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ABSTRACT
AUTOMATIC ELECTROCARDIOGRAM (ECG) BEAT CLASSIFICATION
SYSTEM USING HYBRID TECHNIQUE
Sani SAMINU
MSc in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Nalan OZKURT
June 2014

Heart is one of the critical organs in the human body. Electrocardiography (ECG)
signal is a bioelectrical signal which record the electrical activity of the heart, it is a
technique used primarily as a diagnostic tool for various cardiac diseases by
providing necessary information on the electrophysiology and changes that may
occur in the heart. To reduce mortality rate associated with cardiac diseases, early
detection of these diseases is of paramount important. In this thesis, automated ECG
beat detection system using a hybrid technique has been proposed for classifying
four ECG beats as normal, right bundle branch block (Rbbb), paced beat and left
bundle branch block (Lbbb) using the signals from Massachusetts Institute of
Technology Beth Israel Hospital (MIT-BIH) arrhythmia database and processed using
signal processing toolbox, wavelet toolbox and neural network toolbox found in Matlab
2013 environment.

In the preprocessing and QRS detection stage, a well known and acceptable Pan-
Tompkins algorithm has been used to remove noise and detect R-peaks. Equivalent R-T
interval samples between R-R intervals have been extracted as a time domain features,
these features have been decomposed using discrete wavelet transform (DWT) and
stationary wavelet transform (SWT) as time-frequency features, statistical parameters
have been calculated as mean, median, standard deviation, maximum, minimum, energy
and entropy using time-frequency features and classification has been performed using
neural network. The hybrid method gives a promising result as equivalent R-T interval
features gives average accuracy of 98.22% and 94.18%, the DWT with statistical
features gives average accuracy of 99.84% and 97.59% for reduced and large number of
samples respectively. However, an improvement was recorded when employing SWT
for wavelet decomposition using large number of samples with average accuracy of
98.33%. Also comparative performance has been carried out between different wavelet
families in which db4, coif5 and sym8 give higher performance. Wavelet time and
frequency entropy using SWT have been calculated as a new feature; based on the
classification results wavelet time entropy gives average accuracy of 98.21% against
frequency entropy of 97.77%. Based on the comparative analysis among all the
proposed methods combined SWT with statistical features gives higher and
satisfactory results.

Keywords: ECG, DWT, SWT, Pan-Tompkins, ECG beat classification



OZET
KARMA BiR TEKNIK KULLANARAK OTOMATIK
ELEKTROKARDIOGRAM VURU SINIFLANDIRMA SiSTEMIi

Sani SAMINU
Elektrik ve Elektronik MiihendisligiYiiksek Lisans

Danisman: Yard.Dog. Dr. Nalan OZKURT
Haziran 2014

Kalp insan viicudundaki kritik organlardan biridir. Elektrokardiografi (EKG) isareti
kalbin elektriksel aktivitesini kaydeden biyoelektrik bir isarettir ve bu teknik kalbin
elektrofizyolojisi ve meydana c¢ikabilecek degisiklikler hakkinda gerekli bilgileri
toplayarak birgok kalp hastalig1 i¢in birincil tani araci olarak kullanilmaktadir. Kalp
hastaliklarindan kaynaklanan 6liim oranini azaltmak igin bu hastaliklarin erken tanisi
biiyiilk 6nem tagimaktadir. Bu tezde, Massachusetts Teknoloji Enstitiisii Beth Israel
Hastanesi (MIT-BIH) ritm bozuklugu veri tabanindan alinan isaretler kullanilarak
EKG vurularin1 normal, sag dal blogu (Rbbb), kalp pili vurusu, sol dal blogu (Lbbb)
olmak tizere dort siifa ayirmak i¢cin Matlab 2013 ortaminda bulunan isaret isleme,
dalgacik donlisimii ve yapay sinir aglar ara¢ kutularmi kullanan karma bir sistem
onerilmektedir.

Onisleme ve QRS kompleksinin sezilmesi asamasinda, giiriiltiiyii azaltmak ve R-
tepelerini tespit etmek amaciyla Pan-Tompkins algoritmast kullanilmistir. Zaman
ortami Oznitelikleri olarak R-R araliklar1 arasindaki R-T esdeger araligi drnekleri
alinmis ve bu Orneklere ayrik dalgacik donlisimi (ADD) ve duragan dalgacik
doniisiimii  (DDD) uygulanarak zaman-frekans Oznitelikleri elde edilmis, bu
bliylikliiklerin ortalama, medyan, standart sapma, en biiyiik, en kiiciik, enerji ve
entropi gibi istatistiksel parametreleri hesaplanarak yapay sinir aglar ile
smiflandirilmistir. Sirasiyla azaltilmis ve genis veri seti icin R-T esdeger aralig
Oznitelikleriicin  %98.22 ve %94.18 ortalama dogruluk elde edilitken, ADD
Oznitelikleri i¢in %99.84 ve%97.59 ortalama dogruluk elde edilmistir. Genis veri
setinde DDD i¢in %98.33 ortalama dogruluk orani ile bir iyilestirme saglanmistir.
Ayrica, farkli dalgacik aileleri arasinda da karsilastirma yapilmis ve db4, coif5 ve
sym8 dalgaciklar i¢in daha yiiksek basarim elde edilmistir. Yeni bir 6znitelik olarak
DDD zaman ve frekans entropisi Onerilmis, %98.21 ile zaman entropisi %97.77
dogruluk oranmi olan frekans entropisinden daha iyi bir sonug¢ vermistir. Tim
Oznitelikler karsilastirildiginda, DDD istatistiksel parametreleri daha iyi sonuglar
vermistir.

Anahtar Kelimeler: EKG, ADD, DDD, Pan-Tompkins, EKG vuru smiflandirma
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CHAPTER ONE
INTRODUCTION

This chapter discusses the general background information about the
principles, benefits and challenges associated with electrocardiogram (ECG)
acquisition, processing and classification. Also this part discusses the general health
issues in ECG analysis especially in terms of wireless acquisition, ECG features
extraction techniques and automatic beats detection system which encourages the
present research. Then a brief review and problem definition from the previous
studies, the research significance, its aim and objectives, scopes of the present works

and thesis outlines are presented.
1.1 Background

Human body consists of different organs that are interconnected together for
proper and efficient body function. Heart is one of the most critical organs in the
human body because it supply blood to different part of the body organs, therefore
there is highly need in the development of methods and systems for monitoring its
functionality. One of the most powerful diagnostic tools in medical application that is
commonly used for the assessment of the functionality of the heart is
Electrocardiography. The ECG is a real-time non-invasive and conventional method
for interpretation of the electrical activity of the heart. By attaching electrodes at
different outer surface of the human skin, electrical cardiac signals can be recorded
by an external device. These currents cause the contractions and relaxations of heart
by stimulating cardiac muscle (Guyton and Hall, 2006) and travel as electrical
signals through the electrodes to the ECG device, which records them as
characteristic waves. Different waves and fiducial points of ECG reflect the activity
of different parts of the heart which generate the respective flow of electrical
currents. Figure 1 shows a schematic representation of a normal ECG and its various

waves.
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Figure 1.1: Normal ECG wave (Murugavel, 2005)

Generally, healthcare is one of the emerging areas of research in this century
and in hospital and health care community, there are considerable commercial
interests in the wireless and automatic classification of the ECG signals. Because
cardiovascular diseases (CDV) remains as the dominant causes of death all over the
world with an estimated of 17.3 million people died from CDV in 2008 which
account to 30% of all global death and 23.6 million people will die from these
diseases by the year 2030 based on the prediction and statistics from World Health
Organization (WHO). Also, according to a recently published (2014) report by Heart
failure Working Group of the Turkish Society of Cardiology (TDK), there are 15
million heart-failure patients in Europe and 6 million in the United States (US), in
Turkey there are 1 million patients suffering from heart failure. With another 2
million people who are at serious risk of this disease and those figures will increase
about two fold within 10 years (Yuksel, 2014). It is very important to detect and
diagnose as early as possible and accurately these cardiac arrhythmias since they
usually cause sudden cardiac death. It is tedious and time consuming to used visual
inspection in ECG analysis even for an expert cardiologist. Therefore, the usage of
computer software to automatically detect the ECG beats and diagnose the ECG
classes as well as simple and low cost acquisition system is cost effective and

significantly improves diagnostic accuracy and patient healing outcomes (Bruce,

1996;Krummen et al., 2010).

In order to address some of the challenges mentioned above, This thesis has
focused on developing cost effective, intelligent and easy-to-use ECG wireless

acquisition and automatic diagnostic system based on a hardware and software that



uses signal processing and search for effective ECG features extraction techniques to
obtain the critical characteristics and useful clinical signatures of ECG waves which
can represents different cardiac conditions and classifying these conditions by using
application of pattern recognition in artificial neural networks. Unification and
implementing of this system in the future will be able to provide patients and doctors
with self diagnosis systems that can be used to minimize mortality rates associated
with CDVs especially in developing and underdeveloped countries where there is
poor doctor to patient ratio, improper health care policies, inadequate of qualified

medical experts and lack of health care equipments.

Figure 1.2 below shows a block diagram of a general process of ECG signal

processing and analysis.

Amplification Conversion

AID

LA

Data
transformation

Noise
suppression

\ J Separation

Diagnose
‘_"_‘_I_’_D‘"_‘ ECG | Arrhythmia ; Wave
interpretation analysis classification

Feature

extraction

Figurel.2: Main phases of ECG signal processing and analysis (Adam and Witold, 2012)

ECG signal processing and analysis comprises a sequence of steps among which the

most essential include

Amplification of signal and its Analog to digital (A/D) conversion
Noise elimination

Feature extraction and selection

Y V V VY

Arrhythmia classification.



The quality of the overall process of acquisition, classification and
interpretation of ECG signals depends on the quality and effectiveness of the
methods used at these steps. Both signal amplification and A/D conversion are
realized in hardware while all filtering and noise elimination are realized through the

use of advanced technologies of information processing.

Different unwanted signals called artifacts heavily affect the recording process.
In addition, the ECG signals collected from different people are heterogeneous,
generally reflected by the variations in the different clinical signatures of the beats.
Hence, computationally intensive preprocessing is required for beat detection and
feature extraction. The most important features include the information lying in the
P, Q, R, S, and T waves of the ECG signal (Wolter, 2011). ECG beats should be
classified based on these features in order to detect different types of CVD. Different

kinds of noises interfere with ECG signals are

Baseline wandering,
Electromyogram (EMG) noise,
Motion artifact,

Power-line interference (PLI), and

YV V V VYV V

Electrode pop or contact noise etc.

After ECG acquisition by suitable electrode, instrumentation amplifiers and
filters, the next step is preprocessing which generally takes care of eliminating or
minimizing the unwanted signal; a process called denoising. Several works have
been reported in the area of ECG denoising. Prior to 1980s noise filtering was based
on digital filters (Hirano et al., 1974), to reduce PLI (Hamilton, 1996) makes a
comparative analysis between adaptive and non-adaptive notch filters. (Tompkins
and Ahlstrom, 1985) implemented an adaptive filtering which was found to be more
effective than non-adaptive counterpart. Long computation time as a result of large
number of multiplication is a common problem in linear phase filtering. (Mneimneh
et al., 2006) proposed a method for baseline removal using adaptive Kalman
technique. Other ECG denoising techniques includes using Principal component

analysis (PCA) and Independent component analysis (ICA) (Chawla, 2011), Neural



network method (Farahabadi et al., 2009) and multi resolution wavelet based analysis

(Pal and Mitra, 2010).

The studies in computerized interpretation of ECG was started with the
introduction of digital computer by Caseres and others (Milliken et al., 1969) was
able to acquire ECG data from a patient using portable machine. Microprocessor
standalone units for automated interpretation were in used in 1970s (Murray, 1982).
Gradient —based algorithm and time domain morphology was presented (Mazomenos
et al, 2012). Also, (Chatterjee et al., 2011) described statistical method of
comparison between relative magnitudes of ECG samples and their time domain
slope. Another classifier based on ECG morphological features was reported in
(Chazal et al.,, 2004) and (Chazal and Reilly, 2006). Wavelet transform finds
application in ECG beats detection and feature extraction as reported in (Li et al.,
1995), (Saxena et al., 2003) and (Martinez et al., 2004). Also, (Mahesh, 2010) used
wavelet and Pan-Tompkins to extract time-frequency features for ECG beat detection
system. In (Marlar and Aung, 2014), they presented classification of normal and
abnormal signal using R-R interval features of ECG waveform. Wavelet entropy
analysis of high resolution ECG signal using continuous wavelet transform (CWT)

and discrete wavelet transform was presented (Natwong et al., 2006).

So far, several techniques such as support vector machines (Martis et al.,
2012), neural networks (Inan et al., 2006), self organizing map (Lagorholm et al.,
2000), hybrid fuzzy neural network (Osowski and Linh, 2001) and probabilistic
neural network (Martis et al., 2013) have been introduced for the ECG beat
classification. The area of automated arrhythmia detection system is still an active
area of research in order to provide high classification accuracy for inter and intra
patient variation cases due to the fact that these machine learning techniques map
new data instances based on the information extracted from the annotated training
data in the learning phase and provide a global classifier that may not be always

accurate for patient-specific cardiac variations.



1.2 Significance of the Study

Information about the behavior of the heart can be extracted from P, QRS, and
T peaks, time domain amplitude and ECG clinical features. Subtle changes in these
peaks and their positions however cannot be clearly deciphered by the naked eye.
The time domain features cannot provide high discrimination among different
normal and abnormal beats. In order to increase the discrimination among classes,
various transform domains need to be used .Various contributions have been made in
literature regarding beat detection and classification of ECG signal. Most of them use
either time or frequency domain representation of the ECG waveforms, on the basis
of which many specific features are defined, allowing the recognition between the
beats belonging to different classes. The most difficult problem faced by today’s
automatic ECG analysis i1s the large variation in the morphologies of ECG
waveforms. Moreover, we have to consider the time constraints as well. Thus our
basic objective is to come up with a simple method having less computational time
without compromising with the efficiency. With this objective in mind, various
techniques of ECG preprocessing, R-peak detection, future extraction, feature
enhancement and classification has been searched and experimented. In this thesis,
R-peak detection of ECG signal is implemented using Pan-Tompkins algorithm and
the features were extracted from time, frequency and statistical domain for a precise
and robust feature extraction and classification. The classification has been done
using neural network back propagation algorithm, taking the features as temporal

features, heart beat interval features and ECG statistical features.
1.3 Aim and Objectives

The main aim of this thesis is to develop a simple and reliable automatic ECG
beat detection and classification system using a hybrid algorithm by combining a
well known Pan Tompkins algorithm with discrete wavelet and stationary wavelet
decomposition combined with statistical parameters in order to increase the accuracy
of detection and classification, the ECG diagnostic system can recognized four ECG
waveforms (Normal, Paced, Rbbb and Lbbb) and classify them accordingly. The

above aim would be achieved through the following objectives



To review the literature on ECG preprocessing, feature extraction, and classification
techniques

To extract morphological features from Pan-Tompkins algorithm as R-T interval
after QRS detection

To apply wavelet transform for extraction of the transform coefficients using DWT
and SWT as well as to search for a suitable wavelet.

To calculate statistical parameters from the DWT and SWT coefficients as a new
feature for classification

To search for other feature extraction methods by looking at other ECG
characteristics like R-R time intervals and R-peak amplitude

To use artificial neural networks for ECG waveform classification

To carry out comparative performance analysis with different methods developed in
order to find a robust and efficient feature extraction and classification technique

To explore the features of eZ430-RF2500 wireless development tool by designing
simple low cost wireless ECG acquisition system

To make suggestions on the feature improvement of the system and the development

of'the system into a real time diagnostic system.

1.4 Organization of the Report

In order to provide a continuous and smooth flow of information about the

whole work, this thesis consists of seven chapters and organized as follows:

Chapter one is an introduction of the project. This chapter discusses the general
research background information, challenges and problems associated with the study
and proposed solution. Thesis significance, aim and objectives were presented.
Chapter two presents the anatomy of human heart, its physiology, ECG leads and
theories of arrhythmias used in the thesis. Chapter three gives a theoretical
background information about wavelet transform including discrete wavelet
transform and stationary wavelet transform, it also discuss a literature of wavelet
entropy and artificial neural networks. Chapter four presents all the methods

developed in realizing the feature sets. Also, it explains the tools used in this thesis



including Matlab toolboxes. Chapter five presents the results of the proposed system,
discussion and comparative analysis. Chapter six gives information on hardware
implementation of wireless ECG acquisition circuit, including background
information, features of the components used, design and the result of the system.
Lastly, chapter seven concludes the research and gives further suggestions and

recommendations for future development and improvement.



