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ABSTRACT 

In this thesis we study K-nonsingular modules and in particular K-nonsingular 

abelian groups (Z-modules). Nonsingular (torsion-free) groups are K-nonsingular. 

Direct summands of K-nonsingular groups are K-nonsingular. We prove that an 

abelian group A is K-nonsingular if and only if its torsion part T(A) is semisimple and 

for each prime p, A/T(A) is p-divisible if T(A) has a direct summand isomorphic to 

Zp. In particular a torsion group is K-nonsingular iff it is semisimple. 

Keywords:  K-nonsingular modules, K-nonsingular abelian groups, torsion groups, 

torsion-free groups, basic subroups, semisimple modules. 
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ÖZET 

Bu tezde K-tekil olmayan modüller ve özellikle K-tekil olmayan değişmeli gruplar 

(Z-modüller) incelenmiştir. Tekil olmayan (burulmasız) gruplar K-tekil olmayandır. 

K-tekil olmayan grupların dik toplam terimleri de K-tekil olmayandır. Bir A 

değişmeli grubunun K-tekil olmayanlığı için, bunun T(A) burulma alt grubunun 

yarıbasit olmasının ve bir p asal sayısı için T(A)’nın, Zp’ye izomorf alt grup içermesi 

durumunda A/T(A)’nın p-bölünebilir olmasının gerek ve yeterli olduğunu kanıtladık. 

özel durumda, K-tekil olmayan burulma grupları tam olarak yarıbasit gruplardır. 

 

Anahtar kelimeler:  K-tekil olmayan modüller, K-tekil olmayan değişmeli gruplar, 

burulma grupları, burulmasız gruplar, temel al gruplar, yarıbasit modüller. 
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Z              The group of integers 
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CHAPTER ONE 

INTRODUCTION 

The property of singularity and nonsingularity of modules in general has variety of 

applications and has been intensively used in literature. Consider the set L = {mM : 

Im = 0 for some I ⊴ R}, where R is a ring and M is an R-module ( ⊴ stand for 

essential substructure: see chapter two). L is a submodule of M which is called the 

singular submodule of M. M is called singular module if L = M and M is nonsingular 

if L = 0 (i.e. no nonzero element has essential annihilator in R) [6]. K-nonsingularity 

is one of the generalized notions of nonsingularity introduced in 2007 by S. Tariq 

Rizvi and Cosmin S. Roman [7]. A right R-module M is said to be K-nonsingular 

provided that for any   S = End (M), rM () = Ker ⊴ M implies that  = 0 [7].  

The main purpose of our work is to study K-nonsingularity and give characterization 

of K-nonsingular abelian groups. The work is inspired by some basic theorems of 

abelian groups [2] and some notions studied in several papers like those in [6] and 

[7]. In chapter two, we present a review of some of the needed background materials 

that are helpful for proper understanding of the main work in this thesis. Proofs were 

sometimes given. For details on more common concepts used, the reader should refer 

to standard texts more especially on Rings, Modules and Abelian groups (e.g. [2], [5] 

& [8]). 
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Chapter three conveys the main work of this thesis. Here we state and prove a 

characterization of nonsingular abelian groups, we have shown that a torsion-free 

group is K-nonsingular and we present several results through lemmas and 

propositions that lead us to a characterization of K-nonsingular groups. Examples 

where also provided to give more highlight on these types of group. 

The beauty of Mathematical concepts often lies in area of application. One of the 

areas for which the concept of K-nonsingularity is applicable is in type theory. Some 

of these applications were provided in [7], Rizvi and Roman have provided 

application of K-nonsinguarity to various generalizations of injectivity [7]. 

 

 

                         

 

                       

 

 

 

 



                                  3 

 

 

CHAPTER TWO 

PRELIMINARIES 

2.1 Abelian groups 

Definition2.1.1. [1, 4.1] A group G,  is a set G, closed under a binary operation , 

such that the following axioms are satisfied: 

(i) For all a, b, c  G, we have 

a  (b  c) = (a  b)  c.  (associativity of ) 

(ii) There is an element e in G such that for all a  G, 

e  a = a e = a.  (identity element e for ) 

(iii) Corresponding to each a  G there is an element a  in G such that  

a  a = a  a = e.  (inverse a  of a) 

Definition2.1.2. [3, p.41] A group G is said to be Abelian if a  b = b  a for all a, b 

 G. 

