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OZET

MODAL LOJiGIN FARKLI SEMANTIKLERI

YILDIRIM, Adil Tarik

Yiiksek Lisans Tezi, Matematik Boliimii
Tez Damismani : Prof. Dr. Mehmet TERZILER

Haziran 2013, 47 sayfa

Bu tez 3 boliimden olugsmaktadir. Birinci boliimde, bagintisal veya temel modal lojigin
Kripke semantigi incelenmis S4 gibi iyl taninan ve temel lojigin saglamlik ve tamlik

teoremleri kanitlanmstir.

Ikinci boliimde, topolojik semantik ve bazi lojiklerin tanimlanabilirligi incelenmistir.
Iki temel modal operatdriimiiz ‘kutu’ ve ‘elmas’ sirasiyla, topolojik i¢ ve kapanis olarak
yorumlanmaktadir. Iyi bilinen McKinsey-Tarski sonucunun S4 iin topolojk semantife gore
tam oldugu modern bir yaklasim yoluyla kanitlanmistir. Bu semantikle birlikte, baz1 topolojik

uzaylar tanimlanmaistir.

Ugiincii ve son boliimde, diger tiim modal semantikleri genelledigimiz komsuluk
semantigini ele aliyoruz. Kripke veya Topolojik semantik agisindan gegerli bilinen her sey bu
semantige gore gegerli olmayabildigi gosterilmistir. Bu semantigin genel bir semantik

oldugunu gosteren ornekler ve sonuglar verilmistir.

Anahtar Kelimeler : Modal Lojik, saglamlik, tamlik, Kripke Semantigi, Bagintisal
Modeller, Topolojik Semantik, Topolojik Modeller, Komsuluk Semantigi






ABSTRACT

DIFFERENT SEMANTICS OF MODAL LOGIC

YILDIRIM, Adil Tarik

MSc. in Mathematics
Supervisor: Prof. Dr. Mehmet TERZILER

June 2013, 47 pages

This thesis consists of three chapters. In the first chapter, relational or Kripke
semantics of the basic modal logic is studied. For well-known and basic logics such as S4 the
soundness and completeness theorems are proved.

In the second chapter, topological semantics and definability of certain logics are
analysed. Our two basic modal operators ‘box’ and ‘diamond’ are interpreted as the
topological interior and closure, respectively. The well-known result of McKinsey-Tarski that
S4 is complete with respect to topological semantics is proved via modern approach. With this
semantics, certain topological spaces are defined.

In the third and last chapter, we deal with the neighborhood semantics that generalizes
all the other modal semantics. All that is known valid with respect to Kripke or Topological
semantics may not be so under this semantics. We give examples and results showing that this
is indeed a general semantics.

Key Words : Modal Logic, soundness, completeness, Kripke Semantics, Relational
Models, Topological Semantics, Topological Models, Neighborhood Semantics.
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Introduction

In classical propositional and predicate logic, every formula is either true or false
in any model; that is, the classical logic is a two-valued logic. But there are
situations where we need to distinguish between different modes of truth, such as
‘necessarily true’, ‘known to be true’, ‘believed to be true’ and ‘always true in the
futur’ (with respect to time). For example, the sentence ‘The Eifell Tower is
located on Champ de Mars in Paris’ expresses something that is true today, but
was false some years ago. Moreover, it might be false again some time in futur.
On the other hand, the mode of truth of the sentence

‘The Earth revolves around the Sun’ is more stable with respect to time,
since it expresses something that is true and maybe will be true for ever in the
future, but it is not necessarily true in the sense that the Earth (or the sun) might

transform into a black hole.

However, must people would agree that the statement ‘The area of a
square is equal to the product of its two sides’ expresses something that is both
necessarily true as well as always true. But it does not enjoy all modes of truth, for
instance it may not be believed to be true (for example, by someone who is
mistaken) or known to be true (for example, by someone that hasn’t learned

mathematics).

There are also practical examples where reasoning about different modes
of truth is heplful. For example, each agent of a multi-agent system in computer
science may have different knowledge about the system. In such situation, a
sentence is ‘necessarily’ true when known. Of course, not every sentence needs to
be necessarily true in this sense.

In fact, we use the same way of reasoning in all modes of truth. A

sentence ¢ , if true will be so with respect to the current state of affairs, i.e. how
the world actually is, but (depending on¢) we might be able to conceive a
different world where ¢ is false, and if this is the case ¢ will not be necessarily

true.



2
In this thesis, we will develop a general framework in which we will be able
to reason about situations as the ones above. We will concentrate especially on
three semantics : Kripke Semantics, Topological Semantics, and Neighborhood

Semantics.

Historically, the standard semantics of modal logics were given by Saul
Kripke in the 1960s in the form that is now known as ‘Kripke Semantics’. These
semantics, while very successful for investigating propositional modal systems,
fail to accomodate first-order semantics; in particular, consistent extensions of

many first-order model systems fail to be complete on any Kripke-style models

13].

The Project of relating topology to modal logic begins with work of Alfred
Tarski and J.C.C. McKinsey [8].

The basic idea is to study the laws of the ‘interior’ operation on subsets of a
topological space and its dual, the ‘closure’ operation. Interpreting the modal
operator o as interior and the modal operator ¢ as closure , modal logic and
topological spaces are connected.

We will see that definitions of an open set and a closed set will coincide
with the semantics of the unary operators o, box, and ¢, diamond. Using this

semantics, the definability of certain properties will be given as examples.

Neighborhood semantics is a generalization of the Kripke, or relational,
semantics for modal logic invented by Dana Scott and Richard Montague,
independently [9] and [12]. In this semantics, a function replaces the relation of
Kripke frame, and many valid formulas with respect to Kripke semantics as well

as topological semantics are no longer true.

For more knowledge about these concepts, we give some basic books such
as
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[2], in this book, Chapters 7-9 cover basic results about classical modal
logic, and in particular, neighborhood semantics is studied in great details.

[1], the first four chapters of this book contain main results and historical
notes of the evolution of modal logic.



Chapter 1
KRIPKE SEMANTICS

The language of the thesis will be the language of the propositional logic
augmented by two binary modal operations, box and diamond. Before introducing
Kripke semantics, we describe Basic Modal Logic.

Basic Modal Logic

A logic is studied by both syntax and semantics. These two approaches are shown
to be equivalent by means of Correctness (Soundness) and Completeness
Theorems.

1.1 Syntax

The language of basic modal logic is an extension of classical logic. We add two
unary connectives (operators) oand ¢ to the language of the propositional logic.
Let At denote the set of propositional letters p, q, 7, ... also called atomic formulas
or atoms.

g L|T]| plﬂcpl(cpmp)‘(cpvcp)\(cp%(p)\(cpﬁcp)\ucplow

This means that formulas are generated by Boolean connectives and new
operators o and ¢.

This means that formulas are generated by Boolean connectives and new
operators o and ¢.

Remark 1.1.2 Typically only one of o and ¢ is taken as primitive and the other
is ‘defined’ to be the dual, for example, ¢ ¢ is sometimes defined to be

—o—-¢,andalso o tobe -0 - ¢ We have opted to take both cand ¢ as
primitive.

(gA = Op) and op are formulas, while pao — —p and v p ¢ g are not. Just as
in predicate logic, the unary connectives o and ¢ bind most closely so that
opvqisreadas (op)vqgandnot o(pvq).
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The new connectives o and ¢ are read ‘box’ and ‘diamond’ respectively,
and are dual each other similarly to vV and 3 in predicate logic. And just as Vv and
3, are read as ‘for every’ and ‘there exists’ respectively , we will see that box and
diamond possess similar readings. Although the readings will be different
depending on the situation, initially ois read as ‘necessarily’ and ¢ as ‘possibly’.

In such a logic, there are some formulas we might regard as being correct
principles, for example, e — 0@ ‘whatever is necessary is possible’ or

@ > O @ ‘whatever is, is possible’. However, other formulas may be harder to
decide. For example, should ¢ — o O¢ ‘whatever is, is necessarily possible’ be

regarded as a general truth about necessity and possibility? We need a precise
semantics to bring clearity to questions like these.

Remark 1.1.3 To generate the set of formulas in propositional logic, usually we
take one of the {— v} , or {— A} , or {—., —>} here we could as well have defined

aformulabyonly —, A,—,0.