CHAPTER TWO
ANATOMY OF THE HEART AND ELECTROCARDIOGRAPHY
2.0 Overview

A main study of this research is to detect abnormal signals generated by the
human heart; hence, a substantial understanding of the source of this signal is
essential. The human heart is at the center of the cardiovascular system, which is
responsible for oxygenating blood and delivering it to different parts of the human
body. Electrodes placed on the body’s surface can detect electrical activity, which
occurs in the heart. The recording of these electrical events comprises an
electrocardiogram. Comparison of the information obtained from electrodes, placed
in different positions on the body, enables electrical activity to be monitored and so
the performance of different areas of cardiac tissue. This chapter commences with a
review of the cardiovascular system and electrophysiology. This is followed by an
examination of the conduction system of the heart, electrocardiogram, ECG leads,
heart problems, and the brief information about the arrhythmias used in this study

with their related literature.
2.1 The Heart Anatomy

The heart contains four chambers that is right atrium, left atrium, right
ventricle, left ventricle and several atrioventricular and sinoatrial node as shown in
Figure 2.1. The two upper chambers are called the left and right atria, while the
lower two chambers are called the left and right ventricles. The atria are attached to
the ventricles by fibrous, non-conductive tissue that keeps the ventricles electrically
isolated from the atria. The right atrium and the right ventricle together form a pump
to circulate blood to the lungs. Oxygen-poor blood is received through large veins
called the superior and inferior vena cava and flows into the right atrium. The right
atrium contracts and forces blood into the right ventricle, stretching the ventricle and
maximizing its pumping (contraction) efficiency. The right ventricle then pumps the

blood to the lungs where the blood is oxygenated. Similarly, the left atrium and the
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left ventricle together form a pump to circulate oxygen-enriched blood received from

the lungs (via the pulmonary veins) to the rest of the body (Acharya re al., 2012).

Inferior
vena cava

Figure 2.1: A full view of Human Heart, with chambers and valves (T.H, 2012)

2.1.1 Heart valves

There are 4 heart valves that dictate the blood flow through the human heart.
The valves are unidirectional to prevent back flow of blood into the atria or
ventricles. The valves open when there is a change of pressure in the chambers. The
valves can be distinguished as two groups, the atrioventricular (AV) and the
semilunar (SL) valves. Atrioventricular (AV) valves are relatively small compared
to the semilunar valves. Their function is to ensure that blood does not flow back into
the atrium from the ventricles during systole, the contraction of the heart. The mitral
valve, in the left chamber, and the tricuspid valve, in the right chamber are
considered as atrioventricular (AV) valves. The Aortic and Pulmonary valve are
considered to be the Semilunar (SL) valves, which prevents blood flowing back from
the arteries into the ventricles during systole. The Aortic valve is located between the
left ventricle and the aorta, as the pulmonary valve is between the right ventricle and

the pulmonary artery (Texas, 2014).
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2.1.2 Circulatory system

A single cardiac cycle is the time between the start of one heartbeat and the
beginning of the next. It, therefore, includes alternating periods of contraction and
relaxation. For each of the heart chambers the cardiac cycle can be divided into two
phases. During contraction, or systole, the chamber contracts and blood is pushed
into an adjacent chamber or arterial trunk. Diastole follows systole. During diastole,
the chamber fills with blood and prepares for the next cardiac cycle. The pressure
within each chamber rises during systole and falls during diastole. The valves help to
ensure that the blood flows in the correct direction. However, blood will only flow
from the first to the second chamber, if the pressure in the first chamber is greater
than that of the second. The correct pressure relationship is dependent on the timing
of contractions. Blood movement would not occur if the atria and ventricle contacted

together.

The heart, like other organs, also requires an adequate supply of oxygen and
nutrients. These are supplied from arterial branches that arise from the ascending
aorta. The flow of blood that supplies the heart tissue itself is called the coronary
circulation. The heart pumps about 380 litres of blood to its own muscle tissue every

day (Molly, 2000).

2.1.3 The Electrical Conduction System of the Heart

During a single heartbeat, the entire heart contracts in a coordinated manner.
Thus blood flows in the right direction at the proper time. Contractile cells, and the
conducting system, are the cardiac muscle cells involved in a normal heartbeat. Gap
junctions connect all heart muscle cells, including the cells of the conduction system,
to each other. These gap junctions make it easier for impulses to spread between
adjacent cells. So, immediately after a heart cell depolarizes, the cells around it
depolarize. In this way, a wave of excitation and contraction spreads over the entire

heart (Wolters, 2011).
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The conduction system of the heart shown in Figure 2.2 consists of the sinoatrial
(SA) node, bundle of His, atrioventricular (AV) node, the bundle branches, and
Purkinje fibers.

The SA node serves as a pacemaker for the heart, and it provides the trigger
signal. It is a small bundle of cells located on the rear wall of the right atrium, just
below the point where superior vena cava is attached. The SA node fires electrical
impulses through the bioelectric mechanism. It is capable of self-excitation (firing on

its own).

When the SA node discharges a pulse, the electrical current spreads across the
atria, causing them to contract. Blood in the atria is forced by the contraction through
the valves to the ventricles. There is a band of specialized tissue between the SA
node and the AV node, however, in which the velocity of propagation is faster than it
is in atrial tissue. This internal conduction pathway carries the signal to the

ventricles.

It would not be desirable for the ventricles to contract in response to an action
potential before the atria are empty of their contents. A delay is needed, therefore, to
prevent such an occurrence; this is the function of the AV node. The action potential
will reach the AV node 30 to 50 ms after the SA node discharges, but another 110 ms
will pass before the pulse is transmitted from the AV node. The AV node operates
like a delay line to retard the advance of the action potential along the internal
electroconduction system toward the ventricles. Conduction into the bundle branches
is rapid, consuming only another 60 ms to reach the furthest Purkinje fibers. The
muscle cells of the ventricles are actually excited by the Purkinje fibers. The action
potential travels along these fibers at a much faster rate, on the order of 2 to 4 m/s.

The fibers are arranged in two bundles, one branch to the left and one to the right.

The normal rhythm of the heart is disturbed if the conducting pathways are
damaged. If the SA or internodal pathways are damaged, the AV node will take over.
The heart will beat at a slower rate. If a conducting cell or ventricular muscle cell

generates an action potential more rapidly than the SA or AV node, then this is called
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an ectopic pacemaker. This will bypass the conducting system and disrupt the timing
of ventricular contraction. This will result in a reduction of the efficiency of the

heart, and may be diagnosed with an electrocardiogram (Molly, 2000).

Sinoatrial Node Left Atrium
(SAN)
HIS Bundle

Left Bundle
Branch (LBB)

Left Posterior
Fascicle (LPS)

Right Atrium

Altrioventricular Node
(AVN)

Right Bundle

Branch (RBEB) Left Ventricle

Left Anterior
" . Fascicle (LAF)
Right Ventricle

Purkinje Fibers
(PF)

Figure 2.2: Conduction system of the heart (T.H., 2012)

2.2 Electrocardiogram

Electrocardiogram (ECG) is a diagnosis tool that reported the electrical activity
of heart recorded by skin electrode. The morphology and heart rate reflects the
cardiac health of human heart beat (Acharya, 2012). It is a noninvasive technique
that means this signal is measured on the surface of human body, which is used in
identification of the heart diseases (Germann, 2002). Any disorder of heart rate or
rhythm, or change in the morphological pattern, is an indication of cardiac
arrhythmia, which could be detected by analysis of the recorded ECG waveform. The
amplitude and duration of the P-QRS-T wave contains useful information about the
nature of disease afflicting the heart. The electrical wave is due to depolarization and
repolarization of Na+ and k ions in the blood. The ECG signal provides the following

information of a human heart (Moss, 1996):

»  heart position and its relative chamber size
» impulse origin and propagation

»  heart rhythm and conduction disturbances
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» extent and location of myocardial ischemia
» changes in electrolyte concentrations

» drug effects on the heart.
2.3 Leads in ECG

There are 3 general types of ECG, the 3-Lead, 5-Lead and 12-Lead, each type

differs in the number of electrodes used and the positioning of the electrodes.

The 3-lead ECG is the most basic type of monitoring, adopting the Einthoven’s
triangle arrangement where 3 electrodes are required. This group of electrodes is
known as limb lead. According to the American Heart Association (AHA), the 3
electrodes are colored: white, black and red, and is labeled as the right-arm (RA), the
left-arm (LA) and the left-limb (LL), respectively. Each electrode has different
electrical polarity; hence, the direction of the current flow has to be addressed for
each lead. The RA electrode has negative polarity and it is physically placed at the
right collarbone area of the subject. The LL electrode has positive polarity and it is
placed at the bottom left area of the ribcage. The LA electrode is negative polarity
when paired with LL and positive polarity when paired with RA; it is physically
placed at the right collarbone area of the subject. RA-LA (lead 1), RA-LL (lead 2)
and LA-LL (lead 3) denotes the 3 lead pairings, each monitors different parts of the

heart, as shown in Figure 2.3.

Table 2.1: types of leads used in ECG monitoring

Standard leads | Limb leads Chest leads

Bipolar leads | Unipolar leads | Unipolar leads

Lead I AVR \"2!
Lead IT AVF V2
Lead III AVL V3

V4
V5

Vo6
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Einthoven leads:
Lead I: records potentials between the left and right arm,
Lead II: between the right arm and left leg, and

Lead III: those between the left arm and left leg

Figure 2.3: (a)The Einthoven Triangle for 3-lead ECG configuration(Klabunde, 2008)
(b)12-lead ECG configuration(Tompkins, 2008)

Another ECG monitoring type is the 5-lead ECG. This method uses the limb
leads (RA, LA and LL) with two additional electrodes lead pairings. The additional
electrodes are the chest lead (V1) and the right-limb (RL). The chest lead (V1)
electrode is colored brown and has negative polarity; it is physically placed at the 4th
interscostal space on right sternal border. Lead V1 captures the best waveform that
can be used reliably to determine between SVT and VT. The right-limb (RL)
electrode is colored green and has positive polarity; it is physically placed on the
opposite side of the left-limb (LL) electrode. Lead RL is used as a complement to
lead V1, to provide positive polarity. The advantages of the 5-lead ECG are that it
provides a more comprehensive electrical view of the heart with additional leads;
another advantage is that it helps to increase detection of an episode in ischemic

monitoring.
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The 12-lead ECG monitoring of the heart is the most comprehensive technique,
it allows the electrical activity of the heart to be observed from three areas, anterior,
interior and lateral. It uses the 3 limb leads (RA, LA, LL) and the 6 chest leads (V1-
6) to acquire the ECG signal. The limb leads are used as bipolar and unipolar leads to
complete 6 orientation of the frontal plane. The chest leads are unipolar and are
placed across the patient mid-chest area; this lead placement captures the horizontal
plane electrical activity of the heart. The placement for 12-lead ECG is shown in
Figure 2.3b. The advantage of the 12-lead ECG is that medical experts can diagnose
more specific arrhythmias with the full observation of the heart from three areas.
Another advantage is that changes in the ECG segments from different lead can help
to locate the cause of the arrhythmia (Fook, 2012).

2.4 ECG waves and interval

Figure 2.4 shows useful clinical signatures of ECG, durations and intervals
commonly used for clinical diagnosis.

P-QRS-T
COMPLEX

QRS
COMPLEX
——

INTERVALS Q-T
P-Q S-T

ST TP

SEGMENTS {

TYPICAL 80
DURATIONS
in [ms]

80 120 160

Figure 2.4: Typical shape of ECG signal and its essential waves and characteristic points (Adam and
Witold 2012)
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2.4.1 The P wave

The propagation of the SA action potential through the atria results in
contraction of the atria, producing the P wave. The magnitude of the P wave is

normally low (50-100uV) and 100msec in duration.

2.4.2 The PR interval

The PR interval begins with the onset of the P wave and ends at the onset of
the Q wave. It represents the duration of the conduction through the atria to the

ventricles. Normal measurement for PR interval is 120ms-200ms.

The PR segment begins with the endpoint of the P wave and ends at the onset
of the Q wave. It represents the duration of the conduction from the atrioventricular

node, down the bundle of its end through the bundle branches to the muscle.

2.4.3 The QRS complex

The QRS complex corresponds to the period of ventricular contraction or
depolarization. The atrial repolarization signal is swamped by the much larger
ventricular signal. It is the result of ventricular depolarization through the Bundle

Branches and Purkinje fibre.

The QRS complex is much larger signal than the P wave due to the volume of
ventricular tissue involved. If either side of the heart is not functioning properly, the
size of the QRS complex may increase.QRS can be measured from the beginning of
the first wave in the QRS to where the last wave in the QRS returns to the baseline.

Normal measurement for QRS is 60ms-100ms.

2.4.4 The ST segment

The ST segment represents the time between the ventricular depolarization and
the repolarization. The ST segment begins at the end of the QRS complex (called J
point) and ends at the beginning of the T wave. Normally, the ST segment measures
0.12 second or less. The precise end of the depolarization (S) is difficult to determine

as some of the ventricular cells are beginning to repolarise.
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2.4.5 The T wave

The T wave results from the repolarization of the ventricles and is of a longer
duration than the QRS complex because the ventricular repolarization happens more
slowly than depolarization. Normally, the T wave has a positive deflection about
0.5mv, although it may have a negative deflection. It may, however, be of such low
amplitude that it is difficult to read. The duration of the T wave normally measures

0.20 sec or less.

2.4.6 The QT interval

The QT interval begins at the onset of the Q wave and ends at the endpoint of
the T wave, representing the duration of the ventricular depolarization/repolarization

cycle.

Table 2.2 Amplitude and duration of waves, intervals and segments (Frank, 2014)

s/n | Features Amplitude(mV) | Duration(ms)
1 | Pwave 0.1-0.2 60-80

2 | PR-segment - 50-120

3 | PR-interval - 102-200

4 | QRS complex 1 80-120

5 | ST-segment - 100-120

6 | T-wave 0.1-0.3 120-160

7 | ST-interval - 320

8 | RR-interval - (0.4-1.2)s

The normal QT interval measures about 0.38 second, and varies in males and
females and with age. As a general rule, the QT interval should be about 40 percent

of the measured R-R interval (Dubowik, 1999).
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2.5 Heart Diseases

In the early 1980, according to the Centers for Disease Control and Prevention,
United States (2007), heart disease is the leading cause of death for both women and
men almost in the world and it is also a major cause of disability. In the worldwide,
coronary heart disease kills more than 7 million people each year. Heart disease is a
broad term that includes several more specific heart conditions which are coronary
heart disease, heart attack, ischemia, arrthythmias, cardiomyopathy, congenital heart
disease, peripheral arterial disease (PAD). The most common heart condition is
coronary heart disease, which can lead to heart attack and other serious conditions
and the research from PubMed Central Journals (2007) shows that the Ischemia is the
most common cause of death in the industrialized countries. So the earliest diagnosis
and treatment using electrocardiography (ECG) has been developed to observe the
disease signal. (Papaloukas et al. 2003) has indicated that the development of
suitable automated analysis techniques can make this method very effective in

supporting the physician’s diagnosis and in guiding clinical management.

2.5.1 Heart Problems in This Thesis

Changes from the normal morphology of the ECG can be used to diagnose
many different types of arrhythmia or conduction problems. ECG can be split into
different segments and intervals, which relate directly to phases of cardiac

conduction. Limits can be set on these to diagnose abnormality.

There are lots of heart problems which can be diagnosed from different ECG
waveforms. This thesis aims at classifying 4 different waveforms. They are: Normal
(N), Right Bundle Branch Block (R or RBBB) Paced Beats (P) and Left Bundle
Branch Block (L or LBBB). They will be explained as follows (Wartak J., 1978).

2.5.2 Normal Waveform

This is the normal adult human waveform with features described as in

previous section.
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2.5.3 Right Bundle Branch Block

Right Bundle Branch Block (RBBB) shown in Figure 2.5 has the following
ECG characters (KCUMB, 2006):

»  The QRS duration between 0.10 and 0.11 sec (incomplete RBBB) or 0.12sec or
more (complete RBBB) as shown in Figure 2.6 and 2.7.
» Prolonged ventricular activation time or QR interval (0.03sec or more in V1-V2)

» Right axis deviation (Figure 2.8).

Incomplete RBBB often produce patterns similar to those of right ventricular

hypertrophy.

The ECG pattern of RBBB is frequently associated with ischemic, hypertensive,
rheumatic and pulmonary heart disease, right ventricular hypertrophy and some drug

intoxication; occasionally it may be found in healthy individuals.

How RBBB occurs

In right bundle-
branch block
(RBEB), the initial
impulse activates
the interventricu-
lar septum from
left to right, just
as in normal
activation. Next,
the left bundle
branch activates
the left ventricle.
The impulse then Block
crosses the
interventricular
septum to activate
the right ventricle.

Figure 2.5: Right bundle branch block (Wolters, 2011)
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Figure 2.7: Sinus rhythm with intermittent Right bundle branch block (Emedu, 2012)
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Figure 2.8: Right bundle branch block and left anterior fasicular block (Emedu, 2012)
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2.5.4 Paced Beats

This is the artificial beat form from the device called pacemaker. A pacemaker
is a treatment for dangerously slow heart beats. Without treatment, a slow heart beat
can lead to weakness, confusion, dizziness, fainting, shortness of breath and death.
Slow heart beats can be the result of metabolic abnormalities or occur as a result of
blocked arteries to the heart’s conduction system. These conditions can often be
treated and a normal heart beat will resume. Slow heart beats can also be a side effect
of certain medications in which case discontinuation of the medicine or a reduction
in dose may correct the problem. It can be characterized in ECG by a large peak after

QRS complex.(intelligent recognition)

2.5.5 Left bundle branch block

In this condition, activation of the left ventricle is delayed, which causes the
left ventricle to contract later than the right ventricle as shown in Figure 2.9. It has

the following characteristics (KCUMB, 2006):

A complete LBBB has a QRS of greater than 0.12sec (Figure 2.10)

Normally the septum is activated from left to right, producing small Q waves in the
lateral leads.

