

layer is large. 

Each neuron in the hidden layer is connected to a local set of source nodes that 

lie in its immediate neighborhood. Likewise, each neuron in the output layer is 

connected to a local set of hidden neurons. Thus, each hidden neurons responds 

essentially to local variations of the source signal. 

A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, output 

vectors and so on, for each of these, we will append the number of the layer to the 

names for each of these variables. 

For instance, the weight matrix and output vector for the first layer are denoted as W1 

and A1, for the second layer these variables are designated W2, A2 and so on. 

The network shown above has R1 inputs, S1 neurons in the first layer, S2 

neurons in the second layer, etc. It is common for the different layers to have 

different numbers of neurons. 

A constant input 1 is fed to the biases for each neuron. 

The outputs of each intermediate layer are the inputs to the following layer. 

Thus layer 2 can be analysed as a one-layer network with S1 inputs, S2 neurons, and 

an S1xS2 weight matrix W2. The input to layer 2 is a1, the output is a2. Now that we 

have identified all the vectors and matrices of layer 2 we can treat it as a single layer 

network on its own. This approach can be taken with any layer of the network. The 

layers of a multi-layer network play different roles. A layer that produces the 
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network output is called an output layer. All other layers are called hidden layers. 

(Demuth H. and Beale M., 2001) 

Multiple layer networks are quite powerful. For instance, a network of two 

layers, where the first layer is sigmoid and the second layer is linear, can be trained 

to approximate any function (with a finite number of discontinuities) arbitrarily well. 

This kind of two-layer network is used extensively in backpropagation neural 

network. 

3.6.6 Nodes, inputs and layers required 

The number of nodes must be large enough to form a decision region, which is 

as complex as required by the given problem. However, it cannot be so large that the 

many weights required cannot be reliably estimated from the available training data. 

No more than three layers are required in perceptron like feed-forward networks, 

because a three-layer network can generate complex decision regions. 

The number of nodes in the second layer must be greater than one when 

decision regions are disconnected or meshed and cannot be formed from one convex 

area. The number of second layer nodes required in the worst case is equal to the 

number of disconnected regions in input distributions. The number of nodes in the 

first layer must typically be sufficient to provide three or more edges for each convex 

area generated by every second layer-node. Typically there should be more than 

three times as many nodes in the second as in the first layer. 

3.6.7 Training Algorithm 

3.6.7.1 Backpropagation 

Generalising the Widrow-Hoff learning rule to multiple-layer networks and 

nonlinear differentiable transfer function created backpropagation. Input vectors and 

the corresponding output vectors are used to train a network until it can approximate 

a function, associate input vectors with specific output vectors, or classify input 

vectors in an appropriate way as defined. 
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Standard backpropagation is a gradient decent algorithm, as is the Widrow-Hoff 

learning rule. The term backpropagation refers to the manner in which the gradient is 

computed for nonlinear multiplayer networks. There are numbers of variations on the 

basic algorithm which are based on other standard optimization techniques, such as 

conjugate gradient and Newton methods. 

The backpropagation neural network is a feed-forward network that usually has 

hidden layers, as shown in Figure 3.17. The activation function for this type of 

network is generally the sigmoid function. Since the activation function for these 

nodes is the sigmoid function above, the output from each node is given by (Hessian 

S.K.U. and Asim., 1999) 

௜௞ߪ =          (3.26)	൫ܽ௜௞൯ܨ

Where ܽ௜ is the total input to node i, which is given by: 

௜௞ߪ = ∑ ௜௝௡ݓ
௝ୀଵ ௝ܽ

௞ +         (3.27)	௜ߠ

Note how the weights are indexed. Weight ݓ௜௝  is the weight of the connection 

from node j to node i. Now, as for the perceptron, we will minimize the error in the 

network by using the gradient descent algorithm to adjust the weights. So the change 

in the weight from node j to i is given by 

∆௞ ௜ܹ௝ = −ܽ డாೖ

డௐ೔ೕ
			       (3.28) 

Where ܧ௞ is the mean square error for the Kth pattern. The error for a hidden 

node i is calculated from the errors of the nodes in the next layer to which node i is 

connected. This is how the error of the network is backpropagated. 

So, putting it all together, the change for weight, where node i is in a hidden layer, is 

given by: 

∆௞ ௜ܹ௝ = ௝௞ߪ௜௞ߜܽ = ∑(௞௞ܽ)ܨൣܽ ௡௞ߜ
ே௣ାଵ
௡ୀଵ ௝௞ߪ௡௜൧ݓ =

௜௞(1ߪൣܽ − ∑(௜௞ߪ ௡௞ߜ
ே௣ାଵ
௡ୀଵ ௝௞ߪ௡௜൧ݓ 	     (3.29) 
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The changes in the weights of the network, which allow the network to learn, 

are now totally defined. This generalized delta rule for backpropagation neural 

networks defines how the weights between the outputs layer and the hidden layer 

change, and how the weights between other layers change also. This network is 

called backpropagation because the errors in the network are fed backward, or 

backpropagated, through the network. 

Generalization is perhaps the most useful feature of a backpropagation 

network. Since the network uses supervised training, a set of input patterns can be 

organized into groups and fed to the network. The network will “observe” the 

patterns in each group, and will learn to identify the characteristics that separate the 

groups. Often, these characteristics are such that a trained network will be able to 

correct groups, even if the patterns are noisy. The network learns to ignore the 

irrelevant data in the input patterns. 

3.6.7.2 Conjugate Gradient Algorithm 

The basic backpropagation algorithm adjusts the weights in the steepest 

descent direction (negative of the gradient). This is the direction in which the 

performance function is decreasing most rapidly. Although the function decreases 

most rapidly along the negative of the gradient, this does not necessarily produce the 

fastest convergence. In the conjugate gradient algorithms a search is performed along 

conjugate directions, which produces generally faster convergence than steepest 

descent directions. 

In most of the conjugate gradient algorithms the step size is adjusted  at each 

iteration. A search is made along the conjugate gradient direction to determine the 

step size which will minimize the performance function along that line (Demuth H. 

and Beale M., 2001). There are different search functions that are included in the 

toolbox. 
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3.6.7.3 Levenberg-Marquardt (TrainLM) 

The Levenberg-Marquardt algorithm appears to be the fastest method for 

training moderatesized feed-forward neural network. The Levenberg-Marquardt 

algorithm was designed to approach second order training speed without having to 

compute the Hassian matrix. When the performance function has the form of a sum 

of squares (as is typical in training feedforward networks), then the Hessian matrix 

can be approximated by Newton’s method. 

Newton’s method is faster and more accurate near an error minimum, so the 

aim is to shift towards Newton’s method as quickly as possible. 
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CHAPTER FOUR 

EXPERIMENTS AND SYSTEM DESIGN 

4.0 Overview 

In this chapter, the methods used for this research will be discussed. All of 

the proposed methods are implemented in MATlab 2013a on a personal computer. 

The methods for the system developed (Automatic ECG beats classification system) 

in this thesis involve data acquisition, noise removal, QRS detection, morphological 

feature extraction, DWT AND SWT decomposition of extracted features, calculating 

statistical features, feature enhancement using PCA, output vector formation and 

artificial neural network (ANN) design for signal classification for each of the above 

methods. The output can be used for ECG signal classification or making a report of 

the patient’s heart condition as well as comparative study of different methods. 

The development procedure is as follows (Figure 3.1): 

1. ECG Data acquisition from a web database 

2. Separating data into training and testing sub-data sets 

3. Loading training and testing data 

4. Pre-processing of training and testing data 

5. QRS detection of training and testing data 

6. Efficient feature extraction for applying to the neural network 

7. Output vector formation 

8. Designing the neural network structure 

9. Evaluating of performance parameters  

Below is the flow chart which depicts the general development procedures for 
Automatic computerized ECG beat detection system. 
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4.1 Experimental Tools: The Matlab Environment 

Matlab is a powerful, comprehensive, and easy to use environment for 

technical computations. It provides engineers, scientists, and other technical 

professionals with a single interactive system that integrates numeric computation, 

visualization, and programming. Matlab includes a family of application specific 

solutions called toolboxes. 

Pre-Processing 

R-Wave 
detection 

SWT and statistical 
features 

Features from PT 

R-R Interval 
calculation 

start 

Data from MIT 

Combined R-R 
and PT Features 

DWT and 
statistical features 

ANN 

Stop 

Performance 
Analysis 

Figure4.1: Automatic ECG Beat Classification  System Development Flow Chart 
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One of its greatest strengths is that Matlab allows building its own reusable 

tools. Customized special functions and programs can be easily created in Matlab 

code. Biomedical engineers use Matlab in research, design and manufacturing of 

medical devices and to develop embedded algorithms and systems for medical 

instrumentation. Matlab has several advantages over other traditional means of 

numerical computing. 

 It allows quick and easy coding in a very high level language. 

 Data structures require minimal attention, in particular, arrays need not be 

declared before first use. 

 An interactive interface allows rapid experimentation and easy debugging. 

 High-quality graphic and visualization facilities are available. 

 Matlab M-files are completely portable across a wide range of platforms. 

 Toolboxes can be added to extend the system, giving, for example, specialized 

signal processing facilities. 

Furthermore, Matlab is a modern programming language and problem-

solving environment: it has sophisticated data structures, contains built in debugging 

and profiling tools, and supports object oriented programming. These factors make 

Matlab to be an excellent language for teaching and a powerful tool for research and 

practical problem solving. 

4.1.1 Signal processing toolbox 

The signal processing toolbox is a collection of Matlab functions that 

provides a rich, customizable framework for analog and digital signal processing 

(DSP). Graphical user interfaces (GUIs) support interactive designs and analyses, 

while command-line functions support advanced algorithm development. The Signal 

Processing Toolbox is the ideal environment for signal analysis and DSP algorithm 

development. It uses industry-tested signal processing algorithms that have been 

carefully chosen and implemented for maximum efficiency and numeric reliability. 

