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ABSTRACT 

T-NONCOSINGULAR ABELIAN GROUPS 

SULAIMAN, Surajo 

MSc, Department of Mathematics 

 Supervisor: Prof. Dr. Rafail ALIZADE 

June 2014, 46 pages 

 

In this Thesis, we study T-noncosingular abelian groups, that is abelian groups 

whose nonzero endomorphisms are not small. We show that injective (divisible) 

and projective (free) groups are T -noncosingular. We prove that T -noncosingular 

torsion groups  are exactly the direct sum of a semisimple group C and a divisible 

group D which does not have simple subgroups isomorphic to a subgroup of C. 

We also give some condition for torsion-free groups to be T -noncosingular.   

Keywords: - Abelian group, Torsion group, Torsion-free group, T -noncosingular, 

small homomorphims, small subgroup, simple group and semi-simple group.   
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ÖZET 

T- EŞTEKIL OLMAYAN DEĞİŞMELİ GRUPLAR 

SULAIMAN, Surajo 

Yüksek Lisans, Matematik Bölümü 

Tez Danişmani: Prof. Dr. Rafail Alizade 

Haziran 2014, 46 safya.  

Bu tezde  T -eştekil olmayan, yani sıfırdan farklı endomorfizmaları küçük 

olmayan değişmeli  grupları  inceliyoruz. İnjektif (bölünebilir) ve projektif 

(serbest) grupların T-eştekil olmadığını gösteriyoruz. Buralmalı T-eştekil olmayan 

grupların tam olarak, C ile D isomorf  basit alt grup içermeyecek şekilde yarıbasit 

C ve bölünebilir D gruplarının dik toplamı olduğunu kanıtlıyoruz. Ayrıca 

burulmasız grupların da T -eştekil olmaması için bir yeterli koşul veriyoruz. 

 

Anahtar Sözcükler: Değişmeli grup, burulma grubu, burulmasız grup,T -eştekil 

olmayan grup, küçük alt grup, küçük homomorfizma, basit grup ve yarıbasit grup.   
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CHAPTER ONE 

INTRODUCTION 

 Abelian groups play an important role in a modern approach to Abstract Algebra. 

Really it is used to define certain concept like Module and Vector spaces. The 

notion of T- noncosingular Module which will be explain later in Chapter five was 

introduced and studied by of D.K Tutuncu and R Tribak in 2009 in the Paper  “On 

T- noncosingular Module”.  In this thesis work we will look at the same notion but 

in our case will be a further restriction.  

In 2009 Derya Keskin Tutuncu and Rashid Tribak introduced and studied the 

concept of T-noncosingular Modules[13] and their work was due to the concept 

(which is a dual) of  K-nonsigular modules and application presented by S.T Rizvi 

and C.S. Roman[10] in 2007. The actual concept of K-noncosingular was 

introduced by Rizvi and Roman in the paper “Bear and Bear modules” in 2004 

and this paper was from the Doctoral Dissertation of Roman C. S. (2004) in Ohio 

state university. Also in 2013 Rashid Tribak presented some result on T-

noncosingular Modules [14]. In 2010 Ozan Gunyuz also in his MSc thesis   

presented and studied some further notion which they defined as Strongly T-

noncosingular Modules. 

In the view of the above we present the notion of T-noncosingular Abelian groups 

and since an abelian group is a  -module, we shall use most of the definitions and 

properties of modules satisfying   modules for the Abelian groups. 

Does T-noncosingular Abelian group exist? Can we characterize it? These and 

some other questions will be attempted in this thesis. This notion required the 

knowledge of different abelian groups and certain subgroups such as small and 

essential subgroup in addition to pure and basic subgroup, which will be presented 

later in this work.          

A group   is said to be T-noncosingular if     is not small in   for every nonzero 

endomorphism   of  .  

We start chapter two with the basic ideas on groups, subgroups, homomorphism, 

isomorphism, direct sums and direct products and rounded the chapter with 
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injective and projective groups. Chapter three focuses on more topics on group 

theory such as torsion and torsion-free group, we also touch divisible groups,  -

groups, pure and basic subgroups and other subject related to our topic of this 

thesis. Chapter four focuses on small subgroup, essential subgroup, semisimple 

group and rounded with radical of an abelian group, chapter five will be the most 

important part of this thesis where our original work will be presented and finally 

this work will be rounded off with the conclusions on our result from chapter five, 

which is the chapter six of this research work.   

 Starting from chapter two, examples, theorems, corollaries, lemmas, propositions 

are given to carry the reader along especially chapter five of this work where 

many result will be used to generalized the concept of the research work along the 

line of two main notions of abelian group, that is, torsion and torsion-free. If the 

reader has some knowledge of the abelian group, he can read chapter three and 

four briefly before going to chapter five.    
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CHAPTER TWO 

2.1 Motivation 

This chapter gives short introduction of the abelian group theory for the reader to 

fully understand the thesis, but for details on groups and abstract algebra in 

general, the reader can see [3],[4],[5],[7] and for advanced group theory the reader 

can see [2],[6],[9], if the reader has a good understanding of the group theory, 

then he can go to chapter three and read it briefly before going to chapter four, 

while chapter five focuses on the most important parts of this thesis. 

Definition 2.01 A group        is a set   closed under the binary operation * 

such that the following axioms are satisfied: 

M1: For                        .       (Associativity of     

M2: There is an element   in   such that for all               (identity 

element   for  ). 

M3: Corresponding to each    , there is an element    in   such that      

      ,                (inverse    of  ). 

Note that for the purpose of this research thesis we will concentrate on Abelian 

groups, as such the operation * will be replace with + and the identity element will 

simply be 0 while the inverse of any element     will be     . We write    

         (n-times) with    ,      
+
, if for      

+
 and    0,     , 

then the order of that element   is   will be denoted as       . By a group we 

will mean an abelian group. 

The following are some examples of Abelian groups ( , +), ( , +) and ( , +), but 

there are also non-abelian groups which will not be our area of discussion for the 

purpose of this research work. 

Sub-structures (subsets) of a bigger structure in most cases form what we call 

subgroup of a giving group provided it preserves the structure of the bigger group 

under the same operation, for example          subset        ( , +) and ( , +) 

are subgroups of ( , +), going by this rule one can see that ( ,  ) is not a subgroup 

of ( , +) since the operations differ, for example, for every        ,       may 
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not be     in general. With this we can now give the definition of a subgroup as 

follows. 

Definition 2.02 If a subset H of a group   is closed under the operation of    and 

the subset H with that operation form a group, then H is called a subgroup of a 

group    

The reader may note that if   is abelian so is H as a subgroup of  , and will be 

denoted as     we write H    if H is a subgroup of a group   and H    if H 

    but H   . 

If H    then H is a proper subgroup, otherwise H is just a subgroup, but if H   

then H will be called an improper subgroup of a group  , and lastly {0} is a trivial 

subgroup of any group  . Finally we will give the generalization for any subset to 

be a subgroup. 

Theorem 2.1.1[Subgroup Test, (15, 1.2.10)] Let H be a subset of  . Then H    

if and only if 0    and for       the        . 

Any subset satisfying above criterion will be called a subgroup of a given group. 