As the ventricles are activated sequentially (right, then left) rather than
simultaneously, this produces a broad or notched (‘M’-shaped) R wave in the lateral
leads as shown in Figure 2.11.

Normally the septum is activated from left to right, producing small Q waves in the

lateral leads.
Amongst the causes of LBBB are:

» Aortic stenosis
» Dilated cardiomyopath

» Acute myocardial infarction
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»  Extensive coronary artery disease

» Primary disease of the cardiac electrical conduction system

» Long standing hypertension leading to aortic root dilatation and subsequent
aortic regurgitation

» Lyme disease

Treatment

» Patients with LBBB require complete cardiac evaluation, and those with LBBB
and syncope or near-syncope may require a pacemaker.

» Some patients with LBBB, a markedly prolonged QRS (usually > 150 ms), and
systolic heart failure may benefit from a biventricular pacemaker, which allows for

better synchrony of heart contractions (Stevenson et al., 2011).

How LBBB occurs

In left bundla-
branch block
{LEEB), the impulsa
first travels down
tha right bundla
branch. Than tha
impulse activaies
the intarveniricular
saptum from right
to left, tha opposite
of normal activa-
tion. Anally, the
impulse achvatas
tha left wentricla.

Figure 2.9: Left bundle branch block (Wolters, 2011)
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Figure 2.10: Left bundle branch block with markup (Emedu, 2012)
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Figure 2.12: Atrial fibrillation with Left bundle branch block(Emedu, 2012
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CHAPTER THREE
WAVELET TRANSFORM AND NEURAL NETWORK
3.0 Overview

Wavelet Transform has been proposed as an alternative way to analyze the
non-stationary biomedical signals, which expands the signal onto the basis functions.
The wavelet method act as a mathematical microscope in which we can observe
different parts of signal by just adjusting the focus. A conventional application of
wavelet methods to processing of a medical waveform uses a wavelet transform
based on the application of a single wavelet, rather than a basis set constructed from
a family of mathematically related wavelets. Again, the choice of a wavelet with
appropriate morphological characteristics relative to the physiological signal under
consideration is crucial to the success of the application. Therefore this chapter gives
a brief review of wavelet transforms and its application to biomedical signals. Also,

the chapter discusses the theory of wavelet entropy and artificial neural network.
3.1 Mathematical Transformation

Mathematical transformations are applied to signals to obtain further
information from that signal that is not readily available in the raw signal. There are
a number of transformations that can be applied, among which the Fourier transforms
are probably by far the most popular. When we plot time-domain signals, we obtain a
time-amplitude representation of the signal. This representation is not always the best
representation of the signal for most signal processing related applications. In many
cases, the most distinguished information is hidden in the frequency content of the
signal. The frequency spectrum of a signal is basically the frequency components
(spectral components) of that signal. The frequency spectrum of a signal shows what

frequencies exist in the signal.

The Fourier transform is defined mathematically as:

F(w) = [ f(t)e /@t dt (3.1)
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F(t) = [ f(w)e/* dw (3.2)
3.1.1 Why do we need the frequency information?

Often times, the information that cannot be readily seen in the time-domain can
be seen in the frequency domain. Let's give an example from biological signals.
Suppose we are looking at an ECG signal (ElectroCardioGraphy, graphical recording
of heart's electrical activity). The typical shape of a healthy ECG signal is well
known to cardiologists. Any significant deviation from that shape is usually

considered to be a symptom of a pathological condition.

This pathological condition, however, may not always be quite obvious in the
original time-domain signal. Cardiologists usually use the time-domain ECG signals
which are recorded on strip-charts to analyze ECG signals. Recently, the new
computerized ECG recorders/analyzers also utilize the frequency information to
decide whether a pathological condition exists. A pathological condition can
sometimes be diagnosed more easily when the frequency content of the signal is

analyzed.

The big disadvantage of a Fourier expansion however is that it has only
frequency resolution and no time resolution. This means that although we might be
able to determine all the frequencies present in a signal, we do not know when they
are present. To overcome this problem in the past decades several solutions have
been developed which are more or less able to represent a signal in the time and

frequency domain at the same time.

Although FT is probably the most popular transform being used (especially in
electrical engineering), it is not the only one. There are many other transforms that
are used quite often by engineers and mathematicians. Hilbert transform, short-time
Fourier transform, Wigner distributions, the Radon Transform, and of course our
featured transformation, the wavelet transform, constitute only a small portion of a
huge list of transforms that are available at engineer's and mathematician's disposal.
Every transformation technique has its own area of application, with advantages and

disadvantages, and the wavelet transform (WT) is no exception.
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3.2 Stationarity of a Signal

Signals whose frequency content does not change in time are called stationary
signals. In other words, the frequency content of stationary signals does not change
in time. In this case, one does not need to know at what times frequency components

exist, since all frequency components exist at all times.
For example, consider the following signal
x(t) = cos(2m10t) + cos(2m25t) + cos(2m50t) + cos (2m100t) (3.3)

is a stationary signal, because it has frequencies of 10, 25, 50, and 100 Hz at any

given time instant. This signal is plotted below:

|"
.fq |,_ u I| I

= ":Tirrle. ms
Figure 3.1: Time domain plot of signal in equation 3.1 (Robi, 2006)

And the following is its FT:

Figure 3.2: Fourier transform plot of signal in equation 3.1(Robi, 2006)
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Figure 3.3: Time domain plot of non-stationary signal (Robi, 2006)

Contrary to the signal in the Figure above, Figure below plots a signal with four
different frequency components at four different time intervals, hence a non-
stationary signal. The interval 0 to 300 ms has a 100 Hz sinusoid, the interval 300 to
600 ms has a 50 Hz sinusoid, the interval 600 to 800 ms has a 25 Hz sinusoid, and
finally the interval 800 to 1000 ms has a 10 Hz sinusoid.

And the following is its FT:

Figure 3.4: Fourier transform of figure 3.3 (Robi, 2006)

FT gives the spectral content of the signal, but it gives no information
regarding where in time those spectral components appear. Therefore, FT is not a
suitable technique for non-stationary signal, with one exception: FT can be used for
non-stationary signals, if we are only interested in what spectral components exist in

the signal, but not interested where these occur. However, if this information is
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needed, i.e., if we want to know, what spectral component occur at what time

(interval), then Fourier transform is not the right transform to use (Robi, 2006).

For practical purposes it is difficult to make the separation, since there are a lot
of practical stationary signals, as well as non-stationary ones. Almost all biological
signals, for example, are non-stationary. Some of the most famous ones are ECG
(electrical activity of the heart, electrocardiograph), EEG (electrical activity of the
brain, electroencephalograph), and EMG (electrical activity of the muscles,

electromyogram).
3.3 The Short Term Fourier Transforms (STFF)

The STFT is obtained by calculating the Fourier transform of a sliding
windowed version of the time signal s(t). The location of the sliding window adds a

time dimension and one gets a time-varying frequency analysis.

The mathematical representation of STFT is:
St ) =[""s@w(x - t)e 2t dr (3.2)

Where w(t — t) it is the sliding window applied to the signal s(¢) , fis the frequency

and t 1s the time.

The length of the window is chosen so that to maintain signal stationary in
order to calculate the Fourier transform. To reduce the effect of leakage (the effect of
having finite duration), each sub-record is then multiplied by an appropriate window
and then the Fourier transform is applied to each sub-record. As long as each sub-
record does not contain rapid changes the spectrogram will give an excellent idea of
how the spectral composition of the signal has changed during the whole time record.
However, there exist many physical signals whose spectral content is so rapidly
changing that finding an appropriate short-time window is problematic, since there
may not be any time interval for which the signal is stationary. To deal with these

time changes properly it is necessary to keep the length of the time window as short
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as possible. This, however, will reduce the frequency resolution in the time-

frequency plane. Hence, there is a trade-off between time and frequency resolutions.
3.4 Wavelet Theory

Wavelet theory is the mathematics associated with building a model for a
signal, system, or process. A wavelet is a wave which has its energy concentrated in
time. It has an oscillating wavelike characteristic but also has the ability to allow
simultaneous time and frequency analysis and it is a suitable tool for transient, non-
stationary or time-varying phenomena. WT has a varying window size, being broad
at low frequencies and narrow at high frequencies, thus leading to an optimal time-

frequency resolution in all frequency ranges.

Sine Wave Wavelket [db10)

Figure 3.5: Sinusoidal signal and Deubecheis wavelet (Michel et al. 1996)

From the figure above, the signals with sharp changes might be better analyzed with
an irregular wavelet than with a smooth sinusoid, as quoted in (Mahmoodabadi et al.
2005). Also, local features can be described better with wavelets that have local

extent.

3.4.1 Continuous Wavelet Transform (CWT)

The continuous wavelet transform was developed as a method to obtain
simultaneous, high resolution time and frequency information about a signal. The
CWT rather than the STFT uses a variable sized window region .Because the wavelet
may be dilated or compressed; different features of the signal are extracted. While a
narrow wavelet extracts high frequency components, a stretched wavelet picks up on

the lower frequency components of the signal.
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The CWT is computed by correlating the signal s(t) with families of time-

frequency atoms Y (t), it produce a set of coefficients C(z,s) given by :
1 400 t—

C(r,s) =) s(O¥+ () de (3.3)

Where

e 7 is the time location(translation parameter)
e sis called scale factor and it is inversely proportional to the frequency (s > 0)
e  *dénotes a complexe conjugate.

e W (t)is the analysing wavelet (mother wavelet).

The term mother implies that the functions with different region of support that are
used in the transformation process are derived from one main function, or the mother
wavelet. In other words, the mother wavelet is a prototype for generating the other

window functions.

The analyzing wavelet function W(t) should satisfy some properties. The most
important ones are continuity, integrability, square integrability, progressivity and it

has no d.c component (Hannu, 2011).

3.4.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT), which is a time-scale representation
of the digital signal is obtained using digital filtering techniques, is found to yield a
fast computation of wavelet transform. It is easy to implement and adopts dyadic
scales and translations in order to reduce the amount of computation time, which
results in better efficiency of calculation.

The DWT which also referred to as decomposition by wavelet filter banks is
computed by successive low pass filter (LPF) and high pass filtering (HPF) of the

discrete time-domain signal as the process shown graphically in figure below
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Figure 3.6: Filter banks signal decomposition (Nor, 2010)

The different cutoff frequencies are used for the analysis of the signal at
different scales to measure the amount of detail information in the signal and the
scale is determined by upsampling and downsampling process where D and A
denoting for details and approximations, while ¢ representing coefficients. The
approximations of the signal are what define its identity while the details only

imparts nuance.

X [n] =

Figure 3.7: Three level Wavelet decomposition tree (Nor and Binti, 2010)

Figure 3.7 show the decomposition process is iterative. It connects the
continous-time multiresolution to the discrete-time filters. The signal is denoted by
the sequence input signals x[n], where n is an integer passed through a series of
high-pass filters to analyze the high frequencies, and through a series of low-pass

filters to analyze the low frequencies. Each stage consists of two digital filters and
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two downsamplers by 2 to produce the digitized signal. The low pass filter is denoted
by G, while the high pass filter is denoted by H,. At each level, the high pass filter
produces detail information; d[n], while the low pass filter associated with scaling
function produces coarse approximations, a[n]. The downsampled outputs of first
high pass filters and low-pass filters provide the detail, D; and the approximation, A.
the first approximation, A; is decomposed again and this process is continued. The
filtering and decimation process is continued until the desired level is reached. The
maximum number of levels depends on the length of the signal. Only the last level of
approximation is save among all levels of details, which provides sufficient data. The
DWT of the original signal is then obtained by concatenating all the coefficients,
a[n], and d[n], starting from the last level of decomposition. The signal
decomposition can mathematically be expressed in equation 3.4 and 3.5:

Yrilk] = X x[n]. g[2k —n] (3.4)

Yio[k] = X x[n]. h[2k —n] (3.5)

With this approach, the time resolution becomes arbitrarily good at high
frequencies, while the frequency resolution becomes arbitrarily good at low
frequencies.

In DWT the signals can be represented by approximations and details. The
detail at level j is defined as equation 3.6:

D; = Ykcz ajx ¥k (t) (3.6)

Where, Z is the set of positive integers.

Then, the approximation at level J is defined as Equation 3.7:

A; =YDy (3.7

Finally, the signal f(t) can be represented by Equation 3.8:

f@®) =4;=%>D; (38)

In DWT where a scaling function is used, which are related to low-pass and high-
pass filters, respectively. The scaling function can be represented as Equation 3.9 and
Equation 3.10:

o(n) = B ¢ d(2n - ) (3.9)

@, (1) = 2§¢(zft —k) (3.10)
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Discrete Wavelet analysis corresponds to windowing in a new coordinate
system, in which space and frequency are simultaneously localized; this property can
be helpful in pattern extraction. Wavelets as an alternative tool to analyze non-
stationary signal have been applied to ECG delination, to detect accurately the
different waves forming the entire cardiac cycle, especially in areas of limited
performance current techniques like QT and ST intervals, P and T-wave recognition,
and to classify ECG waves in different cardiopatologies, identifying ECG waveforms
from different arrhythmias, or discriminating between normal and abnormal cardiac
pattern. In addition, DWT is able to detect specific detailed time-frequency
components of ECG signal, for instance, the registers which are sensitive to transient
ischemia and eventual restoration of electrophysiological function of the myocardial
tissue. Moreover, methods for analyzing heart rate variability using wavelet
transform can be used to detect transient changes without losing frequency
information. The most common wavelets providing the orthogonality properties are
daubechies, symlets, coiflets and discrete meyer in order to provide reconstruction

using the fast algorithms.

3.4.3 Stationary wavelet transform

The Stationary wavelet transform (SWT) is a wavelet transform algorithm
designed to overcome the lack of translation-invariance of the discrete wavelet
transform (DWT). Translation-invariance is achieved by removing the downsamplers
and upsamplers in the DWT and upsampling the filter coefficients by a factor
of 2U~D in the jth level of the algorithm (Akansu, 1991; Tazebay, 1995). The SWT
is an inherently redundant scheme as the output of each level of SWT contains the
same number of samples as the input — so for a decomposition of N levels there is a
redundancy of N in the wavelet coefficients. The major advantage of SWT is the
preservation of time information of the original signal sequence at each level. This
algorithm is more famously known as '"algorithme a trous" in French
(word trous means holes in English) which refers to inserting zeros in the filters. It

was introduced by (Holdschneider et al, 1989).



35

g[n]f—»

b

Level 3
coefficients

h

hz[n] —»

L J

2a[n]

L Level 2
|:: 21[n] hy[n] — coefficients
—» Level 1
x[n] hi[n] —» coefficients

Figure 3.8: A 3 level SWT filter bank (James, 2014)

L 2

In the above diagram, filters in each level are up-sampled versions of the
previous (see figure below).

gi[n] —b@—b gj-1[n]
h[n] —@—> hy-[n]

Figure 3.9: SWT filters (James, 2014)

3.5 Wavelet Entropy (WE)

The Shannon entropy (Shannon, 1948) gives a useful criterion for analyzing
and comparing probability distribution, it provides a measure of the information of

any distribution. We define the total WE (Blanco et al., 1998) as

Swe = Swe(P) = =X j<op;-In [p] (3.11)

The WE appears as a measure of the degree of order/disorder of the signal, so it
can provide useful information about the underlying dynamical process associated
with the signal. In fact, a very ordered process could be thought of as a periodic
mono-frequency signal (signal with a narrow band spectrum). A wavelet
representation of such a signal will be greatly resolved in one unique wavelet
resolution level, i.e. all relative wavelet energies will be almost zero except for the

wavelet resolution level which includes the representative signal frequency. For this
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special level the relative wavelet energy will be almost one and in consequence the

total WE will be near zero or of a very low value.

A signal generated by a totally random process can be taken as representing a
very disordered behavior. This kind of a signal will have a wavelet representation
with significant contributions from all frequency bands. Moreover, one could expect
that all the contributions will be of the same order. Consequently, the relative
wavelet energy will be almost equal for all resolution levels and the WE will take

their maximum values.

3.5.1 Wavelet average entropy

Transient signals have some characteristics such as high frequency and instant
break, so wavelet transform is strong tool for them in feature picking-up, and it
satisfies the analysis need of electric power transient signals. Usually wavelet
transform of transient signal is expressed by multi-revolution decomposition fast
algorithm which utilizes the orthogonal wavelet bases to decompose the signal to
components under different scales. It is equal to recursively filtering the signal with a
high-pass and low-pass filter pair. Filtering by high pass filter produces details and
filtering by low-pass produces approximations. The band width of these two filters is
equal. After each circle of decomposition, the sampling frequency is reduced by half.
Then recursively decompose the low-pass filter outputs, both components of the next

stage are produced.