1.2 Semantics

We give some mathematical content to suggestive discussion above. A model in
propositional logic is simply a valuation function assigning truth values to the set

of atoms, i.e. a function v : At — {T, L} .

We now consider models in which an atom can have different truth values at
different states.

Definition 1.2.1 A Kripke frame is a pair <W, R> where W is a nonempty set and
R is a binary relation on W.

A Kripke frame is also known as

. directed graph (graph theory)

. relational structure (modal logic)

. network (network theory)

. labelled transition system (computer science)

. automaton (computer science)



Two basic logics are first order logic and modal logic for graph theory.

First order logic describes a graph using quantifiers and relations. It can

provide a complete description of a finite graph. However, the truths of the logic
are generally undecidabe in the sense that the answer to the question ‘is ¢ true in

some model/graph?’ cannot necessarily be answered in a finite number of time-
steps.

Modal logic describes properties of vertices in a graph using locally
defined quantitiers, namely box and diamond. It can only express bisimulation
equivalence classes of a graph (highly relevant in modelling computation). The
logic is generally decidable.

Definiton 1.2.2 A model , M, in basic modal logic is a triple <W, R, V>, where

. W is a set of states or worlds,
.RisarelationRc Wx W,

.And V: At — P(W) is a function, a valuation, assigning a subset of W to
each atom, where P(W) denotes the power set of W

[Sometimes a model M is defined by means of a labelling function, L:
W— P (At ), where P(At) represents the powerset of At.]

These models are called Kripke models after Saul Kripke who was the first
to introduce them in the 1950s. Intuitively, w € W is a possible world and R is an

accessibility relation between worlds. That is, wRw (which is used for (w,w')
€R) means that w is accessible from w. This intuition will be made precise
below.

Relational structures have advantage to be represented graphically. This is
the case here, let us give some examples.

Example 1.2.3 Consider the Kripke model M=<W, R, V>, where

W= {W,, W, , Wy, W, , W }
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R= {(wl,wg),(wl,w4),(wQ,wg),(wQ,ws),(w3,wQ),(w3,w4),(w5,w5),(w5,w2),(

,and V (p) Z{wl,wQ,w3}, V(q) Z{wl} , V( r)Z{wl,wg,w4}

Then we can picture M as follows

: @ !

1 —_—
T\
! 1 Q .
/ e

—

w, @ A W,

(Fig.1.1)

wl"

[3)

7w4

where an arrow W, — w; means that w; Rw; and w; — w, meansw; Rw,, Note <

that we could take L instead of V by defining :

.
Il

{par}
(v}
L(w) = ¢{p,r}

}

s
.
I

3

~.
Il

3
o~
I
U W N

%)

.
Il

Example 1.2.4 A Kripke modal M = <W, R, L> can be used to describe how
truth values vary over time. A common example is when W=IN and R is the usual

ordering < of the natural numbers.
0->1-52>...>n—>...

(Fig.1.2)

Then we can think of W as a set of points in time and R as the relation of
being ahead in time. Then L (¢) will describe the truth values of propositions at

time t e W.

)
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Remark 1.2.5 If we remove R from Kripke model, that is , if we consider the
model ¢ {*},@,V} then we see that it is just an ordinary model for

propositional logic :

V: At—){T,L} ,
T if peL(®)
V(p)_{J_, if peL(x)

Definition 1.2.6 Let M =<W, R, V> be a model in basic modal logic. Suppose w
eWand ¢ is a formula. We will define when ¢ is ‘true in the world’ w. This is

done via a satisfaction relation wE ¢ by structural induction on ¢ :
s WET
. w kL
. wkEDp (iff) p e V(w)
. WE—=Q (iff) w F o
. wEQ Ay (iff) wEe and wkE vy
. wEoe vy (iff) wE@ orwkE vy

. wE @ >y (iff) w Ey wheneverw F ¢, orequivalently

(iff) wkF e orwkEy
. wE oy (iff) wEo (iff) wE v
. wEDOQ (iff) for eachu € W withwRu we haveu E ¢

. WEO @ (iff) there existsu € W such thatwRu andu F ¢

Whenw E ¢, we say that ‘w satisfies / forces ¢’ or © ¢ is true in world

w/at state w’.
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Comment: The first eight clauses are clear from propositional logic, the only

difference is that an atom p can be true at many worlds w. The interesting cases
are the interpretations of box and diamond. For o ¢ to be true at w, ¢ must be

true at every world u accessible from w, and for ¢ ¢ to be true at w there must be
at least one world u related to w such that ¢ is true at u. It is to be noted that o

and ¢ act a bit like the quantifies Yand3, but o and ¢ act over states. This
interpretation is usually called ‘possible worlds semantics’ .

Example 1.2.7 Consider the model of example 1.2.3. Then according to
definition 1.2.6, w,Fop and w, =0 ( r Aogq). Indeed, since w, Ru implies

that w =w,or u =w, (see fig 1.1), we have w, F p and w,F p,i.e., w, e V(p)
and w, € V(p) (orequivalently,p € L (w,)andpe L (w,)). Nowsince w Rw,

and w, Fr andw, Fo g because there is no w e W such that w, R . On the

other hand, w, ¥ o p and w, F O .

Definition 1.2.8 A model M = <W, R, V> s said to satisfy a formula ¢ if every
state in the model satisfies ¢. Thus, we write M E ¢ if and only if wk ¢ for
everywe W.

For example, if we again consider the model in Example 1.2.3, we see that
w,,w,,w, Frand w,,w, & Op. Hence the modal formula r v ¢ p is satisfied by

M,ie, MErv O p.

We now define modal semantic entailement, similar to logical
consequence in classical logic.

Definition 1.2.9 Let T be a set of formulas. Then we say that T ‘semantically
entails” a formula ¢ if for any world w in any model M = <W, R, V> we have

w F ¢ whenever w Fy forevery y e T'. In this case, we write T F ¢ .
Two formulas ¢ and y are said to be semantically equivalent when they
semantically entail each other, and then we write ¢ =y .

Proposition 1.2.10 We have the following equivalences :

(a)D(pE—|0—|(p andO(PE—H:]ﬁ(P
(b) o(ery)=(oDorny)

© 0(ovy)=(0ovoy)
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Proof LetM =<W, R, V> be an arbitrary model.

(@)

(b)

(©)

Let we W be any world. Suppose w Eo ¢ , then ukE ¢ for every
ue W such that wRu. So there cannot be a world ue W such that

WRuU and uF — ¢ , but then w¥ ¢ —¢. Hence Wk =0 —¢. >
Thus coeE—-0—=¢, Conversely, if we—0-—-¢, then
W FE O — ¢ so that there is no world u such that wRu and ukF — ¢ .
Hence, for any ue W such that wRu , we must have uE ¢. But

then wEo . Thus =0 —-¢ Foe, hence cp=—90—¢. The
second equivalence follows easily from the first one. ®

Let we W be any world. Suppose wE o (¢ A v ), then for every u

such that wRu, uF ¢ and ukE y by Definition 1.2.6. But then of
course weoe and wkoe , ie. , Wroe Aowy. Thus
o(oAay)E(ooe Aoy ). Conversely , if weoo Aoy, then
by Definition 1.2.6 wk o ¢ and wk o v, i.e. for every u such that
WRuU, UE @ and ukE vy , thatis, uFE @ A y. As u is arbitrary, we
have wEo(e Ay ), hence oo Aoy Eo(¢ Ay ). Therefore
weobtaino(p Ay )=(co Aoy ).®

Let we W be any world. Suppose w F O (¢ vy ), then by
Definition 1.2.6, there exists u such that wRu and uE ¢ v y.

Hence uF¢ or uFwy. Thus weOwy or WEOy. So

O(ovy )EOOVOY.®

Conversely, suppose Wk ¢ ¢ v ¢ y, then by definition 1.2.6, w0 ¢ or

WE O ¢ .

Hence there exists ue W such that wRu and uFo vy, so

WEO(pvy). Thus OovOyEO(pvy), and we get the required
equivalence. ®
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Remark 1.2.11 The equivalences in proposition 1.2.10 are very ‘natural ’ in the
sense that the quantifiers vV and 3 distribute over Aandv, respectively. We will
see that o will also distribute over — , which is a fundamental property for
modal logic. Also, we knowthat V=—3 —and 3=—-V —.

Example 1.2.12 We have that in general

o(evy)=(oevoy)

O(pry) =(oenroy).