Definition 2.03(Cyclic Subgroup) Let   be an element of    then a set H={     

n     is called a cyclic subgroup generated by an element h and is denoted by 

H=    , it is the smallest subgroup which contains H.  

2.2 Homomorphism and Isomorphism   

The concept of homomorphism is no doubt one of the most important notions of 

the group theory. It provides us with much information concerning the structure of 

the other group. 

For an isomorphism this gives more information, because the map must be onto 

and one-to-one, so they may be structurally the same with the first group.     

Definition 2.04 Let H be a subgroup of a group  . The subset     =    

           of   is the left coset of H generated  . Thus     will be called the 

right coset, but  since we are concern with only abelian groups, the left and the 

right coset coincide (Every subgroup is a normal subgroup) 
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 Example 2.1 Describe all cosets of the subgroup 4       

    4   - - - - - - - - - - -,            - - - - - - - - -} 

                    1+4   - - - - - -- -- - -,             -- - - - - - - - -} 

                   2+4   - - - - - - - - - -,             - - - - - - -  - } 

                   3+4   - - - - - - - - - - ,             - - - - - - - --} 

Note that, cosets partition the group into many disjoint subsets of  which may or 

may not be a subgroup of  . 

Theorem 2.2.1 [15, 1.6.1] Let   be a subgroup of an abelian group  . Then the 

set      together with the operation                     form a 

group called quotient or factor group of the group   mod  . 

Definition  2.05 Let   be a subgroup of the group  , then the coset of   denoted 

by      is called a factor group or a quotient group of  . 

Example 2.2 gives the details of cosets of the subgroup 4  of   , therefore 

{4                  forms  factor group of    and  defined as       . we 

shall see later  in example 2.2 that         , from isomorphism theorems. 

The reader may note that, the order of the factor group      is O (  :  ) and this 

may be due to the famous Lagrange theorem.  

Definition 2.06 A function (map)   of a group   into a group   is a 

homomorphism if it satisfies the condition that                  for all 

       

The reader may note that there is always the trivial homomorphism defined by 

       for all      

Definition 2.07 The homomorphism   form   into   is called a monomorphism 

if   is one-to-one and      an epimorphism, if   is onto mapping, while   is an 

endomorphism, if   maps form   to   itself.   
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Definition 2.08 A monomorphism that is also an epimorphism is called an 

isomorphism.  An isomorphism from   to   itself is called an automorphism. 

PROPERTIES OF HOMOMORPHISMS 

 Following [5, 13.12] it is clear that the following are the properties of a   

homomorphism. 

Theorem 2.2.2 let   be a homomorphism from a group   into a group  . 

 If 0 is the identity element in  , then      is the identity element in    

  İf                             

 If   is a subgroup of   then      is a subgroup of   

 If    is a subgroup of  , then         is a subgroup of  . 

Definition 2.09 If     
                     
          is a homomorphism then      is called the 

image of   and is denoted by    . 

Definition 2.10 If     
                   
          is a homomorphism then           

            is called the  ernal of   and is denoted by K    . 

Corollary 2.2.3 [1] A homomorphism     from   into   is one-to-one if and only 

if K      }. 

Proof:  suppose that           let      , then             

 This means that            , since         , we have      

 Suppose that       , let          , then              

               This means that          then       which gives 

    

Definition 2.11 A homomorphism     
                   
        is onto if        

Theorem 2.2.4 [5, 14.9]  Let   be a subgroup of a group  . Then a function     

                
          defined by          is a homomorphism with       . 

Now we are ready to introduce the reader to another important concept of the 

group theory which we often used as a tool in our routine research. 
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Theorem 2.2.5 [Isomorphism theorem, (15, 1.6.3)]:- Let  the function   be a 

homomorphism from   onto . Then         .                 

Example 2.3 Consider the function      
                   
         defined by        where   

is the remainder when dividing   by    Then we can immediately see that 

        and by above theorem, we can write          in general and 

remember that by putting    , in the result we have         , from now on 

we will consider              to be algebraically the same. 

Theorem 2.2.6 [Second isomorphism theorem, (11, 1.6.6)]:-Let   and   be 

subgroups of  , then    
    

     . 

Definition 2.12 Let   be a group and   be a subgroup, then      
                
      

   

defined as          is the natural or canonical epimorphism. 

Theorem 2.2.7 [Third isomorphism theorem, (15, 1.6.6)] Let   and   be 

subgroups of    with N   H, then       
  

 
    .  

Example 2.3 Take         
                   
       

     define by              , we 

can see that, the               and by first isomorphism theorem, we will have 

       
 

   
  

   
 (from the third isomorphism theorem), 

2.3 Direct Sum and Direct Product  

 Like homomorphism the concept of direct sum plays an important role in the 

theory of an Abelian group. Sometimes the structure of the group can easily be 

seen in case of finite group, but in most cases we use decomposition to study 

structure of the group and even use the result to construct some new groups. There 

are mainly two types of direct sum (internal and external direct sum). 

Definition 2.13 Let   and N be subgroups of a group  , if        and 

     , then   is called the (Internal) direct sum of   and N and is denoted as 

       



8 
 

 
 

From above definition we can further generalise the concept by taking family of 

subgroup of G (finite or infinite) as follows.      

Definition 2.14 Let           be a family of subgroups of  , if       and 

              then   is said to be a direct sums of                     

      . 

 Definition 2.15 A subgroup   of   is called a direct summand, if there is a 

subgroup N     such that                                     direct 

summand or complement of   in     

Definition 2.16 For an element   of a group  , the order of that element is the 

smallest positive integer n such that      and is denoted by       . 

Note that, if for any element   there is no positive integer n such that    = 0 then 

  is said to have an infinite order.  

Following [9, page 38, (Fuchs, 1970)] The following are the properties of an 

internal direct sum. 

 If      , then    
    ( Thus the complement of   in   is unique up to 

isomorphism ) 

1) If      , and if   is a subgroup of   containing    then     

     . 

2) For         , and if                       o(          

least common multiple of the                

3) If       , and if , for every                       this is a 

proper subgroup of G if       for at least one  . 

4) If        where each    is a direct sum, and             then 

          . 

5) If           , then G      with           . 

Definition 2.17 Let                                        
 , then            is 

called the direct product of           . 
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The reader may verify that the concept of direct sum and direct product coincide if 

  is finite. 

Definion 2.18 The direct sum (or weak direct sum), denoted by         is the 

subgroup of        consisting of all those elements      for which there are 

only finitely many            . 

Definition 2.19 (External Direct sum) Suppose that           let    

               , and                     and  define one-to-one and onto map 

from   to    as             as such A     , also using the same pattern we 

have       , then            , this means that        . So the 

external direct sum of   and   is isomorphic to the internal direct sum of 

subgroups    and    isomorphic to   and  , further we will not distinguish the 

internal and external direct sums. 