Given discrete signal x(n) being fast transformed, at instant k and scale j it has
high-frequency component coefficient d;j(k) and low-frequency component
coefficient a;(k). The frequency band of the information contains in signal
components D;(k) , Aj(k) obtained by reconstruction is (Daubechies, 1990; Mallat,
1989),

{Dj(k): e ) = 12 (3.12)

A;(K):[0,27U+DE]
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Where f; is the sampling frequency. The original signal sequence x(n) can be

represented by the sum of all components, namely
x(n) = D1(n) + A;(n) = D1(n) + D,(n) + 4,(n) = Z§=1 Dj(n) +4;(n) (3.13)

For the purpose of unification, denote 4;(n) by D;,,(n) and we get

x(n) = Yi_, D;(n) (3.14)

Dj(n) represents the component of transient signal x(n) at each scale (frequency
band), it is also the multi-resolution representation of the signal which can act as

feature subset of classification.

For continuous wavelet transform, series of discrete wavelet coefficients Di under
the different scales j(j = 1, ..., m) are obtained, which can reflect time-frequency

distribution to some extent.

3.5.2 Information entropy

The uncertainty of any event is associated with its states and probabilities. The
aggregation of all possible states is called sample space {x;, x,, ..., x,,} Each piece of
information has a probability P(x;) =P,0<P; <1, P, =1. The self

information quantity of the event x; is,
I1(x;) = —log, P(x;) = —log, P; (3.15)

[(x;) is a random variable changing with different information, so it is not suitable
for measuring the whole information source. Therefore, we define the mathematical
expectation of the self-information as the mean self-information of the information

source, which is entropy denoted by H (X).
H(X) = E[I(x))] = E[-logap;] = — X P log, p; (3.16)
The base a of the logarithm defines the unit of the entropy.

When a is 2, e and 10, the unit of the entropy is bit, nat and Hartely respectively.

Customarily, we choose a=e. The information entropy above is used to measure the
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mean information quantity of the information source. When all events have the same
probabilities, the uncertainty of a certain event reaches its maximum, so does the
entropy. The entropy of any certain event is zero. Therefore, entropy is the measure

of the uncertainty.

3.5.3 Spectrum entropy

Based on conception of information entropy and power spectrum, the spectrum
entropy is defined in the frequency domain [5].Given X(w) as the DTF of signal
x(n), the power spectrum is S(w) = ﬁ |X(w) |> Because of the conversion of
energy in time and frequency domain, namely
Y x2(t)At = Y| X(w)|*Aw, S ={S,,5;,...,S, } is a partition of original signal, so

Si

S5, The

the proportion of i-th power spectrum occupied in whole is P; =

corresponding information entropy namely power spectrum entropy is the following,

H=-%"p;logp; (3.17)

Spectrum entropy is a measure of the signal complexity. Narrower the peak of
the signal power spectrum is, smaller the spectrum entropy is. Which means the
signal is more regular and less complex. Flatter the power spectrum is, larger the
spectrum entropy is. For example, the white noise is irregular random signal, it has
flat power spectrum and large spectrum entropy, which means the signal has high

complexity (Zheng-You, et al. 2006).

3.5.4 Wavelet time-frequency entropy

There are various wavelet entropy measures such as wavelet energy entropy,
wavelet time entropy, wavelet singular entropy, wavelet time-frequency entropy,
wavelet average entropy and wavelet distance entropy. in each of the above, Ej, =
|Dj(k)|2 is the wavelet energy spectrum at scale j and instant k, E; = Y Ej; is the

wavelet spectrum at scale j.

In this thesis we used wavelet time-frequency entropy as a measure of entropy

for ECG signal feature extraction and classification.
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The discrete wavelet presentation D;(k) is in fact a two dimension matrix.

Along with variable k and j two vector sequences can be get. Therefore we define

wavelet time frequenct entopy (WTFE) as,

WTFE(k,j) = [WTFEt(t = kT), WTFEf(a = 2/)] (3.18)
Where

WTFEt(t = kT) = = X P a0y I0 Pp ez (3.19)
WTFEf(a =27) = — Xk Pogeeiery In Po(e=rr) (3.20)

Where P, _,5 = |Dj(R)|*/ Z,|D; () |2

Poce=iery = |Di(K) |7/ | D; (K)|? (3.21)

The result of WTFE measure consists of two vectors or sequences. The first vector
stretches on the whole time space and the second vector stretches on the whole
frequency space. A large entropy value at instant kT indicates there are widely
distributed wavelet coefficients extend all over the frequency space. On the other
hand, a small entropy value indicates wavelet coefficients congregate at a few
frequency points or segments. WTFE is able to measure the signal information
feature at any given instant and frequency. Therefore it can be used to classify

different signals and has potential in the fault detection and diagnosis field.
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Figure 3.10: Fundamental of wavelet time-frequency entropy (Zheng-You, et al. 2006).
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3.6 Artificial Neural network

Artificial neural networks (ANN) have been trained to perform complex
function in various fields of application including pattern recognition, identification,
classification, speech, vision and control system. A neural network is a massively
parallel-distributed processor that has a natural propensity for storing experiential
knowledge and making it available for use. It resembles the brain in two aspects

(Chazal D.P., 1998):

» Knowledge is acquired by the network through a learning process,
» Inter-neuron connection strengths known as synaptic weights are used to store

the knowledge.

In theory, neural networks can do anything a normal digital computer can do.
We can train a neural network to perform a particular input leads to a specific target
output. Such a situation is shown in Figure 3.11 (Demuth H. and Beale M., 2001).
There, the network is adjusted, based on a comparison of the output and the target,

until the network output matches the target.

Typically many such input/target pairs are used, in this supervised leaming to train a

network.

Neural Network
. including connections
(called weights)
Input between neurons

Adjust
weights

Figure 3.11: Neural Network adjust system
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In practice, neural network have been trained to perform complex function in
various fields of application. They are especially useful for signal classification. If
there are enough training examples and enough computing resources it is possible to
train a feed-forward neural network to perform almost any mapping to an arbitrary

level of precision.

3.6.1 The neuron

The simplest Neural Network is the single layer perceptron. It is a simple net
that can decide whether an input belongs to one of two possible classes. Output of a
perceptron usually passed through nonlinearity called a transfer function. This

transfer function is of different types; the most popular is a sigmoidal function.

A simple description of the operation of a neuron is that it processes the
electric currents, which arrive on its dendrites, and transmits the resulting electric
currents to other connected neurons using its axon. The classical biological
explanation of this processing is that the cell carries out a summation of the incoming
signals on its dendrites. If this summation exceeds a certain threshold, the neuron
responds by issuing a new pulse, which is propagated along its axon. If the

summation is less than the threshold the neuron remains in active.

N
U; = Z WjiXi (3 22)
-1

0; = f(u; —6;) (3.23)

In these two equations, each set of synapses is characterized by a weight or
strength of its own. A signal X, at the input of synapse i connected to neuron j is
multiplied by synaptic weight wj;. It is important to make a note of the manner in
which these subscripts of the synaptic weight w;; are written. The first subscript
refers to the neuron in question and the other subscript refers to the input end of the
synapse to which the weight refers. The weight wy; is positive if the associated
synapse is excitatory, it is negative if the synapse is inhibitory. An adder sums the

input signals, weighted by the respective synapses of the neuron.
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The amplitude of the output of a neuron limits an activation function. The
activation function is also referred to as a squashing function in that it squashes the

permissible amplitude range of the output signal to some finite value.

3.6.2 Transfer function

Many transfer functions have been included in Matlab neural network toolbox.
The most commonly used functions are log-sigmoid, tan-sigmoid and linear transfer

functions.

Multi-layer networks often use the log-sigmoid transfer function as shown in Figure

3.12

a =logsigin)

Log-Sigmoid Transfer Function

Figure 3.12: Log-Sigmoid Transfer Function (Demuth H. and Beale M., 2001)

Alternatively, multi-layer network may use the tan-sigmoid transfer function as
shown in Figure 3.13

a = tansigin)

Tan-Sigmoid Transfer Function

Figure 3.13: Tan-Sigmoid Transfer Function (Demuth H. and Beale M., 2001)

Occasionally, the linear transfer function purelin is used as shown in Figure 3.14
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a = purelinfn)

Linear Transler Function

Figure 3.14: Linear Transfer Function (Demuth H. and Beale M., 2001)

The sigmoid transfer function squashes the input, which may have any value
between plus and minus infinity into the range of 0 to 1. This transfer function is

commonly used in backpropagation networks, in part because it is differentiable.

3.6.3 Single-layer feed-forward network

Input  Layer of Naurans Input Layer of Neurons

a=f[\\"p+b)

Where...

R =2 of elements in input vector

1
AN N §=# Neurons in Layer
a Fiwpthy

Figure 3.15 Single-layer feed-forward network (Demuth H. and Beale M., 2001)

A layered neural network is a network of neurons organized in the form of
layers. Figure 3.15 shows the simplest form of a layered network, which has an input

layer of source nodes that projects onto an output layer of neurons but not vice versa.
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In other words, this network is strictly of a feed forward type. The input layer of

source nodes does not count, because no computation is performed there.

A one-layer network with R input elements and S neurons are shown in Figure
3.15. In this network each element of the input vector p is connected to each neuron
input through the weight matrix Wp. The ith neuron has a summer that gathers its
weighted inputs and bias to form its own scalar output n(i). The various n(i) taken
together form an S-element net input vector n. Finally, the neuron layer outputs form

a column vector a. It is shown the expression for a at the bottom of the Figure.

It is common for the number of inputs to a layer to be different from the number of

neurons.

A layer is not constrained to have the number of its inputs equal to the number of its

neurons.

3.6.4 Matrix-vector input

A neuron with a single R-element input vector, pl.,p2........pR, is shown in
Figure 3.15. The individual element inputs are multiplied by weights, wl,1,

wl, 2, ... w1,R as shown in equation 3.24.

The weighted values are fed to the summing junction. Their sum is simply Wp,

the dot product of the (single row) matrix # and the vector p.

Input Layer of Neurons
N Where...
a
> R = number of
n sl elements in
rf input vector
8 = number cf
5 neurons in layer 1
A
a=f Wp+b)

Figure 3.16: A neuron with a single R-element input vector (Howard Demuth, 2001)
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The neuron has a bias b, which is summed with the weighted inputs to form the net input

n.
This sum, 7, is the argument of the transfer function f.
N=Wy ;D +Wi P + - +Wppr+b (3.24)

A layer of a network is defined in Figure 3.16 shown above. A layer includes
the combination of the weights, the multiplication and summing operation (here
realized as a vector product Wp ), the bias b, and the transfer function £ The array of

inputs, vector p, will not be included in or called a layer.

The input vector elements enter the network through the weight matrix W.

WyjiWy9 --Wip

Wy q Wy g ... Wo p (3.25)

W

(W1 ¥Wge - Pg g

The row indices on the elements of matrix W indicate the destination neuron of the
weight and the column indices indicate which source is the input for that weight.
Thus, the indices in W, say that the strength of the signal from the second source to
the first (and only) neuron is Wi, (Martin, 2002).

3.6.5 Multi-layer feed-forward network

Input Hidden Layer Cutput Layer
r N % i ™

Z axl
o
a = tansig (IWop +bi) a: =purelin (LWziai1 +bz)

Figure 3.17: Multi-layer feed-forward network (Demuth H. and Beale M., 2001)
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The second class of feed forward neural networks is multi-layer, shown in
Figure 3.17. It may distinguish itself by the presence of one or more hidden layers,
whose computation nodes are correspondingly called hidden neurons or hidden units.
The function of the hidden neurons is to intervene between the external input and the
network output. By adding one or more hidden layers, the network is enabled to
extract higher-order statistics and is particularly valuable when the size of the input

layer is large.

Each neuron in the hidden layer is connected to a local set of source nodes that
lie in its immediate neighborhood. Likewise, each neuron in the output layer is
connected to a local set of hidden neurons. Thus, each hidden neurons responds

essentially to local variations of the source signal.

A network can have several layers. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices, output
vectors and so on, for each of these, we will append the number of the layer to the

names for each of these variables.

For instance, the weight matrix and output vector for the first layer are denoted as W,

and A,, for the second layer these variables are designated W, A, and so on.

The network shown above has R; inputs, S; neurons in the first layer, S,
neurons in the second layer, etc. It is common for the different layers to have

different numbers of neurons.
A constant input 1 is fed to the biases for each neuron.

The outputs of each intermediate layer are the inputs to the following layer.
Thus layer 2 can be analysed as a one-layer network with S; inputs, S, neurons, and
an S;xS, weight matrix W,. The input to layer 2 is al, the output is a2. Now that we
have identified all the vectors and matrices of layer 2 we can treat it as a single layer
network on its own. This approach can be taken with any layer of the network. The

layers of a multi-layer network play different roles. A layer that produces the
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network output is called an output layer. All other layers are called hidden layers.

(Demuth H. and Beale M., 2001)

Multiple layer networks are quite powerful. For instance, a network of two
layers, where the first layer is sigmoid and the second layer is linear, can be trained
to approximate any function (with a finite number of discontinuities) arbitrarily well.
This kind of two-layer network is used extensively in backpropagation neural

network.

3.6.6 Nodes, inputs and layers required

The number of nodes must be large enough to form a decision region, which is
as complex as required by the given problem. However, it cannot be so large that the
many weights required cannot be reliably estimated from the available training data.
No more than three layers are required in perceptron like feed-forward networks,

because a three-layer network can generate complex decision regions.

The number of nodes in the second layer must be greater than one when
decision regions are disconnected or meshed and cannot be formed from one convex
area. The number of second layer nodes required in the worst case is equal to the
number of disconnected regions in input distributions. The number of nodes in the
first layer must typically be sufficient to provide three or more edges for each convex
area generated by every second layer-node. Typically there should be more than

three times as many nodes in the second as in the first layer.

3.6.7 Training Algorithm

3.6.7.1 Backpropagation

Generalising the Widrow-Hoff learning rule to multiple-layer networks and
nonlinear differentiable transfer function created backpropagation. Input vectors and
the corresponding output vectors are used to train a network until it can approximate
a function, associate input vectors with specific output vectors, or classify input

vectors in an appropriate way as defined.
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Standard backpropagation is a gradient decent algorithm, as is the Widrow-Hoff
learning rule. The term backpropagation refers to the manner in which the gradient is
computed for nonlinear multiplayer networks. There are numbers of variations on the
basic algorithm which are based on other standard optimization techniques, such as

conjugate gradient and Newton methods.

The backpropagation neural network is a feed-forward network that usually has
hidden layers, as shown in Figure 3.17. The activation function for this type of
network is generally the sigmoid function. Since the activation function for these
nodes is the sigmoid function above, the output from each node is given by (Hessian

S.K.U. and Asim., 1999)

ok = F(ak) (3.26)
Where q; is the total input to node i, which is given by:

of =X wiaf + 6 (3.27)

Note how the weights are indexed. Weight w;; is the weight of the connection
from node j to node i. Now, as for the perceptron, we will minimize the error in the
network by using the gradient descent algorithm to adjust the weights. So the change

in the weight from node j to i is given by

oEk
AWy = —am (3.28)

Where E* is the mean square error for the Kth pattern. The error for a hidden
node i is calculated from the errors of the nodes in the next layer to which node i is

connected. This is how the error of the network is backpropagated.

So, putting it all together, the change for weight, where node i is in a hidden layer, is
given by:
MWy = adkal = a[F(af) Xn2y" 8k wyilaf =

a[aik(l o) Tnly " 6K wy]ok (3.29)
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The changes in the weights of the network, which allow the network to learn,
are now totally defined. This generalized delta rule for backpropagation neural
networks defines how the weights between the outputs layer and the hidden layer
change, and how the weights between other layers change also. This network is
called backpropagation because the errors in the network are fed backward, or

backpropagated, through the network.

Generalization is perhaps the most useful feature of a backpropagation
network. Since the network uses supervised training, a set of input patterns can be
organized into groups and fed to the network. The network will “observe” the
patterns in each group, and will learn to identify the characteristics that separate the
groups. Often, these characteristics are such that a trained network will be able to
correct groups, even if the patterns are noisy. The network learns to ignore the

irrelevant data in the input patterns.
3.6.7.2 Conjugate Gradient Algorithm

The basic backpropagation algorithm adjusts the weights in the steepest
descent direction (negative of the gradient). This is the direction in which the
performance function is decreasing most rapidly. Although the function decreases
most rapidly along the negative of the gradient, this does not necessarily produce the
fastest convergence. In the conjugate gradient algorithms a search is performed along
conjugate directions, which produces generally faster convergence than steepest

descent directions.