To see that o (@ vy ) = (o¢voy), it suffices to find a model in
which one formula holds while the other fails. For the first, let
W:{wl,w2,w3} ,R= {(wl,u)Q),(wl,ws)} ,and V(p)Z{ws} , V(Q) ={w2}

Then we have w, ¢ o(pvq), since w Rw, and w, Rw, and w, F pvqand
w, Fpvg.However, w, ¥ opv oq since w,Rw, and w, ¥ p and w, ¥ q. Thus
they are not equivalent. ( See fig 1.3)

Fig 13

It can be shown that the same model works for the second inequivalence.

Now, we need a notion of validity. We know valid formulas, also called
tautologies, from classical logic. Here a valid formula will be true with respect to
every valuation as well as underlying frame <W, R>.

Definition 1.2.13 We say that a formula ¢ is ‘valid’ if it is true in every world
of every model. We denote thisby F ¢.

For example, formulas of the above proposition 1.2.10 are valid formulas.
Another important valid formula, which we shall prove, is the following :

(K) o(¢ »>y)—>(0o—>ovy)
This formula is called K ( honoring S. Kripke ).
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Proposition 1.2.14 K is valid.

Proof Let M = <W, R, V> be any model and let we W. Assume that
WEo(e —» v) and wkE o ¢. This holds if and only if for every ue W such that

WRu, we have ukF ¢ — y and uk ¢, which implies that uk y for every u such

that wRu. But this on the other hand holds if and only if wEoy . Hence
wEo(e »> vy)—(ooe > ovy). As M was arbitrary, we have FK. ®

Many other formulas , suchas oo > 9,00 >oco¢e, ¢ T,0>00 0
,are not valid. So for each situation, or reading of o, and its dual ¢, we will
restrict the classes of models so that the desired formulas are valid with respect to
this class.

Notice that o and ¢ are interpreted by means of R. So the question is what
properties the relation R should have in the various cases. This leads us to
consider relations between first order logic and modal logic.

1.3 Correspondence

We will see that some elemantary classes of models correspond to simple
formulas in basic modal logic. This will yield a connection between what formulas
should be valid and what general structure the models should have in each
situation.

1.3.1 Frame Correspondence

Definition 1.3.1 A structure <W, R> with W a nonempty set and R a binary
relation on W is called a ‘frame’ and is denoted F .

Thus a frame F' is the underlying structure of any model M, and so from
any model we can extract a frame by simply forgetting about the valuation
function V.
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Definition 1.3.2 A formula ¢ is ‘valid’ on a frame F', written F' F ¢ , if for
every valuation function V and each we W, we have M ,wkE ¢ where

M=<W,R,V>.

Recall that we defined validity of a formula ¢, F ¢, by saying that ¢ is true
at every point of every model, but we could equivalently say that a formula ¢ is
valid when F' E ¢ for all frames F .

Proposition 1.3.3 Let /' = <W, R> be a frame. Then

(1) Risreflexiveifandonlyif FFop— o
(2) Ristransitiveifandonlyif FEFop—>ooe.

Proof

(1) CN (=) : Suppose that R is reflexive and let V be a valuation function so
that we get a model M = <W, R, V> . We want to show that M F op — o, so let

we W such that wE o . Then for all ue W such that wRu, we have uF ¢ . Since R
is reflexive, wRw, hence wE ¢ . But then we have wE op — @, and F Fop — ¢

since w was arbitrary.

CS (<) : Suppose F Eog — ¢. In particular, we then have F Eop—p.
Now let weW such that wg V(p) and ueV(p) for each ueV such that wRu.
Assume that we don’t have wWRw. Then wE o p. But then since F satisfies o p —
p, we also must have wk p. But this contradicts the assumption that wg V(p).
Hence it must be the case that wRw. Since w was arbitrary , this shows that R is
reflexive. ®

(2) CN (=) : Suppose that R is transitive and let M = <W, R, V> be a model.
We want to show that M Fop > oo ¢. Let weW such that wE o ¢ . We then

need to see that for every ue W such that wRu and every ve W such that uRv, we
have vE ¢ i.e.w F oo ¢. But if wRu and uRv, then uRv since R is transitive, and
together with w=o ¢ we then have viE ¢. Hence w Foo ¢. This shows that
FFoop—ooo.
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CS(«<): Suppose FEFop—>ooe, In particular, we have

F Eop—oop. Let w,u,veW be such that wRu and uRv. We want to show that

WRv. Let V be a valuation function such that ve V(p) but we V(p) for all other w.
Assume , to the contrary, that we don’t have WRv . Then wk op and hence

WE oo ¢ since by hypothesis F Eop — oo ¢. But then uk oo, since wRu ,

and VEp, since uRv , which contradicts our assumption that ve V(p). Hence, we
must have wRv . This shows that R is transitive. ®

We give below some well-known and useful correspondences.

T : Frame validity of op — ¢ corresponds to reflexivity of R

B : Frame validity of ¢ — o ¢ ¢ corresponds to symmetry of R
D : Frame validity of op — ¢ ¢ corresponds to R being serial

4 : Frame validity of oo — o o ¢ corresponds to transitivity of R

5 : Frame validity of ¢ ¢ — o ¢ ¢ corresponds to R being Euclidean

For more correspondences [10]

We will prove the last correspondence, but before we give a definition.

Definition 1.3.4 We say that a basic modal logic formula ¢ ‘defines’ a property
P of a frame F =<W, R>,if F' E ¢ if and only if R has the proverty P.

For example, one can show that ¢ T and D:o ¢ — ¢ ¢ define the
same property; this corresponds to seriality of the accessible relation: Vx3y xRy .

Proposition 1.3.5 Ris Euclidean ifandonlyif FEO o > o0 o.

Proof A relation R is Euclidean if for every w,u,ve W, wRu and wRv implies that
URv.

CN (=) : Suppose that R is Euclidean. Let M = <W, R, V> be any model
and wkE ¢ ¢@. Then there is ve W such that wRv and vE ¢ . Now suppose ue W

with wRu. Then uRv since R is Euclidean. But then we have uF ¢ ¢, and hence
WED O o,ie,WEQQ >o00.
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CS («) : Assume that F'is non-Euclidean. Then there must be w,u,v e W
such that wRu, wRv but not uRv. We will try to falsity ¢ ¢ — o ¢ ¢ by finding a

valuation function V such that wE ¢ ¢ and wk o ¢ ¢. That is, if we consider

0 p— o Op, we have to make p true at some R — successor of w and false at all R
— successors of some R-successor of w. Let V be given by = e V (p)(iff) it is not
the case that uRx.

Then ve V(p) while {x|uRx} ~{ x|xeV(p)}=0.

Now clearly u ¥ ¢ p, so that w i o ¢ p. On the other hand, since we have vip and
WRv, we getwkE Op.Hence, F £ O o 500 ¢.®

1.4 Normal Modal Logics

Given a class of frames F , we denote by L, the set of formulas valid on every

frame in F. For example, if F is the class of reflexive frames , we know that

oo —>¢eL,, if itis the class of symmetric frames ¢ -0 ¢ ¢ € L, etc. We
can ask whether there are syntactic mechanisms capable of generating L, . And

are such mechanisms able to cope with the associated semantic consequence
relation.

We are going to define a Hilbert - style axiom system, called K, which is a
‘minimal’ system for reasoning about frames.

Definition 1.4.1

A K - ‘proof’is a finite sequence of formulas, each of which is an ‘axiom’, or
follows from one or more earlier items in the sequence by applying a ‘rule of
proof’. The axioms of K are all instances of propositional tautolologies and :

Kio(ep>vy)>(oe—ovy)
Dual: 0 p >—o0— ¢

The rules of proof of K are :

‘Modus ponens’ : given ¢ and ¢ — y, prove v .

‘Uniforme substitution’ : given ¢ , prove y , where v is obtained from ¢
by replacing proposition letters or atoms in ¢ by arbitrary formulas.
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‘Rule of necessitation® : given ¢, prove o ¢ «

A formula ¢ is K-‘provable’ if it occurs as the last item of some K- proof ,
in this case we write |- .

Remark 1.4.2

(i) Modus ponens preserves validity ; thatis,if F¢ and F¢ — v,
then also F . So it is a correct rule for reasoning about frames.
Furthermore , modus ponens preserves ‘global truth’ (if M F ¢ and
M E @ —> vy, then M E ) and ‘satisfiability’ (if M ,wk ¢ and

M WE ¢ — vy ythen M ,wk ). Thus, modus ponens is also a correct
rule for reasoning about models.

