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ABSTRACT

Master Thesis

NONSMOOTH ANALYSIS IN SWITCHING CONTROL PROBLEM

Merve SENGUL

Yasar University

Institute of Natural and Applied Sciences

In this thesis we study some properties of exhausters, quasidifferential and
Frechet superdifferential and their applications to the switching control problem
and discrete control problem.

We also consider the necessary optimality condition via exhauster,
quasidifferential and Frechet superdifferential for the continuous switching control
problem and necessary optimality condition for discrete optimal control problem
with nonsmooth data (basic subdifferential).

In this way, we use the knowledge of the nonsmooth analysis. By using the
increment formula we obtain necessary optimality conditions for the switching
control problem. The minimizing functional satisfying nonsmoothness properties.
The obtained optimality condition is an analog of the Pontryagin maximum
principle for the switching control problem.

Keywords: Exhauster, Quasidifferential, Frechet Superdifferential, Pontryagin
Maximum Principle
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INTRODUCTION

The thesis consists of three sections.

In the first section we consider necessary optimality condition for the
switching optimal control problem. The problem in this section is same as the
problem that we consider in the last section but in this case minimizing functional
satisfying Frechet superdifferential condition.

Switching versions of the maximum principle have been presented in [13, 35,
40] and [48]. A dynamic programming approach for hybrid systems and special issue
on hybrid system are discussed in [1, 2]. In [10, 23], a computational method for
solving an optimal control problem, governed by a switched dynamical system with
time delay and control parameterizations for optimal control of switching system, are
developed. The approach is to parameterize the switching instants as a new
parameter vector to be optimized. Then, the gradient of the cost function is obtained
via solving a number of delay differential equations forward in time. On this basis,
the optimal control problem can be solved as a mathematical programming problem.
In [24] and [25], discrete switched control problems have been studied. All these
articles consider smooth hybrid optimal control problem. The nonsmooth version of
the hybrid optimal control problem has not been studied extensively. To our best
knowledge, there is only one article which considers the nonsmooth version of the
hybrid maximum principle, namely the paper [48]. In this paper, the author obtains
the nonsmooth version of the hybrid maximum principle by using “Boltyanskii
approximation cone” (By using this method, smooth version of the hybrid maximum
principle was obtained by Boltyanskii in [5]). In [48], the author assumes the
switching cost and endpoint functionals are nonsmooth. He applies generalized
gradients and proves the hybrid maximum principle. Then the author extends this
principle for the semidifferentiable switching and endpoint functionals. He also notes
that this can be proved by using the Warga’s generalized derivative. However, this
paper does not consider the hybrid maximum principle using Frechet upper
subdifferential. (for the definition of Frechet upper and lower subdifferentials see, for
example, [33]).

The second section of the thesis is dedicated to the nonsmooth optimal

control problems governed by discrete-time systems with the delays in state



variables. Problems of this type arise in variational analysis of delay-differential
systems via discrete approximations (cf. [30, 31] and their predecessors for non-
delayed systems in [39] and [28, 29]). They are important for many applications,
especially to economic modelling, to qualitative and numerical aspects of
optimization and control of various hereditary processes, to numerical solutions of
control systems with distributed parameters, etc. (see, e.g., [4, 11, 30, 37, 49] and the
references there in). Note that delayed discrete systems may be reduced to non-
delayed ones of a bigger dimension by a multi-step procedure and that they both can
be reduced to finite-dimensional mathematical programming. Nevertheless, optimal
control problems of type (P) deserve a special attention in order to obtain results that
take into account their particular dynamic structure and the influence of delays on the
process of dynamic optimization.

It is well known that, while for continuous-time systems optimal controls
satisfy the Pontrjagin maximum principle without restrictive assumptions [36], its
discrete analog (the discrete maximum principle) does not generally hold unless a
certain convexity is imposed a priori on the control system (see, e.g., [4, 19, 21, 37]
and their references). A clear explanation of this phenomenon is given in Section 5.9
of Pshenichnyi’s book [38] (the first edition), where it is shown why discrete systems
require a convexity assumption for the validity of the maximum principle, while
continuous-time systems enjoy it automatically due to the so-called ‘“hidden
convexity”. The relationships between convexity and the maximum principle are
transparent from the viewpoint of nonsmooth analysis due to the special nature of the
normal cone to convex sets (cf. [39] and [28]).