Lemma 2.3.1 [11, 10.3] If   is an Abelian group and       then the following 

statement are equivalent. 

i) A is a direct summand of  , that there exists a subgroup   of   with       

and        

ii) There is a subgroup   of   so that each     has a unique expression 

        with               

iii) There exists a homomorphism        
                
      , with      

  
, where  

   
                
      

    (Canonical Map). 

iv) There exists a retraction     
                
                          homomorphism with 

                      

Theorem 2.3.2 [8,(factor theorem)]:- Let    
                
       be a homomorphism and 

   
                
       be an epimorphism with            Then there exist a 

homomorphism     
                
       with   

1)       

2)         

3)   is a homomorphism if           
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Motivated by the above theorem we can state the following corollary 

Corollary 2.3.3 Let     
                
       be a homomorphism and    

                
      

      

be canonical  epimorphism, then there exist a homomorphism          
                
        

such that       as shows by the diagram below 

                                                 
                                                                   
                           

 

                                        

                                                                 

                                                                     

 Note 

 If   is a monomorphism then          , so that   will be an endomorphism. 

2.4 Injective and Projective Abelian Group 

To study this topic there is need to learn something about exact sequence of an 

abelian groups which is presented as follows. 

Definition 2.20 A sequence   

                  
          

                  
           

               
         of groups 

   and homomorphism     is exact if                     1,2,...,    

In particular 0
                
       

                
        is exact if and only if    is monic, while 

 
                 
        

               
       is exact if and only if    is epimorphism, therefore combining 

the two we have isomorphism and referred to us, as short exact sequence. 

0
                
       

                
       

                   
         

               
       

Definition 2.21 A group   is said to be injective if for every diagram with exact 

row there exist a homomorphism     
                
       making the diagram below to 

commute. 
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                                            0
                   
       

                                                     
                      

                      

                                                                     

                                                           

                        

Proposition 2.4.1 [8, 5.3.4(a)]:- A direct product      is injective if and only if 

each    is injective.  

Above proposition can be further explain using the following diagram 

                                                               
                                                     
                      

                                                                                             

                                                                              

                                                                                  

                                                           

That means if each                 then, there exist    
                             
               with 

the condition that        and          ,                    

   
    , which means above definition make sense. 

Definition 2.22 A group   is projective if for every epimorphism    
                 
         

and    
                    
         there is a homomorphism    

                      
         A such that       
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Proposition 2.4.2 [8, 5.3.4(b)] A direct sum     is projective if only if each    is 

projective.  
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CHAPTER THREE 

3.1 Torsion and Torsion free-group 

Definition 3.01 If   is an Abelian group, then the sets of elements    = {       

         for some non-zero integer n} is called a torsion part of the group. 

Definition 3.02 A group   is called a torsion group, if      and torsion-free if 

      

Theorem 3.1.1 [11, 10.1] The quotient group       is a torsion-free group. 

Proof. If        ) = 0 in      for some    0, then      , and so there is 

     with       = 0. Since      0,      ,       = 0 in     , and      

is torsion-free. 

Following the above theorem one can see that every group is an extension of a 

torsion group by a torsion free group. 

Definition 3.03 Let   be a prime number, group    is called a  -group or 

sometimes a  -primary group if                                         

Theorem 3.1.2 [11, 10.7] Every torsion group is a direct sum of   -primary 

groups. That is, if   is torsion then        where   is prime. 

Proof. Since   is torsion, for some integer n: we have       for all    . Now 

for each prime divisor       , define    = {   G:        for some t }.Now     

is a subgroup of  , for if     = 0 and     = 0, where m   n, then   (x - y) = 0, 

so    is a subgroup. We claim that G =     , and we use  the following criterion  

1)              where q is prime 

                2)     =     

Let     
           

  , where    are  the distinct primes and   > 0 for all  

 . Set    
 

  
  

; and observe that the     (    ... ,     1. Therefore there are 

integers     with       = 1, and so          . But           because 

  
        =        . Therefore,   is generated by the family of   ’s. Therefore 

assume that               On the one hand,        for some    ; on the 

other hand,      , where             for exponents   .  If   =     , then   
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and    are relatively prime, and there are integers   and   with 1 =    + s  . 

Therefore,   =     +      = 0, and so             . 

Theorem 3.1.3 [11, 10.8] If   and   are torsion groups, then     if and only if 

      for all prime  . 

Proof. If    
                 
         is a homomorphism, then          for all primes  .In 

particular, if   is an isomorphism, then           and              for all 

p.  It follows easily that      
 is an isomorphism   

                 
        . 

Conversely, assume that there is isomorphism      

                 
        . For all prime p. 

By Lemma 2.3.1 (ii), each g     has a unique expression of the form        

where only a finite number of      . Then    
                 
         , defined by         

=        is easily se en to be an isomorphism. 

QUASI-CYCLIC GROUP 

We must state that, this group is an important tool in group theory as many 

counter examples are given to prove or disprove many claims. We will give some 

properties of this group and its elements.   

Note that 
 

   is a torsion group since   
 

 
          with 

 

 
    

and    . By [11, 10.7] we can write 
 

            this means that  

     
 

 
       

 

 
   

                  
 

 
    if and only if        if and only if        s    

Definition 3.05 A structure of the form   
 

                   is called a 

quasi-cyclic group and is denoted by    . 

Now let us denote     
 

     and consider the following:-    
 

 
    and 

           
 

    , and        

In that order, we can write      =   , by observing the nature of the elements. 
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Now for all       , then                    is generated by elements 

           , where                         and so on. 

Lastly           
   ,   and               

Theorem 3.1.4 [11, 10.13] There is an infinite   -primary group       each of 

whose proper subgroup is finite and cyclic. 

Proof. Define a group   having Generators                      and the 

relations                           . Let   be the free abelian group on  , 

let     be generated by the relations, and let    =    + R        = G. Then 

    = 0 and     =     for all n 1, so that         =     = 0. It follows that G 

is   -primary, for            
    0, where         A typical relation (i.e., a 

typical element of R) has the form:        +                       

                      .  

If     0, then     R, and independence of   gives the equations 1 =     +     

and       = p   for all    . Since R    and   is a direct sum,     = 0 for 

large  . But      =      for all  , and so      Therefore, 1 =    p, and this 

contradicts p   2. A similar argument shows that       for all  . We now show 

that all    are distinct, which will show that   is infinite. If    =    for     , 

then          implies            , and this gives (1 -    )     ; since   

is   -primary, this contradicts     . 

Let H    . If H contains infinitely many     , then it contains all of them, and H = 

 . If H involves only   , ... ,   , then H      .. .. .. ... .           .Thus, 

H is a subgroup of a finite cyclic group, and hence H is also a finite cyclic group.  

 

 3.2 Free Abelian Group 

This is another very important notion of an abelian group theory; the idea of free 

abelian group is similar to that of vector spaces that we know in linear algebra. 

Definition 3.06 An abelian group   is free abelian if it is a direct sum of an 

infinite cyclic groups. 
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The group is denoted as       , Thus   consist of all linear combination 

of elements of   as                          
. 

Following the above definition we can say further that each        since each 

    is infinite cyclic group, so now one can write                 

The elements of                                               

Lemma 3.2.1 [11, 10.6] A set   of nonzero elements of a group   is independent 

if and only if             

Proof: Assume that   is independent. If      and                    

Then       and        , where the    are distinct elements of   not equal 

to   . Hence            and              so that independence gives 

each term 0;  in particular, 0      . 

 

Conversely, let         for each    , then                    

          ,                   that                   

Lemma 3.2.2 [11, 10.4] let            be a family of subgroups of a group  . 