Functions are mostly implemented as M-file routines written in the Matlab language, 

giving access to the source code and algorithms. The open system philosophy of 
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Matlab and the toolboxes enables making changes to existing functions or adding 

own experiments. 

The main features of the signal processing toolbox are as follows (Little J.N. 

and Shure L.,2001): 

 A comprehensive set of signal and linear system models 

 Tools for analog filter design 

 Tools for finite impulse response (FIR) and infinite impulse response (IIR) 

digital filter design, analysis and implementation. 

 The most widely used transforms, such as Fast Fourier transform (FFT) and 

discrete cosine transform (DCT) 

 Methods for spectrum estimation and statistical signal processing. 

4.1.2 Wavelet Toolbox 

The Wavelet Toolbox is a collection of functions built on the MATLAB® 

Technical Computing Environment. It provides tools for the analysis and synthesis of 

signals and images using wavelets and wavelet packets within the framework of 

MATLAB. 

The toolbox provides two categories of tools: 

 Command line functions 

 Graphical interactive tools 

The first category of tools is made up of functions that you can call directly from the 

command line or from your own applications. Most of these functions are M-files, 

series of statements that implement specialized wavelet analysis or synthesis 

algorithms. The second category of tools is a collection of graphical interface tools 

that afford access to extensive functionality. 

The key features of wavelet toolbox are as follow (Michel et al., 1996): 

 Standard wavelet families, including Daubechies wavelet filters, complex 

Morlet and Gaussian, real reverse biorthogonal, and discrete Meyer 
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 Wavelet and signal processing utilities, including a function to convert scale to 

frequency 

 Methods for adding wavelet families 

 Lifting methods for constructing wavelets 

 Customizable presentation and visualization of data 

 Wavelet Design and Analysis for continuous and discrete wavelet analysis 

 Wavelet packets, implemented as MATLAB objects 

 One-dimensional multisignal analysis, compression, and denoising 

 Multiscale principal component analysis 
 

4.1.3 Neural Network Toolbox 

The Neural Network Toolbox extends the Matlab computing environment to 

provide tools for the design, implementation, visualization and simulation of neural 

networks. Neural networks are very powerful tools that are used in applications 

where formal analysis would be difficult or impossible, such as pattern recognition 

and non-linear system identification and control. The Neural Network Toolbox 

provides a comprehensive support for many proven network paradigms, as well as a 

graphical user interface that enables the experiment to design and manage networks. 

The toolbox’s modular, open and extensible design simplifies the creation of 

customized functions and networks. 

The main features of Neural Network Toolbox are as follows (Demuth H. and Beale 

M., 2001): 

 Support for the most commonly used supervised and unsupervised network 

architectures 

 A comprehensive set of training and learning functions 

 Modular network representation, allowing an unlimited number of input setting 

layers, and   network interconnections 

 Pre and post-processing functions for improving network training and assessing 

network performance. 
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4.2 ECG Data Acquisition 

In this thesis the source of the ECG data is MIT-BIH Arrhythmia database 

from Physionet website (http: // www . physionet . org / physiobank / database / 

html / mitdbdir /mitdbdir .htm). MIT-BIH Arrhythmia database is a set of over 

4000 long-term Holter recordings. Approximately 60% of these recordings were 

obtained from in-patients. The database contains 23 records (numbered from 100 to 

124, some numbers missing) chosen at random from this set, and 25 records 

(numbered from 200 to 234, again some numbers missing) selected from the same 

set to include a variety of rare but clinically important phenomena. Each of the 48 

records is slightly over 30 minutes long (Goldberger et al., 2000). 

The first group of records is intended to serve as a representative sample of the 

variety of waveforms and artifacts that an arrhythmia classifier might encounter in 

routine clinical use. 

Records in the second group were chosen to include complex arrhythmia and 

conduction abnormalities. Some recordings from this group were selected for this 

thesis because the rhythm, QRS morphology variation or signal quality might be 

expected to present significant difficulty to arrhythmia classifier. 

All the waveforms present in these recordings are studied and classified by expert 

cardiologist and presented as annotations in the website. Table 4.1 and 4.2 lists the 

ECG records .mat files that were used for training and testing the neural network in 

this thesis respectively. 
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Table 4.1: ECG .mat files used for training in this thesis 

 Training   

s/n File Name(.mat) Number of R-peak detected Number of features 

1 Normal1_100m 74 73 

2 Normal2_100m 75 74 

3 Normal1_101m 63 62 

4 Normal2_101m 60 59 

5 Normal5_106m 59 58 

6 Normal6_108m 57 56 

7 Normal7_112m 87 86 

8 Rbbb1_118m 73 72 

9 Rbbb2_118m 71 70 

10 Rbbb1_124m 50 49 

11 Rbbb2_124m 49 48 

12 Rbbb1_212m 90 89 

13 Rbbb2_212m 92 91 

14 Rbbb1_231m 64 63 

15 Paced1_102m 73 72 

16 Paced2_102m 73 72 

17 Paced1_104m 51 50 

18 Paced2_104m 56 55 

19 Paced1_107m 71 70 

20 Paced2_107m 70 69 

21 Paced1_217m 72 71 

22 Lbbb1_109m 91 90 

23 Lbbb2_109m 85 84 

24 Lbbb1_111m 68 67 

25 Lbbb2_111m 66 65 

26 Lbbb1_207m 79 78 

27 Lbbb2_207m 77 76 

28 Lbbb1_214m 69 68 

Total  1965 1937 
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Table 4.2: ECG .mat files used for testing in this thesis 

 

 
Each of these records is slightly over 30 minutes long, has a sample frequency 

of 360Hz and contains 2 channels (2 signals recorded from different angles on chest). 

By using Physionet’s built-in web tool only 1 minute long sections of each record is 

extracted as .mat files that can be readily used in Matlab. As a result 40 recordings 

(28 for training and 12 for testing amounting to 70-30% training-testing standard) 

each containing 21600 samples and approximately 60-90 waveforms depending on 

heart rate and class(normal, rbbb, paced or lbbb) is obtained and loaded into Matlab 

environment. After loading the data into Matlab one of the channels is removed and 

only one channel for each recording is used for the rest of the program (channel 

MLII). 

At the end of the Data acquisition part a total of 1937 waveforms (as 7 

separate recordings each representing a normal, rbbb, paced and lbbb waveform 

class) for training and 807 waveforms for testing are prepared ready for next step 

which is signal pre-processing. 

 

 

 Testing   

s/n File Name(.mat) Number of R-peak detected Number of features 

1 Normal3_100m 80 79 

2 Normal3_101m 67 66 

3 Normal10_116m 78 77 

4 Rbbb3_118m 72 71 

5 Rbbb3_124m 50 49 

6 Rbbb2_231m 63 62 

7 Paced3_102m 72 71 

8 Paced3_104m 45 44 

9 Paced2_217m 71 70 

10 Lbbb3_109m 86 85 

11 Lbbb3_111m 62 61 

12 Lbbb3_214m 73 72 

Total  819 807 
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(a) 

 

 

 

 

 

 

 

 

  

  

        (b) 

 

  

  Figure 4.2(a) and (b): Raw ECG signal Obtained from MIT-BIH Database 
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4.3 Signal Pre-processing 

Signal processing can be defined as the manipulation of a signal for the 

purpose of extracting information from the signal or producing an alternative 

representation of the signal. There are numerous specific motivations for signal 

processing, but many fall into following three categories. First is to remove 

unwanted signal components that are corrupting the signal of interest. Second is to 

extract information by rendering it in a more obvious or more useful form and third 

is to predict future values of the signal in order to anticipate the behavior of its 

source. 

This thesis, at signal pre-processing step is focused on noise removal and after this 

step processing of the signal will continue with QRS detection and Feature extraction 

steps. ECG beat detection systems have to be designed in a way that they are capable 

of working in a noisy hospital environment. ECG signal is normally corrupted with 

different types of noise. 

To obtain useful information from raw signals you have to first process them and 

remove the noise. Although our system will not be working on real time patient 

recorded signals, the ECG data that we get from MIT-BIH database may also contain 

some noise (Figure 3.4) so we also have to pre-process the signal and remove the 

noise. 
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Figure 4.3: A Section of noisy ECG Records Obtained from MIT-BIH Database 

 

To remove unwanted noise from raw ECG signals four levels of filtering is applied 

to ECG records; DC component removing, 10 point moving average (low pass) filter, 

derivative based (high pass) filter and a comb filter. 

4.3.1 Removing DC Components of the ECG Signal 

As it can be clearly seen from Figure 4.2, ECG signals taken from MIT-BIH 

database contain baseline (sections of ECG where there is no electrical activity of 

heart) amplitudes higher than zero. In this step by subtracting the mean of the signal 

from itself, the unwanted dc component is removed and the signal baseline amplitude 

is pulled back to level zero. 

ECGSignal=ECGSignal-mean(ECGSignal)                                        (4.1) 

4.3.2 Removing Low Frequency and High Frequency Noise 

ECG data used for the system contains low and high frequency noise 

components that may be caused by the sources explained in the previous chapter. 

Before the design of the software both frequency domain and time domain filters 

were tested for noise removal. It is observed that time domain filters provide better 

noise removal on the signals obtained from MIT-BIH database than frequency 

domain filters (butterworth filters in our case). Because of this and since most of the 
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noise present in the database are random noise, time domain filters were chosen to 

filter unwanted high and low frequency noise. 

To remove high frequency random noise, mostly caused by patients muscle 

contractions during recording, from the ECG signals a 10 point moving average (low 

pass) filter (Figure 4.3) which passes low frequencies but attenuates high frequencies 

chosen and the signals are filtered by using Matlab’s filter function. 