In most of the conjugate gradient algorithms the step size is adjusted at each
iteration. A search is made along the conjugate gradient direction to determine the
step size which will minimize the performance function along that line (Demuth H.
and Beale M., 2001). There are different search functions that are included in the

toolbox.
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3.6.7.3 Levenberg-Marquardt (TrainLM)

The Levenberg-Marquardt algorithm appears to be the fastest method for
training moderatesized feed-forward neural network. The Levenberg-Marquardt
algorithm was designed to approach second order training speed without having to
compute the Hassian matrix. When the performance function has the form of a sum
of squares (as is typical in training feedforward networks), then the Hessian matrix

can be approximated by Newton’s method.

Newton’s method is faster and more accurate near an error minimum, so the

aim is to shift towards Newton’s method as quickly as possible.
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CHAPTER FOUR
EXPERIMENTS AND SYSTEM DESIGN
4.0 Overview

In this chapter, the methods used for this research will be discussed. All of
the proposed methods are implemented in MATlab 2013a on a personal computer.
The methods for the system developed (Automatic ECG beats classification system)
in this thesis involve data acquisition, noise removal, QRS detection, morphological
feature extraction, DWT AND SWT decomposition of extracted features, calculating
statistical features, feature enhancement using PCA, output vector formation and
artificial neural network (ANN) design for signal classification for each of the above
methods. The output can be used for ECG signal classification or making a report of

the patient’s heart condition as well as comparative study of different methods.
The development procedure is as follows (Figure 3.1):

1. ECG Data acquisition from a web database

2. Separating data into training and testing sub-data sets

3. Loading training and testing data

4. Pre-processing of training and testing data

5. QRS detection of training and testing data

6. Efficient feature extraction for applying to the neural network
7. Output vector formation

8. Designing the neural network structure

9. Evaluating of performance parameters

Below is the flow chart which depicts the general development procedures for
Automatic computerized ECG beat detection system.
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4.1 Experimental Tools: The Matlab Environment

Matlab is a powerful, comprehensive, and easy to use environment for
technical computations. It provides engineers, scientists, and other technical
professionals with a single interactive system that integrates numeric computation,

visualization, and programming. Matlab includes a family of application specific

solutions called toolboxes.
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One of its greatest strengths is that Matlab allows building its own reusable
tools. Customized special functions and programs can be easily created in Matlab
code. Biomedical engineers use Matlab in research, design and manufacturing of
medical devices and to develop embedded algorithms and systems for medical
instrumentation. Matlab has several advantages over other traditional means of

numerical computing.

» It allows quick and easy coding in a very high level language.

» Data structures require minimal attention, in particular, arrays need not be
declared before first use.

» An interactive interface allows rapid experimentation and easy debugging.

» High-quality graphic and visualization facilities are available.

» Matlab M-files are completely portable across a wide range of platforms.

» Toolboxes can be added to extend the system, giving, for example, specialized

signal processing facilities.

Furthermore, Matlab is a modem programming language and problem-
solving environment: it has sophisticated data structures, contains built in debugging
and profiling tools, and supports object oriented programming. These factors make
Matlab to be an excellent language for teaching and a powerful tool for research and

practical problem solving.

4.1.1 Signal processing toolbox

The signal processing toolbox is a collection of Matlab functions that
provides a rich, customizable framework for analog and digital signal processing
(DSP). Graphical user interfaces (GUIs) support interactive designs and analyses,
while command-line functions support advanced algorithm development. The Signal
Processing Toolbox is the ideal environment for signal analysis and DSP algorithm
development. It uses industry-tested signal processing algorithms that have been
carefully chosen and implemented for maximum efficiency and numeric reliability.
Functions are mostly implemented as M-file routines written in the Matlab language,

giving access to the source code and algorithms. The open system philosophy of
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Matlab and the toolboxes enables making changes to existing functions or adding

own experiments.

The main features of the signal processing toolbox are as follows (Little J.N.

and Shure L.,2001):

» A comprehensive set of signal and linear system models

» Tools for analog filter design

» Tools for finite impulse response (FIR) and infinite impulse response (IIR)
digital filter design, analysis and implementation.

» The most widely used transforms, such as Fast Fourier transform (FFT) and
discrete cosine transform (DCT)

» Methods for spectrum estimation and statistical signal processing.

4.1.2 Wavelet Toolbox

The Wavelet Toolbox is a collection of functions built on the MATLAB®
Technical Computing Environment. It provides tools for the analysis and synthesis of

signals and images using wavelets and wavelet packets within the framework of

MATLAB.
The toolbox provides two categories of tools:

> Command line functions

»  Graphical interactive tools

The first category of tools is made up of functions that you can call directly from the
command line or from your own applications. Most of these functions are M-files,
series of statements that implement specialized wavelet analysis or synthesis
algorithms. The second category of tools is a collection of graphical interface tools

that afford access to extensive functionality.
The key features of wavelet toolbox are as follow (Michel et al., 1996):

» Standard wavelet families, including Daubechies wavelet filters, complex

Morlet and Gaussian, real reverse biorthogonal, and discrete Meyer
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» Wavelet and signal processing utilities, including a function to convert scale to
frequency

Methods for adding wavelet families

Lifting methods for constructing wavelets

Customizable presentation and visualization of data

Wavelet Design and Analysis for continuous and discrete wavelet analysis
Wavelet packets, implemented as MATLAB objects

One-dimensional multisignal analysis, compression, and denoising

YV V. V V V VY V

Multiscale principal component analysis

4.1.3 Neural Network Toolbox

The Neural Network Toolbox extends the Matlab computing environment to
provide tools for the design, implementation, visualization and simulation of neural
networks. Neural networks are very powerful tools that are used in applications
where formal analysis would be difficult or impossible, such as pattern recognition
and non-linear system identification and control. The Neural Network Toolbox
provides a comprehensive support for many proven network paradigms, as well as a
graphical user interface that enables the experiment to design and manage networks.
The toolbox’s modular, open and extensible design simplifies the creation of

customized functions and networks.

The main features of Neural Network Toolbox are as follows (Demuth H. and Beale

M., 2001):

» Support for the most commonly used supervised and unsupervised network
architectures

» A comprehensive set of training and learning functions

»  Modular network representation, allowing an unlimited number of input setting
layers, and network interconnections

»  Pre and post-processing functions for improving network training and assessing

network performance.
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4.2 ECG Data Acquisition

In this thesis the source of the ECG data is MIT-BIH Arrhythmia database
from Physionet website (http: // www . physionet . org / physiobank / database /
html / mitdbdir /mitdbdir .htm). MIT-BIH Arrhythmia database is a set of over

4000 long-term Holter recordings. Approximately 60% of these recordings were
obtained from in-patients. The database contains 23 records (numbered from 100 to
124, some numbers missing) chosen at random from this set, and 25 records
(numbered from 200 to 234, again some numbers missing) selected from the same
set to include a variety of rare but clinically important phenomena. Each of the 48

records is slightly over 30 minutes long (Goldberger et al., 2000).

The first group of records is intended to serve as a representative sample of the
variety of waveforms and artifacts that an arrhythmia classifier might encounter in

routine clinical use.

Records in the second group were chosen to include complex arrhythmia and
conduction abnormalities. Some recordings from this group were selected for this
thesis because the rhythm, QRS morphology variation or signal quality might be

expected to present significant difficulty to arrhythmia classifier.

All the waveforms present in these recordings are studied and classified by expert
cardiologist and presented as annotations in the website. Table 4.1 and 4.2 lists the
ECG records .mat files that were used for training and testing the neural network in

this thesis respectively.
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Table 4.1: ECG .mat files used for training in this thesis

Training

R AL S L
A L L L
B L S LA

Total 1965 1937
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Table 4.2: ECG .mat files used for testing in this thesis

Testing

s/n File Name(.mat) | Number of R-peak detected | Number of features
1 Normal3 100m | 80 79
2 Normal3 101m | 67 66
3 Normall0_116m | 78 77
4 Rbbb3 118m 72 71
5 Rbbb3 124m 50 49
6 Rbbb2 231m 63 62
7 Paced3 102m 72 71
8 Paced3 104m 45 44
9 Paced2 217m 71 70
10 Lbbb3 109m 86 85
11 Lbbb3 111m 62 61
12 Lbbb3 214m 73 72
Total 819 807

Each of these records is slightly over 30 minutes long, has a sample frequency
of 360Hz and contains 2 channels (2 signals recorded from different angles on chest).
By using Physionet’s built-in web tool only 1 minute long sections of each record is
extracted as .mat files that can be readily used in Matlab. As a result 40 recordings
(28 for training and 12 for testing amounting to 70-30% training-testing standard)
each containing 21600 samples and approximately 60-90 waveforms depending on
heart rate and class(normal, rbbb, paced or Ibbb) is obtained and loaded into Matlab
environment. After loading the data into Matlab one of the channels is removed and
only one channel for each recording is used for the rest of the program (channel
MLI).

At the end of the Data acquisition part a total of 1937 waveforms (as 7
separate recordings each representing a normal, rbbb, paced and lbbb waveform
class) for training and 807 waveforms for testing are prepared ready for next step

which is signal pre-processing.
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Figure 4.2(a) and (b): Raw ECG signal Obtained from MIT-BIH Database
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4.3 Signal Pre-processing

Signal processing can be defined as the manipulation of a signal for the
purpose of extracting information from the signal or producing an alternative
representation of the signal. There are numerous specific motivations for signal
processing, but many fall into following three categories. First is to remove
unwanted signal components that are corrupting the signal of interest. Second is to
extract information by rendering it in a more obvious or more useful form and third
is to predict future values of the signal in order to anticipate the behavior of its

source.

This thesis, at signal pre-processing step is focused on noise removal and after this
step processing of the signal will continue with QRS detection and Feature extraction
steps. ECG beat detection systems have to be designed in a way that they are capable
of working in a noisy hospital environment. ECG signal is normally corrupted with

different types of noise.

To obtain useful information from raw signals you have to first process them and
remove the noise. Although our system will not be working on real time patient
recorded signals, the ECG data that we get from MIT-BIH database may also contain

some noise (Figure 3.4) so we also have to pre-process the signal and remove the

noise.
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Figure 4.3: A Section of noisy ECG Records Obtained from MIT-BIH Database

To remove unwanted noise from raw ECG signals four levels of filtering is applied
to ECG records; DC component removing, 10 point moving average (low pass) filter,

derivative based (high pass) filter and a comb filter.

4.3.1 Removing DC Components of the ECG Signal

As it can be clearly seen from Figure 4.2, ECG signals taken from MIT-BIH
database contain baseline (sections of ECG where there is no electrical activity of
heart) amplitudes higher than zero. In this step by subtracting the mean of the signal
from itself, the unwanted dc component is removed and the signal baseline amplitude

is pulled back to level zero.
ECGSignal=ECGSignal-mean(ECGSignal) 4.1)
4.3.2 Removing Low Frequency and High Frequency Noise

ECG data used for the system contains low and high frequency noise
components that may be caused by the sources explained in the previous chapter.
Before the design of the software both frequency domain and time domain filters
were tested for noise removal. It is observed that time domain filters provide better
noise removal on the signals obtained from MIT-BIH database than frequency

domain filters (butterworth filters in our case). Because of this and since most of the
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noise present in the database are random noise, time domain filters were chosen to

filter unwanted high and low frequency noise.

To remove high frequency random noise, mostly caused by patients muscle
contractions during recording, from the ECG signals a 10 point moving average (low
pass) filter (Figure 4.3) which passes low frequencies but attenuates high frequencies

chosen and the signals are filtered by using Matlab’s filter function.
B=(1/10)*ones(1,10);
A=1;
ECGSignal=filter(B,A,ECGSignal) 4.2)
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Figure 4.4: Low Pass Filter

After the removal of high frequency noise from the signal next step is to
remove low frequency noise components. This low frequency noise shows itself as
baseline wandering that is caused mostly by the respiration of the patient. To remove
this low frequency noise, a derivative based (high pass) filter (Figure 3.6) that passes

high frequencies but attenuates low frequencies used.
B=(1/1.0025)*[1 -1];

A=[1-0.995];
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ECGSignal=filter(B,A,ECGSignal) (4.3)
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Figure4.5: High Pass Filter

4.3.3 Removing 60Hz Powerline Interference

Powerline interference is a noise caused by the electrical current flowing in
wires and power lines. Powerline interference that is present in our ECG signals
consists of 60Hz pickup and harmonics. Since frequency of 60Hz overlaps with our
ECG signal frequency range we have to suppress only 60Hz frequency components
and its harmonics without disturbing the frequencies around. To achieve this, comb
filter (Figure 4.5) is used and 60Hz powerline interference with its harmonics is
removed from the ECG signals. Comb filter is a band-stop filter which attenuates a

certain band of frequencies and their harmonics.

B=conv([1 1],/0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149
0.6310]);

A=1;

ECGSignal=filter(B,A,ECGSignal) (4.4)
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Figure 4.6: Comb Filter

All of the above steps are applied to all training and testing ECG records and
filtered ECG signals (Figure 4.6) are obtained ready for the next QRS detection step.
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Figure 4.7: Sample filtered ECG signal after preprocessing

4.4 QRS Detection

As mentioned before in previous chapter, the QRS complex is the most
striking waveform within the ECG. Since it reflects the electrical activity within the

heart during the ventricular contraction, the time of its occurrence as well as its shape
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provide much information about the current state of the heart. Due to its
characteristic shape it serves as an entry point for classification scheme of cardiac
cycle. In that sense, QRS detection provides the fundamentals for almost all
automated ECG analysis algorithms. Supporting this, previous researches (Ozbay Y.
And Karlik B., 1996) proved that taking samples as feature values in the intervals of
R-R are very effective in representing the class of those ECG waves (one cardiac
cycle) cardiac condition. Apart from this, since the 4 ECG class records, each
representing a different cardiac condition, used for training and testing in this thesis
are 1 minute long (each containing 60-90 ECG waveform), in order to separate each
waveform (we need to do this because cardiologist classify cardiac conditions by
looking at single ECG waveforms (cardiac cycles), not by looking at whole record)
and find how many waveforms each record contain, therefore, we also need to detect

the QRS complexes.

There are many different QRS detection techniques but this thesis is focused
on well known and acceptable QRS detection using Pan-Tompkins algorithm (Pan J
and Tompkins WIJ., 1985). Pan and Tompkins proposed a real-time QRS detection
algorithm based on analysis of the slope, amplitude and width of QRS complexes.
The algorithm includes a series of methods that perform derivative, squaring,

integration, adaptive thresholding and search procedures.
4.4.1 Derivative Operator

The derivative procedure suppresses the low-frequency components of the P
and T waves, and provides a large gain to the high-frequency components arising
from the high slopes of the QRS complex. Derivative operation is implemented in
Matlab by using diff function which finds the differences between the adjacent values
in the signal.

Derivative=diff(ECGSignal) 4.5)
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4.4.2 Squaring Operation

The squaring operation makes the result positive and emphasizes large
differences resulting from QRS complexes; the small differences arising from P and
T waves are suppressed. QRS complex is further enhanced. Squaring operation is

implemented simply by multiplying the signal by itself in Matlab.
Squaring=derivative. *derivative (4.6)

4.4.3 Integration

The output of a derivative based operation may contain multiple peaks within
the duration of a single QRS complex. A moving window integrator is applied to
perform smoothing of the output of the preceding operations so that multiple peaks
are avoided. This step is performed in Matlab by using medfiltl function and a
window width of 54 is found to be suitable for sampling frequency 360Hz.

window=ones[1,54];
Integration=med(filtl (filter(window, 1,squaring),10), (4.7)

4.4.4 Thresholding

Maximum value of the signal that had passed from above steps is taken and
multiplied by a threshold percentage value. This is done because the output of
preceding operations may contain noise peaks. These noise peaks do not have as
large amplitude as R peaks but if we take all the peaks present in the output of above
steps as R peaks then noise peaks will also be classified as R peaks (QRS
complexes). So by taking a certain percentage of the highest peak amplitude as a
threshold we avoid this. Different values for threshold percentage were tested and
value 0.2 found to be suitable for removing noise peaks in our signals. This threshold

value is used for searching R peak in search procedures.
maxvalue=max(integration)

threshold=maxvalue*0.2 (4.8)
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4.4.5 Search Procedures for QRS (Location of R Peaks)

In the last step of QRS detection, regions of the output signal, of the
preceding steps, that is above the threshold value is found. Starting and ending

locations of each region is recorded.

Then each specific region is again searched on the original ECG signal for a
maximum value which represents the exact R peak of that wave. Locations of all R

peaks are then recorded and the QRS searching algorithm is finalized (Figure 4.7).
position_region=integration>threshold

left=find (diff([0 position_region])==1)

right=find(diff([position_region 0])==-1)

for i=1:length(left)

[maxvalue (i) maxlocation(i)] =max(ECGSignal(lefi(i) :right(i)))

end (4.9)
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Figure 4.8: ECG signal with R peaks detected
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4.5 Feature Extraction using Pan Tompkins Algorithm

Feature extraction is extracting and converting the input data information into a
set of features which called feature vector, by reducing the data representation pattern.
The features set will extract the relevant information from the input data in order to

perform the classification task.