Then the following statements are equivalent. 

i)       

ii) Every                                                  

 

Proof:           let     then let          and      
 

     

Then             
 

     therefore we can write  

     
      

                     Then      
 Therefore 

            

          For all                                           

Next is to show               , then let            

                     
                    then by uniqueness  

                         and           
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Following above lemma we can clearly see that, if   is a basis of a free group 

abelian group  , then each       has a unique representation of the form 

        where      and      for only finite number of   and zero 

otherwise.   is independent by lemma 3.2.1 

Theorem 3.2.3 [11, 10.11] Let   be a free abelian group with the basis   and let 

   
                            
            be any function. Then there is a unique homomorphism 

   
                    
           extending    that is                         and if say 

                              

                                          

                                                   

                                                                          

                                                    

                                                    
                                                                   
                           

                                                                             

Proof 

 Assume that    is independent. If      and                    Then 

      and        , where the    are distinct elements of   not equal to     

Hence            and              so that independence gives each 

term 0;  in particular, 0      . 

If    ,then uniqueness of the expression        shows that 

   
            
              is a well defined function. That is   is a homomorphism 

extending    it is obvious that   is unique because homomorphism agreeing on a 

set of generators must be equal. 

Here is a fancy proof. For each     ,  we know that there is a unique 

homomorphism        
                 
          defined by   

            
          . The result now 

follows from lemma 3.2.2  and by [11. 10.10] 

Note that 

(1)      
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(2)               is an onto map, therefore by first Isomorphism 

theorem, we have;  

(3)     
             

The following corollary is immediate result of the above theorem.             

Corollary 3.2.4 [11, 10.12] Every abelian group   is a quotient of free abelian 

group. 

Proof: Let    be the direct sum of     copies of  , and let    denote a generator of 

the               , where    . Of course,    is a free abelian group with basis   

= {  :    }. Define a function    
            
      by f(       for all      By 

theorem 3.2.3 there is a homomorphism    
            
      extending  f. 

 Now    is surjective, because f is subjective, and    
       as desired. • 

Following this we can recalled that our quasi-cyclic group can be generated by 

a free-group                with the kernel                     

      . 

Example 3.1 Let                               
                    
           let 

       and                     then           and by 3 above 

       
        

Definition 3.07 The rank of a free abelian group is the cardinality of its basis. 

Example 3.2 Let              be the basis of a free group  , then each 

element      is of the form                       
 
    with 

each       . This means that,  this free abelian group is of rank three and can 

be written as        . 

Proposition 3.2.5 [9, 14.1] Free groups            are isomorphic if and only if 

                      the cardinality of the basis of respective groups. 

Proof: Suppose that        then there is a one-to-one function    
               
       

onto   and defined          
                    
                               

clearly we can see that,    is one-to-one and onto, since           , therefore 
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Suppose that      and defined    
             
       then                   

with                      is a field over   , also for the same reason     . So 

 
    and      are vector space over    with the basis           and 

           and              
        

              

Theorem 3.2.6 [9, 14.2] A set              generators of a group   is a free set 

of generators if and only if every mapping                       can be extended 

to a (unique) homomorphism    
                    
          

Proof: Let   be a free set of generators of  . If      

         
       is a mapping of    

into a group   , then define    
         
     as                       

  

                     The uniqueness of theorem 3.2.2 (ii) guarantees 

that   is well defined, and it is readily checked that it preserves addition. 

Conversely, assume that the subset   in   has the stated property. Then let   be a 

free group with a free set         of generators, where I is the same as for X . By 

hypothesis,  :   

         
      i (    ) can be lifted to a homomorphism   : F 

         
    , 

which cannot be anything else than the map 

                    

         
                       , . It is evident that 

  must be an isomorphism.  

 

Corollary 3.2.7 [9, 14.3] Every group with at most   generators is an epimorphic 

image of free group             

Proof: For an infinite cardinal  ,   , has    subsets, and hence at most    

subgroups and quotient groups. We infer that there exist at most    pairwise 

nonisomorphic groups of cardinality     . 

 

Theorem 3.2.8 [9, 14.5] A subgroup of a free abelian group is free abelian. 

Proof: Let             be a free group, and suppose that the index set I is 

well ordered in some way; moreover, I is the set of ordinals   . For    , we 

define               If   is a subgroup of   , then set    =      . Clearly, 

             so 
    

  
  

    
       

  
         

  
   The latter 
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quotient group is a subgroup of   
    

  
      , thus either         or 

    
  

  is an infinite cyclic group. By [11, 14.4] we have               

for some        (which is 0 if        ). It follows that the element   

generates the direct sum      . This direct sum must be  , because   is the 

union of the      

 

Remember that in chapter two, we defined the notion of projectivity, at this time 

we can connect it to the notion of free Abelian group. 

Theorem 3.2.9 [9, 14.6] A group is projective if and only if it is free group. 

Proof: Let     
         
     be an epimorphism and   a free group with     

         
    . For 

each    in a free set          of generators of  , we pick out some       such that 

        which is possible, since   epic. The correspondence   

         
      (i   I ) 

can, due to theorem 3.2.6 be extended to a homomorphism     
         
    .This   

satisfies       thus   is projective. 

Let   be projective and    :  
         
     an epimorphism of a free group   upon  . 

Then there exists a homomorphism       
         
      such that      . Hence   is a 

monomorphism onto a direct summand of  , that is,   is isomorphic to a direct 

summand of  . By theorem 3.2.8,   is free. 

Corollary 3.2.10 [11. 10.16] If      and     is free then   is a direct 

summand of  . That is                        
  . 

Proof. Let    
   and let    

      
    be the natural map. Consider the diagram 

 

                                                                         

 

                                                                              

 

 

                                            G 
                                       
                 

               
       

                                                           



21 
 

 
 

where    is the identity map. Since     has the projective property, there is a 

homomorphism    
            
      with      . Define   =     . The equivalence of 

(i) and (iii) in Lemma 2.3.1 gives   =               . 

 

Theorem 3.2.11 [11, 10.17] Every subgroup   of a free abelian group   of finite 

rank   is itself a free abelian moreover,                .  

Proof. The proof is by induction on  . If     , then      Since every 

subgroup   of a cyclic group is cyclic, either   = 0 or      , and so   is free 

abelian of rank   1. For the inductive step, let                      be a basis 

of F. Define F' =             and H' = H   F'. By induction, H' is free 

abelian of rank    . Now      =              
        

  
     

     . By 

the base step, either      = 0 or        . In the first case, H = H' and we are 

done; in the second case, Corollary 3.2.10 gives   = H'     , for some    H, 

where      , and so   is free abelian and rank( ) = rank( '   ) = rank( ') 

+ 1   n + 1. 

3.3 Finitely Generated Abelian Group 

It is very important to note that every finite cyclic group is finitely generated, but 

there are infinite finitely generated abelian groups (Take                

Definition 3.08 A group   is finitely generated, if                     

that is for all             
 
   . 