‘’The word abelian derives from the name of the great Norwegian mathematician 

Niels Henrik Abel (1802-1829), one of the greatest Scientists Norway has ever 

produced [3, p.41].’’ 

Definition2.1.3. [1, 5.4] If a subset B of a group A is closed under the binary 

operation of A and if B with the induced operation of A is itself a group, then B is a 

subgroup of A. 

 Notation: B ≤ A. 
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For abelian groups, it is habitual to denote the operation additively using the ‘’ + ‘’ 

sign operation. 0 represent the identity element and the inverse of an element a is 

denoted by –a.  

Remark2.1.4. From now on whenever we make mention of the term “group” in 

short it will mean “abelian group” and we will often represent it by the letter ‘A’  

The sum a +    + a [n summands] is abbreviated as na, and  a      a [ n 

summands ] as na. 0a = 0  a  A. 

The order of a group A is the cardinal number |A| of the set of its element. If |A| is a 

finite [countable] cardinal, A is called a finite [countable] group. 

A subgroup of A always contains the zero of A, and a nonempty subset B of A is a 

subgroup of A if and only if a, b  B implies a + b  B and a  B implies  a  B , 

or more simply if and only if a  b  B. The trivial subgroups of A are A and the 

subgroup consisting of 0 alone. A subgroup of A, different from A, is a proper 

subgroup of A. 

If B ≤ A and a  A, the set a + B = {a + b | b  B} is called a coset of A modulo B 

[2, p. 2 & 3]. 

Definition2.1.5. [2, p.3] The cosets of A mod B form a group AB known as the 

quotient or factor group of A mod B. 

For C = a + B and C = a + B  A/B; C + C = (a + a) + B, nC = na + B and  C = 

a + B and the zero of A/B is B. 
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Definition2.1.6. For an abelian group A and a  A, if all elements a, 2a, 3a, …, na,… 

are different, we say that the order of a is infinite : o(a) = +. If for some n > m, we 

have na = ma then (n  m)a = 0  there is a minimal s  Z
+ 

with sa = 0 , then s is 

called the order of a: o(a) = s. In this case a, 2a, 3a,…,(s  1) a, sa = 0 , are different. 

The set {na | a  A, n  Z} is a subgroup of A, it is called the cyclic subgroup 

generated by a, and is denoted by a. If A = a then A is called cyclic group 

generated by a. [8] 

Note that if o(a) = +, then a = {0, a, 2a, … ,  a,  2a, …}. In this case a  Z. If 

o(a) = n, then a = {0 , a, 2a, … , (s  1)a}. In this case a  Zn. [8] 

Definition2.1.7. [2, p.4] If every element of A is of finite order, A is called torsion 

group, while A is torsion-free if all its elements, except for 0, are of infinite order. 

Mixed groups contain both nonzero elements of finite and elements of infinite order. 

A primary group or p-group is defined to be a group the orders of whose elements 

are powers of a fixed prime p. 

Theorem2.1.8. [2, 1.1] The set T(A) of all elements of finite order in a group A is a 

subgroup of A . T(A) is a torsion group and the quotient group AT(A) is torsion-free.  

Remark2.1.9. A is a torsion group  A = T(A) and A is torsion-free  T(A) = 0, i.e. 

A is torsion-free  for any a  A, o(a) = +. 

Definition2.1.10. [2, p.36-38] Let B, C be subgroups of A, and assume that they 

satisfy 

i) B + C = A ; 
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ii) B  C = 0. 

In this case we call A the [internal] direct sum of its subgroups B, C, and write 

A = B  C. 

Condition (i) states that every a  A may be written in the form a = b + c (b  B, c  

C), and (ii) amounts to the uniticity of this form. 

Let Bi (i  I, : I is an indexing set) be a family of subgroups of A , subject to the 

following two conditions : 

i)  Bi = A [ i.e. the Bi together generate A ] ; 

ii) For every i  I, Bi   j i Bj = 0. 

Then A is said to be the direct sum of its subgroups Bi, in sign: A = iI Bi . 

A subgroup B of A is called a direct summand of A, if there is a C ≤ A such that A = 

B  C. In this case C is a complementary direct summand, or simply C a complement 

of B in A. 

One of the most useful properties of direct sums is that: if A = B  C, then C  AB. 