                                               B=(1/10)*ones(1,10); 

                                                             A=1; 

                       ECGSignal=filter(B,A,ECGSignal)                                   (4.2) 

 

 

 

 

 

 

 

 

                                                

After the removal of high frequency noise from the signal next step is to 

remove low frequency noise components. This low frequency noise shows itself as 

baseline wandering that is caused mostly by the respiration of the patient. To remove 

this low frequency noise, a derivative based (high pass) filter (Figure 3.6) that passes 

high frequencies but attenuates low frequencies used. 

B=(1/1.0025)*[1 -1]; 

A=[1 -0.995]; 

 Figure 4.4: Low Pass Filter 
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ECGSignal=filter(B,A,ECGSignal)                                                   (4.3) 

 

Figure4.5: High Pass Filter 

 

4.3.3 Removing 60Hz Powerline Interference 

Powerline interference is a noise caused by the electrical current flowing in 

wires and power lines. Powerline interference that is present in our ECG signals 

consists of 60Hz pickup and harmonics. Since frequency of 60Hz overlaps with our 

ECG signal frequency range we have to suppress only 60Hz frequency components 

and its harmonics without disturbing the frequencies around. To achieve this, comb 

filter (Figure 4.5) is used and 60Hz powerline interference with its harmonics is 

removed from the ECG signals. Comb filter is a band-stop filter which attenuates a 

certain band of frequencies and their harmonics. 

B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 

0.6310]); 

A=1; 

ECGSignal=filter(B,A,ECGSignal)                                                       (4.4) 
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Figure 4.6: Comb Filter 

All of the above steps are applied to all training and testing ECG records and 

filtered ECG signals (Figure 4.6) are obtained ready for the next QRS detection step. 

 

4.4 QRS Detection 

As mentioned before in previous chapter, the QRS complex is the most 

striking waveform within the ECG. Since it reflects the electrical activity within the 

heart during the ventricular contraction, the time of its occurrence as well as its shape 

 Figure 4.7: Sample filtered ECG signal after preprocessing 
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provide much information about the current state of the heart. Due to its 

characteristic shape it serves as an entry point for classification scheme of cardiac 

cycle. In that sense, QRS detection provides the fundamentals for almost all 

automated ECG analysis algorithms. Supporting this, previous researches (Ozbay Y. 

And Karlik B., 1996) proved that taking samples as feature values in the intervals of 

R-R are very effective in representing the class of those ECG waves (one cardiac 

cycle) cardiac condition. Apart from this, since the 4 ECG class records, each 

representing a different cardiac condition, used for training and testing in this thesis 

are 1 minute long (each containing 60-90 ECG waveform), in order to separate each 

waveform (we need to do this because cardiologist classify cardiac conditions by 

looking at single ECG waveforms (cardiac cycles), not by looking at whole record) 

and find how many waveforms each record contain, therefore, we also need to detect 

the QRS complexes. 

There are many different QRS detection techniques but this thesis is focused 

on well known and acceptable QRS detection using Pan-Tompkins algorithm (Pan J 

and Tompkins WJ., 1985). Pan and Tompkins proposed a real-time QRS detection 

algorithm based on analysis of the slope, amplitude and width of QRS complexes. 

The algorithm includes a series of methods that perform derivative, squaring, 

integration, adaptive thresholding and search procedures. 

4.4.1 Derivative Operator 

The derivative procedure suppresses the low-frequency components of the P 

and T waves, and provides a large gain to the high-frequency components arising 

from the high slopes of the QRS complex. Derivative operation is implemented in 

Matlab by using diff function which finds the differences between the adjacent values 

in the signal. 

  Derivative=diff(ECGSignal)                                                                          (4.5) 
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4.4.2 Squaring Operation 

The squaring operation makes the result positive and emphasizes large 

differences resulting from QRS complexes; the small differences arising from P and 

T waves are suppressed. QRS complex is further enhanced. Squaring operation is 

implemented simply by multiplying the signal by itself in Matlab. 

 Squaring=derivative.*derivative                                                                (4.6) 

4.4.3 Integration 

The output of a derivative based operation may contain multiple peaks within 

the duration of a single QRS complex. A moving window integrator is applied to 

perform smoothing of the output of the preceding operations so that multiple peaks 

are avoided. This step is performed in Matlab by using medfilt1 function and a 

window width of 54 is found to be suitable for sampling frequency 360Hz. 

                                        window=ones[1,54]; 

Integration=medfilt1(filter(window,1,squaring),10);                            (4.7) 

4.4.4 Thresholding 

Maximum value of the signal that had passed from above steps is taken and 

multiplied by a threshold percentage value. This is done because the output of 

preceding operations may contain noise peaks. These noise peaks do not have as 

large amplitude as R peaks but if we take all the peaks present in the output of above 

steps as R peaks then noise peaks will also be classified as R peaks (QRS 

complexes). So by taking a certain percentage of the highest peak amplitude as a 

threshold we avoid this. Different values for threshold percentage were tested and 

value 0.2 found to be suitable for removing noise peaks in our signals. This threshold 

value is used for searching R peak in search procedures. 

maxvalue=max(integration) 

threshold=maxvalue*0.2                                                                              (4.8) 
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4.4.5 Search Procedures for QRS (Location of R Peaks) 

In the last step of QRS detection, regions of the output signal, of the 

preceding steps, that is above the threshold value is found. Starting and ending 

locations of each region is recorded. 

Then each specific region is again searched on the original ECG signal for a 

maximum value which represents the exact R peak of that wave. Locations of all R 

peaks are then recorded and the QRS searching algorithm is finalized (Figure 4.7). 

position_region=integration>threshold 

left=find(diff([0 position_region])==1) 

right=find(diff([position_region 0])==-1) 

for i=1:length(left) 

[maxvalue(i) maxlocation(i)]=max(ECGSignal(left(i):right(i))) 

end                                                                                                             (4.9) 

 

Figure 4.8: ECG signal with R peaks detected 
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4.5 Feature Extraction using Pan Tompkins Algorithm 

Feature extraction is extracting and converting the input data information into a 

set of features which called feature vector, by reducing the data representation pattern. 

The features set will extract the relevant information from the input data in order to 

perform the classification task. 

As we mentioned before, previous research suggested that taking samples between 

R-R intervals of ECG waves as feature values enables a good representation of the 

cardiac condition of those ECG waves. As we investigate our ECG signals used in 

this thesis we can easily see that the features that clearly distinguishes each class 

(normal, rbbb, paced and lbbb) lies between the R-T intervals (Discrimination). Also 

it can be easily observed that each member of a class shows same form of pattern in 

this interval (Reliability). So we took 200 samples between R-R intervals (Figure 

4.8) (approximately this amount of samples corresponds to R-T interval with 

sampling frequency of 360Hz) starting from R peaks as our feature values excluding 

(deleting) all other parts of the ECG waveforms (Optimality). 

for i=1:length(maxlocation)-1 

for j=1:200 

feature_vector(I,j)=ECGSignal(maxlocation(I)+j); 

end 

end                                                                                                               (4.10) 

When this method is applied to all training ECG records we obtained 

1937x200 feature vector (Figure 4.8) which will fed inputs to our neural network. 

While for testing is 807x200, the features were sorted in this order; normal, 

normal,…normal, rbbb, rbbb,…rbbb, paced, paced,…paced, lbbb, lbbb,…lbbb. 
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`  Figure 4.9: Method of R-T intervals Feature Extraction 

 

 

Figure 4.10: R-T Intervals Features (200*1937) for Training 
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Figure 4.11: R-T Intervals Features (200*807) for Testing 

4.5.1 R-R Time intervals Combined with R-T intervals 

R-R time interval and amplitude of each R peak in the ECG waveform were 

calculated using the same algorithm, and then it was combined with R-T interval already 

obtained. The size of the feature is now 202x1937 and 202x807 for training and testing 

respectively. 

4.5.2 Feature Extraction using Discrete Wavelet Transform 

In the scope of this thesis, the morphological features extracted from Pan 

Tompkins algorithm which represents an R-T interval and another feature 

representing R-R time interval and R-peak amplitude were decomposed using 

wavelet decomposition analysis, thus increasing ECG characteristic point detection 

capabilities in which features from time domain were decomposed again into time-

frequency domain. Since most recently published detectors are based on standard 

database libraries and limited wave detection, this application is an attempt to expand 

the horizons of current research efforts. 

The input selection of feature extraction methods applied in this thesis has to 

select well to make sure which components of an inputs best represent the given 

pattern of ECG signals. Since the details and approximations wavelet coefficients 

contain a significant amount of information about the signal, the wavelet coefficients 
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of ECG signal of each subject were computed. The procedures of DWT 

implementation is describe as follows in figure 4.12. 

 

 

 

 

 

 

 

 

4.5.2.1 Features Extraction Procedures  

Selection of appropriate wavelet and the number of decomposition level is 

very important in DWT. The levels are chosen such that those parts of the signal that 

correlate well with the frequencies required for classification of the signal are 

retained in the wavelet coefficients. 

The general wavelet decomposition of DWT procedure involves three steps. 

The result of decomposed signal will shows the important details and approximation 

coefficients which represent the original signal. The basic version of the procedure 

follows the steps described below. 

 Choose a wavelet types 

 Choose a wavelet name 

 Choose a level N which will compute the wavelet decomposition of the signal s 

at level N 

The discrete wavelet types have been chosen in this features extraction 

method and the ECG signals were decomposed into time-frequency representations 

using single-level one dimensional wavelet decomposition. Different wavelet names 

 
Figure 4.12:  Feature extraction technique using DWT 

R-T interval or combined R-T 
and R-R time interval features 

Wavelet decomposition 

Approximation Coefficients 

Detail Coefficients 
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which has wavelet filter with scaling function more closely similar to the shape of 

the ECG signal to achieved better detection have been choosing and the number of 

decomposition levels was chosen to be 12. Thus, the ECG signals were decomposed 

into the details coefficients D1-D12 and one final approximation coefficient, A12. 