(i) Uniform substitution mirrors the fact that validity has nothing to do
with particular assignments , i.e. if a formula is valid, this does not
depend on the particular values of its atoms. Uniform substitution
preserves validity, but it does not preserve neither global truth nor
satisfiability.

(iii)  The rule of necessitation might look some what odd, since clearly
¢ — o ¢ is not valid. However, this rule preserves validity and global

truth.

(iv)  The axiom K is sometimes called the ‘distribution axiom’, and as we
saw earlier, it is a valid formula.

(v) The reason for having the Dual axiom is that we did not define ¢ using
box ; it is also valid.

(vi)  Kis the minimal modal Hilbert system in the following sense : All its
axioms are valid and all its rules of inference preserve validity, hence
all K-provable formulas are valid. This leads us to the concepts of
soundness and completeness. Before, we give an example of K-
provability.
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Example 1.4.3

The formula (cpAoqg)—o(pAq) is valid on any frame, so it should be K-
provable. Indeed,

1) Fp—>@—>pnaQ) ( Propositional tautology)

2) Fo(p—>(@— paQ)) 1, Necessitation rule

3) Fo(pP—>q)>(op—>oq) K axiom

4) Fo(p—>@—>paQq) > (op—>o(@—> paq)) 3, Uniform
Substitution

5 Fop—>o(q— paq) 2,4 Modus Ponens

6) Fo(gq—>parg)— (cg—>o(pAaQ)) 3, Uniform Substitution

7) Fop—>(og—>o(PAaQ) 5,6 Propositional Syllogism

8) HF(oparoq) —o(paQ) 7, Propositional logic.

The system K is too weak to validate many formulas ; for example, if we are

interested in validity only on transitive frames, the system K is not able to show
that the formula o ¢ — o o ¢ is valid, hence is not K-provable. For this reason

we will introduce the folowing concept.

Definition 1.4.4

A ‘normal modal logic’ L is a set of formulas of basic modal logic, with the
following properties :

. L contains all propositional tautologies

. L contains all instances of K :

o(¢ >vy)—>(oe—>ovy)

. L contains all instances of the Dual :

<>(p(—)—||:|—|(p

.L is closed under modus ponens, uniform substitution, and the rule of
necessitation.
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Some well-known normal systems are as follows :

T=K+T,; T:o0¢ — ¢ (reflexivity )
S4=K+T+4; 4:o0¢ —>ooe (transitivity)
S5 =K+T+4+5; 5: 00090 >o¢ (Euclidean)
KD45 =K+D+4+5; D: o — ¢ ¢ (seriality)

Among these systems, S4 is of particular importance in the content of topological
spaces.

1.5 Soundness and Completeness

Soundness and completeness are key requirements of any logic. A logical system
has the soundness property if and only if its rules of inference prove only formulas
that are valid with respect to its semantics. Soundness is among the most
fundamental properties of mathematical logic ; it provides the initial reason for
counting a logical system as desirable. The completeness property means that
every validity (truth) is provable. Together they imply that all and only validities
are provable.

Most proofs of soundness are trivial. For example, in an axiomatic proof,
proof of soundness amounts to verifying the validity of the axioms and that the
rules of interence preserve validity. On the contrary, completeness property is
much harder in general. Soundness and completeness theorems link the syntax and
semantics of modal logics, by providing a correspondence between provability
() and validity ().

In order to prove soundness and completeness of some well-known
normal modal logics we shall need the following fundamental concept.

Definition 1.5.1 (Consistency) Let L be a normal modal logic. A set S of formulas
of propositional modal logic is called L-consistent if and only if there are no
formulas o,,...,¢ €S with (¢, A@, Acon@ ) —> L el
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,where | means ‘falsity’. Otherwise, S is called L-inconsistent. A consistent set S

of propositional modal formulas is called ‘maximally consistent’ if and only if for
every formula ¢ either p € S or — ¢ € S.

We assume normal modal logics L to be consistent.
Lemma 1.5.2

Let L be a normal modal logic and S maximally consistent. Then

(1) For every formula ¢ exactly one of the following cases holds : either
peSor—peS.

(i) ¢ € S, ¢ >y eSimplies that ¢ € S (closed under modus ponens).

@) o AwyeSifandonlyif ¢ € S and y €S.

(iv) ovwyeSifandonlyifoe S or yeS.

(v) LcS.

Proof

(i) If both were in S, then S would be inconsistent, because the propositional
tautology p A =@ > L e L.

(if) Assume that ¢ € S, @ —> vy €S, but y ¢ S. By maximal consistency, — ¢ €
S. Now consider the propositional tautology (¢ A(@ > w)A —y)L eL. This
contradicts the consistency of S .

(iii) similar to (iv).

(iv)CN ( =) : Let o vy e Sand assume that o ¢ S and wy ¢ S. Hence by
maximal consistency of S, —¢oe S and —wye S. Also the tautology
((mo A=wy)A(o v y))— L eL . That contradicts the consistency of S.

CS(«<):Let o e S and ¢ v y ¢ S. Then maximal consistency shows that
—(pvy)e S. But the tautology (¢ A(¢p v y))— L eL contradicts the
consistency of S.

(v) Let g e L. Then {—.cp} is L-inconsistent. Thus — ¢ ¢ S. By maximal

consistency, @ € S; henceL < S. ®
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Lemma 1.5.3 ( Lindenbaum’s Lemma )

For every consistent set S there is a maximally consistent superset M, or
equivalently every consistent set can be enlarged to a maximally consistent set.

Proof (see Chellas, p.55, for example)
Another important concept in modal logic is the concept of canonicity.

Definition 1.5.4 Let L be a normal modal logic. The ‘canonical model’ ML is
the triple <w* Rt v+ > where

(i) W* is the set of all maximal consistent sets of formulas;
(i) R* is the binary relation defined on W* by wR* u if for all formulas
¢, €uimplies ¢ @ ew. R*is called the ‘canonical relation’;

(iii)  V* is the valuation defined by V£ (p):{ we Wt

pew } VEis

called the ‘canonical (or natural) valuation’.

The pair F'X' =<W*, R* > is called the ‘canonical frame’ for L.

Lemma 1.5.5 (Truth Lemma)

For a normal propositional modal logic L, let ML =<w* R: V"> be the
canonical model of L. Then for any world S € W* and any formulag, M* |, S
¢ ifand onlyif ¢ €S.

Proof (see Blackburn, Rijke and Venema,p.199)

Corollary 1.5.6
Let a* be the canonical model of L. Then ¢ € Lifand only if mM* F ¢.

Proof

CN (=): By Lemma 1.5.2 (v), we have that L is a subset of every world S € W* .
Thus necessary condition follows from Truth Lemma.
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CS(«) : Let M*F¢,ie. M", SF o, forall SeW?*. Suppose that ¢ ¢L. But

then Lu{ﬁ(p}would be consistent; otherwise there were ¢...p e L with

(@, AeorA@ A—@ ) —> L el which would imply ¢ e L. Since Lu{ﬁ(p} is

consistent, there, thus, is a maximally consistent extension 1 € W* with
ToLu {—mp}, by Lindenbaum’s Lemma. In particular, — ¢ €T , such that

Lemma 1.5.5 implies M",TE — ¢, which would contradict " F ¢ .®

This implies a kind of completeness, but is surprising in that it connects
provability in a system with validity, not in all, but in one model.

Corollary 1.5.7 Let I, be a provability relation for a normal modal logic proof
system and M* the canonical model for the logic L::{(p:FS (p}. Then o if

andonly if M* E¢.
Proof Consider L:= {(p:I—S (p} in corollary 1.5.6. ®

This corollary is a starting point for proving full completeness.

Theorem 1.5.8 (Completeness for K)

For every modal logic formula ¢

-, @ if and only if =, @ if and only if M E ¢ for every model M.

Proof If M E ¢ for every model M, then also for the canonical model, thus
corollary 1.5.7 implies F, @ The converse direction is soundness that every

axiom of K holds in all models and every proof rule of K preserves validity. ®

Theorem 1.5.9 ( Completeness for T )

For every modal logic formula ¢

-, @ if and only if =, ¢ for every modal M.
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Proof  The only new part is the need to show that the T-axiom is true in all
reflexive models, and that the canonical model for T is reflexive. Consider a
maximal T-consistent set S. We have to show that {(p o € S} c S. Consider any
op € S. Now by Lemma 1.5.2, the T-instance oo — ¢ is an element of S, thus
peS®

In a similar way, completeness of many normal modal logics, such as S4 and
S5, can be shown [3].
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Chapter 2
TOPOLOGICAL SEMANTICS

In order to understand the content of the present chapter, we need to know basic
concepts of general topology.