Definition2.1.11. Let Ai be some groups, i  I. The Cartesian product A of Ai’s , A = 

i Ai is a subgroup with operation ( ,ai, ) + ( ,bi, ) = ( ,ai + bi, ) . This 

group is called the external direct product of groups Ai’s. Elements of A are denoted 

(ai), thus A = {(ai) | ai  Ai} 



                                  7 

 

 

Let B = {(ai)  Ai  | ai = 0 for all i except finite number of i}, then B ≤ A, and it is 

called the external direct sum of groups Ai’s denoted by B =  Ai. [8] 

Theorem2.1.12. [9, 10.7] (Primary decomposition) Every torsion group A is a direct 

sum of p-primary groups.  

Definition2.1.13. [9, p.309 & 320] If a  A and n is a nonzero integer, then a is 

divisible by n in A if there is b  A with nb = a. A group A is divisible if each a  A 

is divisible by every nonzero integer n ; that is , there exists bn  A with nbn = a for 

all n  0. (A is divisible implies nA = A for all n  0). 

Some properties of divisibility include: 

(a) If (n, o(a)) = 1 , then the equation nb = a is always solvable. For if r, s are 

integers such that nr  +  o(a)s = 1, then b = ra satisfies nb = nra = nra +  o(a)sa = a. 

(b) A group D is divisible if and only if it is p-divisible for every prime p. 

If pD = D for every prime p and n = p1  pr, then nD = p1  prD = D. 

(c) A p-group is divisible if and only if it is p-divisible. 

In view of (b), for a p-group D we always have qD = D, whenever the primes p, q 

are different. 

(d) A direct sum or direct product of groups is divisible if and only if each 

component is divisible. 

(e) If Di (iI) are divisible subgroups of A, then so is their sum Di. [2, p.98] 
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Remarks2.1.14. The quotient group Q/Z is torsion and its p-subgroup, (Q/Z)p, 

denoted by Zp , is computed as follows: 

𝑚

𝑛
 + Z  Zp   p

k
 (

𝑚

𝑛
 + Z) = Z for some k  0. Thus p

k
 (

 𝑚

𝑛
)  Z, therefore n must 

divide p
k
. So n = 𝑝𝑠 for some s  0. Hence Zp  = {

𝑚

𝑝𝑠 + Z | m  Z, s  Z
+
}. By 

theorem2.1.12, we have Q/Z =  Zp . 

Denote cn = 
1

𝑝𝑛 + Z. We observe that Zp  is generated by the elements c1, c2, c3,  

and pc1 = 0, pc2 = c1,  pcn+1 = cn, … Also o(cn) = p
n
, hence cn  𝑍𝑝𝑛. c1  c2  

 cn  

Moreover  𝑍𝑝𝑛  p  𝑍𝑝𝑛+1. [8] 

Proposition2.1.15 All subgroups of Zp  are 0, Zp,   c1, c2, , cn,    [8] 

Corrollary2.1.16. [9, 10.24] If a divisible group D is a subgroup of A, then D is a 

direct summand of A. 

Theorem2.1.17. [9, 10.28] Every divisible group D is a direct sum of copies of Q 

and of copies of 𝑍𝑝∞ for various p. 

Definition2.1.18. [9, p.321 & 322] If A is a group, then dA (i.e. divisible part of A) is 

the subgroup generated by all the divisible subgroups of A. A group A is reduced if 

dA = 0. 

Of course, A is divisible if and only if dA = A. 

Examples2.1.19. i) Every quotient group of a divisible group is divisible. 
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Let B ≤ A where A is divisible. Let a + B  A/B and 0  n  Z. Since A is divisible 

we have a = nc for some c  A. Then a + B = nc + B = n(c + B). Thus A/B is 

divisible.        

ii) The quotient group  Zp /  Zp is divisible. 

Proof: 

It suffices to show that  Zp / Zp is divisible by any prime q. 

Let a + Zp be any element from Zp / Zp, a = (ap) and q be any prime. 

For every p  q, since gcd (q, o(a)) = 1, then q|ap, that is ap = qbp for some  bp  Zp. 

Define c = (cp)  Zp by cq = 0 and cp = bp if p  q. Then a  qc  Zp, (for its 

coordinates are all 0 except for aq in position q), and q(c + Zp) =qc + Zp = a  ( a 

 qc) + Zp = a + Zp, so a + Zp is divisible by any prime q. Hence Zp / Zp is 

divisible.         