Theorem 3.3.1[11, 10.19] Every torsion-free finitely generated group is free 

abelian 

Proof: We prove the theorem by induction on    where              . If 

    and     0, then   is cyclic;      (because it is torsion-free). Define H 

               for some positive integer  }. Now H is a subgroup of   

and     is torsion-free: if      and      ) = 0, then     ,therefore 

          , and so    H. Since     is a torsion-free group that can be 

generated by fewer than   elements, it is free abelian, by induction. By Corollary 

3.2.10,    = F   H, where F      , and so it suffices to prove that H is cyclic. 
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Note that H is finitely generated, being a direct summand (and hence a quotient) 

of the finitely generated group  . If      and    0, then     k   for some 

nonzero integers   and  . It is easy to check that the function    
            
     , given 

by  
        
  

 

 
, is a well defined injective homomorphism; that is, H is (isomorphic to) 

a finitely generated subgroup of  , say, H =  
  

  
      

  
  

  . If b     
 
 , 

then the map    H
            
      , given by  

            
      , is an injection (because H is 

torsion-free). Therefore, H is isomorphic to a nonzero subgroup of   , and hence it 

is infinite cyclic.  

Lemma 3.3.2 [9, 15.1] Let   be a         and assume that   contain an 

element   of maximal order   . Then      is a direct summand of  . 

Theorem 3.3.3 [11, 15.1] The following statement on a group   are equivalent. 

(i)   is finitely generated  

(ii)   is the direct sum of a  finite number of cyclic groups; 

(iii) The subgroups of   satisfy the maximum order condition. 

3.4 Divisible Group 

We have seen a free group in which a connection between a free group and 

projective group was treated; in this section we shall see another connection 

between a divisible group and the dual of projectivity that is injective group. 

Definition 3.09 Let   be a group and                , we say   is 

divisible by    if there is     with      and denoted as     . 

If all element of   are divisible by every nonzero integer, then we say   is 

divisible group 

Example 3.3 The following are divisible and non divisible groups 

           divisible group [since for every     we can write   
 

 
   

 

  
   

with     this means                  . 

                                   (For the same reason as above) 

                              (we shall see later) 
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                              (since 
 

                  

   (v)                           (for example 1 is not divisible by 2 )  

   (v      is not a divisible group (1 is not divisible by  ) 

From the above example we can easily see the following  

(i) All infinite cyclic groups are not divisible since                     

(ii) All finite cyclic groups are not divisible since           divisible. 

(iii) If G is torsion free group then          at most one solution.  

PROPERTIES OF DIVISIBILITY 

(1)  If      and        then           

(2) If      ,      and             then       

(3) If     ,      and                              or 
  

 
    where d is the 

common divisor of m and n. 

(4) If    
                    
         is a homomorphism and          then           

(5) If                                       

(6) If G is a direct sum that is      , then                    if 

and only if                                                above]  

Proposition 3.4.1 [1] A homomorphic image of a divisible group is divisible. 

Proof: Let   be a divisible group and    
               
        we claim      is divisible for 

all          we can write         and since G is divisible for     and  

     , we have       with     , therefore               = 

        this means that           

Following above proposition, we can therefore state the corollary below:- 

Corollary 3.4.2 [1] If   is divisible then for any subgroup  , then the quotient 

group      is divisible. 
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Proof: Since   is divisible Take a canonical epimorphism    
               
      

    By 

proposition 3.4.1,       is divisible and since   is an epimorphic then      = 

 
    this means that     is divisible. 

Remember that we say 
 

   is divisible because   is divisible (Corollary 3.4.2) 

Proposition 3.4.3 [1] Direct sum (product) and direct summand of a divisible 

group is divisible. 

Proof:         , where each     is divisible. Take      this means for 

       we have         with        then          
       

  • 

Let       and defined        where   is the projection of the first 

coordinate          then by proposition 3.4.1 H is divisible• 

Let          and let      then for      ,          
   for some 

          . Now             where   is some finite subsets of  . 

Let    be defined by      
          
           

  

Now claim            that is       . If     then       this means that 

        if                this means         , then          

Theorem 3.4.4 [(11, 10.23) Baer, 1940, Injective property]:- let   be a divisible 

group and let A be a subgroup of a group  . If    
              
       is a homomorphism, 

then                   to a homomorphism    
            
       that is the following 

diagram commutes. 

                                                             

                                                                                   

                                                                                                                    

                              O
                                              
                  

                                                    
                     

Proof. We use Zorn's lemma [9, page 2]. Consider the set   of all pairs (S, h), 

where A      and h:  
            
        is a homomorphism with     =  . Note that  
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    Because (A, f     . Then partially order   by taking that (S, h)   (S', h') 

if S   S' and h' extends h; that is,   lS = h. If   = {(  ,   )} is a simply ordered 

subset of    , define (     ) by          and         ( this makes sense if one 

realizes that a function is a graph; in concrete terms, if    , then      for 

some  , and h(s) =   (s) ). One can see that (S, h)    and that it is an upper 

bound of   '. By Zorn's lemma[9, page 2], there exists a maximal pair (M, g)     

 We now show that M = B, and this will complete the proof. Suppose that there is 

b   B with b   M. If M' = (M, b), then   < M', and so it therefore suffices to 

define h': M'
            
     D extending    to reach a contradiction. 

Case 1.          . 

In this case, M'         , and one can define h' as the map   

  
            
        . 

Case 2. . M         . 

If k is the smallest positive integer for which kb      , then each     M' has a 

unique expression of the form        , where 0   t   k. Since   is divisible, 

there is an element        with           (       implies       is defined). 

Define h':   
            
       by m      

            
              One can easily see that, h' is a 

homomorphism extending   

 

The following result is the immediate consequences of the above theorem 

Theorem 3.4.5 [9, 21.2 (Baer)] If a divisible group   is a subgroup of a group  , 

then   is a direct summand. 

Proof: Consider the diagram below 

                                                                        

                                                                                        

                                                                                                                   

                                     0 
                                              
                  

                                                    
                     

where    is the identity map. By the injective property, there is a homomorphism 

   
            
        with          (where   is the inclusion map from   to  ); that is, 

       = d for all d    . By Lemma 3.2.6,   is a direct summand of  . 
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 Lemma 3.4.6 [1] The sum of any family of divisible groups is divisible. 

Proof: Let                     for all   except for finite number of    

Take     and      , then           since each    is divisible and 

        for some         therefore                        

Definition 3.10 If   is a group then    is a subgroup generated by all divisible 

subgroups of   and is called the divisible part of  . 

Definition 3.11 A subgroup   of a group   is fully invariant if         

Note that     is a fully invariant subgroup of   (since image of divisible group is 

divisible) 

Definition 3.12 A group   is reduced if      

Theorem 3.4.7[9, 21.3] For every group   there is a decomposition       , 

where   is reduced. 

Proof:  Assume that   =        , Here     is a uniquely determined subgroup 

of  , while   is unique up to isomorphism. The fact that     is the maximal 

divisible subgroup of   and   =      , where    is divisible and R' as reduced, 

then      , and by [9, 9.3] we have    = (        )   (       ). Note that 

(       ) = 0 as a direct summand of a divisible group contained in a reduced 

group, thus         =   , then we can write         , and so    =   . 

Definition 3.13 A group G is called                      for every positive 

integer  . 

Remember that we can write                    obvious that   divisibility 

implies divisibility.  