As we mentioned before, previous research suggested that taking samples between
R-R intervals of ECG waves as feature values enables a good representation of the
cardiac condition of those ECG waves. As we investigate our ECG signals used in
this thesis we can easily see that the features that clearly distinguishes each class
(normal, rbbb, paced and Ibbb) lies between the R-T intervals (Discrimination). Also
it can be easily observed that each member of a class shows same form of pattern in
this interval (Reliability). So we took 200 samples between R-R intervals (Figure
4.8) (approximately this amount of samples corresponds to R-T interval with
sampling frequency of 360Hz) starting from R peaks as our feature values excluding

(deleting) all other parts of the ECG waveforms (Optimality).

for i=1:length(maxlocation)-1

for j=1:200

feature vector(l,j)=ECGSignal(maxlocation(l)+j),

end

end (4.10)

When this method is applied to all training ECG records we obtained
1937x200 feature vector (Figure 4.8) which will fed inputs to our neural network.
While for testing is 807x200, the features were sorted in this order; normal,

normal,...normal, rbbb, rbbb,...rbbb, paced, paced,...paced, Ibbb, Ibbb,...lbbb.
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Figure 4.10: R-T Intervals Features (200*1937) for Training
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Figure 4.11: R-T Intervals Features (200*807) for Testing

4.5.1 R-R Time intervals Combined with R-T intervals

R-R time interval and amplitude of each R peak in the ECG waveform were
calculated using the same algorithm, and then it was combined with R-T interval already
obtained. The size of the feature is now 202x1937 and 202x807 for training and testing

respectively.
4.5.2 Feature Extraction using Discrete Wavelet Transform

In the scope of this thesis, the morphological features extracted from Pan
Tompkins algorithm which represents an R-T interval and another feature
representing R-R time interval and R-peak amplitude were decomposed using
wavelet decomposition analysis, thus increasing ECG characteristic point detection
capabilities in which features from time domain were decomposed again into time-
frequency domain. Since most recently published detectors are based on standard
database libraries and limited wave detection, this application is an attempt to expand

the horizons of current research efforts.

The input selection of feature extraction methods applied in this thesis has to
select well to make sure which components of an inputs best represent the given
pattern of ECG signals. Since the details and approximations wavelet coefficients

contain a significant amount of information about the signal, the wavelet coefficients
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of ECG signal of each subject were computed. The procedures of DWT

implementation is describe as follows in figure 4.12.

R-T interval or combined R-T
and R-R time interval features

11

Wavelet decomposition

11

Approximation Coefficients

41

Detail Coefficients

Figure 4.12: Feature extraction technique using DWT

4.5.2.1 Features Extraction Procedures

Selection of appropriate wavelet and the number of decomposition level is
very important in DWT. The levels are chosen such that those parts of the signal that
correlate well with the frequencies required for classification of the signal are

retained in the wavelet coefficients.

The general wavelet decomposition of DWT procedure involves three steps.
The result of decomposed signal will shows the important details and approximation
coefficients which represent the original signal. The basic version of the procedure

follows the steps described below.

» Choose a wavelet types
» Choose a wavelet name
» Choose a level N which will compute the wavelet decomposition of the signal s

at level N

The discrete wavelet types have been chosen in this features extraction
method and the ECG signals were decomposed into time-frequency representations

using single-level one dimensional wavelet decomposition. Different wavelet names
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which has wavelet filter with scaling function more closely similar to the shape of
the ECG signal to achieved better detection have been choosing and the number of
decomposition levels was chosen to be 12. Thus, the ECG signals were decomposed

into the details coefficients D;-Dj; and one final approximation coefficient, Aj,.
4.6 Statistical feature Extraction

The computed wavelet coefficients provide a compact representation that
shows the energy distribution of the signal in time and frequency. Therefore, the
computed details and approximation wavelet coefficients of the ECG signal were

used as the features vector representing the signals.

In this study, from the original intervals of ECG signal, seven standard
measures parameters are used. In order to reduce the dimensionality of feature
vectors and to determine a precise and robust ECG features, statistics over the set of
the wavelet coefficients were used. The following statistical features were used to
represent the time-frequency distribution of the ECG signals: the flows of the
calculated wavelet transform coefficients and statistical features are shown in figure

4.12 below.

1. mean of the wavelet coefficients of each ECG signals sample

median of the wavelet coefficients of each ECG signals sample

Maximum of the wavelet coefficients of each ECG signals sample
Minimum of the wavelet coefficients of each ECG signals sample
Standard deviation of the wavelet coefficients of each ECG signals sample

Energy deviation of the wavelet coefficients of each ECG signals sample

NS s N

Entropy of the wavelet coefficients of each ECG signals sample

The feature vector of subband 1-10, DI1-D10 of details coefficients and
Approximation coefficient A12 from the wavelet decomposition structures has been
extracted. These vectors are extracted at each scale without scale 11 and 12 for
details coefficients. It is ignoring the higher levels of decomposition because it
contains high frequency details and noise. These details are insignificant information

that will not affect the classification accuracy and signal quality (Daubechies, 1990).
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4.6.1 Feature extraction using Stationary Wavelet Transform

The procedure for calculating stationary wavelet transform and feature
extraction is the same as in discrete wavelet transform only that in SWT the level of

decomposition is eight because the length of the signal must be in form of 2".
Where 7 is the level of decomposition

Therefore, the R-T interval samples from PT algorithm are 256 instead of 200
for DWT and the level should be eight.

> Mean _‘
> Median -
Maximum |
Minimum o ANN input
Wavelet Details and
decomposition »| Approximation
Coefficients | Standard Deviation | |

—p Energy —

L—p Entropy —

Figure 4.13: Wavelet and Statistical Analysis

4.7 Wavelet Time-Frequency Entropy

The concept of entropy has been widely used as a measure of disorder of a
system. In this study, the wavelet entropy was calculated from the vector magnitude
of SWT after decomposing with different wavelet name at level eight. Therefore the
length of SWT detail and approximation coefficients is 8x256 each. wavelet
transform feature vector for calculating entropy was constructed from eight level

detail coefficients and one approximation coefficient which constitute 9x256. Energy
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(Ej) of this ECG signal in the time-scale domain was calculated for each time i and

scale j as follows.

The total energy is calculated as
Eiotar = ZiZj Eij 4.12)

Next, the probability distribution of energy for each scale was obtained as in

Equation 3.
— i
P = oo (4.13)

Where Pij is the probability distribution at time 7 and scale j

ETij is the energy at time i and scale j

Eiotar 18 the total energy

The wavelet time-frequency entropy (WTFE) is defined as in Equation 4

4.8 Output Target Vector Formation

Accompanying each record in the MIT-BIH database there is an annotations
file in which each heartbeat has been identified by expert cardiologist annotators.
This annotated information can be employed for designing the target vector and
evaluating the classifier performance. This thesis is focused on classifying four
different cardiac condition namely normal beats, right bundle branch block, paced
beats and left bundle branch block. These cardiac conditions are defined as follows

Table 3.1
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Table 4.3: Target Vector Formation

ECG Class beat Target Vector
Normal [1000]
Lbbb [0100]
Paced [0010]
Lbbb [0001]

Table4.4: Output Target Vector

Normal | 1 |0|0]0
Normal | 1 |0|0]0
Normal | 1 |0|0]0
Normal | 1|00 0
Rbbb 0(1]0|0
Rbbb 0(1]0|0
Rbbb 0(1]0|0
Rbbb 0(1]0|0
Paced 0|j0[11]0
Paced 0|j0[11]0
Paced 0|j0[11]0
Paced 0|j0[11]0
Ibbb 0]0]|0]|1
Ibbb 0]0]|0]|1
Ibbb 0]0]|0]|1
Ibbb 0]0]|0]|1

When these representations are applied to the whole records and the output
vectors are sorted in the order same as the feature vector, the 1937x4 output target

vector is formed as in table 4.4 above.
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This output target vector will be used by neural network during training stage.
Network will compare these desired outputs with its actual results and hence
calculate errors and adapt its weights to learn the patterns. After the training
completed this vector will be used in calculating correct training recognition rate by

comparing it to networks actual output.
4.9 Designing the Neural Network

Developing a classifier based on neural network involves choosing an
appropriate classifier model and then using the training algorithm to train and then
test the input signal to classify them into different categories. Backpropagation
algorithm will be used in this thesis as a training function to train feed forward neural

networks to solve our ECG signal classification problem.

A two-layer feed-forward network, with sigmoid hidden and output neurons
(patternnet), can classify vectors arbitrarily well, given enough neurons in its hidden
layer. Four different structures of neural networks are designed and will be tested for
best performance. Each of them has same number of input (200), (202) and (77) for
R-T intervals, combined R-R and R-T intervals and Statistical features respectively,

output (4) neurons but differ in their number of hidden neurons (7, 10, 15, 20).

Maximum epochs are set to 1000 and error limit is set to 0.001. ‘Trainsgc’
scale conjugate back propagation is used as backpropagation learning algorithm with
momentum value. Learning rate and momentum coefficients are remained as defaults
of the Matlab’s function and log sigmoid ‘Logsig’ functions are used for neuron

transfer functions.

4.9.1 Training the Neural Network

Feature vectors that contains feature values obtained from training data set,
along with its corresponding 1937x4 output target vector is fed into the networks
designed in previous step for training with backpropagation algorithm. Training is
continued until error goal is achieved or maximum epoch is reached. After the

training finished, networks outputs are compared with output target vector and
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correct training recognition rates and accuracies are recorded. Correct recognition is
counted when the same output neuron shows the maximum value both for actual
output and desired output. Accuracy is found by subtracting networks actual output
of the neuron that should show the maximum value (that should be classified) from
the desired output which is always 1. The example of the feature data for training is
shown in Figure 3.13. Matlab’s train function is used for training the network

designed in previous step.

hiddenLayerSize = 15;

net = patternnet(hiddenLayerSize),

[net,tr,train_out] = train(net,inputs,targets), (4.12)
4.10 Testing the Neural Network

While testing the trained networks testing feature vector was fed into the
network for only one forward pass through the network and the classification outputs
that the network produced is compared with desired testing output target vector
(807x4) to calculate the networks correct testing recognition rates and accuracies.
Testing was done in Matlab with function sim. Already trained network is fed into
the function along with testing feature vector and the function returns the

classifications (outputs) that the network produces.
outputs = sim(net,feature vector_tst);
errors = gsubtract(NTargets3in,outputs), (4.13)

After training and testing completed performance analysis was conducted

based on the error performance and confusion matrix generated by neural network.
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CHAPTER FIVE
RESULTS AND DISCUSSION
5.0 Overview

This chapter contains the results and discussion from the Automatic ECG
beat detection system model developed in this thesis. It includes features extracted
from QRS detection using Pan Tompkins algorithm that represents R-T intervals, R-
R time interval features, discrete wavelet transform decomposition and statistical
parameters features, stationary wavelet decomposition and time and frequency
entropy features. The chapter begins with an introduction to the analysis that has
been investigated. Next it covers the result of the features extraction methods
mentioned above. Some conclusions concerning the rational of features on
classification ECG signals that were obtained through ANN. The performance of
ANN model was evaluated in terms of testing performance and classification
sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value
(NPV) and accuracy in classifying Normal, RBBB, Paced beat and LBBB. The
results confirmed that the proposed method has a potential in classifying the ECG

signals.

The training samples were randomly divided into three processes, Training
process with 70% of the sample, Validation process with 15% of the sample and
testing process with 15% of the sample. Training’s samples are presented to the
network during training, and the network is adjusted according to its error.
Validation’s samples are used to measure network generalization when the network
stops improving. While Testing’s sample have no effect on training and so provide
an independent measure of network performance during and after training. After
training the actual testing samples were loaded and tested using created training

network.



79

5.1 Performance Parameters Measure

5.1.1 Sensitivity

Sensitivity (also called the true positive rate) measures the proportion of
actual positives which are correctly identified as such (e.g. the percentage of sick
people who are correctly identified as having the condition).Sensitivity can be

calculated using the Formula 5.1 below.

TruePositive(TP) (5 1 )

SeTlSltl'Ulty = TruePositive(TP)+FalseNegative(TN)

Where

In general, Positive = identified and negative = rejected. Therefore:

True positive: Sick people correctly diagnosed as sick (correctly identified)

False positive: Healthy people incorrectly identified as sick (incorrectly identified)
True negative: Healthy people correctly identified as healthy (correctly rejected)

False negative: Sick people incorrectly identified as healthy (incorrectly rejected)

5.1.2 Specificity

Specificity (sometimes called the true negative rate) measures the proportion
of negatives which are correctly identified as such (e.g. the percentage of healthy
people who are correctly identified as not having the condition). Specificity can be

calculated using the Formula 5.2 below (Adam and Witold, 2012).

TrueNegative(TN) (5 2)
TrueNegative(TN)+FalsePositive(FP) .

Specificity =
5.1.3 Positive Predictive Value

It is the percentage of patients with a positive test who actually have the

disease (Raul et al., 2008). How likely is someone with a positive test result to
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actually have the characteristic? Positive predictive value can be calculated using the

Formula 5.3 below.

TruePositive(TP) (5 3)

POSltlve predLCtlve value = TruePositive(TP)+FalsePositive(FP)

5.1.4 Negative Predictive Value

It is the percentage of patients with a negative test who do not have the
disease (Raul et al., 2008). How likely is someone with a negative test result to
actually not have the characteristics? Negative predictive value can be calculated

using the Formula 5.4 below.

TrueNegative(TN) (5 4)

Negatlve predlctwe value = TrueNegative(TN)+FalseNegative(FN)

5.1.5 Accuracy

Accuracy or efficiency is the percentage of test results correctly identified by

the test. Accuracy can be calculated using the formula 5.5 below.

True Positive (TP)+True Negative(TN)
TP+TN+FP+FN

Accuracy = (5.5)

Note that, the PPV and NPV are not intrinsic to the test, they depends on the
prevalence of the characteristic in a given population (Wikipedia and Wikihow,
2014).

5.2 Performance Analysis of Equivalent R-T Interval Features

ECG Data obtained from MIT-BIH database were pre-processed, QRS
complexes were detected and 200 samples between R-R intervals which is equivalent
R-T interval were extracted as feature values representing ECG classes. After all
these steps four different network structures are trained with training data, training
performances were recorded and finally they were all tested with testing data and

testing performances were recorded for result analysis and discussions.

5.2.1 Performance with reduced number of ECG beats samples

Below are the results for the algorithms developed to detect and classify 3
types of ECG signal beats including normal beats (N), right bundle branch block
beats (R), and paced beats (P) using Pan Tompkins algorithm for QRS detection and
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features extraction. Six and two ECG record samples were used for each beat

resulting in 1189 and 413 features for training and testing respectively.

Table 5.1: Performance of R-T interval features with reduced samples (413 patterns)

Hidden layer | Correct recognized patterns | Recognition rate (%)
7 400 96.85
10 401 97.09
15 402 97.34
20 397 96.13

From the table above, four different networks were designed with different
number of hidden layer and the result for testing samples were depicted based on
recognition rates while as we can see from the results and figure 5.1 below, a network
which has the architecture 200:15:3 showed the best results during its best training and

testing run with testing recognition rate of 97.54%.

These results can change with each run of the program because with each
new run program starts training the networks again with different random weights
and the testing rates may change due to different final training weights obtained in
each training. So the training and testing recognition rates may vary from run to run.
However, in this result and the subsequent ones, confusion matrix of test network at
its best run can be used in evaluating performance measures of the system as it’s

shown below for the above network.
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Figure 5.1: Best Run Network for reduced R-T interval samples
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Figure 5.2: Test Data Confusion Matrix for reduced R-T interval samples

Table 5.2 shows the parameters after extraction from the Figure 5.2. Column 1
is set for Normal samples; Column 2 is set for Rbbb samples, while Column 3 for
Paced beat samples respectively. Green box in each column shows the True Positive
value. The other two red boxes in each column indicate the False Negative value
while the other two red boxes in each row will give the False Positive value. True

Negative value is the other 4 box that are not included in all those criteria at certain

time. Final blue box gives a recognition rate of the system.

Table 5.2: Extracted parameters from figure 5.2

3 273

Normal 137 0

1 270

Paced 135 7
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Table 5.3: Performance measures for reduced R-T interval samples

ECG Sensitivity | Specificity | Positive Negative | Accuracy
Class (%) (%) Predictive | Predictive | (Efficiency)
Beat value value

Normal | 100 98.91 97.85 100 99.27
Rbbb 97.01 97.49 94.89 98.55 97.34
Paced 95.07 99.63 99.26 97.47 98.06
Average | 97.36 98.68 97.33 98.67 98.22

From the above tables and figures, the average sensitivity and specificity,
PPV, NPV and accuracy of the system is 97.36%, 98.86%, 97.33, 98.67 and 98.22

respectively. While network performance parameters at its best run were shown in

figure 5.1 and 5.2.

5.2.2 Performance of DWT with reduced number of ECG beats

In order to increase the classification accuracy of the system, the equivalent
R-T interval features were decomposed using DWT and statistical features were
extracted and wused for classification. The performance of discrete wavelet
decomposition and statistical features for reduce number of ECG beats is shown

below. Different wavelet families were chosen for the decomposition in order to find

the most effective among the families.