Definition2.1.20. [2, p.113] A subgroup B of A is called pure, if the equation na = b 

with b  B, is solvable in B, whenever it is solvable in the whole group A. This 

amount to saying that B is pure in A if b is divisible by n in A implies b is divisible by 

n in B.  

Remark2.1.21. B is pure in A if and only if nB = B  nA for every n  Z. 
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Examples2.1.22. Every direct summand is pure: In particular a divisible subgroup is 

pure. If B ≤ A and AB is torsion-free, then B is a pure subgroup of A: In particular 

torsion part of a group A, T(A) , is pure.  

Definition2.1.23. [9, p.326] A subgroup B of a torsion group A is a basic subgroup 

if: 

1) B is a direct sum of cyclic groups; 

2) B is a pure subgroup of A; and 

3) A  B is divisible. 

Theorem2.1.24. Every torsion group A has a basic subgroup. (see [9], 10.36)  

Corollary2.1.25. [9, 10.41] A pure subgroup S of bounded order, (i.e, nS = 0 for 

some n  0), is a direct summand. 

Definition2.1.26. [2, p.136] By p-basic subgroup B of A we mean a subgroup of A 

satisfying the following three conditions: 

                         (i)B is a direct sum of cyclic p-groups and infinite cyclic groups; 

(ii)B is pure in A; 

(iii)A/B is p-divisible. 

Theorem2.1.27. [2, 32.3] Every group contains p-basic subgroups, for every prime 

p. 
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2.2. Module  

Definition2.2.1. [1, 18.1] A ring  R, +,   is a set R with two binary operations ‘’ + 

’’ and ‘’  ‘’, which we called addition and multiplication, defined on R such that the 

following axioms are satisfied: 

i)  R, + is an abelian group, 

ii) Multiplication is associative, 

iii) For all a, b, c  R , the left distributive law, a  ( b + c ) = a  b + a  c and the right 

distributive law ( a + b ) c = a  c + b  c hold.  

A subring I of a ring R is called an ideal if for any r  R and a  I we have ra and ar 

 I. 

Definition2.2.2. [1, 18.14] A ring in which the multiplication is commutative is a 

commutative ring. A ring with a multiplicative identity element is a ring with unity, 

the multiplicative identity element 1 is called unity. 

 An element u in R with unity 1  0, is a unit if it has a multiplicative inverse in R. If 

every nonzero element in R is a unit then R is a division ring. A commutative 

division ring is called a field. [1] 

Definition2.2.3. Let R be a ring and (M, +) be an abelian group. Suppose that there is 

a function f : R x M  M ( we will denote f (r, m) by rm, where r  R and m  M ) 

such that the following conditions are satisfied: 

1) r( m + n ) = rm + rn for every r  R and m, n  M 

2) ( r + s )m = rm + sm for every r, s  R and m  M 
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3) (rs)m = r(sm) for every r, s  R and m  M. 

Then we say that M is a left R-module, (or simply a module ). 

If f  : M x R  M exists with similar conditions, M is a right R-module.  

Usually R is a ring with unity 1 and 1.m = m for every m  M [10]. 

A subset N of an R-module M is called a submodule of M if N is itself a module with 

respect to   the same operations. Notation: same as for subgroup.  

A submodule N of M is called a maximal submodule of M if N ≤ K ≤ M implies K = 

N or K = M. 

It is clear that a module is just like a vector space over a ring R and an abelian group 

is a Z-module. 

 2.3 Semisimple module 

Definition2.3.1. A module S is a simple if it has no proper nonzero submodule; i.e. S 

has only 0 and itself as submodules. Equivalently 0 ≤ X ≤ S  X = 0 or X = S. [10] 

Remark2.3.2. It is not difficult to see that a simple abelian group is precisely Zp upto 

isomorphism, for some prime number p. Thus a simple abelian group must be a finite 

cyclic group of prime order. 

Theorem2.3.3. [5, 8.1.3] For a module M the following are equivalent: 

1) Every submodule of M is a sum of simple submodules. 

2) M is a sum of simple submodules. 
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3) M is a direct sum of simple submodules. 

4) Every submodule of M is a direct summand of M. 