4.6 Statistical feature Extraction 

The computed wavelet coefficients provide a compact representation that 

shows the energy distribution of the signal in time and frequency. Therefore, the 

computed details and approximation wavelet coefficients of the ECG signal were 

used as the features vector representing the signals. 

In this study, from the original intervals of ECG signal, seven standard 

measures parameters are used. In order to reduce the dimensionality of feature 

vectors and to determine a precise and robust ECG features, statistics over the set of 

the wavelet coefficients were used. The following statistical features were used to 

represent the time-frequency distribution of the ECG signals: the flows of the 

calculated wavelet transform coefficients and statistical features are shown in figure 

4.12 below. 

1. mean of the wavelet coefficients of each ECG signals sample 

2. median of the wavelet coefficients of each ECG signals sample 

3. Maximum of the wavelet coefficients of each ECG signals sample 

4. Minimum of the wavelet coefficients of each ECG signals sample 

5. Standard deviation of the wavelet coefficients of each ECG signals sample 

6. Energy deviation of the wavelet coefficients of each ECG signals sample 

7. Entropy of the wavelet coefficients of each ECG signals sample 

The feature vector of subband 1-10, D1-D10 of details coefficients and 

Approximation coefficient A12 from the wavelet decomposition structures has been 

extracted. These vectors are extracted at each scale without scale 11 and 12 for 

details coefficients. It is ignoring the higher levels of decomposition because it 

contains high frequency details and noise. These details are insignificant information 

that will not affect the classification accuracy and signal quality (Daubechies, 1990). 
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4.6.1 Feature extraction using Stationary Wavelet Transform 

The procedure for calculating stationary wavelet transform and feature 

extraction is the same as in discrete wavelet transform only that in SWT the level of 

decomposition is eight because the length of the signal must be in form of 2n.  

Where n is the level of decomposition 

Therefore, the R-T interval samples from PT algorithm are 256 instead of 200 

for DWT and the level should be eight. 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Wavelet Time-Frequency Entropy  

The concept of entropy has been widely used as a measure of disorder of a 

system. In this study, the wavelet entropy was calculated from the vector magnitude 

of SWT after decomposing with different wavelet name at level eight. Therefore the 

length of SWT detail and approximation coefficients is 8x256 each. wavelet 

transform feature vector for calculating entropy was constructed from eight level 

detail coefficients and one approximation coefficient which constitute 9x256. Energy 

ANN input 

Entropy 

Energy 

Mean 

Standard  Deviation 

Minimum 

Maximum 

Median 

Wavelet 
decomposition 

Details and 
Approximation 
Coefficients 

 
Figure 4.13: Wavelet and Statistical Analysis 
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(Eij) of this ECG signal in the time-scale domain was calculated for each time i and 

scale j as follows.  

௜௝ܧ = หܹܵ ௜ܶ௝ห                                                                                         (4.11) 

       The total energy is calculated as                                                                        

௧௢௧௔௟ܧ = ∑ ∑ ௜௝௝௜ܧ          (4.12) 

Next, the probability distribution of energy for each scale was obtained as in 

Equation 3. 

௜ܲ௝ =
ா೔ೕ

ா೟೚೟ೌ೗
          (4.13) 

Where   Pij is the probability distribution at time i and scale j 

Eij is the energy at time i and scale j 

௧௢௧௔௟ܧ   is the total energy 

The wavelet time-frequency entropy (WTFE) is defined as in Equation 4 

௜௝ܧܨܹܶ = − ௜ܲ௝ log ௜ܲ௝                                                                            (4.14) 

 

4.8 Output Target Vector Formation 

Accompanying each record in the MIT-BIH database there is an annotations 

file in which each heartbeat has been identified by expert cardiologist annotators. 

This annotated information can be employed for designing the target vector and 

evaluating the classifier performance. This thesis is focused on classifying four 

different cardiac condition namely normal beats, right bundle branch block, paced 

beats and left bundle branch block. These cardiac conditions are defined as follows 

Table 3.1 
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Table 4.3: Target Vector Formation 

ECG Class beat Target Vector 
Normal [1 0 0 0] 
Lbbb [0 1 0 0] 
Paced [0 0 1 0] 
Lbbb [0 0 0 1] 

                                  
 
 

Table4.4: Output Target Vector 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When these representations are applied to the whole records and the output 

vectors are sorted in the order same as the feature vector, the 1937x4 output target 

vector is formed as in table 4.4 above. 

Normal 1 0 0 0 
Normal 1 0 0 0 
Normal 1 0 0 0 
. 
. 
. 

    

Normal 1 0 0 0 
Rbbb 0 1 0 0 
Rbbb 0 1 0 0 
Rbbb 0 1 0 0 
. 
. 
. 

    

Rbbb 0 1 0 0 

Paced 0 0 1 0 
Paced 0 0 1 0 
Paced 0 0 1 0 
. 
. 
. 

    

Paced 0 0 1 0 

lbbb 0 0 0 1 
lbbb 0 0 0 1 
lbbb 0 0 0 1 
. 
. 
. 

    

lbbb 0 0 0 1 
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This output target vector will be used by neural network during training stage. 

Network will compare these desired outputs with its actual results and hence 

calculate errors and adapt its weights to learn the patterns. After the training 

completed this vector will be used in calculating correct training recognition rate by 

comparing it to networks actual output. 

4.9 Designing the Neural Network 

Developing a classifier based on neural network involves choosing an 

appropriate classifier model and then using the training algorithm to train and then 

test the input signal to classify them into different categories. Backpropagation 

algorithm will be used in this thesis as a training function to train feed forward neural 

networks to solve our ECG signal classification problem. 

A two-layer feed-forward network, with sigmoid hidden and output neurons 

(patternnet), can classify vectors arbitrarily well, given enough neurons in its hidden 

layer. Four different structures of neural networks are designed and will be tested for 

best performance. Each of them has same number of input (200), (202) and (77) for 

R-T intervals, combined R-R and R-T intervals and Statistical features respectively, 

output (4) neurons but differ in their number of hidden neurons (7, 10, 15, 20).  

Maximum epochs are set to 1000 and error limit is set to 0.001. ‘Trainsgc’ 

scale conjugate back propagation is used as backpropagation learning algorithm with 

momentum value. Learning rate and momentum coefficients are remained as defaults 

of the Matlab’s function and log sigmoid ‘Logsig’ functions are used for neuron 

transfer functions. 

4.9.1 Training the Neural Network 

Feature vectors that contains feature values obtained from training data set, 

along with its corresponding 1937x4 output target vector is fed into the networks 

designed in previous step for training with backpropagation algorithm. Training is 

continued until error goal is achieved or maximum epoch is reached. After the 

training finished, networks outputs are compared with output target vector and 
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correct training recognition rates and accuracies are recorded. Correct recognition is 

counted when the same output neuron shows the maximum value both for actual 

output and desired output. Accuracy is found by subtracting networks actual output 

of the neuron that should show the maximum value (that should be classified) from 

the desired output which is always 1. The example of the feature data for training is 

shown in Figure 3.13. Matlab’s train function is used for training the network 

designed in previous step. 

hiddenLayerSize = 15; 

net = patternnet(hiddenLayerSize); 

[net,tr,train_out] = train(net,inputs,targets);     (4.12) 

4.10 Testing the Neural Network 

While testing the trained networks testing feature vector was fed into the 

network for only one forward pass through the network and the classification outputs 

that the network produced is compared with desired testing output target vector 

(807x4) to calculate the networks correct testing recognition rates and accuracies. 

Testing was done in Matlab with function sim. Already trained network is fed into 

the function along with testing feature vector and the function returns the 

classifications (outputs) that the network produces. 

outputs = sim(net,feature_vector_tst); 

errors = gsubtract(NTargets3in,outputs);     (4.13) 

After training and testing completed performance analysis was conducted 

based on the error performance and confusion matrix generated by neural network.  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.0 Overview 

This chapter contains the results and discussion from the Automatic ECG 

beat detection system model developed in this thesis. It includes features extracted 

from QRS detection using Pan Tompkins algorithm that represents R-T intervals, R-

R time interval features, discrete wavelet transform decomposition and statistical 

parameters features, stationary wavelet decomposition and time and frequency 

entropy features. The chapter begins with an introduction to the analysis that has 

been investigated. Next it covers the result of the features extraction methods 

mentioned above. Some conclusions concerning the rational of features on 

classification ECG signals that were obtained through ANN. The performance of 

ANN model was evaluated in terms of testing performance and classification 

sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value 

(NPV) and accuracy in classifying Normal, RBBB, Paced beat and LBBB. The 

results confirmed that the proposed method has a potential in classifying the ECG 

signals. 

The training samples were randomly divided into three processes, Training 

process with 70% of the sample, Validation process with 15% of the sample and 

testing process with 15% of the sample. Training’s samples are presented to the 

network during training, and the network is adjusted according to its error. 

Validation’s samples are used to measure network generalization when the network 

stops improving. While Testing’s sample have no effect on training and so provide 

an independent measure of network performance during and after training. After 

training the actual testing samples were loaded and tested using created training 

network. 
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5.1 Performance Parameters Measure 

5.1.1 Sensitivity  

Sensitivity (also called the true positive rate) measures the proportion of 

actual positives which are correctly identified as such (e.g. the percentage of sick 

people who are correctly identified as having the condition).Sensitivity can be 

calculated using the Formula 5.1 below. 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = ೅ೝೠ೐ು೚ೞ೔೟೔ೡ೐(೅ು)
೅ೝೠ೐ು೚ೞ೔೟೔ೡ೐(೅ು)శಷೌ೗ೞ೐ಿ೐೒ೌ೟೔ೡ೐(೅ಿ)			    (5.1) 

Where 

In general, Positive = identified and negative = rejected. Therefore: 

 True positive: Sick people correctly diagnosed as sick (correctly identified) 

 False positive: Healthy people incorrectly identified as sick (incorrectly identified) 

 True negative: Healthy people correctly identified as healthy (correctly rejected) 

 False negative: Sick people incorrectly identified as healthy (incorrectly rejected) 

 

5.1.2 Specificity  

Specificity (sometimes called the true negative rate) measures the proportion 

of negatives which are correctly identified as such (e.g. the percentage of healthy 

people who are correctly identified as not having the condition). Specificity can be 

calculated using the Formula 5.2 below (Adam and Witold, 2012).  