Table 5.4: DWT features performance for reduced number of samples

Hidden Layer=15

Wavelet Name | Correct recognized patterns | Recognition rates (%)
Db2 347 84.02

Db4 411 99.76

Db7 409 99.03

Db10 411 99.52

Biorl.5 351 84.99
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Bior2.6 392 9492
Bior3.7 412 99.52
Bior6.8 408 98.79
Coif2 409 99.03
Coifs 411 99.76
Sym5 410 9927
Syms 410 9927

From the results above, it is clearly shown that there is an improvement when
using a hybrid system that is combining time domain, time-frequency domain and
statistical features. The feature vector includes 200 samples extracted between R-R
interval as equivalent R-T interval, they were decomposed using DWT and statistical
parameters such as mean, median, maximum etc were calculated from 12-level
decomposition. The final size of the feature vector is 77x1189 and 77x413 for
training and testing respectively. Among DWT families family Db4 and coif5 shows

better performance with a recognition rate of 99.76%. The best run network

performance is shown below.
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Figure 5.4: Test Data Confusion Matrix for DWT with reduced samples

The performance of the system in terms of performance measures was

calculated and tabulated as shown below.

Table 5.5: Extracted parameters from figure 5.4

ECG Class beat TP FN FP TN




Table 5.6: Performance measures for DWT with reduced samples
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ECG Sensitivity | Specificity | Positive Negative | Accuracy
Class (%) (%) Predictive | Predictive | (%)

Beat value (%) | Value (%)

Normal | 100 100 100 100 100
Rbbb 99.25 100 100 99.64 99.76
Paced 100 99.63 99.30 100 99.76
Average | 99.75 99.88 99.77 99.88 99.84

Based on the results obtained from the above table, all the performance
measures of the proposed system are approximately 100% which shows how well
and good the system performed in classifying ECG beats from normal to

arrthythmias.
5.3. Performance Analysis of Larger Number of Samples and ECG Beats

Since the performance of a system for reduced number of samples and ECG
class beats is almost 100%, therefore, we increased the number of samples from 1188
to 1937 and 413 to 807 for training and testing respectively. Also the number of ECG
class beats was increased from three to four, which are Normal, Rbbb, Paced and
Lbbb. Therefore, it is believed that expanding the overall data set would be more
realistic and introduces a more challenging problem due to significant variation in

ECG morphology among different patients.

5.3.1 Performance analysis of equivalent R-T interval features

The performance of each R-T interval features with increased number of
samples for different network is shown in table 5.7 below. The feature vector size is

200x1937 for training and 200x807 for testing.

Table 5.7: Performance of R-T interval features with large samples

Hidden layer | Correct recognized patterns | Recognition rate (%)
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Figure 5.5: Best Run Network for R-T interval features with large samples
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Table 5.8: Extracted parameters from figure 5.6

ECG Class beat TP FN FP TN
Normal 144 78 1 584
Rbbb 180 2 11 614
Paced 182 3 9 613
Lbbb 207 11 73 516
Table 5.9: Performance measures for R-T interval with large samples
ECG Sensitivity | Specificity | Positive Negative Accuracy
Class (%) (%) Predictive | Predictive | (%)
Beat Value (%) | Value (%)
Normal | 64.86 99.83 99.31 88.22 90.21
Rbbb 98.90 98.24 94.24 99.68 98.39
Paced 98.38 98.55 95.29 99.51 98.51
Lbbb 94.95 87.61 73.93 97.91 89.59
Average | 89.27 96.06 90.69 96.33 94.18

The results above shows the decrease in performance of the system when the number
of samples and ECG class beat was increased, the result shows 89.61% sensitivity,
96.06% specificity and 94.18% accuracy which indicates low percentage in
classifying correct ECG class beat as seen from sensitivity of normal class beat
which is 64.86%. Therefore, we need to develop and investigate other methods and

system for robust and efficient feature extraction and classification.

5.3.2 Performance of DWT with Large Number of Samples and ECG
Beats
In order to improve the classification accuracy we need to search for a
reliable and efficient ECG features extraction technique, therefore the R-T interval
features were decomposed using DWT decomposition as explained before. After the
decomposition statistical features were extracted and used as features for ECG

classification which result in a hybrid method of future extraction and classification.
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Below is the performance of DWT decomposition of equivalent R-T interval
extracted after Pan-Tompkins algorithm. The statistical parameters were calculated

after the decomposition and features extracted.

Table 5.10: DWT features performance for large number of samples

Hidden Layer=15

Wavelet Name | Correct recognized patterns | Recognition rates (%)
Db2 714 88.48
Db4 768 95.17
Db7 683 84.63
Db10 718 88.97
Biorl.5 703 87.11
Bior2.6 743 92.07
Bior3.7 760 94.18
Bior6.8 708 87.73
Coif2 706 87.48
Coif5 762 94.42
Sym5 747 92.57
Sym8 724 89.71

#f\ Neural Network Training (nntraintool) = S|

| ErEr—

Epoch: o [l 89 iterations 1000

Performance: 0.455 B 0p0Ez0 0.00
Gradient: 0533 [I 000335 1.00e-06

Error Histogram
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|

[

[

[ Confusion
[ =

eeeeeee Operating Characteristic

PlotInterval ) 1 epochs

«” Validation stop.

Figure 5.7: Best Run Network for DWT features with large samples



Confusion Matrix

Output Class
w

2

3
Target Class

Figure 5.8: Test Data Confusion Matrix for DWT with large samples

Table 5.11: Extracted parameters from figure 5.8

ECG Class beat TP FN FP TN
Rbbb 179 3 11 614
Lbbb 202 16 18 571

Table 5.12: Performance measures for DWT with large samples

ECG Class | Sensitivity | Specificity | Positive Negative Accuracy
Beat (%) (%) Predictive Predictive (%)
value (%) Value (%)
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From the above results it is clearly seen an improvement when compared with
classification using R-T interval features alone as the average sensitivity is now
around 95.46% while average specificity around 98.80%. This improvement can be
traced due to high sensitivity for normal ECG class which is 91.89% against 64.86%
when using R-T interval features only. However, though there is an improvement
when using DWT and statistical features there is still need to address the challenges
of classifying ECG classes accurately due to a minutes morphological parameter
values, significant variation in ECG morphological information and presence of
noise. Therefore, another method was developed based on Stationary wavelet
transform for extracting another set of time-frequency and a statistical feature for

better and successful classification and diagnostic of ECG beats.
5.4 Performance of SWT with Large Number of Samples

Below is the performance of SWT decomposition of equivalent R-T interval
extracted after Pan-Tompkins algorithm. The statistical parameters were calculated
after the decomposition using different wavelets, features extracted for classification

using ANN and db4 was used in evaluating system performance indices.

Table 5.13: SWT features performance for large number of samples

Hidden Layer=15

Wavelet Name | Correct recognized patterns | Recognition rates (%)
Db2 728 90.21
Db4 780 96.65
Db7 743 92.07
Db10 765 94.79
Biorl.5 724 89.71
Bior2.6 764 94.67
Bior3.7 721 89.31
Bior6.8 743 92.07
Coif2 759 94.05
Coif5 735 91.08
Sym5 769 95.29
Sym8 778 96.41




Figure 5.9: Best Run Network for SWT features with large samples
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Figure 5.10: Test Data Confusion Matrix for SWT with large samples

Table 5.14: Extracted parameters from figure 5.10

ECG Class beat TP FN FP TN
Rbbb 174 8 11 614

Lbbb 206 12 9 580
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Table 5.15: Performance measures for SWT with large samples

ECG Sensitivity | Specificity | Positive Negative Accuracy
Class (%) (%) Predictive Predictive (%)

Beat Value (%) Value (%)

Normal | 97.75 99.49 98.64 99.15 99.01
Rbbb 95.60 98.24 94.05 98.71 97.65
Paced 98.92 99.36 97.86 99.68 99.26
Lbbb 94.50 98.47 95.81 97.97 97.40
Average | 96.69 98.89 96.59 98.88 98.33

By using SWT to decompose the R-T interval features and extracting a new set
of features based on statistical parameters the performance of this proposed system
was successful in terms of classifying ECG class beats. The average sensitivity of the
system is 96.44% while average specificity is 98.89% against 95.86% and 98.80 for
DWT. Also, the most interesting point to note in using SWT features is that while in
DWT features few of the wavelet families like Db4, coif5 and sym5 shows higher
number of recognition rates, in SWT many of the wavelet families indicates a great
improvement with higher values of recognition greater than 90%, for example, Db2,
bior6.8, coif2 and symS8 has a recognition rate of 88.48%, 87.73, 87.48 and 89.71%
respectively. While for SWT features the classification recognition rate for the above

wavelet families is 90.21%, 92.07%, 94.05% and 96.41% respectively.
5.5 Performance of Combined R-R-time Interval and R-T Interval

Another feature comprises of R-R time interval and R peak amplitudes were
extracted from QRS detection using Pan-Tompkins algorithm and then combined
with equivalent R-T interval of 200 samples extracted also from the same algorithm.
After calculating the difference between R-peak time interval and R-peak amplitude
and then combined with already 200 samples of R-T interval, the size of feature
vector becomes 202x1937 and 202x 807 for training and testing respectively. The

performance of the combined features was shown below:
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Table 5.16: Performance of combined R-R time and R-T features with large samples

Hidden layer | Correct recognized patterns | Recognition rate (%)

Scaled Conjugate Gradient (trainzcg)
nce:  Mean Squared Erre se)
Derivative: Default (defaultderiv)

o [ 114 iterations 1000
0:00:02

(plottrainstate)

(plotconfusion)

(plotroc)

Figure 5.11: Best Run Network for combined R-R time and R-T features with large samples
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3
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Figure 5.12: Test Data Confusion Matrix for combined R-R time and R-T interval ~ with large samples
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Table 5.17: Extracted parameters from figure 5.12

ECG Class beat TP FN FP TN
Normal 144 78 6 579
Rbbb 179 3 62 563
Paced 183 2 15 607
Lbbb 198 20 20 569

Table 5.18: Performance measures for combine R-R time and R-T interval with large samples

ECG Sensitivity | Specificity | Positive Negative | Accuracy
Class (%) (%) Predictive | Predictive | (%)

Beat Value (%) | Value (%)

Normal | 64.87 98.97 96.00 88.13 89.59
Rbbb 98.35 90.08 74.27 99.47 91.95
Paced 98.92 97.59 92.42 99.67 97.89
Lbbb 90.83 96.60 90.83 96.60 95.04
Average | 88.24 95.81 88.74 95.97 93.62

After calculating R-R time intervals and R-peak amplitudes they were
combined with R-T intervals samples as a new feature for classification, from the
results above in tables and figures the performance of this system is low when

compares with all other systems developed in this thesis.

5.5.1 Performance of Combined R-R Time and R-T Intervals with DWT

As done previously, the combined features from R-R time intervals and R-T
intervals were decomposed using DWT and statistical features were calculated and
extracted. The size of feature vector after calculating mean, median, standard
deviation etc is 77x1937 for training and 77x807 for testing. The performance of this

system is shown in table 5.19 below.

Table 5.19: R-R time and R-T with DWT features performance for large number of samples

Hidden Layer=15
Wavelet Name | Correct recognized patterns | Recognition rates (%)
Db2 578 71.62

Db4 481 59.60
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Figure 5.13: Best Run Network for combined R-R time and R-T features with DWT
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Figure 5.14: Test Data Confusion Matrix for combined R-R time and R-T interval with DWT

Table 5.20: Extracted parameters from figure 5.14

ECG Sensitivity | Specificity | Positive Negative | Accuracy
Class (%) (%) Predictive | Predictive | (%)
Beat Value (%) | Value (%)

|
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5.6 Performance of SWT Entropy

In this case, equivalent R-T interval features extracted from between R-R
interval after QRS detection using Pan-Tompkins algorithm as 256x1937 were
decomposed using SWT and then statistical parameters were calculated as before.
The difference in this case is we have calculated separately time and frequency
entropy with statistical mean, median, standard deviation etc and formed a feature

vector of 63x1937 and 63x807 for training and testing respectively.

Table 5.22: Frequency Entropy features performance for large number of samples

Hidden Layer=15

Wavelet Name | Correct recognized patterns | Recognition rates (%)
Db2 746 92 .44
Db4 750 92.94
Db7 762 94.42
Db10 738 91.45
Biorl.5 695 86.12
Bior2.6 741 91.82
Bior3.7 682 84.51
Bior6.8 747 92.57
Coif2 764 94.67
Coif5 734 90.95
Sym5 756 93.68
Sym8 771 95.54
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Figure 5.15: Best Run Network for Frequency Entropy using SWT
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Figure 5.16: Test Data Confusion matrix for Frequency Entropy

Table 5.23: Extracted parameters from figure 5.16
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Table 5.24: Performance measures of frequency Entropy with large number of  samples
ECG Sensitivity | Specificity | Positive Negative | Accuracy
Class (%) (%) Predictive | Predictive | (%)

Beat Value Value
(%) (%)
Normal | 95.50 99.32 98.15 98.31 98.27
Rbbb 96.70 97.44 91.67 99.02 97.27
Paced 96.76 98.55 95.21 99.03 98.14
Lbbb 93.58 98.81 96.68 97.65 97.40
Average | 95.64 98.53 95.43 98.50 97.77
2|
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Figure 5.17: Best Run Network for Time Entropy using SWT



101

Confusion Matrix

QOutput Class
w

1 2 3
Target Class

Figure 5.18: Test Data Confusion matrix for Time Entropy

Table 5.26: Extracted parameters from figure 5.18

Table 5.27: Performance measures of Time Entropy features with large number of

samples
ECG Sensitivity | Specificity | Positive | Negative | Accuracy
Class (%) (%) Predictive | Predictive | (%)
Beat Value Value

() (%)

|
Paced 4|

Average| 63t
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5.7 Comparative Performance Analysis

Different methods and techniques of ECG feature extraction developed in this
thesis for the purpose of ECG beats detection and recognition automatically using
ANN classification was presented below, the result indicates different effects of

features on the classification.

Tables below indicate comparative performance analysis of different feature

extraction and classification techniques developed in this thesis.

Table 5.28 Comparison between reduced sample and large sample set

Performance Measures | Reduced Sample Set | Large Sample Set

R-T intervals | DWT | R-T intervals | DWT | SWT
Sensitivity 97.36 99.75 | 89.27 95.46 | 96.69
Specificity 99.68 99.88 | 96.06 98.38 | 98.89
PPV 97.33 99.77 | 90.69 95.26 | 96.59
NPV 98.67 99.88 | 96.33 98.36 | 98.88
Accuracy 98.22 99.84 | 94.18 97.59 | 98.33

Table 5.29 Comparison of different methods

Methods Sensitivity | Specificity | PPV | NPV | Accuracy
R-T intervals 89.27 96.06 90.69 | 96.33 | 94.18
DWT 95.46 98.38 95.26 | 98.36 | 97.59
SWT 96.69 98.89 96.59 | 98.88 | 98.33
R-T and R-R 88.24 95.81 88.74 | 9597 | 93.62
DWT with R-R and R-T | 85.94 95.10 85.98 | 95.16 | 92.75

Table 5.30: Comparison between wavelet families

Wavelet Name | DWT SWT
Recognition rate (%) | Recognition rate (%)
Db4 95.17 96.65
Db10 88.97 94.79
Bior6.8 87.73 92.07
Coif5 94.42 91.08
Sym8 89.71 96.41

Generally, the performance of the proposed automatic ECG beat detection

system developed in this thesis was successful and efficient in classifying ECG class
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beats using a hybrid technique of extracting time domain features, time-frequency
domain features and statistical features. Based on the results obtained when
designing different network, the network with 15 numbers of neurons in its hidden
layer prove to be effective. The performance parameters for best run network in each
system was depicted on the figures which shows mean square error, gradient and best

validation as well as number of epoch reached by that particular network.

Moreover, by decomposition using different wavelet families for both
discrete wavelet decomposition and its counterpart stationary wavelet decomposition,
db4 and coif5 shows higher number of recognition rates when compared to other
families. Also, based on different systems developed in this thesis, SWT with
statistical features gives higher number of accuracy as shown in the above table.
Also, feature extraction technique using combined R-R time interval, R-peak
amplitude and R-T interval with DWT decomposition shows less effective in
accurate classification of ECG beats. Furthermore, it has been shown that selection

of a suitable wavelet is critical to the success of classification.

5.7.1 Comparison between Time and Frequency Wavelet Entropy

Wavelet time and frequency entropy was calculated using SWT

decomposition and the comparison between the two was tabulated in table below.