If any of the conditions of theorem2.3.3 above is satisfied, then the module M is 

called a semisimple [10]. 

Examples2.3.4. Every vector space VK over a field K is semisimple. An abelian 

group A is semisimple if and only if A   Zp. Q and Z are not semisimple since they 

have no simple subgroups. Every sum of semisimple module is semisimple and 

submodules of semisimple modules are semisimples. 

2.4 Essential submodule 

The definitions and theorems given in this section and section2.5 can be found in [5]. 

Definition2.4.1. A submodule N of M is essential (big or large) in M if N  K = 0 for 

some K ≤ M implies K = 0.  

Notation: N ⊴ M. 

Remark2.4.2. It is clear from the defition that  

1) N ⊴ M iff  0  K ≤ M , N  K  0  

2) If M  0 and N ⊴ M then N  0  

3) M  ⊴ M. 

Lemma2.4.3. N ⊴ M if and only if for every 0  m  M there is r  R such that 0  

rm  N.  
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Proof:  

Let N ⊴ M and 0  m  M. Then 0  Rm ≤ M. Therefore, N Rm  0, hence 0  rm  

N, for some r  R.   

Conversely, let 0  K ≤ M, then  0  k  K ≤ M. By hypothesis we have 0  rk  N 

 K, for some r  R, so N  K  0 , therefore N ⊴ M .                                           

Definition2.4.4. The Socle of a module M is the intersection of all essential 

submodules of M, equivalently Socle is the sum of all simple submodules of M.  

At this junction we will state the isomorphism theorems which we shall often use in 

the next chapter. 

2.5. Isomorphism Theorems 

 Definition2.5.1. A function f : M  N is a homomorphism if f ( a + b ) = f (a) + f 

(b) and f (ra) = rf (a), where M, N are modules over R , a, b  M and r  R. 

Definition2.5.2. An endomorphism is a homomorphism of M into M.  

For brevity, the set of all endomorphisms of M is denoted by End (M). 

Definition2.5.3. The kernel of a homomorphism f defined on M is the set of all 

elements in M that are mapped to zero, i.e. Ker f = { m  M | f(m) = 0 }.The Image 

of f, Im f ={ f (m) | m  M}. 

The kernel and image of f are submodules of M and N respectively. 
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Definition2.5.4. An onto homomorphism is called an epimorphism (epic); one to one 

homomorphism is called a monomorphism (monic); one to one and onto (bijective) 

homormophism is called an isomorphism, in this case M and N are said to be 

isomorphic. Notation: M  N. 

Remark2.5.5. f is monic if and only if Ker f = 0 and f is epic if and only if Im f = N. 

Examples of homomorphisms includes: The natural (canonical) homomorphism , , 

of a module A onto the factor module A/B , where B ≤ A;  : A  A/B defined by  

(a) = a + B. The identity injection or inclusion map of submodule B ≤ A;  i : B  A 

defined by i(b) = b, and the natural projection map  :  Ai  Aj defined by  (ai) = 

aj . 

Theorem2.5.6. Every module homomorphism f : M  N has a factorization f = g o 

, where  : M  M/Kerf is the canonical epimorphism and g : M/Kerf  N is 

defined by g(m + Kerf) = f(m). Moreover g is an isomorphism iff f is an 

epimorphism.  

Theorem2.5.7. Fundamental Homomorphism Theorem 

For every homomorphism f : M  N, M/Ker f  Im f 

In particular if f is an epic then M/Ker f  N. 

Proof: 

f : A  Imf defined by f (m) = f (m) is an epimorphism. Therefore g : M/Kerf  

Imf is an isomorphism by theorem2.5.6.        
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Theorem2.5.8. Second Isomorphism Theorem  

If N and K are submodules of M, then 

(N + K)/K  N/(N  K ) 

Proof: 

Define f : N  (N + K)/K by f (n) = n + K. Then f is a homomorphism. 

For every (n + k) + K  (N + K)/K, we have (n + k) + K = n + K = f (n)  f is epic. 

n Kerf  f (n) = 0  n + K = K  n  K  n  N  K  Kerf = N  K . 

f is epic.  Imf = (N + K)/K  N/Kerf = N/N  K (by theorem2.5.8).        