Recall that for any group   and      , then               and G[ ]  

              

Lemma 3.4.8 [11, 10. 27] If   and   are divisible                  , then 

    if and only if  [ ]   H[ ]. 
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Proof: Necessity follows easily from the fact that                 for every 

homomorphism     
            
        

For sufficiency, assume that    G[p]  
            
    H[p]  is an isomorphism; composing 

with the inclusion H[p]   H, we may assume that      [p] 
            
     H. The injective 

property gives the existence of a homomorphism   : G
            
      H extending  ; we 

claim that   is an isomorphism. 

(i)   is injective. 

We show by induction on n   1 that if      has order   , then   (x) = 0. If n   

1, then    G[p], so that   (x)         implies     (because   is 

injective). Assume that   has order      and  (x) = 0. Now         and 

                 so that       by induction, and this contradicts   having 

order      

(ii)   is surjective. 

We show, by induction on n  1, that if    H has order   , then    im  , If n = 

1, then    H[p] = im    im  . Suppose now that y has order     , since      

H[p], there is       with   (x) =    ; since   is divisible, there is      with 

       Thus,        (x)) = 0, so that induction provides    G with  (z) = y 

-  (g). Therefore,          , as desired.  

Lemma 3.4.9 [1] if G is divisible then tG is also divisible. 

Proof: let                                         , for 

some     But                                              is 

divisible  

Lemma 3.4.10[1] For every group   and prime     [ ] can be made a vector 

space over     

Proof: For                                                
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Theorem 3.4.11 [11, 10.28] Every divisible group   is a direct sum of copies of 

          for various p. 

Proof:    is a divisible subgroup of   therefore                is vector       

              therefore by [11, 10.5]                             of    then 

                                                              

divisible group then by lemma 3.4.10         can be made vector space over     

this means that                Take                           

                                                            

                      that                 as required. 

Theorem 3.4.12 [11, 10.30] Every group   can be imbedded in a divisible group. 

Proof. Write   =  /R, where   is free abelian. Now                   

(Just imbed each copy of   into   . Hence   =    =   
      

  ,   

and the last group is divisible, being a quotient of a divisible group.  

Corollary 3.4.12 [11, 10.31] A group   is divisible if and only if it is a direct 

summand of any group containing it. 

Proof: Necessity is from the theorem 3.4.5 that is if   is divisible and      

then   =     For some        

Sufficiency, Theorem 3.4.12    can be embedded in a divisible group   

 
                
      

                
       , then                                          

divisible therefore   is divisible. 

 

3.5 Pure and Basic Subgroup 

The notion of pure subgroup becomes one of the most useful concepts in abelian 

group theory. This notion is the intermediate between subgroups and direct 

summand. It is important to note that direct summand are always pure but the 

converse need not be true. 

 

Definition 3.14 A subgroup     is pure in   if           for every 

integer n   . In other words every element     which is divisible by   in   

must also be divisible by   in  . 
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Definition 3.15 A subgroup   of   is        (p = prime) if             

for k= 1, 2,......................,  

  

Example 3.4 Every direct summand is pure. 

Let                                 and claim               

Take                                                 = 0 

this means       as claim. 

              

 Example 3.5 If             is torsion-free then   is pure. 

                                    
    has a finite 

order, but     is torsion-free this means that       and     . 

 

Example 3.6    is a pure subgroup of a group  . (Note that this may not be a 

direct summand) 

Remember theorem 3.1.1 says                                      says 

   is pure. 

 

Following [11, 10.2] one can see that    may not be a direct summand of   . 

 

Example 3.7 Let            and                                    of  . 

 

Really let                  where                   let F =    

         then F is finite, Take       
 
  and defined     

        
        

   

Note that       since     , we can write        for all     

If       then    
 
           if            

 
     and            

 
, 

so        

If       then                 we can easily see this, since each 

side is in B. Now is the right time for the next lemma. 

 

Lemma 3.5.1 [9, 26.1] Let   and   be subgroups of an abelian group   such that 

      then we have  
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(i) If   is pure in   and   is pure in   then   is pure in   (Transitivity) 

(ii) If   is pure in  , then        pure in    . 

(iii) If   is pure in   and         pure in     then B is pure in     

Proof:  (i)                                         for 

every n   proving the purity of C in   

             (ii)   (                                      

For every n    proving the purity of      in      

             (iii) Let        for some      and integer n   then we writes  

            since        pure in     then for some       we write 

             and                        we have      

    , since   is pure in   thus       for some     , then          , 

implies  that we can write 

          this means that             with          , thus   is pure 

in   

 

Lemma 3.5.2[1] Let                                 is pure in   if and 

only if      is pure in      

Proof: Necessity follows from lemma 3.5.1 (ii) and sufficiency follows from the 

same lemma but (iii) 

Lemma 3.5.3[11, 10.34] A   -primary group   that is not divisible contains a 

pure non-zero cyclic subgroup. 

Proof: Assume first that there is    G[p] that is divisible by    but not by     , 

and let      . we need to show that      is pure in  . Let       

                    where p                          ,If     

                            suppose that    , we claim that for 

             , now assume that      this means that            

                                              

                                                        . 

                  p                                        

  and                                                    

    contradicting the first assumption. 
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If                                          and take b =             

 cd          since p                                               

b =                 and                                   

and              , this means that                  

We may, therefore, assume that every         is divisible by every power of p. 

In this case, we prove by induction on k    that if      and      ,then   is 

divisible by p. If k = 1, then        , and the result holds. If        , then    

    , and so there is      with            Hence           . By 

induction, there is      with                     , as desired. 

 

Definition 3.16  A subset   of an abelian group   is pure-independent if; it is 

independent and      is a pure subgroup of   ( see lemma 3.2.1 for condition 

of independency). 

Lemma 3.5.4 [11, 10.35] Let   be a    -primary group if   is a maximal pure – 

independent subset of  ,       then divisible. 

Proof: If       is not divisible, then Lemma 3.5.3 shows that it contains a pure 

nonzero cyclic subgroup       and by [11, 10.32] we may assume that      

and     
     have the same order (where  

         
       under the natural map). 

We claim that {X,y} is pure-independent. Now               and 

      
          is pure in        by [11,10.32]        is pure in  . 

Suppose that              where      and         In       , this 

equation becomes     = 0. But   and    have the same order, so that    = 

0.Hence       = 0, and independence of   gives        for all    Therefore 

      is independent, and by the preceding paragraph, it is pure-independent, 

contradicting the maximality of  . 

Definition 3.17 A subgroup   of a torsion group   is a basic subgroup if; 

(i)   is a direct sum of cyclic groups; 

(ii)   is a pure subgroup of  ; and 

(iii)  
    is divisible. 
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Theorem 3.5.5 [13, 10.36] Every torsion group   has a basic subgroup. 

Proof: Let        be the primary decomposition of  . If     has a basic 

Subgroup of   ,then it is easy to see that     is a basic subgroup of  . Thus, we 

may assume that   is p-primary. If   is divisible, then   = 0 is a basic subgroup. 

If   is not divisible, then it contains a pure nonzero cyclic subgroup, by Lemma 

3.5.3, that is,   does have pure-independent subsets. Since both purity and 

independence are preserved by ascending unions, Zorn's lemma applies to show 

that there is a maximal pure-independent subset X of  . But Lemma 3.2.1 and 

[11, 10.33] shows that       is a basic subgroup. 

Corollary 3.5.6 [11, 10.37] If   is a group of bounded order (that is      for 

some n > 0) then   is a direct sum of cyclic group.  