The goal of this section is to derive the necessary optimality conditions in the
form of the discrete maximum principle for problem (P) and some of its
generalizations. Our standing assumption is that f = f(¢,x, y,u)is continuous with
respect to all variables but t and continuous differentiable with respect to the state
variables (x,y) for all # € T'and u € U near the optimal solution under consideration.
We do not assume any smoothness of the cost function ¢ and derive new versions of
the discrete maximum principle with transversality conditions taking into account the
nonsmoothness of @ . A striking result obtained in this thesis, new for both delayed
and non-delayed systems, is the superdifferential form of the discrete maximum

principle, where the transversality condition is expressed in terms of the so-called



Frechet superdifferential. This is a rather surprising result, since it applies to
minimization problems for which subdifferential forms of necessary optimality
conditions are more conventional. We also obtain the discrete maximum principle for
nonsmooth problems with transversality conditions of subdifferential type, which
extend known results to the case of delayed systems. We will discuss the
relationships between the superdifferential and subdifferential forms of the discrete
maximum principle: they are generally independent, while the superdifferential one
may be considerably stronger in some situations when it applies.

In last, third, section we consider optimal control for switching system in the
case of minimizing functional satisfying quasidifferential and exhauster conditions in
the Demyanov and Rubinov sense.

A switched system is a particular kind of hybrid system that consists of
several subsystems and a switching law specifying the active subsystem at each time
instant. Examples of switched systems can be found in chemical processes,
automotive systems, and electrical circuit systems, etc. Recently, optimal control
problems of hybrid and switched systems have been attracting researchers from
various fields in science and engineering, due to problems significance in the theory
and application. The available results in the literature on such problems can be
classified into two categories, i.e., theoretical and practical. [35, 6, 48, 10, 24, 25, 26,
7, 5] contain primarily theoretical results. These results extended the classical
maximum principle or the dynamic programming approach to such problems.
Among them, earliest results which proves a maximum principle for hybrid system
with autonomous switchings by Seidman in [46]. More complicated versions of the
maximum principle under various additional assumptions are proved by Sussmann in
[48] and by Piccoli in [35]. All these article dedicate to the smooth switching optimal
control problem (only Sussmann’s article [48], it is studied switching system which
minimizing functional and constraints are satisfying the generalized differentation).
In the last section of the presented thesis the author’s aim to establish necessary
optimality condition by using exhausters and quasidifferentiable in the sense of
Demyanov and Rubinov [14, 15]. We consider minimizing functional is positively
homogeneous (p.h). Positively homogeneous (p.h) functions play on outstanding role
in Nonsmooth Analysis and Nondifferentiable Optimization since (first-order)
optimality conditions are normally expressed in terms of directional derivatives of

their generalizations (the Dini and Hadamard upper and lower direcitonal derivatives,



the Clarke derivative, the Michael-Penot derivative etc.). All these derivatives are
positively homogeneous functions of direction. In the convex case the directional
derivative is convex (and p.h), by the Minkovwski duality, optimality conditions can
be stated in geometric terms. Attempts to reduce the problem of minimizing an
arbitrary function to a sequence of convex problems were undertaken, among others
by Pschenichnyi [39], who introduced the notations of upper convex and lower
concave approximations and by Clarke [12], who introduced generalized derivatives.
Demyanov and Rubinov [14] proposed to consider exhaustive families of upper
convex and lower concave approximations. The last section addresses to learn role

exhausters and quasidifferentiability in the switching control problem.



1. NECESSARY OPTIMALITY CONDITIONS FOR SWITCHING
CONTROL PROBLEMS

1.1 Preliminaries

We recall some definitions from nonsmooth analysis which will be applied to find
the superdifferential from the necessary optimality condition for the step discrete

system.

Given a nonempty set Q — R", consider the associated distance fuction
dist(x; Q) = ing2 ||x - a)||
and define Euclidean projector of x onto QQ by

II(x; Q)= {a) € Q‘ ||x - a)” =dist (x; Q)}.

The set T1(x;Q) is nonempty for every x € R" if the set Q is closed and bounded.