2.1 Basic notions of general topology

Definition 2.1.1 Let X be a set and T a subset of the powerset of X. T is a
topology on X if

), XeT,
(iflf U, e T with 1<i<mn, then (| U eT

(ii1) Any arbitrary union of elements of T is an element of T.

The pair <X, T>is called a topological space.

Definition 2.1.2 Let <X, T> be a topological space, and let Y be a subset of X. Y
is said to be an open set of the space, or an open subset of X if Y is an element of
T.

From now on, we can write <X, T> simply by T.

Definition 2.1.3 Let T = <X, T> be a space and let Y be a subset of X. Y is a
closedsetof T,orYisclosedin Tif Y = X —Y isopeninT.

Clearly a space T is finite if X is finite.
Definition 2.1.4 Let T) =< X, T, > be a space and let X, be a nonempty subset
of X . A subset T, of P(X,) is the relative topology of 7. to X, if
T,=1{Y, e P(X,):30, e T,(Y, =0, " X,)}
In fact, the relative topology of 7, to X, is a topology on X, .

Definition 2.1.5 Let T, =< X,, T, > be aspace, and let X be a nonempty subset
of X . Aspace T, =<X,, T, > isasubspace of T if T, is the relative topology
of T to X,. Asubspace T, =< X,, T, > of T is an open subspace of 7. if X is

openin 7.

Definition 2.1.6 Let T=<X, T > bbe a space, and let Y be a subset of X.
. The interior 1(Y), or Int(Y) of Y is a subset of X such that
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I(Y)= {xe X:30eT(xeO and OcV)}.

The closure C(Y), or CI(Y), of Y is a subset of X such that
C(Y)= {X eX:VOeT(xe=0nNY # @)}

It is known that I(Y) is the largest open set contained in Y, while C(Y) is the
smallest closed set containing Y.

. The frontier Fr(Y), or the boundary of Y is a subset of X such that
Fr(Y) =C(Y) n C(X-Y).
The following results can be easily verified.

Proposition 2.1.7 Let <X, T > be a space, and let Y and Z be subset of X. Then the
following hold.

@ I(Y)e T

2 1Y) Y.

3) Ze T andZ cY)=ZcI(Y).
@) I(Y)=Y=YeT

(5) 1((Y)=1(Y).

6) 1(Y N 2)=1(Y) A 1(2).

(1) YSZ=1(Y)cI(2)

(8) 1(Y)=X-C(X-Y).®

It follows from (5), (6), and (7) that the operator I is idempotent, preserves
the operation intersection and is monotone, respectively.

Proposition 2.1.8 Let <X, T > be a space, and let Y and Z be subsets of X. Then
the following hold.

(1) X-C(Y)e T
(2) Y C(Y)

(3) X-Ze Tand Y Z)=C(Y)cZ.
(4) C(Y)=Y = X-Ye T

(5) C(C(Y))=C(Y).

(6) C(Y U Z)=C(Y)UC(2)

(7) YSZ=C(Y)=C(2)
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(8) C(Y)=X-I(X-Y).

Note that the operator C is idempotent, preserves the operation union and is
montone by (5),(6), and (7), respectively. Also | and C are interdefinable by (8).

0 -
On the other hand the notations Aand A are used for int(A) and CI(A).
Definition 2.1.9 A space <X, T>is connected if T is connected, that is,
YW X(YeT and X-YeT)= (Y =Z or Y =X))

A space <X, T > is disconnected if it is not connected, that is,
Y < X((YeTand X-Y eT)and (Y #Zand Y = X))

Definition 2.1.10 A space <X, T> is extrenally disconnected if T is extrenally
disconnected, that is,

YO eT(C(O)eT)

Definition 2.1.11 Let T=<X, T > be a space.

() TisaT -spaceif V vV eX

X#y=>30eT(xeOand ygO)or 30 T(yeOand x¢O0)

(i) Tisa T -spaceif V ,V e X

X#y=>30eT(xeOand yg0O) and 30 T(yeO and x ¢ O)

(iii) Tisa T, - space, or a Hausdorff space if

V,Vy eX (Xx2y=3ueT,30eT(xeU and yeO and U "0 =)
Note the implications: 7, = T = T,

Proposition 2.1.12 A space <X, T>isa T, - space if and only if

v, e X(X —{X}eT).@

Let us recall some other topologies.

. An Alexandroff space is a topological space for which arbitrary
intersections of open sets are also open sets.

. A discrete space is a space for which T =P(X).
. An indiscrete space is a space for which T consists of only & and X.
. A space <X, T > is atomic if

VY c X(UI(Fr(Y)=9).
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These well-known concepts can be found in any general textbooks on point
set topology. See for example ‘Engelking, R., General Topology, Heldermann
Verlag, 1989°.

2.2 The Basic Modal Language and Topological Semantics

We have presented an overview of Kripke semantics, or relational semantics, in
chapter 1, based on the propositional modal language. This chapter provides a
different semantics of this language, which is called topological semantics based
on frameworks by topological spaces.

Topological Models

In topological semantics, topological spaces play roles similar to Kripke frames in
Kripke semantics. Also, topological models correspond to Kripke models.

Definition 2.2.1 A topological model on a space T=<X, T> is a structure

<X, T, V> with a map V from At to P(X). The map V is called a valuation on T.
As in the case of Kripke semantics, a relation ‘a formula ¢ is true at a point x in a

topological model M=<X, T, V>’, denoted
MWE @
is inductively defined as follows :
()Vpe At VeeX (M,wkEp<zeV(p)
(i)Ve e X (M,z #1)
(i) Vo,V¥ e ForVz € X ( M,2F ¢ >¥ < (M,x F ¢ = M,z F V) ,where F

for is the set of formulas of modal language,

(iv)VpeFor vxe X (M,xFop<30eT(xeO and VyeO(M,yE)))
When a context makes it clear, we often abbreviate topological models to models.

Proposition 2.2.2 Let M=<X, T, V> be a model. Then the following hold.
(1) Vo,VY € For Vxe X(M,xEpAY < (M, xE¢ and M, x EW¥))
(2) Vo,VY € For Vxe X(M,xEov¥ < (M, xE@or M, xEY))
(3) YVoe For Vxe X(M,xE—p < M, X Z )
4) vxe X(M,xET)
(5) Voe For vxe X(M,xEF0p=VOeT(xeO=3ycO(M,yF)))
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Proof  The only interesting part is (5) ; the remaining ones are obvious. So let ¢
be a formula and let x be an element of X. Then

M, x F O
< M,z Fo—o (by (3))

&SV0eT(xeO=3yeO (M,y E—p)) (by negation of Foo)
&SV0eT(xeO=3yeO (M,yF o)) (by (3)).®
2.3 Truth and Validity

Truth and validity of formulas in models are ‘almost’ the same as those in Kripke
semantics.

Definition 2.3.1 (Truth in models)

Let M=<X, T, V> be a model and let ¢ be a formula ¢ is true in M, denoted
MEo,if Ve X(M,xF @), ¢ isfalse in M if it is not true in M.

Definition 2.3.2 (Validity in Spaces)

Let ¢ be a formula, let T=<X, T > be a space, and let 7~ be a class of frames. ¢
isvalid in T, or T validates ¢, denoted T ¢, if

vV e Map(At,P(X)) ((X,T,V)Eo)
¢ is false in T, or T falsities ¢ if ¢ is not valid in T. ¢ is valid in 7,
denoted 7 F o,if VT e7(TF o)

In the following proposition formulas are interpreted in topological spaces.
All parts of this proposition, except fort he last two, are the same as those in
Kripke models. The modal operators o and ¢ get interpreted as the interior
operator I and the closure operator C, respectively.

Proposition 2.3.3 Let M=<X, T, V> be a model. By definition of V,
Vp e At (V(p)={xeX:M,x|:p},

and extended to formulas,

Vo eFor (V(¢) ={x € X : M,z F ¢{ Then the following hold, for all
o,y € For:

1) Vierw)=V(e)nV(y)
(2) Vievwy)=V(p)uV(y)
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B) V(—9)=X-V(p)
4) Vie—>vy)=X-V(p)wV(y)
(6) MEe->B=V(e)sV(y)

® V(T)=X
(M Vin=92
®) V(oe)=1(V(g)

9) V(09)=C(V(9))

Proof We only prove parts (8) and (9) since the others have the same arguments
for Kripke semantics.