Proof:   is torsion by theorem 3.5.5   has a basic subgroup   and     is 

divisible but      therefore         , now let     
  , then we can write 

                    
   since          ; then             means that 

     which gives              , but   is a basic subgroup then     

         . 

Corollary 3.5.7 [11, 10.41] A pure subgroup   of bounded order is a direct 

summand. 

 Note with this we can now concentrate with the remaining few notions that will 

be presented in the next chapter before presenting the main work of this thesis 

  

 

 

 

 

 

 



33 
 

 
 

CHAPTER FOUR 

4.1 Small and Essential Subgroups 

The notion of a small subgroup is the most useful notion of this research work, the 

basic idea of our thesis is due to a small subgroup and the well known notion of 

the homomorphism. 

Definition 4.01[8] A subgroup   of an abelian group   is called small or 

(superfluous) in   if for all subgroup   of                       implies 

   .   

Notation: if   is a small subgroup of a group an abelian   then we write     

From our definition we can obtain the following remark:- 

1)     if and only if for all     implies that       

2)  If     and     then     ( if   =   then H + 0 =  , which means 

  = 0 from the definition that contradict     ) 

Definition 4.02 A group   is called a simple group, if   has no non-trivial 

nonzero subgroup (That is   has only 0 and itself as subgroups).  

Example 4.1) For any group  , 0 is a small subgroup. 

Example 4.2) A subgroup        is a small subgroup of     for each  . 

Example 4.3) In  , 0 is the only small subgroup. 

Example 4.4) for every simple group, 0 is the only small subgroup. 

Example 4.5) In a free abelian group only the non-trivial subgroup 0 is small. 

Definition 4.03 A homomorphism    
             
       is called a small homomorphism 

if K       

Definition 4.04 [1] Let   and   be subgroups then the set of homomorphisms 

   
             
      , Hom( ,   ) is a group of homomorphisms     

             
        with 

respect to operation (                 
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Lemma 4.1.1 [8, 5.1.3] 

(a) If                           

(b) If              then       
   . 

(c) If     and                          

(d) If     
             
      , and     

             
       are small epimorphism then 

    
             
      is also a small epimorphism 

Definition 4.05 [8] A subgroup   of a group   is essential (large) in  , if for all 

subgroups             implies       

Notation: if   is an essential (large) subgroup of a group    then we write    . 

Definition 4.06 A homomorphism    
             
      is called essential if         

From definition 4.04 we can immediately obtain the following remark:- 

1)     if and only if for all                     

2) If                                   

Example 4.6) Every non zero subgroup of   is essential in  . 

Example 4.7)    is essential in  . 

Lemma 4.1.2 [8, 5.1.5] 

(a) If         and     then implies     

(b) If              then        
    

(c) If     and                           

(d)    
           
      , and     

          
      are large homomorphisms then     

             
      is 

also a large homomorphism 

4.2 Semisimple Group 

Theorem 4.2.1[15, 8.1.3] for a group   the following conditions are equivalent:  

(1) Every subgroup of   is a sum of simple groups 

(2)   is a sum of simple subgroups 

(3)   is a direct sum of simple subgroups. 

(4) Every subgroup of   is a direct summand of   
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Definition 4.07 A group   which satisfy the condition of the theorem 4.2.1 is 

called a semisimple group. 

Example 4.8) A group       with     is a semisimple abelian group if and 

only if n is a square-free integer or     . 

Example 4.9) If                      then   is a semisimple group.  

Example 4.10)   and   are no semisimple abelian groups (they have no simple 

subgroup) 

Corollary 4.2.2 [8, 8.1.5] For a semisimple abelian group, we have; 

1) Every subgroup of a semisimple group is semisimple. 

2) Every epimorphic image of a semisimple group is semisimple. 

3) Every sum of semisimple group is semisimple.  

4.3 Radical of a Group 

Theorem 4.3.1[8, 9.1.1] let   be an abelian group, then          , where   

is prime. 

Definition 4.08 The subgroup of   defined by the theorem 4.3.1 is called the 

radical of a group and is denoted by Rad  . 

Theorem 4.3.1[8, 9.1.4] for a group         , we have the following:- 

(a) If             then               ; 

(b)                 and for all                implies       

 . 

Corollary 4.3.2 [8, 9.1.5] for all abelian group, we have the following:- 

(a) Epimorphism     
          
     if          , implies                

and                 . 

(b) If                     . 

(c) If                                  

(d) If                
 

            
  

       
  . 
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Example 4.11)           since by definition 4.01, 0 is the only small 

subgroup of   . 

Example 4.12)           since for every        is small in   by 

definition 4.01 (also the same as saying   has no maximal subgroup). 

Theorem 4.3.3 [8, 9.2.1] 

(a) If   is a semisimple abelian group then          

(b) If   is finitely generated then          

(c) If   is finitely generated and                   
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CHAPTER FIVE 

5.1 Characterization of T-noncosingular Abelian Groups 

Throughout this chapter we will adopt   to be the set of endomorphisms of an 

abelian group, Motivated by [Tutuncu and Tribak, 2009] and [Tribak, 2013] we 

present the notion of  -noncosingular Abelian group. An abelian group   is  -

noncosingular if for every nonzero endomorphism of   , the      is not small in 

 . Following definition 4.01 we can now define the concept  -noncosingular 

abelian group. 

Following [Talebi and Vanaja, 2007]   will be called noncosingular if for every 

nonzero homomorphism      
                       
         ,      is not small in  .  

Definition 5.01 Let   and   be two Abelian groups. We say that   is T-

noncosingular relative to  , if for every                , the      is not 

small in  .  

Definition 5.02 Let   be an abelian group. We say that   is a  -noncosingular 

abelian group if it is  -noncosingular relative to itself, that is for every      

         , the      is not small in  . In other words   is  -noncosingular if 

and only if for every nonzero endomorphism   of E,        implies that   0. 

From the two definitions above we can clearly see that every noncosingular is also 

 -noncosingular Abelian group; however we can see that  p is  -noncosingular 

but not noncosingular which means the converse need not be true. Really for the 

nonzero endomorphism  :   p  
                   
          , defined by         we have 

            .  
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Proposition 5.1.1 Every simple group   is  -noncosingular. 

Proof; For every 0       End(S),          and   is simple this means that 

      . This means that      is not small in  .  

We already know that divisible groups are injective groups and the image of a 

divisible group is a direct summand from 3.4.5, we can now state the following. 

Proposition 5.1.2 Every divisible group   is  -noncosingular. 

Proof;  for every 0    : 
                       
           , this means that       is also divisible and 

hence a direct summand of   this means   =        , for some subgroup  , 

this means that      is not small in    

Remember that for an abelian group   the radical of a group   is Rad   =      

where   runs over all prime integers. 

Proposition 5.1.3 If Rad   = 0 then   is  -noncosingular. 

Proof: suppose that       ,  for an endomorphism      
                       
         . Then 

      Rad   = 0, therefore.      = 0 that is     by definition 5.02 and so   

is  -noncosingular     

From example 4.11 we know that Rad   = 0, we can state the corollary below; 

Proposition 5.1.4   is  - noncosingular abelian group. 