 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ = ೅ೝೠ೐ಿ೐೒ೌ೟೔ೡ೐(೅ಿ)
೅ೝೠ೐ಿ೐೒ೌ೟೔ೡ೐(೅ಿ)శಷೌ೗ೞ೐ು೚ೞ೔೟೔ೡ೐(ಷು)     (5.2) 

5.1.3 Positive Predictive Value 

It is the percentage of patients with a positive test who actually have the 

disease (Raul et al., 2008). How likely is someone with a positive test result to 
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actually have the characteristic? Positive predictive value can be calculated using the 

Formula 5.3 below. 

݁ݑ݈ܽݒ	݁ݒ݅ݐܿ݅݀݁ݎ݌	݁ݒ݅ݐ݅ݏ݋ܲ = ೅ೝೠ೐ು೚ೞ೔೟೔ೡ೐(೅ು)
೅ೝೠ೐ು೚ೞ೔೟೔ೡ೐(೅ು)శಷೌ೗ೞ೐ು೚ೞ೔೟೔ೡ೐(ಷು)    (5.3) 

5.1.4 Negative Predictive Value 

It is the percentage of patients with a negative test who do not have the 

disease (Raul et al., 2008). How likely is someone with a negative test result to 

actually not have the characteristics? Negative predictive value can be calculated 

using the Formula 5.4 below. 

݁ݑ݈ܽݒ	݁ݒ݅ݐܿ݅݀݁ݎ݌	݁ݒ݅ݐܽ݃݁ܰ = ೅ೝೠ೐ಿ೐೒ೌ೟೔ೡ೐(೅ಿ)
೅ೝೠ೐ಿ೐೒ೌ೟೔ೡ೐(೅ಿ)శಷೌ೗ೞ೐ಿ೐೒ೌ೟೔ೡ೐(ಷಿ)    (5.4) 

5.1.5 Accuracy 

Accuracy or efficiency is the percentage of test results correctly identified by 

the test. Accuracy can be calculated using the formula 5.5 below. 

ݕܿܽݎݑܿܿܣ = ்௥௨௘	௉௢௦௜௧௜௩௘(்௉)ା்௥௨௘	ே௘௚௔௧௜௩௘(்ே)
்௉ା்ேାி௉ାிே

	      (5.5) 

Note that, the PPV and NPV are not intrinsic to the test, they depends on the 
prevalence of the characteristic in a given population (Wikipedia and Wikihow, 
2014). 

5.2 Performance Analysis of Equivalent R-T Interval Features 

ECG Data obtained from MIT-BIH database were pre-processed, QRS 

complexes were detected and 200 samples between R-R intervals which is equivalent 

R-T interval were extracted as feature values representing ECG classes. After all 

these steps four different network structures are trained with training data, training 

performances were recorded and finally they were all tested with testing data and 

testing performances were recorded for result analysis and discussions. 

5.2.1 Performance with reduced number of ECG beats samples 

Below are the results for the algorithms developed to detect and classify 3 

types of ECG signal beats including normal beats (N), right bundle branch block 

beats (R), and paced beats (P) using Pan Tompkins algorithm for QRS detection and 
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features extraction. Six and two ECG record samples were used for each beat 

resulting in 1189 and 413 features for training and testing respectively. 

Table 5.1: Performance of R-T interval features with reduced samples (413 patterns) 

Hidden layer Correct recognized patterns Recognition rate (%) 

7 400 96.85 

10 401 97.09 

15 402 97.34 

20 397 96.13 

 

From the table above, four different networks were designed with different 

number of hidden layer and the result for testing samples were depicted based on 

recognition rates while as we can see from the results and figure 5.1 below, a network 

which has the architecture 200:15:3 showed the best results during its best training and 

testing run with testing recognition rate of 97.54%. 

These results can change with each run of the program because with each 

new run program starts training the networks again with different random weights 

and the testing rates may change due to different final training weights obtained in 

each training. So the training and testing recognition rates may vary from run to run. 

However, in this result and the subsequent ones, confusion matrix of test network at 

its best run can be used in evaluating performance measures of the system as it’s 

shown below for the above network. 

 

 Figure 5.1: Best Run Network for reduced R-T interval samples 
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Figure 5.2: Test Data Confusion Matrix for reduced R-T interval samples 

 

Table 5.2 shows the parameters after extraction from the Figure 5.2. Column 1 

is set for Normal samples; Column 2 is set for Rbbb samples, while Column 3 for 

Paced beat samples respectively. Green box in each column shows the True Positive 

value. The other two red boxes in each column indicate the False Negative value 

while the other two red boxes in each row will give the False Positive value. True 

Negative value is the other 4 box that are not included in all those criteria at certain 

time. Final blue box gives a recognition rate of the system. 

Table 5.2: Extracted parameters from figure 5.2 

 

  

 

 

                   

 

 

ECG Class beat TP FN FP TN 

Normal 137 0 3 273 

Rbbb 130 4 7 272 

Paced 135 7 1 270 
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Table 5.3: Performance measures for reduced R-T interval samples 

 

 

 

 

 

From the above tables and figures, the average sensitivity and specificity, 

PPV, NPV and accuracy of the system is 97.36%, 98.86%, 97.33, 98.67 and 98.22 

respectively. While network performance parameters at its best run were shown in 

figure 5.1 and 5.2. 

5.2.2 Performance of DWT with reduced number of ECG beats 

In order to increase the classification accuracy of the system, the equivalent 

R-T interval features were decomposed using DWT and statistical features were 

extracted and used for classification. The performance of discrete wavelet 

decomposition and statistical features for reduce number of ECG beats is shown 

below. Different wavelet families were chosen for the decomposition in order to find 

the most effective among the families. 

Table 5.4: DWT features performance for reduced number of samples 

Hidden Layer=15 

Wavelet Name Correct recognized patterns Recognition rates (%)   

Db2 347 84.02 

Db4 411 99.76 

Db7 409 99.03 

Db10 411 99.52 

Bior1.5 351 84.99 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
value 

Negative 
Predictive 
value 

Accuracy 
(Efficiency) 

Normal 100 98.91 97.85 100 99.27 
Rbbb 97.01 97.49 94.89 98.55 97.34 
Paced 95.07 99.63 99.26 97.47 98.06 
Average 97.36 98.68 97.33 98.67 98.22 
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Bior2.6 392 94.92 

Bior3.7 412 99.52 

Bior6.8 408 98.79 

Coif2 409 99.03 

Coif5 411 99.76 

Sym5 410 99.27 

Sym8 410 99.27 

 

From the results above, it is clearly shown that there is an improvement when 

using a hybrid system that is combining time domain, time-frequency domain and 

statistical features. The feature vector includes 200 samples extracted between R-R 

interval as equivalent R-T interval, they were decomposed using DWT and statistical 

parameters such as mean, median, maximum etc were calculated from 12-level 

decomposition. The final size of the feature vector is 77x1189 and 77x413 for 

training and testing respectively. Among DWT families family Db4 and coif5 shows 

better performance with a recognition rate of 99.76%. The best run network 

performance is shown below. 

 

Figure 5.3: Best Run Network for DWT features with reduced samples 
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Figure 5.4: Test Data Confusion Matrix for DWT with reduced samples 

 

The performance of the system in terms of performance measures was 

calculated and tabulated as shown below. 

Table 5.5: Extracted parameters from figure 5.4 

 

 

 

 

 

 

 

 

ECG Class beat TP FN FP TN 

Normal 137 0 0 276 

Rbbb 133 1 0 279 

Paced 142 0 1 270 
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    Table 5.6: Performance measures for DWT with reduced samples 

 

 

 

  

 

Based on the results obtained from the above table, all the performance 

measures of the proposed system are approximately 100% which shows how well 

and good the system performed in classifying ECG beats from normal to 

arrhythmias. 

5.3. Performance Analysis of Larger Number of Samples and ECG Beats 

Since the performance of a system for reduced number of samples and ECG 

class beats is almost 100%, therefore, we increased the number of samples from 1188 

to 1937 and 413 to 807 for training and testing respectively. Also the number of ECG 

class beats was increased from three to four, which are Normal, Rbbb, Paced and 

Lbbb.  Therefore, it is believed that expanding the overall data set would be more 

realistic and introduces a more challenging problem due to significant variation in 

ECG morphology among different patients. 

5.3.1 Performance analysis of equivalent R-T interval features 

The performance of each R-T interval features with increased number of 

samples for different network is shown in table 5.7 below. The feature vector size is 

200x1937 for training and 200x807 for testing. 

Table 5.7: Performance of R-T interval features with large samples 

 
Hidden layer Correct recognized patterns Recognition rate (%) 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 100 100 100 100 100 
Rbbb 99.25 100 100 99.64 99.76 
Paced 100 99.63 99.30 100 99.76 
Average 99.75 99.88 99.77 99.88 99.84 
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7 698 86.49 

10 700 86.74 

15 713 88.35 

20 699 86.62 

 

 

Figure 5.5: Best Run Network for R-T interval features with large samples 

 

 

Figure 5.6: Test Data Confusion Matrix for R-T interval with large samples 
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Table 5.8: Extracted parameters from figure 5.6 

   

 

 

 

 

Table 5.9: Performance measures for R-T interval with large samples 

 

 

 

 

 

 

The results above shows the decrease in performance of the system when the number 

of samples and ECG class beat was increased, the result shows 89.61% sensitivity, 

96.06% specificity  and 94.18% accuracy which indicates low percentage in 

classifying correct ECG class beat as seen from sensitivity of normal class beat 

which is 64.86%. Therefore, we need to develop and investigate other methods and 

system for robust and efficient feature extraction and classification. 