Theorem2.5.9. Third Isomorphism Theorem  

If K ≤ N ≤ M, then 

(M/K) / (N/K)  M/N 

Proof: 

Define f : M/K  M/N by f ( m + K ) = m + N. f is well defined because for m1 + K 

= m2 + K we have m1  m2  K ≤ N  m1 + N = m2 + N.  

It is clear that f is epic. 

m + K  Kerf  f (m + K) = 0  m + N = N  m  N  Kerf = N/K. 
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By theorem2.5.8 we have M/N = Imf  (M/K)/Kerf = (M/K )/ (N/K ).        

We conclude this section with definition and a fundamental result on K-nonsingular 

modules that we have used in the next chapter. 

 

2.6. K-nonsingular modules 

Definition2.6.1.(Rizvi and Roman, 2007). Let M be a module. The singular 

submodule of M is defined by 

Z (M) = {mM | Im = 0 for some I ⊴ R}. 

If Z (M) = M, then M is called singular module, dually M is nonsingular provided 

Z(M) = 0. 

Definition2.6.2 (Rizvi and Roman, 2007) A module M is called K-nonsingular if, for 

every   End (M), Ker  ⊴ M implies  = 0.  

Example2.6.3. Any semisimple module is K-nonsingular, this follows from 

definition2.6.3 and Theorem2.3.2 [7]. 

Proposition2.6.4.(Rizvi and Roman, 2004). If M is a nonsingular module then M is 

K-nonsingular. 

Proof: 

Suppose to the contrary that M is not K-nonsingular, then  0    S such that Ker 

⊴ M. Since   0,  0  m  M\Ker . The set I = {r  R : mr  Ker } is a right 
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ideal in R. In fact, I ⊴ 
R : r  I  mr  Ker   r such that 0  mrr  Ker  0 

 rr  I. But for 0  (m), (m)I = 0, contradiction with the nonsingularity of M.   

Definition2.6.5 (Rizvi and Roman, 2007) A module M is polyform if and only if for 

any K  M and 0  f : K  M, Kerf is not essential in K. 
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CHAPTER THREE 

In this chapter, we are going to focus on K-nonsingular Abelian groups (Z-modules). 

Some examples and important lemmas and propositions concerning the K-

nonsingular Abelian groups will be discussed. Most of these collectively lead us to a 

characterization of the K-nonsingular Abelian groups. 

3.1 K-NONSINGULAR ABELIAN GROUPS 

Recall that an abelian group A (a Z-module) is called K-nonsingular if, for every   

End (A), Ker is essential subgroup of A implies that  = 0. 

In other words, an abelian group A is K-nonsingular if for every nonzero 

endomorphism of A, its kernel in not an essential subgroup of A. 

Examples3.2 

1. The group 𝑍𝑝∞ is not a K-nonsingular group: all its nonzero subgroups are 

essential subgroups. Also the group Z4 is not K-nonsingular for  : Z4  Z4 defined 

by (a) = 2a, we have Ker = {0,2} which is an essential subgroup of Z4. 

2. As we have seen in the previous chapter semisimple abelian groups (semisiple Z-

modules) are K-nonsingular. Simple abelian groups are exactly cyclic groups of a 

prime order, so direct sums of groups isomorphic to Zp for some primes p are K-

nonsingular. 

i. Zp and Zp where p is a prime are K-nonsingular groups. 

ii. Any cyclic group of prime order is K-nonsingular 
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3. Zn is K-nonsingular where n is square-free: this follows from the fact that Zn is 

semisimple if and only if n is square-free. 

We recall that a group A is called polyform if and only if for any B ≤ A and f : B  A, 

Kerf is not essential in B. 

Corollary3.3. Any polyform group A is K-nonsingular. 

Proof: 

Let A be a polyform group, B ≤ A and f : B  A. Then Kerf is not essential in B In 

particular for B = A, all nonzero endomorphism of A have Kernels which are not 

essential in A, hence the assertion is proved.        

Next, we give a characterization of nonsingular abelian groups. From the definition 

of singular submodules, it is clear that for groups, i.e. Z-modules, the notion coincide 

with that of the torsion part. This is due to the fact that every ideal of Z is essential in 

Z. We therefore have the following lemma. 

Lemma3.4. A group A is nonsingular if and only if A is torsion-free. 

Proof:  

A group A is nonsingular if and only if Z(A) = 0 a  A such that ak = 0, for 

some k ∈ nZ, implies a = 0 ⟺ A is torsion-free.        