 Proof: follows from proposition 5.1.3 

Corollary 5.1.5 Let  =  
 

 
                                 , then   is 

 - noncosingular. 
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 Proof: Let       
                       
          be an endomorphism with         . Then       

Rad   =       where the intersection is taken over all  prime numbers   . On 

the other hand      Rad  , therefore                Rad       Rad 

              So we see  that 1     , hence         Then for every   

 

 
     we have    

 

 
     

 

 
          But A is torsion free, hence 

  
 

 
     So      

 We have been mentioning different abelian groups which are  -noncosingular, let 

us at this point state some useful examples. 

Example 5.1)     is not  -noncosingular abelian group, for any integer n    , 

and prime  . 

Proof: Take 0       End (   )   defined by      =      , then this means 

that               , but one can see that                 

Proposition 5.1.6 [Tutuncu and Tribak  2009] Let   be a  -noncosingular abelian 

group and   be a direct summand of  , then   is also  - noncosingular. 

Proof:- Let   =      and  define   : 
                      
           with           then  

consider the homomorphism         :   
                      
            defined by        

           Then                  Since    is T-noncosingular, 

    therefore     . 

Above result shows that direct summand of  -noncosingular is also  -

noncosingular, the natural question here is that, what about direct sum of T-

noncosingular? 
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The following example will answer our question and look at the condition that 

may generalised the answer to the problem. 

Example 5.2) We have seen above that                  is divisible and 

divisible groups are T-noncosingular) are T-noncosingular. We will now show 

that their direct sum   =         is not T-noncosingular. Really, define 

    
                     
         by                  clearly   is a homomorphism and 

            since          ,       and of course    . So   is 

not  -noncosingular. 

The following proposition gives the condition for which direct sum of  -

noncosingular abelian group to be  -noncosingular. 

Proposition 5.1.7 [Tutuncu and Tribak 2009] Let           be a family be a family 

of subgroups of  , and   =            , then   is T-noncosingular if and only if 

   is   - noncosingular related to    for all         

Note that from the proposition  above we can draw an important result as follow 

Corollary 5.1.8 Every semisimple group   is  -noncosingular. 

Proof;             where   is prime, if     then Hom              

so    is  -noncosingular related to     by proposition 5.1.7   is  -noncosingular. 

Corollary 5.1.9 Every free          is  -noncosingular. 

We know from [Rotman JJ 1982]             where each       and   

is a basis of  , therefore we can write     . Then each       -noncosingular 

related to itself and hence       -noncosingular. 
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Corollary 5.1.10 Pure subgroup   of a divisible group   is  -noncosingular. 

Proof:  H=H     , but since   is divisible we can write   =     therefore 

  H=H    = H   =   since     this means that      =    and that also 

mean   is divisible, and divisible group is  -noncosingular   

Proposition 5.1.11 Let   =    ,   is  -noncosingular if Rad (  ) = 0 for each    

Proof: follows from proposition 5.1.3 

Proposition 5.1.12 For a group   with Rad        the following are equivalent. 

(1)  If for every non zero             . 

(2)    is  -noncosingular. 

Proof:  

(1)      I                                      for every  , means  

that G is  -noncosingular. 

        0       End (G) and assume that I         then I   

          we have I     by definition 5.02 it means   = 0. But     

contradiction therefore I           

Theorem 5.1.13 A torsion group   is T-noncosingular if and only if   =      , 

where   is divisible and   is semi-simple and if   has a direct summand 

isomorphic to     for some prime  , then   has no direct summand isomorphic to 

    (That is if                .      
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Proof: ( ) Let   be a torsion  -noncosingular group and   be its maximal 

divisible subgroup. Then   =        for some     . Let   be prime and   be 

the basic subgroup of p – component    of  . If   has a direct summand   

isomorphic to     with    , then since   is a pure subgroup of    ,   is a pure 

subgroup of  , hence   is a direct summand of   by corollary 3.5.7, therefore is 

  - noncosingular. But we know that      with    , is not  -noncosingular. So 

  is the direct sum of subgroups isomorphic to     hence is semi-simple. Then   

is a bounded pure subgroup of    , therefore          for some divisible 

subgroup    of     But    is reduced hence      and also     is semisimple. 

Then C       where   is prime) is also semisimple. 

Now if         with         and        with K         then there is 

a monomorphism    
                     
         with        Therefore for the 

endomorphism    
                 
        of   =                 defined by 

                         We have                    

    and     that is a contradiction with  -noncosingularity of  . So if C 

has a direct summand isomorphic to     for some prime  , then   has no direct 

summand isomorphic to       

    If the conditions are satisfied then   is  -noncosingular related to   and   

and also   is  -noncosingular related to   and   therefore by proposition 5.1.7 

      is  - noncosingular.  

Proposition 5.1.14 For a torsion group  , the following are equivalent 

(1)   is  -noncosingular  and      ad   for all non zero   
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(2)   is semi-simple. 

Proof: 

           is torsion then by theorem 3.1.2 we can write       

       
  and by 

proposition 5.1.8 each    is  -noncosingular related to    for      and with 

this condition and proposition 5.1.12 Rad      for each   then this means 

     , thus      , then   is the direct sum of simple group and hence   is 

semisimple. 

(         is semisimple then by theorem 4.3.3 Rad   = 0 and by corollary 

5.1.9 we can easily see that   is  -noncosingular. Note that     is not small in  , 

therefore        hence      ad  . 

Theorem 5.1.13 fully characterized the condition for which of torsion group will 

be  -noncosingular and proposition 5.1.14 further supported the generalization. 

At this point we want to see whether or not the generalization of torsion-free 

group is also possible. 

Proposition 5.1.15 For a torsion-free group  , If                  for 

           , where           and          then   is  -

noncosingular. 

Proof: let      
                       
          be an endomorphism with        Then      

          and                                    Similarly 

                                       Continuing in this way 

we will get                     
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Since                 for every              we have      

       , for some      therefore                since   is torsion-

free,                         Continuing tin this way we get         

that  is     , hence   is  -noncosingular. 

Example 5.3 Let   =  
 

  
   

      
                               , we want check 

whether    is   - noncosingular or not.  

Proof: remember that A=   
 

 
                                     , 

therefore                                     therefore           

and                   , therefore   satisfy all the condition of 

proposition 5.1.13 hence   is   -noncosingular. 

The natural question that may arise here is that, what if the Rad   of a torsion-free 

group   is not essential in   and or the          . The following example will 

suggest something important for us. 

Example 5.4) Let     
 

 
             , then     is not   -noncosingular. 

Proof: Note that   is torsion-free group and     is the largest subgroup of    

but       . Now take a non zero endomorphism     

                       
           defined by 

       , then           . Therefore        and hence    is not   -

noncosingular. 
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CHAPTER SIX 

CONCLUSIONS 

For a torsion group, we are able to fully characterized the notion of  -

noncosingular abelian group and precisely stated that, for a torsion group to be   -

noncosingular the group  , must be decomposed as   =    , where   is 

divisible and   is semi-simple. Also we established that, for a torsion   -

noncosingular group   with I         for all nonzero     produces semi-

simple group  . 

Our characterization for torsion group is surprisingly working; but the situation of 

torsion-free group is still subject to further research; however we provide a result 

that gives more information of the notion for every abelian group  .  
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