5.3.2 Performance of DWT with Large Number of Samples and ECG 
Beats 

In order to improve the classification accuracy we need to search for a 

reliable and efficient ECG features extraction technique, therefore the R-T interval 

features were decomposed using DWT decomposition as explained before. After the 

decomposition statistical features were extracted and used as features for ECG 

classification which result in a hybrid method of future extraction and classification.  

ECG Class beat TP FN FP TN 

Normal 144 78 1 584 

Rbbb 180 2 11 614 

Paced 182 3 9 613 

Lbbb 207 11 73 516 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 64.86 99.83 99.31 88.22 90.21 
Rbbb 98.90 98.24 94.24 99.68 98.39 
Paced 98.38 98.55 95.29 99.51 98.51 
Lbbb 94.95 87.61 73.93 97.91 89.59 
Average 89.27 96.06 90.69 96.33 94.18 
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Below is the performance of DWT decomposition of equivalent R-T interval 

extracted after Pan-Tompkins algorithm. The statistical parameters were calculated 

after the decomposition and features extracted. 

Table 5.10: DWT features performance for large number of samples 

Hidden Layer=15 

Wavelet Name Correct recognized patterns Recognition rates (%)   

Db2 714 88.48 

Db4 768 95.17 

Db7 683 84.63 

Db10 718 88.97 

Bior1.5 703 87.11 

Bior2.6 743 92.07 

Bior3.7 760 94.18 

Bior6.8 708 87.73 

Coif2 706 87.48 

Coif5 762 94.42 

Sym5 747 92.57 

Sym8 724 89.71 

 

 

 

Figure 5.7: Best Run Network for DWT features with large samples 
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Figure 5.8: Test Data Confusion Matrix for DWT with large samples 

 

Table 5.11: Extracted parameters from figure 5.8 

 

 

 

 

 

                             Table 5.12: Performance measures for DWT with large samples 

 

 

 

 

 

ECG Class beat TP FN FP TN 

Normal 204 18 6 579 

Rbbb 179 3 11 614 

Paced 183 2 4 618 

Lbbb 202 16 18 571 

ECG Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 91.89 98.97 97.14 96.98 97.03 
Rbbb 98.35 98.24 94.21 99.51 98.27 
Paced 98.92 99.36 97.86 99.68 99.27 
Lbbb 92.66 96.94 91.82 97.27 95.79 
Average 95.46 98.38 95.26 98.36 97.59 
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From the above results it is clearly seen an improvement when compared with 

classification using R-T interval features alone as the average sensitivity is now 

around 95.46% while average specificity around 98.80%. This improvement can be 

traced due to high sensitivity for normal ECG class which is 91.89% against 64.86% 

when using R-T interval features only. However, though there is an improvement 

when using DWT and statistical features there is still need to address the challenges 

of classifying ECG classes accurately due to a minutes morphological parameter 

values, significant variation in ECG morphological information and presence of 

noise. Therefore, another method was developed based on Stationary wavelet 

transform for extracting another set of time-frequency and a statistical feature for 

better and successful classification and diagnostic of ECG beats. 

5.4 Performance of SWT with Large Number of Samples 

Below is the performance of SWT decomposition of equivalent R-T interval 

extracted after Pan-Tompkins algorithm. The statistical parameters were calculated 

after the decomposition using different wavelets, features extracted for classification 

using ANN and db4 was used in evaluating system performance indices. 

    Table 5.13: SWT features performance for large number of samples 

Hidden Layer=15 

Wavelet Name Correct recognized patterns Recognition rates (%)   

Db2 728 90.21 

Db4 780 96.65 

Db7 743 92.07 

Db10 765 94.79 

Bior1.5 724 89.71 

Bior2.6 764 94.67 

Bior3.7 721 89.31 

Bior6.8 743 92.07 

Coif2 759 94.05 

Coif5 735 91.08 

Sym5 769 95.29 

Sym8 778 96.41 
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Figure 5.9: Best Run Network for SWT features with large samples 

 

 

Figure 5.10: Test Data Confusion Matrix for SWT with large samples 

 

Table 5.14: Extracted parameters from figure 5.10 

 

 

 

 

ECG Class beat TP FN FP TN 

Normal 217 5 3 582 

Rbbb 174 8 11 614 

Paced 183 2 4 618 

Lbbb 206 12 9 580 
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Table 5.15: Performance measures for SWT with large samples 

 

 

 

 

 

By using SWT to decompose the R-T interval features and extracting a new set 

of features based on statistical parameters the performance of this proposed system 

was successful in terms of classifying ECG class beats. The average sensitivity of the 

system is 96.44% while average specificity is 98.89% against 95.86% and 98.80 for 

DWT. Also, the most interesting point to note in using SWT features is that while in 

DWT features few of the wavelet families like Db4, coif5 and sym5 shows higher 

number of recognition rates, in SWT many of the wavelet families indicates a great 

improvement with higher values of recognition greater than 90%, for example, Db2, 

bior6.8, coif2 and sym8 has a recognition rate of 88.48%, 87.73, 87.48 and 89.71% 

respectively. While for SWT features the classification recognition rate for the above 

wavelet families is 90.21%, 92.07%, 94.05% and 96.41% respectively. 

5.5 Performance of Combined R-R-time Interval and R-T Interval 

Another feature comprises of R-R time interval and R peak amplitudes were 

extracted from QRS detection using Pan-Tompkins algorithm and then combined 

with equivalent R-T interval of 200 samples extracted also from the same algorithm. 

After calculating the difference between R-peak time interval and R-peak amplitude 

and then combined with already 200 samples of R-T interval, the size of feature 

vector becomes 202x1937 and 202x 807 for training and testing respectively. The 

performance of the combined features was shown below: 

 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 97.75 99.49 98.64 99.15 99.01 
Rbbb 95.60 98.24 94.05 98.71 97.65 
Paced 98.92 99.36 97.86 99.68 99.26 
Lbbb 94.50 98.47 95.81 97.97 97.40 
Average 96.69 98.89 96.59 98.88 98.33 
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Table 5.16: Performance of combined R-R time and R-T features with large samples 

Hidden layer Correct recognized patterns Recognition rate (%) 

7 691 85.63 

10 698 86.49 

15 704 87.24 

20 697 86.37 

 

 

Figure 5.11: Best Run Network for combined R-R time and R-T features with large samples 

 

Figure 5.12: Test Data Confusion Matrix for combined R-R time and R-T interval      with large samples 
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Table 5.17: Extracted parameters from figure 5.12 

 

 

 

 

Table 5.18: Performance measures for combine R-R time and R-T interval with large samples 

 

 

 

 

 

After calculating R-R time intervals and R-peak amplitudes they were 

combined with R-T intervals samples as a new feature for classification, from the 

results above in tables and figures the performance of this system is low when 

compares with all other systems developed in this thesis. 

5.5.1 Performance of Combined R-R Time and R-T Intervals with DWT  

As done previously, the combined features from R-R time intervals and R-T 

intervals were decomposed using DWT and statistical features were calculated and 

extracted. The size of feature vector after calculating mean, median, standard 

deviation etc is 77x1937 for training and 77x807 for testing. The performance of this 

system is shown in table 5.19 below. 

Table 5.19: R-R time and R-T with DWT features performance for large number of samples 

ECG Class beat TP FN FP TN 

Normal 144 78 6 579 

Rbbb 179 3 62 563 

Paced 183 2 15 607 

Lbbb 198 20 20 569 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 64.87 98.97 96.00 88.13 89.59 
Rbbb 98.35 90.08 74.27 99.47 91.95 
Paced 98.92 97.59 92.42 99.67 97.89 
Lbbb 90.83 96.60 90.83 96.60 95.04 
Average 88.24 95.81 88.74 95.97 93.62 

Hidden Layer=15 

Wavelet Name Correct recognized patterns Recognition rates (%)   

Db2 578 71.62 

Db4 481 59.60 
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Figure 5.13: Best Run Network for combined R-R time and R-T features with DWT 

 

 

 

Db7 577 71.49 

Db10 692 85.5 

Bior1.5 576 71.38 

Bior2.6 627 77.69 

Bior3.7 584 72.37 

Bior6.8 381 47.21 

Coif2 412 51.05 

Coif5 640 79.31 

Sym5 549 68.03 

Sym8 495 61.34 



97 
 

 

Figure 5.14: Test Data Confusion Matrix for combined R-R time and R-T interval with DWT 

 

Table 5.20: Extracted parameters from figure 5.14 

 

 

 

 

 

Table 5.21: Performance measures for combine R-R time and R-T interval with   DWT 

 

 

 

 

 

 

 

 

ECG Class 
beat 

TP FN FP TN 

Normal 198 24 46 539 

Rbbb 175 7 15 610 

Paced 159 26 16 606 

Lbbb 158 60 40 549 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

Accuracy 
(%) 

Normal 89.19 92.14 81.15 95.74 91.33 
Rbbb 96.15 97.60 72.11 98.87 97.27 
Paced 85.95 97.43 90.86 95.89 94.80 
Lbbb 72.48 93.21 79.80 90.15 87.61 
Average 85.94 95.10 85.98 95.16 92.75 
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5.6 Performance of SWT Entropy 

In this case, equivalent R-T interval features extracted from between R-R 

interval after QRS detection using Pan-Tompkins algorithm as 256x1937 were 

decomposed using SWT and then statistical parameters were calculated as before. 

The difference in this case is we have calculated separately time and frequency 

entropy with statistical mean, median, standard deviation etc and formed a feature 

vector of 63x1937 and 63x807 for training and testing respectively. 