Proposition3.5. If A is a nonsingular group, then A is K-nonsingular. 

The converse does not hold generally, showing that the property of nonsingularity is 

stronger than the K- nonsingularity. 
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Proof: 

See the proof in chapter two given in general module theoretic setting.        

Corollary3.6. Every torsion free group is K- nonsingular. 

Proof: 

A is torsion-free  A is nonsingular  A is K-nonsingular, by lemma3.4 and 

proposition 3.5 respectively.        

 To show that the converse of the above corollary is indeed not necessarily true we 

consider the following counter example. 

Example 3.7. Zn where n is prime is K-nonsingular because it is simple. But it is not 

nonsingular since for any x  Zn we have x.nZ = 0, and nZ ⊴ Z.  

Now, we shall look at some important lemmas and immediate consequent results 

obtained as follows. Before that we have a corollary: 

Corollary3.8 

(a) Any cyclic group of infinite order is K-nonsingular. 

(b) For any group A, the quotient group A/T(A) is K-nonsingular, where T(A) is the 

torsion subgroup of A. 
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Proof: 

It follows from the facts that infinite cyclic group is isomorphic to Z and that A/T(A) 

is torsion-free.        

Lemma3.9. If C ⊴ A then C B  ⊴ A B for every module B.  

Proof:  

Assume that C  ⊴ A and let 0  a + b  A  B. 

We need to show that there exists r  R such that 0  r(a + b)  C  B. 

If a = 0, then 1(a + b) = b  C  B. 

If a  0, then 0  ra  C, for some r  R, since C  ⊴
 A. Therefore 0  ra + rb  C  

B , as A  B = 0 and 0  ra, thus 0  r(a + b)  C  B, hence our result.        

Lemma3.10. A direct summand of a K-nonsingular module is K-nonsingular. 

Proof:  

Let A be a K-nonsingular module and B be a direct summand of A such that A= B  

C for some C ≤ A. 

Let   End (B) such that Ker ⊴ B.  

Define   : A  A by  = iB o  o B , where iB and B is the inclusion map and the 

canonical projection on B respectively. Then   End (A) and Ker = Ker  C ⊴ B 

 C = A (by lemma3.9). Therefore Ker   ⊴ A and since A is K-nonsingular we must 
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have  = 0   = 0 (as neither iB nor B is zero). Thus Ker  ⊴ B implies  = 0, 

hence B is K-nonsingular.        

Lemma3.11. Let p be a prime integer. The group 𝑍𝑝𝑛 is K-nonsingular if and only if 

n = 1.  

Proof: 

() Suppose that n  1, i.e. n  2. 

Define  : 𝑍𝑝𝑛   𝑍𝑝𝑛 by (x) = px, then  is a nonzero endomorphism of 𝑍𝑝𝑛 . 

 Ker = {x  𝑍𝑝𝑛 | (x) = px = 0}  𝑐𝑛−1  𝑍𝑝𝑛−1  p ⊴ 𝑍𝑝𝑛 , hence Ker ⊴ 𝑍𝑝𝑛 . 

So, Ker ⊴  𝑍𝑝𝑛 with   0 therefore 𝑍𝑝𝑛  is not K-nonsingular. 

() The converse is trivial because for n = 1,  𝑍𝑝𝑛  is simple which is K-

nonsingular.  

Proposition3.12. If an abelian group A is K-nonsingular then its torsion part T(A) is 

semisimple. 

Proof: 

Let A be a K-nonsingular group, T(A) be the torsion part and Tp(A) be its p-

component. 

If d(Tp(A))  0 then A  𝑍𝑝   X , therefore 𝑍𝑝   must be K-nonsingular, 

contradiction. 
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So Tp(A) is reduced.  

Let Bp (A) be its basic subgroup. Bp (A) = iI bi where o(bi) =  𝑝𝑛𝑖 . For each i  I 

we have bi  ≤ Bp (A) ≤ pure Tp(A) ≤ T(A) ≤ pure A . 

Therefore bi is a direct summand in A and so is K-nonsingular by lemma3.10. 

Using lemma3.11 we get that ni = 1 for every i  I. So Bp (A) is semisimple. 

Moreover Bp (A) ≤ pure Tp(A) and Bp (A) is bounded, therefore Tp(A) = Bp (A)  D, 

where D is divisible. But Tp(A) is reduced, hence D = 0, i.e. Tp(A) = Bp (A) is 

semisimple. 