(8) : As sets, we show that V(o) and | (V(g)) are equal. So

xe V(o)

< M,z Foo (by definition of V(u))
<30T (xeOand VyeO(M,yFE o)) (Definition 2.2.1(iv))
< 3J0eT(xeOand VyeO(yeV () (Definition of V(u))

<3J0eT(xeOand Vye X(yeO=yeV(p)))

<30T (xeOand OcV(p))

<z el V() (Definition of 1)
(Thus, z € V(o) < z €l (V(¢)) implies that V(oe) =1(V(e))

(9) By similar argument as in (8), we have

z € V(0op)

& M, x E O (Definition of V(U))

& M, x E—o—- (By ¢ =—0—)

< M, x Fo—@ (Prop. 2.2.2 (3))
&SV0eT(xeO=3yeO(M,y E—)) (Negation of Def.2.2.1(iv))
&SV0eT(xeO=3yeO(M,yFEo)) (Prop.2.2.2(3))
<V0eT(xeO=3IyeO(yeV () (Def. of V(U))

<&V0eT(xeO=3dye X(yeOand y eV (p)))
<V0eT(xeO=3ye X(yeO nV(p)))
<SV0eT(xeO=0nV(p) #D)

< xeCV(g).
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Thus z € V(0¢) < = €C(V(op)), hence we have the required equality. ®
Soundness and completeness are defined exactly the same way as in these in

Kripke semantics. We will also need ‘definability’ concept, which is of great
importance for the topological semantics.

Definition 2.3.4 Let 7 be a class of spaces. A set of formulas > defines 77, if
foranyspace T, T e 7 < Vo e D (T F ¢)

Definition 2.3.5 Let L be a logic, and let 7 be a class of spaces. L is sound with
respectto 7 if
VoeFor(H, ¢ =7 F o)

L is complete with respect to 7 if
Vo eFor(7 F ¢ =k o)

2.4 Relationships between Kripke Frames and Topological Spaces

In this section, we deal with issues between Kripke semantics and topological
semantics. To start, we give

Definition 2.4.1 Let F=<X, R> be a reflexive and transitive frame. A subset Y of
X is said to be upward closed if

Va,Vye X((x e Yand 2Ry) =y €Y)

Proposition 2.4.2 Let U be the set of all upward closed sets of a reflexive and
transitive frame F=<X, R>. Then U is a topology on X, i.e., T=<X, U> is a
topological space. Moreover, T is an Alexandroff space.

Proof That X and & are upward closed sets is obvious. Now let {Y} be a

v)iel

family of upward closed sets. Then for any elements x,y € X, we have

T € UYL and xRy

iel

< FJjellze YJ) and xRy (by def. of U)
S Jjellye Yj) (Y, is upward closed)

@yeU Y (def. of U)

i€l

,S0 U Y. is also upward closed.

i€l
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Now ze()Y, and xRy

i€l

& Vjiel(zreYj) and xRy (def.of 1)

S Vjiel(yeYy) (Yj 1s upward closed)
<y,
1€l

thus ﬂYi is also an upward closed set. Hence, as the intersection is
el

arbitrary, T=<X, U> is an Alexandroff space. ®

Clearly, for each reflexive and transitive frame F, the set U uniquely
determines an Alexandroff space. We call such a space ‘the corresponding space’
to F. The next result is an important fact.

Proposition 2.4.3 Let T=<X, U> be the corresponding space to the reflexive and
transitive frame F=<X, R>. Then for every valuation V,z € X and ¢ € For,

KXK,R V> 2 FEopo<X U V> zEo.

Proof We prove by induction on the complexity of formula ¢. The Boolean
cases are easy to verify. We only prove for the modal connective o. Let

M, =<X, R, V> be a model on F, and let M,=<X, U, V> be a model on T. For a
formula ¥, assume that
vxe X(M ,xEY < M,,xEY)

We have to establish that
Vz e X(M,z Fa¥ < M,,r Fo¥)

Now M, x Fo¥
S VyeX (e2Ry = M,y FY) ( By def. of )
o VyeX (zRy = M,y F'Y) ( By hypothesis)
<30eU (xeO and YyeO(M,,y FY¥))
< M,z Fo¥.®

This proposition shows that the corresponding space to any reflexive and
transitive frame preserves the validity of any formula. This result will be used to
prove completeness of some logics. Another fact used to establish completeness is
the following proposition which gives an explanation how the interior operator |
and the closure operator C in the corresponding space to a given reflexive and
transitive frame are represented in the frame.
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Proposition 2.4.4 Let T=<X, U> be the corresponding space to a reflexive and
transitive frame F=<X, R>. Then for any subset Y of X,

I(Y):{x € X‘Vy e X(zRy=> ye Y)},

C(Y):{x € X‘Hy € X (zRy and y € Y)}

Proof Let x be an element of X. Then
z €l(Y)
<30eU(xeO and OcY)
<3d0eU (VWyeX(XRy=ye0O)andO cY)
S VyeX(XRy=yeY)
and
x €C(Y)
< 1 eX-1(X-Y)
<z e 1(X-Y)
< Jz € X(zRy and y  X-Y)

< 3IJzeX(zRyandyeY) .®

2.5 Definability of Topological Spaces

In this section, we will prove that some topological spaces are definable. For those
not definable in the basic modal language, see [4].

Lemma 2.5.1 A topological space T=<X, T > is discrete if and only if ¢ —>op is
validin T.

Proof Condition is necessary : Assume that T is discrete and let M=<X, T, V> be
a model on T. We have to prove that

M E ¢ —oo
Since T is discrete, V(o) is open,i.e.,
V(e)=1(V(9)).
Now V(¢@)=1(V(¢))
< V(p)c1(V(e))

< V(o) V(o)
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Condition is sufficient : Assume that ¢ —oeo is valid in T. Prove that T is

discrete. To see this, let Y be any subset of X. Then it suffies to show that Y is
open, i.e.

Y=I(Y)

Now, since ¢ —oo is valid in T, we have in particular M £ p —op for
p € At and such that V(p)=Y, with our model M=<X, T, V>. Then

ME p—op
< V(p) = V(op)
< V(p) <1 (V(p)
<Y (YY)
S Y=I(Y). ®
Theorem 2.5.2 The schema ¢ —oe defines the class of all discrete spaces. ®

Atomic topology is not so popular in general topology, however the

schema that defines the class of atomic topologies is well known. The formula (or
schema) o0¢e — Oog is valid in atomic spaces and atomic spaces validate the

formula. More precisely, we have

Lemma 2.5.3 A topological space is atomic if and only if it validates the schema
o0 — 0o

Proof Condition is sufficient. Let T=<X, T > be a topological space and assume
that oOp — Ooe is valid in T. We prove that T is atomic. To see this, let Y be a

subset of X. Since the formula is valid, then there exist p € At and a valuation V
such that

V(p)=Y, <X, T, V>Fobe — Oop
Put M=<X,T, V> Now
M Eg0e — 0o
< V(e0p) = V(0op)
& 1(V(0p)) =C(V(op))
S1CV () <CU(V(p)
< 1(C(Y)) =C(I(Y)) ('since V(p)=Y)
< 1(CY)) N (X-CU(Y)=2
< 1(CY)) A (X-(X-1(X-1(Y)))) =&
& 1(CY) N IX-1(Y)) =2
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< 1(C(Y)) N I(X-(X-C(X-Y))) =&
< 1(CY) N I(C(X-Y)) =&
< H(C(Y) N (C(X-Y)) =L
< I(Fr(Y)) =9,
proving that T is atomic.

Condition is necessary : Assume that T=<X, T > is atomic and show that
o0e — Ooe is valid on a model M=<X, T, V>. Since T is atomic, we have

I(Fr(V(¢)))=9. Now by the latter part of the proof of sufficiency, we obtain the
following equivalences :

I(Fr(V(e)))=<

< 1(C(V(9)) =CU(V(9))
< (009) < V(0oe)

& MEoOe — 0op . ®

Theorem 2.5.4 The schema o0 — Ooe defines the class of all atomic spaces.
®

For more definable spaces, see [14].