The normal cone in finite dimensional spaces is defined by using the Euclidean

projector:

N(x;Q) = limsup|cone(x — T1(x;Q))],

X—>X

while the basic subdifferential 8(/)(;) is defined geometrically via the normal cone to

the epigraph of ¢ is a real valued finite function,

8(p()_c) = {x " eR"| (x",-De N((;, (p(;c)); epi(p} and

epip = {(x; w)eR""! | 7= (p(x)} is the epigraph of ¢. This nonconvex cone to
closed sets and corresponding subdifferential of lower semicontinuous extended real-
valued functions were introduced in [33, 32]. Note that this cone is nonconvex (see

[25, 33, 32]) and for the locally lipschitz functions convex hull of a subdifferential is

a Clarke generalized subdifferential;



0, (x°) = codp(x") (here @, (x°) is Clarke generalized subdifferential [12, 42]).If ¢,
is lower semicontinuous in some neighborhood of x, then its basic subdifferential

can be expressed as: dp(x"):=limsupd¢p(x) .

X—>X

Here,

A w)—o(x")—(x",u—x°
0p(x°) = x*eR“:liminf(p() plx) < >>0}

u—)xo ‘u _xo‘

is the Frechet subdifferential. By using plus-minus symmetric constructions, we can

write

0 p(x"):=-3(-p)(x"), 0" p(x"):=-O(-p)(x°)

which are called basic superdifferential and Frechet superdifferential, respectively.

Here

<0

A . w)—p(x°)—{(x",u—x°
8(p+(x°):={x eR“:limsup(D )~ < >

0
u—x ‘u—x ‘

For a locally Lipschitz function subdifferential and superdifferential may be

different. For example, if we take (p(x):|x| on R, then 8(p(0):[— 1, 1], but
0 p(0) = {— 1,1}. If ¢ is locally Lipschitz continuous at a point x” then the strict

differentiability of the function ¢ at x° (see [26]) is equivalent to

0p(x") = 0" p(x") = Vo(x")}. If 3p(x")=03¢(x") then this function is lower

regular at x°. Symmetrically, we can define upper regularity of the function using
the superdifferential and Frechet superdifferential. Also, if we extended real-valued
function is locally Lipschitz and upper regular at a given point, then its Frechet
superdifferential is not empty at this point. Furthermore, it is equal to Clarke
generalized subdifferential at this point. In this thesis we will use the following

theorem.



Theorem 1.1.1. ([33]) Let ¢: X — R bea proper function . Assume that ¢ is finite

at a point x. Then for every x eﬁ(p(;) there is a function s:X — R with
s(;) = (p(;) and whenever x e X such that s(.) is Frechet differentiable at

x with Vs(;) =x".
1.2 Problem formulation

We consider the following optimization problem

X (1) = fro e @Oug (0,0, telte nte) K=1,2,...,N (1.1)
x,(2y) = X, (1.2)
Fo(xy(ty)ty)=0, K=1,2,..,N (1.3)
Xen () =M (xg (t)ty), K=1,2,..,N-1 (1.4)

min S(Uy,..., Uy t,,... ty)

:ZN:¢’K(XK(fK))+ZN: f L(x,,ug,t)dt (1.5)

K=1 tyy

Here f,:RxR"xR" > R", M, and F, are continuous, at least continuously
partially differentiable vector-valued functions with respect to their variables,
L:R"xR" xR — R 1is continuous and have continuous partial derivative with
respect to their variables, M, :R" xR — Rand ¢, (.) are given differentiable
functions, u,(¢):R—>U, c R" are controls. The sets U, are assumed to be
nonempty and bounded. Here (1.4) are switching conditions. It is required to find the
control u,u,,...,u, , switching points ¢,,¢,,....t,_, and the end point ¢, (here ¢, is
not fixed) with corresponding state x,,x,,...,x, satisfying (1.1)-(1.4) so that the

fuction S(.) in (1.5) is minimized. We will derive necessary conditions for smooth



and nonsmooth version of these problems (in the case of smooth and nonsmooth cost
functionals).

Denote:

O =(1,,t5,.5t ), X(2) = (x,(2), X, (2),..., X (1)),

u(t) = (u, (), u,(1),..., uy ().

Our aim is to find tuple (x(¢),u(¢),6) which solves problem (1.1)-(1.5). Such tuple

will be called optimal control for the problem (1.1)-(1.5).

Theorem 1.2.1. Let the (x(z),u(t),6) be an optimal control for Problem (1.1)-(1.5).

Then there are vector functions p, (¢), K =1,2,..., N such that following conditions
hold.

1) State equation.

OH  (xy ., py>t)
apK
telty ,ty], K=1,2,..,N

xK(t) =

2) Costate equation.