Thus T(A) = Tp(A) is semisimple.          

Example3.13. (a) The group  pP Zp is K-nonsingular. 

For any endomorphism f : Zp  Zp with Kerf  ⊴ Zp , Zp = Soc( Zp)  Kerf. 

So Imf  (Zp/Kerf)  (Zp/Zp)/(Kerf/Zp) is divisible since the group  

Zp/Zp is divisible. But Zp is reduced, hence Im f = 0, that is f = 0. 

Note that: T (Zp) = Zp is semisimple. 

(b) Torsion-free groups are K-nonsingular; their torsion part is 0 which is 

semisimple. 

Lemma3.14. A maximal submodule B of a module A is either essential or a direct 

summand in A 
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Proof: 

Let B ≤max A. Suppose that B is not essential, then there is 0  C ≤ A such that B  C 

= 0.  

Then B ≨ B  C ≤ A. By maximality of B we deduce that B  C = A. So B is a direct 

summand in A.          

Lemma3.15. If A ⊴ B, then B/A is torsion. 

Proof: 

Let 0  b  B. b  A  0  nb  A for some n  0. 

Then for b + A  B/A, n(b + A) = nb + A = A , n  0, hence our result.          

Next, we came up with the following main result that gives a characterization of K-

nonsingular groups. 

Theorem3.16. An abelian group A is K-nonsingular iff T(A) is semisimple and for 

each prime p, A/T(A) is p- divisible if T(A) has a direct summand isomorphic to Zp. 

Proof: 

( ) A is K-nonsingular implies that T(A) is semisimple by proposition3.12.  

Suppose that T(A)  Zp  K and A/T(A) is not p-divisible. 

Define f : A  A by f = i o  o 2 o 1  
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Where 1 : A  A/T(A) , 2 : A/T(A)  (A/T(A))/p(A/T(A))  Zp are canonical 

epimorphisms,  : Zp  Zp is the projection on Zp and i : Zp  A is the inclusion 

map. 

Zp  Im f  A/Kerf, therefore Kerf is a maximal subgroup of A. If Kerf is a direct 

summand in A, then A = Kerf  C where C  Zp, hence C ≤ T(A)  Kerf . But then C 

= C  Kerf = 0  contradiction, so Kerf is not a direct summand in A and by 

lemma3.14 we have Kerf ⊴ A. But f is nonzero, which is a contradiction with the fact 

that A is K-nonsingular. So A/T(A) is p-divisible. 

() Suppose that A is not K-nonsingular, i.e. there is a nonzero endomorphism 

  f : A  A with Ker f ⊴ A. 

Then Imf  A/Kerf is torsion, therefore Imf ≤ T(A). 

So Imf is a nonzero semisimple group. Then Imf  Zp  N for some N ≤ Imf, 

therefore A/T(A) is p-divisible. Since Soc(A) is the intersection of essential 

subgroups of A (equivalently sum of all simple subgroups of A), T(A) = Soc(A) ≤ 

Kerf . 

Imf  A/Kerf  (A/T(A))/(Kerf/T(A)). Then Imf must be p-divisible hence Zp must 

be p-divisible, contradiction. So A is K-nonsingular.        

Corollary3.17. A torsion group A is K-nonsingular iff it is semisimple. 
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CHAPTER FOUR 

4.1 SUMMARY 

Chapter one is the introductory chapter. It gives a brief Historical background of our 

research. 

In chapter two we discussed the basic notions needed for a novice to read and get the 

concepts without worries. This chapter was concluded with brief study of the K-

nonsingular modules. 

Chapter three carries the main work on K-nonsingular groups; in this chapter we 

have shown that, every torsion-free group is K-nonsingular , direct summand of K-

nonsingular is also K-nonsingular, the torsion subgroup, T(A), of K-nonsingular 

group A is Semisimple and most importantly we came up with a characterization of 

the K-nonsingular groups (Theorem3.16) after proving several lemmas.  
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4.2 CONCLUSION 

An abelian group A is K-nonsingular iff T(A) is semisimple and for each prime p, 

A/T(A) is p-divisible if T(A) has a direct summand isomorphic to Zp. In particular, a 

torsion group A is K-nonsingular iff it is semisimple. 
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