2.6 Soundness and Completeness

In this last section, we will illustrate soundness and completeness of only S4 and
S4.1, recalling that

S4=T®4, where T:op — ¢ and 4:op —ooe and S4.1=S4® M, where
M=od¢p — 0oo.

2.6.1  Soundness and Completeness of S4
This subsection provides one of the most important results in topological
semantics. McKinsey and Tarski’s work [8] implicitely mention it.

Theorem 2.6.1.1 S4 is sound with respect to the class of all topological spaces.

Proof It is easy to verify that all classical tautologies and the schemata K, T,4 are
valid in any topological space. On the other hand, it is well-known that the rules
modus ponens and Necessitation preserve the validity of any formula. ®

Theorem 2.6.1.2 S4 is complete with respect to the class of all topological spaces.
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Proof Let ¢ be a formula which is a nontheorem of S4. We prove that there exists
a space which falsifies ¢ . By the completeness of S4 in Kripke semantics, there

exists a reflexive and transitive frame F=<X, R> such that
AV :For > P(X), 3z e X, (<X,R,V>,2 E @)

Take the corresponding space T=<X, U>. Then
AV :For > P(X),3z € X ,(<X,U,V>,z ¥ ¢)

Thus T falsifies ¢.®

S4 ha the finite frame property in Kripke semantics. Therefore, it has the
finite space property in topological semantics.

Theorem 2.6.1.3 S4 is sound and complete with respect to the class of all finite
topological spaces. ®

2.6.2 Soundness and Completeness of S4.1

S4.1 is an extension of S4, and it is, as we prove below, sound and complete with
respect to the class of all atomic spaces. Its soundness is obvious.

Theorem 2.6.2.1 S4.1 is sound with respect to the class of all atomic spaces. ®

As usual, completeness is not easy to prove. To show the completeness of
S4.1, we need a lemma.

Lemma 2.6.2.2 The corresponding space to a reflexive, transitive and atomic
frame is atomic.

Proof Let T=<X, U> be the corresponding space to a reflexive, transitive and
atomic frame F=<X, R>, and let Y be a subset of X. We shall prove that

I(Fr(Y)=0
Tosee it, for x € X , it sufficies to show that
z ¢ I(Fr(Y))
In the content of frames, R is said to be atomic if
Jye X (xRy and Vz € X(yRz = y = 2))

is satisfied. Using this definition and the relations between the operators | and C,
easy computations lead to the desired conclusion z ¢I(Fr(Y)) or any z € X,
hence F is atomic. ®

Theorem 2.6.2.3 S4 is complete with respect to the class of all atomic spaces.
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Proof Let a formula ¢ be a nontheorem of S4.1. We shall prove that there exists
an atomic space falsifying ¢ . Again, by the completeness of S4.1 in Kripke

semantics, there exists a reflexive, transitive and atomic frame F=<X, R> such
that

AV :For —» P(X),3x € X(<X,R, V>, z ¢ ¢).

Take the corresponding space T=<X, U>. Then T is atomic and
AV :For —» P(X),3x € X (<X, U,V>2 ¢ ).

Thus, T falsifies ¢ .®

For more completeness, see [14].
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Chapter 3
NEIGHBORHOOD SEMANTICS FOR MODAL LOGIC

Neighborhood semantics is a generalization of the Kripke or relational semantics.
K. Segerberg published an essay [13] presenting some basic results about
neighborhood models and the classical systems that correspond to them. Later on
B. Chellas incorporated these and other outstanding results in his textbook [2].In
fact, the idea for neighborhood semantics for modal logic is already implicit in the
seminal work of McKinsey and Tarski [8].

The goal in this chapter is to understand the techniques, results and
applications of neighborhood semantics for modal logic and to understand the
exact relationship with the Kripke semantics.

3.1 Basic Concepts
3.1.1 Preliminaries

Let W be a nonempty set and P(W) the collection of all subsets of W. We are
interested in pairs <W, F> where F'e P(P(W)) or F < P(W). The sets F

satisfy certain algebraic properties that we list below.

1. F is closed under intersections if for any collection of sets
(x| _suchthatforeach i eI, X, e F', then (| X, e F. If
te ’ i€l
‘I‘ = 2, then we say F is closed under binary intersections. If |is

finite, then we say F is closed under finite intersections.
Similarly, the closure under unions can be defined.

2. F is closed under complements if foreach X c W, if X e F',
then X € F'.

3. F is supplemented, or closed under supersets or an up-set
provided foreach X c W ,if X e Fand X c Y < W, then
YefF.

4. F contains the unit provided W e F' ; and F contains the

empty setif & e F.

5. Call the set ﬂXEFX the core of F. F contains its core if
Xel.

XeF

6. Fis proper if X € F implies X‘ ¢ F.
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7. Fisconsistentif ¢ FF and FF = 5.

The following result provides an alternative characterization of up-
set collections, whose proof is tricial.

Lemma 3.1.2 F is supplemented if and only if, if XY e F, then X e F
andY e F. ®

Remark If F contains the unit, then F contains a maximal element (under the
subset relation). If F contains its core, then F contains a minimal element (under
the subset relation)

Definition 3.1.3 Let W be a nonempty set and F' < P(W). Then

Q) F is a filter if F contains the unit, closed under binary intersections
and supplemented. F is a proper filter if in addition F does not
contain the empty set.

(i) Fisan ultrafilter if F is proper filter and for each X < W, either
XeFor X efF.

(i)  Fisaugmented if F contains its core and is supplemented.

Lemma 3.1.4 If F is augmented, then F is closed under arbitrary intersections. In
fact, if F is augmented, then F is a filter. ®

The converse of this result is false, but it is not very interesting since it is
easy to construct collections of sets closed under intersections that are not
supplemented. What is more interesting is that there are filters that are not
augmented.

Example 3.1.5

Consider W=(-1,1) the real open interval and

(—l,l) c X for somenatural number n > 1}.
n'n

F = {X c (-L1)

As D¢ Fand F = O, F is consistent. By construction F is closed
under supersets. Obviously, F is also closed under finite intersections;
indeed, let X ,X e F. Then there are »>1 and m>1 such that

(—l,l)gX1 and (—l,i)gXQ. Now either n<m or n>m. If

n n m m
n =m , We are done, since in this case
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)X, nX, andso X N X eF.

b

Suppose n. > m.Then (—l : l) c (-

1 ). Hence,
nn m

1
’m
11

(——,—)c X, nX,and so X "X eF. The case m>n is
n n

similar. Thus F is a consistent filter. Now, (\FF =& andas & ¢ F, F is
not augmented. ®

However, as is well-known, the situation is much beter when W is
finite.

Fact 3.1.6 If F is closed under binary intersections, then F is closed under
finite intersections. ®

Corollary 3.1.7 If W is finite and and F is a filter over W, then F is
augmented.

Proof Since W is finite and F' < P(W), F is finite. F is closed under

binary intersections, since it is a filter. By Fact 3.1.6, F is closed under
finite intersections. In particular, F being itself a finite collection of sets
fromF, \F e F.®

3.2 Neighborhood Frames and Models

We are after a mathematical structure that can tell us, for each state, the set
of necessary propositions. At each state we list all the sets that are
considered necessary. To that end, a function N:W— P(P(W)) is called a
neighborhood function. We would like to point out that we have used a
lot from “ Eric Pacuit, staff. science. uva. nl/~ epacuit).

Definition 3.2.1 A pair <W, N> is called a neighborhood frame, or a
neighborhood system if W a nonempty set and N is a neighborhood
function.

We say that <W, N> is a filter provided for each w € W, N(w) is a
filter. Our aim here is to explain the similarities and differences between
neighborhood frames and Kripke frames as a semantics fort he basic modal
language. With this goal in mind, we shall clarify which neighborhood
frames correspond to relational frames in a sense defined below. Given a
relation R on a set W, define the following functions:

R”:W—>P(W): foreach we W, let R~ (\/\/)={1}‘va}

R :P(W)—>P(W): foreach X c W, let
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R (X) ={w‘§|v € X such that va}

Definition 3.2.2 Let R be a relation on aset Wand astate w e W.Aset X c W
is R-necessary at w if R”(w)< X. Let N be the set of sets that are R-

necessary at w (we simply write N, if R is clear from context). That is,

N = {X‘R*(w) c X}. For the proofs of the following results see Eric Pacuit.