OH  (xy ., py>t)
Ox

telte . te], K=1,2,..,N

pK(t) =

3) At ¢, the function p, (.) satisfies

0Py (xy(ty)) X OF (xy (ty),ty)
t,)=—"—" -2 4% ]
Pyty) oxy KZ:; K ox



4) Necessary conditions

max H (xK, (t),pK(t),t)=HK(x,0<,u,0<,pK(t)t), K=12,..,N

ugeUg

telte ty]

5) Necessary conditions at the switching points

o, (t oM . (x,.(t,),t
B e SR
K K
[iﬂ’ OF (xy (1y), tN)J
K=1 K atN BN
- OM  (x, (4 ),t¢)
(ZPKHU = Z;{t =t X(l_gL,N):O'
1 K
I, L=N
Hereo, , = ,L=1,2,...N,
0, LN

HK(xKaukvpKvt):LK(XKoqupKvt)"'p;-fK(xKv“KvpKat)
and A,, K=1,2,..,N arevectors.

Proof. We use Lagrange multipliers to adjoint the state and conjugate equations in

the theorem. Then, by using Lagrange multipliers rule, we can write

S = Z(”K(xk(tk))"'z/1 Fe(xy(ty)sty)

=

+2, f (L(xg st 1) + pr(O(f Crgstt 1) = xx (1))dt

K=1 ty

By determining

Hy (Xg,pyotig,t) =Ly (g ug, )+ pp(t)fo (xg g t)fore et 1]



we have:

S = z(pK(xK(tK))+ZA’KFK('XN(tN)’tN)

N
+ 0 [(H  Coo pstte 1)+ Pl ()t

K:ltK,l

From the calculus of variations, we can obtain that the first variation of & as:

N AP PR RN

=] Ox K=l Ox

+i/1 oF (xN(t )tK) iaH (xKﬂuKapK’ )éxK(t)

oxy (2y)

K

- 8tN K=1 X
N OH (xK,uK,pK, o K(xKauKapKa )
+ &p
z K Z pK .
-Z j P () xx (t)dt
r=he

The latter term in previous equation can be computed as follows;

g

z J- Py (O)dx (t) = ZPK ()X () = (P g )X ()

Nk

Z j ()3 . dt

=

=3 pe >éx,<(r,<>—Z:pK+1(rK>éacK+l<rK>

- Pt () = Y | Py (Dt

K=1¢,

Here we have taken into account:

ZPK (L )X (tey) = ZPKH ()X (tg) + pi ()X, (1))

10



Since o, (¢,) = 0 using (1.4) we get

K=

K K

ZpKﬂ(tK)[@MK (xaK Ul s 1)+ M (xg () 1) &"j

=

-1
Pty Ml 5,
Ox

- Dy (t) sl i) 5,

K=1 atK

Il
™M

ME 7

—+

Then, first variation has the following form;
N-1
5Sv: aSK('X’-K(Z‘K)) 5xK(tK)+aS(xN(tN)) 5xN(tN)
1 Oxg ox,

OF (xy (ty),ty) 5 OF oy (ty)oty)
Ay —= ngN X 5xN(tN)+;ﬂ,K ECNND N Sty

OH, (U, X, Dot YOH (U, Xy, Dot
(U X5 Dy )5”1("'2 (U, X, Py )5[7
Ouy K=1 Pk

+

N

+

S IM= =

K

=

M

Pi (80X (8 ) — py(ty)0xy (ty)

—_ =

OM  (x, (t¢),t)
Ox

aMK (xK (tK )’ tK)
ot

1
= X

pK+l (tK) 5xK (tK)

= =

P (ty) Oty _Zpk (1)ox,(t,)

>=

K

G 85, (e 1) MGy )
Z(T P (tx) = P (tx) o, jng (tx)

[8SN(XN(tN)) Zﬂ’ aFK(xN(tN) tN)
Ox

ZKD e tN)] —[fpm (1) P “’f)’tK)j(l—éL,N )}&N

Oty
OH . (X, Dy Uyt 6H Xes DUy,
x (Xg > Dy Uy pK(t)]ng x (X Dyt )5u

K=l ( Oxy Ou,

8H (xKﬁpKﬁuKﬁ (t)jgp
K

N

N(tN)j Sxy(ty)

K

11



The latter sum is known because

OH ( (X Uy, Dy »1)
Opx

:XK (1).