Table 5.31: Comparison between these two Entropies

Performance measures | Time Entropy | Frequency Entropy
Sensitivity 96.41 95.64
Specificity 98.81 98.53
PPV 96.34 95.43
NPV 98.81 98.50
Accuracy 98.21 97.77

Based on the results obtained after classification with time and frequency
entropy algorithm developed in this work, it was shown that time SWT entropy
performed better with accuracy of 98.21% which states that the shape of the ECG

wave contains more information than the frequency bands.
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CHAPTER SIX
WIRELESS ECG ACQUISITION DEVICE
6.0 Overview

Heart disease is one of leading cause of death worldwide, even in developed
countries like USA the disease claims a lot of lives every year as shown in the
previous chapter. In developing and under developed country where there is no
sophisticated equipment like that of United States and westermn countries the number
is much higher. A need of portable equipment for monitoring and processing of heart
rhythms as well as to detect ECG arrhythmias would never be over emphasized. My
experiences of been growing up in a developing country where the rules of the
healthcare system are very different from that of the western world, most places have
little to no infrastructure, and there is a lack of basic amenities such as water, food,
electricity, hospital, reliable source of constant power supply, lack of medical
equipments and personnel encourages me to focus on the design of a portable, low
power, and low cost alternative to the sophisticated cardiac monitoring systems that
are found in most hospitals in the western world which when developed and
incorporated with automatic beat detection system developed in this thesis would be
easy to operate, easy to transport and would be used to monitor admitted patients in
these areas; patients who unfortunately can’t afford the luxury of accommodation in
the few well equipped hospitals that exist in their locale as well as ease clinicians and

doctors work.

This chapter discusses the design of wireless ECG acquisition device using a
low cost ECG analog front end with low power msp430 microcontroller set from
Texas Instrument by exploiting the features of ez430-rf2500 development tool that
has CC2500 low-power wireless RF transceivers which are suitable for low-power,

low-cost wireless applications.
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6.1 ECG Hardware Acquisition Module

ECG signal has some basic and essential electrical characteristics that need to
be considered in design and development of its hardware acquisition module for its
collection from a patient. ECG is a non-stationary signal with amplitude of +3mV
maximum and Most of the clinically significant information in ECG is found in the

spectral band 0—-100 Hz (Rajarshi et al., 2014).

During ECG recording, there are other unwanted signals that are collectively
called ‘artifacts’ which contaminated the desired ECG signal, some of these are
generated within the human body (Physiological of origin) while others are external

to the body (non-physiological). Below are some of these artifacts and their sources.

1. Electromyography (EMG) noise: these are noise due to muscular activity like
coughing, breathing, or squirming of the patient. The amplitude and frequency band
of this signal is 0.1-1 mV and 5 Hz-1 kHz respectively, are partly overlapping with
ECG signal. EMG noise and it may completely destroy the signal based analysis if

proper care was not taken.

2. Power Line interference (PLI): A 50/60 + 0.2 Hz current flows through the lead
wires can get mixed with our signal of interest from the lead wires of neighboring

cables as a result of capacitive coupling of ECG lead wires.

3. Electrode pop or contact noise: Sometimes when there is loss of contact between
the patient body and ECG electrodes the output of amplifier may be temporarily

saturated for a certain period of time.

4. Baseline wander: The respiration of the patient during ECG recording causes the
ECG to oscillate at a very low frequency of 0.15 and 0.3HZ by changing the

impedance between heart muscle and electrode.

5. Motion Artifacts: A patient movement or improper preparation of the skin can

cause an overlap with ECG signal spectrum in the range of 1-10Hz.
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6. Electrosurgical noise: In a clinical setup, there are number of neighboring medical

equipments that generate noise at frequencies between 100 kHz and 1 MHz.

7. Amplifier noise: Amplifier generates two types of unwanted signals; that is Noise
and drift which contaminate ECG signal during measurement. Noise has a spectral
component above 0.1Hz while drifts generally refer to slow changes in the baseline

frequencies below 0.1Hz.

We can minimize those artifacts by suitable clinical setup and design; however,
using hardware to eliminate them altogether is almost impossible. Therefore, many
software computational techniques for denoising digitized ECG are available now a

day.

Generally, ECG wireless acquisition device consist of ECG electrode sensor,
analog front end circuit which comprise of Instrumentation amplifier and filters for
amplification and denoising respectively, low power microcontroller for timing,
sampling, conversion and processing of the signal for transmission, CC2500 for
wireless transmission. At the receiver part, CC2500 used to receive the incoming RF
signal, low power microcontroller process the signal and send it to personal computer

for visualization and further processing.

Below is the general block diagram of wireless ECG acquisition module

ECG SENSOR ANALOG END DEVICE END DEVICE & ACCESS POINT
» ’ »

(ELECTRODES) FRONT END MSP430F2274 CC2500 CC2500

A

ACCESS POINT
MSP430F2274

PC

Figure 6.1: General block diagram of wireless ECG acquisition module
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6.2 Analog Front End Design

ECG Analog front end consist of instrumentation amplifier, operational
amplifier, low pass and high pass filters.

6.2.1 Instrumentation amplifier

ECG signal has an amplitude of approximately 1mV peak-peak, detecting this
low frequency low magnitude signal is a serious problem because of the noise
signals picked up by human body as described above. Therefore, a device with low
cutoff frequency and high gain is required for signal conditioning, conversion and
processing. The instrumentation amplifier used in this system is AD620 it is low cost
device with high accuracy that requires only one external resistor to set gains of 1-
10,000. It has a common mode rejection ratio (CMRR) specification of 100dB at
G=10 up to 100 kHz at G=100, quiescent current of 490 u A, and shutdown current

levels less than 1 u A. It can operate to a minimum supply voltage of 2.3V.
Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller
than discrete designs and offers lower power (only 1.3 mA max supply current),
making it a good fit for battery-powered, portable (or remote) applications as well as
suitable for medical application like ECG which cancel out the common mode signal
from a conductive pad and amplifies the input differential ECG signal(AD620,
2011).

RGE ElRG

-IN | 2 El +Vg
+IN E ¢ | outPuT

Vg E AD620 5 | REF

TOP VIEW

Figure 6.2: AD620 pinsout(AD620, 2011)

ADG620 is the resistor gain programmable by Rg

Where Rg is the gain resistor
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From the data sheet, R; = 4?:’10 (6.1)

Where G is the gain

R; Was calculated as 2.2k}

vee 2.2kQ
5V

711 (8 U1 C1
ELECTRODES (
_Q o + —+ R2

1uF

—T10

-I° - ADG620AR
HDR2X3

¢ |- vee

Figure 6.3: AD620 Instrumentation amplifier

The gain for the second amplifier which is op-amp amplifier CA3140 is calculated as

Gain === (6.2)

1

. 1MQ
Gain =
2.2kQ

= 454 (6.3)

Also in-between amplification steps Low and high pass filtering are performed and
during the second amplification step, and then after amplification a bank of three

low-pass filters follows to remove additional 60 Hz noise.
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Figure6.4: CA3140 Op-Amp and filters connection

6.3 €Z430-RF2500 Wireless Development Module

The eZ430-RF2500 is one of the excellent product from Texas Instrument
which provides all the hardware and software required for a complete MSP430
wireless development tool by combining MSP430F2274 microcontroller and
CC2500 2.4-GHz wireless transceiver with their features. There are two target boards
included in the kit, end device and access point. End device transmits wirelessly the
information collected from sensor like ECG electrodes to the access point, while a

gateway that is connected via USB to the computer is called access point.

EZ430-RF2500 has a unique feature of using USB debugging interface which
allow users to conveniently debug each target board. Also it may be used as a
standalone device with or without external sensors, or may be incorporated into an
existing design. For development purposes, each end and access point has 18
available development pins that can be technically altered to suit different

development purposes as shown in table 6.1 and 6.2 below.



110

Spy-Bi-Wire and Pushbuton ~ TWOLEDs
MSP430 Appliation UART CC2500

Chip Antenna

USB Powered

18 Accessible Pins

Figure 6.5: €Z430-RF2500 Access point and USB debugging interface(Slauu227¢, 2009)

Figure 6.6: €Z430-RF2500 End device Battery Board (Slauu227e, 2009)

6.4 SimpliciTI Network Protocol

In this thesis €Z430-RF2500 is using SimpliciTI wireless network protocol
developed by Texas Instrument targeting simple and small radio frequency (RF)
networks for easy implementation with minimal microcontroller resource

requirement. This feature makes it suitable for low cost and low power RF networks.
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Table 6.1: €Z430-RF2500T Target Board Pinouts (SLAU227E, 2009)

Pin Function Description
1 |GND Ground reference
2 |vcC Supply voltage
3 |P2Z0IACLK/AD ! OAOIO General-purpose digital O pin / ACLK oufput / ADCA0, analog input AD
4 P21/ TAINCLK | SMCLK [ A1 General-purpose digital 10 pin / ADC10, analog input A1

Timer_A, clock signal at INCLK, SMCLK signal output

General-purpose digital O pin / ADCA0, analog input A2
Timer_A, capture: CCIOB input/BSL receive, compare: OUTO output

P2.31 TA1 1 A3 I VREF- VeREF- | General-purpose digital IfO pin / Timer_A, capture: CCIB input, compare: OUT1

5 P22/ TADJA2!0ADN

f 1 0A11110A10 output / ADC10, analog input A3 / negative reference voltage oufputinput
7 P24/ TA2 | Ad | VREF+ [ VeREF+ | General-purpose digital IfO pin / Timer_A, compare: OUT2 output /
10ATI0 ADC10, analog input A4 / positive reference voltage outputiinput
r General-purpose digital I/0 pin / ADC10 analog input A12/
8 |PAITBO/ARZEOMD Timer_B, capture: CCIOB input, compare: QUTO output
9 |P44/TBI/A13/OAIO General-purpose digital 10 pin / ADC10 analog input A13

Timer_B, capture: CCIB input, compare: OUT1 output

General-purpose digital 1O pin / ADC10 analog input A4 /
Timer_B, compare: OUTZ output

General-purpose digital 10 pin / ADC10 analog input A15/
Timer_B, switch all TBO to TB3 outputs to high impedance

10 |P45/TB2/A1410ADI3

11 |P4.6/TBOUTH/A15/ QA1I3

12 |GND Ground reference
13 |P26/XIN (GDOD) General-purpose digital O pin / Input terminal of crystal oscillator
14 |P2.7/X0UT (GDO2) General-purpose digital O pin / Qutput terminal of crystal oscillator

General-purpose digital 10 pin
USCI_B0 slave out/master in when in SPI mode, SCL I2C clock in [2C mode

General-purpose digital 10 pin
USCI_BO clock input/output / USCI_AQ slave transmit enable

General-purpose digital O pin / USCI_BO slave transmit enable / USCI_AQ clock
17 |P3.0/UCBOSTE / UCAOCLK / A5 inputloutput/ ADCAD, analog nput A&

15 |P3.2/ UCBOSCMI/ UCBOSCL

16 |P3.3/ UCBOCLK / UCADSTE

General-purpose digital 10 pin / USCI_BO slave in/master out in SPI mode, SDA 12C
18 |P3.1/UCBOSIMO/ UCBOSDA data in [2C mode

Table 6.2: Battery Board Pinouts (SLAU227E, 2009)

Fin Function Description

General-purpose digital 110 pin / USCI_AD fransmit data output in UART mode (UART
communication from 2274 to PC), slave i/master out in SPI mode

1| P341UCAQTXD/ UCAOSIMO

2 |GND Ground reference

Reset or nonmaskable interrupt input

3¢ [RTeENTH Spy-Bi-Wire test data inputioutput during programming and test

Selects test mode for JTAG pins on Port!. The device protection fuse is connected fo
TEST. Spy-Bi-Wire test clock input during programming and test

5 VCC (@6 Supply voage

General-purpose digital O pin / USCI_AQ receive data input in UART mode (UART
communication from 2274 1o PC), slave outimaster in when in SPI mode

4 | TEST/SBWTCK

6 |P3.5/UCADRXD /UCADSOMI

6.5 Software Design

When ECG signal was received from ECG analog front end by end device
target board, MSP430F2274 will sample the signal using ADC10 analog to digital
converter implemented in the microcontroller after initializing the board, timers and
oscillator. The device starts searching for access point to connect, during searching
green and red leds toggle on/off. When it discovers the access point the red led flash
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to indicate the link attempt, once connected all leds are turned off and sampled ECG
signal will be send to the access point. End device default is low power mode 3
(LPM3) and wakes up once to sample ECG signal and send it to access point as
shown in Figure 6.7 below.

Initialize Board Timer ISR
wakeup
Y
v
. i . Read ECG
Timerand Enter LPM3 until timer (ADC10)
oscillator set interrupt

A
A 4

A 4

Initialize/Join Send the values
network

to access point

Link to access

point

Figure 6.7: End device software flowchart

From the access point side as shown in Figure 6.8 below, after initializing the
board, timers and oscillator it listen for end device to join and for packages that have
already joined from end device. There are two leds that notifies transaction between
two boards in the network; green led indicates packet received from end device while
red led indicates transmission to the computer. Access point sends ECG signal
through application of Universal Asynchronous Receiver Transmitter (UART) to a
computer com port for visualization using a Matlab environment or graphical user

interface.
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Initialize Board
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Figure 6.8: Access point program flowchart

In this thesis [AR Embedded Workbench Integrated Development Environment
(IDE) was used by ¢Z430-RF2500 to write, download, and debug the application.

The debugger is unobtrusive, allowing the user to run an application at full speed
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with both hardware breakpoints and single stepping available while consuming no

extra hardware resources (SLAU227E, 2009).

6.6 Result

Figure 6.9: First ECG result via an oscilloscope

Figure 6.10: complete setup of ECG analog front end



Figure 6.11: Full set up with eZ430-RF2500 wireless development tool

Matlab environment was used in this work for visualizing the ECG signal
through one of the PC com.
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CHAPTER SEVEN
CONCLUSIONS
6.1 Summary

This thesis is an endeavor to address and gives solutions to various challenges
associated with ECG acquisition and automatic beat classification system. The
system includes both hardware and software in order to reduce an existing gap in
health care environment by proposing low cost, easy to use and simpler method of
wireless acquisition system and automatic ECG beat classification using a hybrid
technique which is capable of classifying four ECG beats with higher number of

samples successfully.

One of the most important steps in ECG analysis is denoising and QRS
detection; that is removing unwanted signal or artifacts that contaminate the signal
during recording. In this thesis work a well known and acceptable algorithm
developed by Pan and Tompkins was used to remove noise and detect QRS complex
correctly. After detecting R-peaks, different methods were proposed for feature
extraction and classification. Equivalent R-T interval was extracted as 200 samples
between two successive R-peaks and then decomposed using DWT and SWT with
statistical parameters calculated in each case as a new features. It was concluded that
the method proposed in this thesis as hybrid technique proved to be effective by
extracting time domain, time frequency domain and statistical features in which
while equivalent R-T interval features gives average sensitivity of 97.36% and
89.27% with average accuracy of 98.22% and 94.18%, the DWT with statistical
features gives average sensitivity of 99.75% and 95.46% with average accuracy of
99.84 and 97.59% for reduced and large number of samples respectively. However,
an improvement was recorded when employing SWT for wavelet decomposition
using large number of samples with average sensitivity and average accuracy of

96.69% and 98.33% respectively.

Moreover, classification was carried out using neural network back

propagation algorithm where among different network design in this thesis a network
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of 15 numbers of hidden neurons found to yields more effective than 7, 10, and 20.
Another comparative performance was carried out between wavelet time and
frequency entropy using SWT in which time entropy shows a slight improvement of
average accuracy of 98.21% against frequency entropy of 97.77% which indicates
that the shape of ECG wave contains more information than the frequency bands.
Also, among different wavelet families tested in this work, it was concluded that
selection a wavelet type is an important factor in determining the success of

classification with db4, coif5 and sym8 shows a better performance.

This thesis also explore the features of Texas Instrument low power and low
cost development tool by designing ECG analog front end with eZ430-RF2500 for
simple solution of wireless ECG acquisition and transmission which when
implemented will provide a greater solution of low cost, easy to use and simple

wireless sensor network.

Finally, among different methods developed in this thesis, SWT with statistical
features shows better result and R-R time interval with amplitude shows less

performance.
6.2 Future Works

With rapid development in technological advancement and computer
intelligence, automatic ECG beats detection system is an important tool used in
health care community however, based on some observations made throughout this

thesis; recommendations can be made for further improvement and implementation.

A possible research investigation into other hybrid techniques is recommended for
finding more robust feature extraction technique.

Investigate other classifiers apart from neural network and also different types of
neural network algorithms.

Wavelet selection is critical on the performance of classifiers; therefore there is a
need for further research and analysis in selecting a suitable wavelet.

Real time patient data acquisition, preprocessing and classification need to be studied

further by implementing and incorporating low cost wireless acquisition system with
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automatic ECG beat detection system in hardware format and other programming

language like C code.
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APPENDICES

APPENDIX A: Matlab and C Codes

The detailed Matlab and C codes used in this thesis work are in the attached DVD.
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Appendix B: Data Sheet Samples
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B Texas
[NSTRUMENTS

w.tl.com Specifications

Specifications

MSP430F2274

+ 18-MIPE performance

+ 200-ksps 10-bit SAR ADC
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Sanshhily, 250 kbps fiter bandwigth, 1% PER
Dpimized senstivity R dEm
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tF2500 Schemafics
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Figure 10. eZ430-RF2500T, Target Board and Battery Board, Schematic
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Appendix C: ECG Analog Front End Complete Circuit Diagram
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