                            Table 5.22: Frequency Entropy features performance for large number of samples 

 

 

 

 

 

 

 

 

 

 

 

Hidden Layer=15 

Wavelet Name Correct recognized patterns Recognition rates (%)   

Db2 746 92.44 

Db4 750 92.94 

Db7 762 94.42 

Db10 738 91.45 

Bior1.5 695 86.12 

Bior2.6 741 91.82 

Bior3.7 682 84.51 

Bior6.8 747 92.57 

Coif2 764 94.67 

Coif5 734 90.95 

Sym5 756 93.68 

Sym8 771 95.54 
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Figure 5.15: Best Run Network for Frequency Entropy using SWT 

 

Figure 5.16: Test Data Confusion matrix for Frequency Entropy 

                        Table 5.23: Extracted parameters from figure 5.16             

   

 

 

 

 

ECG Class beat TP FN FP TN 

Normal 212 10 4 581 

Rbbb 176 6 16 609 

Paced 179 6 9 613 

Lbbb 204 14 7 582 
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Table 5.24: Performance measures of frequency Entropy with large number of     samples 

 

 

 

 

 

 

 

 

    

 

 

Figure 5.17: Best Run Network for Time Entropy using SWT 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value 
(%) 

Negative 
Predictive 
Value 
(%) 

Accuracy 
(%) 

Normal 95.50 99.32 98.15 98.31 98.27 
Rbbb 96.70 97.44 91.67 99.02 97.27 
Paced 96.76 98.55 95.21 99.03 98.14 
Lbbb 93.58 98.81 96.68 97.65 97.40 
Average 95.64 98.53 95.43 98.50 97.77 
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Figure 5.18: Test Data Confusion matrix for Time Entropy 

             Table 5.26: Extracted parameters from figure 5.18 

 

 

 

 

 

Table 5.27: Performance measures of Time Entropy features with large number of 
samples 

 

 

 

 

        

 

 

ECG Class beat TP FN FP TN 

Normal 221 1 5 580 
Rbbb 172 10 10 615 
Paced 183 2 5 617 

Lbbb 202 16 9 580 

ECG 
Class 
Beat 

Sensitivity 
(%)  

Specificity 
(%)   

Positive 
Predictive 
Value 
(%) 

Negative 
Predictive 
Value 
(%) 

Accuracy 
(%) 

Normal 95.55 99.15 97.79 99.83 99.26 
Rbbb 94.51 98.40 94.51 98.40 97.52 
Paced 98.92 99.20 97.34 99.68 99.13 
Lbbb 92.67 98.47 95.73 97.32 96.90 
Average 96.41 98.81 96.34 98.81 98.21 



102 
 

        5.7 Comparative Performance Analysis 

Different methods and techniques of ECG feature extraction developed in this 

thesis for the purpose of ECG beats detection and recognition automatically using 

ANN classification was presented below, the result indicates different effects of 

features on the classification. 

Tables below indicate comparative performance analysis of different feature 

extraction and classification techniques developed in this thesis. 

Table 5.28 Comparison between reduced sample and large sample set 

Performance Measures  Reduced Sample Set Large Sample Set 
R-T intervals DWT R-T intervals DWT SWT 

Sensitivity 97.36 99.75 89.27 95.46 96.69 
Specificity 99.68 99.88 96.06 98.38 98.89 
PPV 97.33 99.77 90.69 95.26 96.59 
NPV 98.67 99.88 96.33 98.36 98.88 
Accuracy 98.22 99.84 94.18 97.59 98.33 

 

Table 5.29 Comparison of different methods 

Methods Sensitivity Specificity PPV NPV Accuracy 
R-T intervals 89.27 96.06 90.69 96.33 94.18 
DWT 95.46 98.38 95.26 98.36 97.59 
SWT 96.69 98.89 96.59 98.88 98.33 
 R-T and R-R 88.24 95.81 88.74 95.97 93.62 
DWT with R-R and R-T 85.94 95.10 85.98 95.16 92.75 

 

Table 5.30: Comparison between wavelet families 

 

 

 

 

 

Generally, the performance of the proposed automatic ECG beat detection 

system developed in this thesis was successful and efficient in classifying ECG class 

Wavelet Name DWT SWT 
Recognition rate (%) Recognition rate (%) 

Db4 95.17 96.65 
Db10 88.97 94.79 
Bior6.8 87.73 92.07 
Coif5 94.42 91.08 
Sym8 89.71 96.41 
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beats using a hybrid technique of extracting time domain features, time-frequency 

domain features and statistical features. Based on the results obtained when 

designing different network, the network with 15 numbers of neurons in its hidden 

layer prove to be effective. The performance parameters for best run network in each 

system was depicted on the figures which shows mean square error, gradient and best 

validation as well as number of epoch reached by that particular network. 

Moreover, by decomposition using different wavelet families for both 

discrete wavelet decomposition and its counterpart stationary wavelet decomposition, 

db4 and coif5 shows higher number of recognition rates when compared to other 

families. Also, based on different systems developed in this thesis, SWT with 

statistical features gives higher number of accuracy as shown in the above table. 

Also, feature extraction technique using combined R-R time interval, R-peak 

amplitude and R-T interval with DWT decomposition shows less effective in 

accurate classification of ECG beats. Furthermore, it has been shown that selection 

of a suitable wavelet is critical to the success of classification. 

5.7.1 Comparison between Time and Frequency Wavelet Entropy  

Wavelet time and frequency entropy was calculated using SWT 

decomposition and the comparison between the two was tabulated in table below. 

                                  Table 5.31: Comparison between these two Entropies 

 

 

 

 

 

Based on the results obtained after classification with time and frequency 

entropy algorithm developed in this work, it was shown that time SWT entropy 

performed better with accuracy of 98.21% which states that the shape of the ECG 

wave contains more information than the frequency bands.  

Performance measures Time Entropy Frequency Entropy 
Sensitivity 96.41 95.64 
Specificity 98.81 98.53 
PPV 96.34 95.43 
NPV 98.81 98.50 
Accuracy 98.21 97.77 
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CHAPTER SIX 

WIRELESS ECG ACQUISITION DEVICE 

6.0 Overview 

Heart disease is one of leading cause of death worldwide, even in developed 

countries like USA the disease claims a lot of lives every year as shown in the 

previous chapter. In developing and under developed country where there is no 

sophisticated equipment like that of United States and western countries the number 

is much higher. A need of portable equipment for monitoring and processing of heart 

rhythms as well as to detect ECG arrhythmias would never be over emphasized. My 

experiences of been growing up in a developing country where the rules of the 

healthcare system are very different from that of the western world, most places have 

little to no infrastructure, and there is a lack of basic amenities such as water, food, 

electricity, hospital, reliable source of constant power supply, lack of medical 

equipments and personnel encourages me to focus on the design of a portable, low 

power, and low cost alternative to the sophisticated cardiac monitoring systems that 

are found in most hospitals in the western world which when developed and 

incorporated with automatic beat detection system developed in this thesis would be 

easy to operate, easy to transport and would be used to monitor admitted patients in 

these areas; patients who unfortunately can’t afford the luxury of accommodation in 

the few well equipped hospitals that exist in their locale as well as ease clinicians and 

doctors work.  

This chapter discusses the design of wireless ECG acquisition device using a 

low cost ECG analog front end with low power msp430 microcontroller set from 

Texas Instrument by exploiting the features of ez430-rf2500 development tool that 

has CC2500 low-power wireless RF transceivers which are suitable for low-power, 

low-cost wireless applications. 
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6.1 ECG Hardware Acquisition Module 

ECG signal has some basic and essential electrical characteristics that need to 

be considered in design and development of its hardware acquisition module for its 

collection from a patient. ECG is a non-stationary signal with amplitude of ±3mV 

maximum and Most of the clinically significant information in ECG is found in the 

spectral band 0–100 Hz (Rajarshi et al., 2014). 

During ECG recording, there are other unwanted signals that are collectively 

called ‘artifacts’ which contaminated the desired ECG signal, some of these are 

generated within the human body (Physiological of origin) while others are external 

to the body (non-physiological). Below are some of these artifacts and their sources. 

1. Electromyography (EMG) noise: these are noise due to muscular activity like 

coughing, breathing, or squirming of the patient. The amplitude and frequency band 

of this signal is 0.1–1 mV and 5 Hz–1 kHz respectively, are partly overlapping with 

ECG signal. EMG noise and it may completely destroy the signal based analysis if 

proper care was not taken. 

2. Power Line interference (PLI): A 50/60 ± 0.2 Hz current flows through the lead 

wires can get mixed with our signal of interest from the lead wires of neighboring 

cables as a result of capacitive coupling of ECG lead wires. 

3. Electrode pop or contact noise: Sometimes when there is loss of contact between 

the patient body and ECG electrodes the output of amplifier may be temporarily 

saturated for a certain period of time. 

4. Baseline wander: The respiration of the patient during ECG recording causes the 

ECG to oscillate at a very low frequency of 0.15 and 0.3HZ by changing the 

impedance between heart muscle and electrode. 

5. Motion Artifacts: A patient movement or improper preparation of the skin can 

cause an overlap with ECG signal spectrum in the range of 1-10Hz. 
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6. Electrosurgical noise: In a clinical setup, there are number of neighboring medical 

equipments that generate noise at frequencies between 100 kHz and 1 MHz. 

7. Amplifier noise: Amplifier generates two types of unwanted signals; that is Noise 

and drift which contaminate ECG signal during measurement. Noise has a spectral 

component above 0.1Hz while drifts generally refer to slow changes in the baseline 

frequencies below 0.1Hz. 

We can minimize those artifacts by suitable clinical setup and design; however, 

using hardware to eliminate them altogether is almost impossible. Therefore, many 

software computational techniques for denoising digitized ECG are available now a 

day. 