According to a necessary condition for an optimal solution &5 = 0. Setting to zero

coefficients of the independent increments O, (¢, ),y (¢ ), Xy, 0u, ,and op,

yields the necessary optimality condition in the following form

OH y (uy, X, Py >1)

X (1) = P
K
pK(t):aHK(xKa,qu,pKat)
K
aHK(uKaxK’pK’t) :0
Ou
a¢aK(tK) _pK(tK)_pK+1(tK)aMK(XK(tK),tK) =0, K=1,2,..,N-1
X i Ox
Opy(ty) & OF (xy (ty).ty)
NN N —-py(y)=0
ox, ; X ox, py(ty)
a(pK(tK) aMK(xK(tK)atK)

— = Px ()= Py (ty) =0, K=1,2,.,N~-1

Ox Ox

[ZN_: Ak o (th(tN : tN)J5L,N - (ZN_: Pia(ty) oM (xgt (i)t )J(l —0, 5 ) =0.

This completes the proof.

Let us now assume that the objective function ¢, (.) is Frechet upper

subdifferentiable (superdifferentiable) at the point Xk (t;) . Then one can prove the

following theorem for the nonsmooth version of problem (1.1)-(1.5).

12



Theorem 1.2.2. (Nonsmooth version) Let objective function ¢, (.) is Frechet upper
subdifferentiable (superdifferentiable) at the point Xk (ZK)and (;(t),)_c(t),é) be an
optimal solution to the control problem (1.1)-(1.5). Then, every collection of Frechet
upper subgradients (supergradients) x, € é+(/’1< (;K(EK)), K=1,2,...,N conditions
in Theorem 1.2.1. hold with the corresponding trajectory p,(.) of the conjugate

system, the condition (3) and condition (5) in Theorem 1.2.1. replacing by following

conditions:

OM  (xx (k). k)
Ox ’

OF, (x(tn),tn)

Ox,,

(i aFK(XN(tN),tN)]é,L’N _[NZ_iPKH(EK) OM y (xx (tK),tK))(l_é‘L,N) =0,

&~ ot, ot,

pK(;K):x;—pKH(EK) K=1,2,..,N-1

_ N
py(tn)=x, +Z
K=1

here L=1,2,...,N, 0= (21,22,...,21\7),
x(0) = (x1(), 2(0), ooy xn (2)), 0(t) = (1 (0),u2(2), ., un (1))

Proof. Take any arbitrary set of Frechet upper subgradients

x, €0" @, ()_c K (Z x)), K=1,2,...,N and employ the smooth variational description
of —x, from assertion (i) of Theorem 1 (see [33]). As a result, we find functions

S¢ X >R for K=1,2,..., N satisfying the relations

s (0 (1)) = P (xx (tx)), 5 (x (1)) = @i (X(2))

in some neighborhood of Xk (t,) and such that each of them Frechet differentiable at

xk(tx) with Vs, (xx (tx)) =x,, K=1,2,..,N.
By using construction of these functions we easily deduce that the process

(;(.),;(.),5) is an optimal solution to the following control problem:

N N Ik
R NSRRI S S c (75) ) jL(xK,uK,t)dt
K=1

K=lye

13



subject to conditions (1.1)-(1.4). The initial data of the latter optimal control problem
satisfy all the assumptions of Theorem 1.2.1. Thus, applying the above maximum

principle to the problem (1.1)-(1.5) and taking into account that
Vs, (xx(tx))=xy, K=1,2,..,N
we complete the proof of the theorem.

Lemma 1.2.3. Let ¢:R >R be locally Lipschitz continuous at x and upper
regular at this point. Then Frechet superdifferential is not empty at this point and

coinside with the Clarke subdifferential at this point, 0 # é*(p(y_c) = 5(p(;) .

Proof. The nonemptiness of é*(o()_c) directly follows from G(p(;) # 0 for locally

Lipschitzian functions and the definition of upper regularity. Due to é(p(;c) =co (p(;) ,

any locally Lipschitz function is lower regular at x if and only if 8(0(;) = 5(/)(;).
Hence, the upper regularity of ¢ atx and the plus-minus symmetry of the

generalized gradient imply that é+(/)(;) = —é(—(p)(;) = —3(-p)(X) = 5(/)(;) which

completes the proof.