Lemma 3.2.3 Let R be a relation on W. Then for each weW, N, is
augmented. ®
Lemma 3.2.4 Let Wbe asetand R < WxW . Then

Q) If R is reflexive, then for each w e W, w €N,

(i) If R is transitive, then for each w e W, if X € N then
{o|xen,|en,. ®

Definition 3.2.5 Let <W, N> be a neighborhood frame and <W, R> be a relational
frame. We say that <W, N> and <W, R> are equivalent if X c W, X € N(w)

(iff) X e N,/
Theorem 3.2.6 Let <W, R> be a relational frame. Then there is an equivalent
augmented neighborhood frame. ®

Theorem 3.2.7 Let <W, N> be an augmented neighborhood frame. Then there is
an equivalent relational frame. ®

3.3 Truth in Neighborhood Models

Recall that At denotes a set of atomic sentences or propositions.

Definition 3.3.1 Let F=<W, N> be a neighborhood frame. A model_based on F is
atriple <W, N, V>, where V : At — 2" is a valuation function.

Definition 3.3.2 Let M=<W, N, V> be a model and w € W. Truth of a modal
formula ¢ is defined inductively as follows :

=

M, wEp (iff) weV(p), peAt
M, wkE =@ (ifff M, wFEo
M, wEoeAY (Iff)M, wEe andM, wE Y

w n

4. M, wkEo¢ (iff) (o)™ € N(w)



40
5. M, wEO @ (iff) W —(o)™ ¢N(w),

where (@)™ denotes the truth set of ¢, that is,
((p)MZ{w‘M,w = (p}.

Note that 1., 2., 3. are the same as in relational semantic; only items 4. and 5.
differ from those given for relational semantics.

The following properties of the truth set will be used. Let
N : W— P(P(W)) be a neighborhood function.
Define m, : P(W) —P(W) as follows : for X c W',
m,(X) = {w‘X € N(w)}.

Let M=<W, N, V> be a neighborhood model. Then we have the following
result.

Proposition 3.3.3
1. (p)"=V(p) for p eAt
2. (—)" =W- ()"
3 (eAW)"= (9" N (¥)"
4. (@e)'=m,((¢)")
5. (0)"=W —m, (W - ()").

The proof of this result is a straightforward application of the definition of
truth.

We say that ¢ is valid in M, denoted by M E ¢, if for each w e W, M,
w F ¢. In order to understand truth of a formula in a neighborhood model, we
will give a detailed example.

Example 3.3.4 Let M=<W, N, V>, where
o W= {w,s,v}

Moo= {fo). o)
= {fm). ). o)
o= {f o). fu} 2



41
o« V@)={ws)
V() = {s, U}

We can picture this model as follows :

o} b} o) fos} fo} o) o

N1t/ NT A \NT ./

w S

To get some feeling for this semantics, we calculate the following truth

sets.
i) (M =V(p) = {w, s}e N(s) , so we have M,sFooe
(ii) (—p)¥ = {v} , S0 we have M,sE O¢
(i) (Op)™ = {s, } ),S0 we have M,vEoOe
(iv) (@p)™ {s} , SO we have M,vFooe
(v) (cop)" = {w} e N(s) n N(v), so we have
M,sFoooe and  M,vFEoooe
(vi) (coop)” = {w, v} e N(w) n N(s), sowe have
M,wFoooop and M,sFoooop
(vii) Since (1) = @ € N(v), we have M,vFol .
Remarks 3.3.5

1. We have M,w Fo(p A q), but ¥ op.

2. If we fix the valuations of p and g, it is not possible to define a
relational structure such that o(p A ¢) is true at w but op is false at w.

Let us see why. The condition that ap is false at w forces w to have an

accessible world in which p is false. There is only one such world,
namely v, where p is false. However, if v is accessible from w, then
d(p A q) will be no longer be true at w, since if p is false at v, then so

IS pAag.
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We already mentioned that neighborhood semantics is the generalization of
Kripke semantics; in other words, formulas that are valid in Kripke models may
not be so in neighborhood models.

Theorem 3.3.6 The following basic modal formulas are not valid in neighborhood
models.

op A0 —>o(e A W) and o(e A W) — (e AaY))
o(ep —> ¥) — (o »o¥)

ol

oe — ¢

oe —ooe

o0 — 0o

o UhArwWN R

Proof We only consider the first two formulas; the remaining ones can be
demonstrated in a similar way

1. Consider the model M=<W ,N, V>, where

W= {w,0}, N(w)= {{w}{v}} Nv)= {2}, V(p)= {w} and V(g)= {v}.
Thus, M,\wkaop A og, but since (p Aq)" = ¢NWw), Mw #o(p Aq).

2. Consider the model M=<W, N, V>, where W:{w, v, s},

N(w)= {{w}{w v, s}}, V(p)= {w} and V(q)= {w,v}. Then (p)" = {uw},

M

(@ ={w,0} and (p > @) = (—p v )" = (=p)" L (P =
[W — (p)M:| U (@M = {v,s} U {w, ’U} = {w, s, v} . Thus, we have
MwEo(p — q) Aap, but M\w Fog . ®

Note that depending on the intended interpretation of the modal operators o
and ¢, one might even want to work with a semantics where o <> —0— is not

valid. But in general semantics we have the following fact.

Fact 3.3.7 op — —0— is valid in all neighborhood models.

Proof Let M=<W, N, V> be an arbitrary neighborhood model. Then we have the
following calculation.

Mw Fog (iff) (¢)¥ € N(w)

(iff) W —(W —()") € N(w)
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(iff) W—((—9)") € N(w)
(iff) M,w ¥ 0—o
(iff) M,w F —0—. ®
3.4 Defining Properties of Neighborhood Frames

We know that some modal formulas define interesting properties of a relation. In
relational semantics, for example, we have shown that F=<W, R> validates
op —o (iff) R is reflexive. Similarly, modal formulas can be understood as

expressing properties of neighborhood frames.

Definition 3.4.1 A modal formula ¢ defines a property P of neighborhood
functions if any neighborhood frame F has property P (iff) F validates ¢ .
Remark 3.4.2

Consider the formulas 0T and e — O@. On relational frames, these formulas

both define the same property : that the relation is serial (i.e. every world sees a

world). However, on the class of neighborhood frames, they express different
properties. OT expresses the fact that the empty set is not an element of the

neighborhoods. The second one expresses a more interesting property about
neighborhood frames.

Proposition 3.4.3 Let F=<W, N> be a neighborhood frame. Then F' Fop — 0¢.
F is proper (i.e., if X € N(w), then X° ¢ N(w)).
Proof Sufficient condition is straightforward.

Necessary Condition : Assume, to the contrary, that F is not proper. Then
there is a world w e W and set X < W such that X € N(w) and X° € N(w).
Define a model M=<W, N, V> with V(p)=X. Then, by definition, M,wkFop and

since (—p)" = X° € N(w), we have M,w = —0p hence M\w Fop — Op.
The following results and their proofs can be found in Pacuit.
Proposition 3.4.4 Let F=<W, N> be a neighborhood frame. Then
F Fop A oW —o(e A W) (iff) F is closed under finite intersections. ®

Proposition 3.4.5 Let F=<W,N> be a neighborhood frame. Then
F Fo(e A'Y) — (op AOW) (iff) Fis closed under supersets. ®

Proposition 3.4.6 Let F=<W, N> be a neighborhood frame. Then F FoT (iff) F
contains the unit. ®
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Theorem 3.4.7 Let F=<W, N> be a neighborhood frame such that for each
weW,NWw) . Then

(i) F Foo — ¢ (iff) foreach w e W,w € (N(w).
(i) FFop »ooe  (iff) for each we WV, if X eN(w), then
{v\x < N(v)} e N(w).®
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Concluding Remark

Soundness and Completeness results on neighborhood semantics are very
complex with respect to the two other semantics. Thus, we will not study
them in this thesis.

Modal logic has a rich model theory with respect to relational
semantics [5]. Concerning monotonic neighborhood models, the situation
is well-understood ([6] and see also [11]).

Further more advanced work would be to construct various models
by eg. bounded morphisms, disjoint unions, bisimulations, generated
submodels and the like, generalizing some classic results in modal logic

(see [7]).

Finally, we would like to emphasize that much of the interest in
neighborhood semantics is generated by the fact that ‘A neighborhood
frame is a natural example of a Coalgebra’(see [15]).
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