Generally, ECG wireless acquisition device consist of ECG electrode sensor, 

analog front end circuit which comprise of Instrumentation amplifier and filters for 

amplification and denoising respectively, low power microcontroller for timing, 

sampling, conversion and processing of the signal for transmission, CC2500 for 

wireless transmission. At the receiver part, CC2500 used to receive the incoming RF 

signal, low power microcontroller process the signal and send it to personal computer 

for visualization and further processing. 

Below is the general block diagram of wireless ECG acquisition module 

 

 

 

 

 

 

 

ECG SENSOR 

(ELECTRODES) 
ANALOG 
FRONT END 

 

END DEVICE 
MSP430F2274 
 

END DEVICE 
CC2500 

 

ACCESS POINT 
CC2500 

ACCESS POINT 
MSP430F2274 

PC 

 Figure 6.1: General block diagram of wireless ECG acquisition module 



107 
 

6.2 Analog Front End Design 

ECG Analog front end consist of instrumentation amplifier, operational 
amplifier, low pass and high pass filters. 

6.2.1 Instrumentation amplifier 

ECG signal has an amplitude of approximately 1mV peak-peak, detecting this 

low frequency low magnitude signal is a serious problem because of  the noise 

signals picked up by human body as described above. Therefore, a device with low 

cutoff frequency and high gain is required for signal conditioning, conversion and 

processing. The instrumentation amplifier used in this system is AD620 it is low cost 

device with high accuracy that requires only one external resistor to set gains of 1-

10,000. It has a common mode rejection ratio (CMRR) specification of 100dB at 

G=10 up to 100 kHz at G=100, quiescent current of 490 μA, and shutdown current 

levels less than 1 μA. It can operate to a minimum supply voltage of 2.3V. 

Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller 

than discrete designs and offers lower power (only 1.3 mA max supply current), 

making it a good fit for battery-powered, portable (or remote) applications as well as 

suitable for medical application like ECG which cancel out the common mode signal 

from a conductive pad and amplifies the input differential ECG signal(AD620, 

2011). 

 

Figure 6.2: AD620 pinsout(AD620, 2011) 

AD620 is the resistor gain programmable by RG 

Where RG is the gain resistor 
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From the data sheet, ܴீ =
ସଽ.ସ௞ஐ
ீିଵ

       (6.1) 

Where G is the gain 

ܴீ  Was calculated as 2.2kΩ 

 

Figure 6.3: AD620 Instrumentation amplifier 

  The gain for the second amplifier which is op-amp amplifier CA3140 is calculated as 

݊݅ܽܩ = ோమ
ோభ

          (6.2) 

݊݅ܽܩ = ଵெஐ
ଶ.ଶ௞ஐ

	 = 454			        (6.3) 

Also in-between amplification steps Low and high pass filtering are performed and 

during the second amplification step, and then after amplification  a bank of three 

low-pass filters follows to remove additional 60 Hz noise. 

U1

AD620AR

3

2

6

7 1 8

54

R1

2.2kΩ

C1

1µF

R3
1MΩ

R2

2.2kΩ

R4
15kΩ

R5
15kΩ

GND

GND

VCC
5V

VCC
5V

ELECTRODES

HDR2X3



109 
 

 

Figure6.4: CA3140 Op-Amp and filters connection 

 

6.3 eZ430-RF2500 Wireless Development Module 

The eZ430-RF2500 is one of the excellent product from Texas Instrument 

which provides all the hardware and software required for a complete MSP430 

wireless development tool by combining MSP430F2274 microcontroller and 

CC2500 2.4-GHz wireless transceiver with their features. There are two target boards 

included in the kit, end device and access point. End device transmits wirelessly the 

information collected from sensor like ECG electrodes to the access point, while a 

gateway that is connected via USB to the computer is called access point. 

EZ430-RF2500 has a unique feature of using USB debugging interface which 

allow users to conveniently debug each target board. Also it may be used as a 

standalone device with or without external sensors, or may be incorporated into an 

existing design. For development purposes, each end and access point has 18 

available development pins that can be technically altered to suit different 

development purposes as shown in table 6.1 and 6.2 below. 
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Figure 6.5: eZ430-RF2500 Access point and USB debugging interface(Slauu227e, 2009) 

 

 

Figure 6.6: eZ430-RF2500 End device Battery Board (Slauu227e, 2009) 

 

   6.4 SimpliciTI Network Protocol 

In this thesis eZ430-RF2500 is using SimpliciTI wireless network protocol 

developed by Texas Instrument targeting simple and small radio frequency (RF) 

networks for easy implementation with minimal microcontroller resource 

requirement. This feature makes it suitable for low cost and low power RF networks. 
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    Table 6.1: eZ430-RF2500T Target Board Pinouts (SLAU227E, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Battery Board Pinouts (SLAU227E, 2009) 

 

 

 

 

 

 

 

6.5 Software Design 

When ECG signal was received from ECG analog front end by end device 
target board, MSP430F2274 will sample the signal using ADC10 analog to digital 
converter implemented in the microcontroller after initializing the board, timers and 
oscillator. The device starts searching for access point to connect, during searching 
green and red leds toggle on/off. When it discovers the access point the red led flash 
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to indicate the link attempt, once connected all leds are turned off and sampled ECG 
signal will be send to the access point. End device default is low power mode 3 
(LPM3) and wakes up once to sample ECG signal and send it to access point as 
shown in Figure 6.7 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the access point side as shown in Figure 6.8 below, after initializing the 

board, timers and oscillator it listen for end device to join and for packages that have 

already joined from end device. There are two leds that notifies transaction between 

two boards in the network; green led indicates packet received from end device while 

red led indicates transmission to the computer. Access point sends ECG signal 

through application of Universal Asynchronous Receiver Transmitter (UART) to a 

computer com port for visualization using a Matlab environment or graphical user 

interface. 

 

 

 

Figure 6.7: End device software flowchart 
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In this thesis IAR Embedded Workbench Integrated Development Environment 

(IDE) was used by eZ430-RF2500 to write, download, and debug the application. 

The debugger is unobtrusive, allowing the user to run an application at full speed 

Figure 6.8: Access point program flowchart 
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with both hardware breakpoints and single stepping available while consuming no 

extra hardware resources (SLAU227E, 2009). 

 

6.6 Result 

 

 

Figure 6.9: First ECG result via an oscilloscope 

 

 

Figure 6.10: complete setup of ECG analog front end 
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Figure 6.11: Full set up with eZ430-RF2500 wireless development tool 

Matlab environment was used in this work for visualizing the ECG signal 
through one of the PC com. 
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CHAPTER SEVEN 

CONCLUSIONS 

6.1 Summary 

This thesis is an endeavor to address and gives solutions to various challenges 

associated with ECG acquisition and automatic beat classification system. The 

system includes both hardware and software in order to reduce an existing gap in 

health care environment by proposing low cost, easy to use and simpler method of 

wireless acquisition system and automatic ECG beat classification using a hybrid 

technique which is capable of classifying four ECG beats with higher number of 

samples successfully. 

One of the most important steps in ECG analysis is denoising and QRS 

detection; that is removing unwanted signal or artifacts that contaminate the signal 

during recording. In this thesis work a well known and acceptable algorithm 

developed by Pan and Tompkins was used to remove noise and detect QRS complex 

correctly. After detecting R-peaks, different methods were proposed for feature 

extraction and classification. Equivalent R-T interval was extracted as 200 samples 

between two successive R-peaks and then decomposed using DWT and SWT with 

statistical parameters calculated in each case as a new features. It was concluded that 

the method proposed in this thesis as hybrid technique proved to be effective by 

extracting time domain, time frequency domain and statistical features in which 

while equivalent R-T interval features gives average sensitivity of 97.36% and 

89.27% with average accuracy of 98.22% and 94.18%, the DWT with statistical 

features gives average sensitivity of 99.75% and 95.46% with average accuracy of 

99.84 and 97.59% for reduced and large number of samples respectively. However, 

an improvement was recorded when employing SWT for wavelet decomposition 

using large number of samples with average sensitivity and average accuracy of 

96.69% and 98.33% respectively. 

Moreover, classification was carried out using neural network back 

propagation algorithm where among different network design in this thesis a network 
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of 15 numbers of hidden neurons found to yields more effective than 7, 10, and 20. 

Another comparative performance was carried out between wavelet time and 

frequency entropy using SWT in which time entropy shows a slight improvement of 

average accuracy of 98.21% against frequency entropy of 97.77% which indicates 

that the shape of ECG wave contains more information than the frequency bands. 

Also, among different wavelet families tested in this work, it was concluded that 

selection a wavelet type is an important factor in determining the success of 

classification with db4, coif5 and sym8 shows a better performance. 

This thesis also explore the features of Texas Instrument low power and low 

cost development tool by designing ECG analog front end with eZ430-RF2500 for 

simple solution of wireless ECG acquisition and transmission which when 

implemented will provide a greater solution of low cost, easy to use and simple 

wireless sensor network. 

Finally, among different methods developed in this thesis, SWT with statistical 

features shows better result and R-R time interval with amplitude shows less 

performance. 

6.2 Future Works 

With rapid development in technological advancement and computer 

intelligence, automatic ECG beats detection system is an important tool used in 

health care community however, based on some observations made throughout this 

thesis; recommendations can be made for further improvement and implementation. 

1. A possible research investigation into other hybrid techniques is recommended for 

finding more robust feature extraction technique. 

2. Investigate other classifiers apart from neural network and also different types of 

neural network algorithms. 

3. Wavelet selection is critical on the performance of classifiers; therefore there is a 

need for further research and analysis in selecting a suitable wavelet. 

4. Real time patient data acquisition, preprocessing and classification need to be studied 

further by implementing and incorporating low cost wireless acquisition system with 
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automatic ECG beat detection system in hardware format and other programming 

language like C code. 
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APPENDICES 

APPENDIX A: Matlab and C Codes 

The detailed Matlab and C codes used in this thesis work are in the attached DVD. 
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Appendix B: Data Sheet Samples 
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Appendix C: ECG Analog Front End Complete Circuit Diagram 
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