Corollary 1.2.4. Let {; K (.),; x(),0 } be an optimal solution of the control problem
(1.1)-(1.5) and assume that ¢, (.) is locally Lipschitz and upper regular at XK (ty).-

Then, for any Clarke generalized gradient x, € 5¢)K ()_c k ()) the maximum principle

and transversality condition is satisfied.

The proof follows from Theorem 1.2.2. and Lemma 1.2.3.

14



1.3 Necessary conditions for cost uniformly upper subdifferentiable functionals

In this section we present uniformly upper subdifferential form of the main problem.

Definition 1.3.1. (Uniform upper subdifferentiability). A function ¢:R" —>R is

uniformly upper subdifferentiable at a point x, if it is finite at this point and there

exists a neighborhood V of x such that for every x € V there exists x” € R” with the

following property: Given any ¢)0, there exists 77)0 for which
o(v) — o(x) - <x* V- x> <eglv-x

whenever v € V with ||V - x|| <n. It is easy to check that the class of uniformly upper

subdifferentiable functions include continuously differentiable functions and concave
continuous functions, and also are closed with respect to taking the minimum over
compact sets.

It is well known that a function uniformly upper subdifferentiable in some
neighborhood of a given point is upper regular, Lipschitz continuous at this point

(see [32], Proposition 3.2). Then:

Corollary 1.3.2. Let {;K (.),;K(.),g} be an optimal solution to Problem (1.1)-(1.5).

Assume that ¢, is uniformly upper subdifferentiable in some neighborhood of the

point Xk (t¢) . Then for every upper subgradient x, é*(oK (;K (te)), K=1,2,.,N
the maximum condition, transversality conditions and necessary conditions in the

switching points are satisfied in Theorem 1.2.2.
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Proof. Let ¢, be uniformly upper subdifferentiable in some neighborhood of the
point Xk (t;) . Then by using Proposition 3.2 ([32]) we can say @, is upper regular

at xx and Lipschitz continuous at this point. Then, by using Corollary 1.2.4. and
Theorem 1.2.2., we can write that, for every upper subgradient
Xy €00, ()_c k(ty)) where K =1,2,..., N the maximum condition, the transversality

condition and necessary conditions at the switching points are satisfied in Theorem

1.2.1.
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2. DISCRETE MAXIMUM PRINCIPLE FOR NONSMOOTH OPTIMAL
CONTROL PROBLEMS WITH DELAYS

Our notation is basically Standard (see, e.g., [41]).

Limsup F(x) == {y € R’”|EI sequences x, — x and y, — y with y, € F(x,)forallk N}

XX

denotes the Painleve-Kuratowski upper (outer) limit for a set-valued mapping

F:R" >R™asx — x. The expressions
-

clQ ,coQ) ,andconeQ = {ax|a Y0, x e Q}

stand for the closure, convex hull, and conic hull of a set Q, respectively. The

notation x—2—>Xx with @(x) = @(x)
2.1 Tools of nonsmooth anaysis

In this section we review several constructions of nonsmooth analysis and
their properties needed in what follows. For more information we refer the reader to

[12, 28, 41].

Let QO be a nonempty set in R", and let
I(x;Q) = {w € clQ with |x — w| = dist(x; Q)}

be the Euclidean projector of x to the closure of €. The basic normal cone [3] to Q2

at x e clQ is defined by

N(¥;Q) := Lim sup[cone(x — IT(x; Q))] (2.1)

XX

This cone if often nonconvex, and its convex closure agrees with the Clarke normal

cone [35].
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Given an extended-real-valued function ¢ :R" — R = [- o0, 0] finite at X , we

define its basic subdifferential [28] by
0p(¥) =} e R"|(x",~1)e N(F (X)) cpio) . (2.2)

Where epig = {(x, )€ R“”| > (p(x)} stands for the epigraph of ¢. If ¢ is locally

Lipschitzian around x , then 0@(x)is a nonempty compact set satisfying
(x",=1) € N((x,p(x));epip) < 4 20, x € 109(x). (2.3)

One always has 0¢(X)=codg(x) for the Clarke generalized gradient of locally
Lipschitzian functions [12]. Note the latter construction, in contrast to (2.2),
possesses the classical plus-minus symmetry 0(—¢)(x) =—0¢(X). If ¢ is lower

semicontinuous around Xx, then the basic subdifferential (2.2) admits the

representation

Op(x) = Lim sup é(p(x)

x—2>x

in terms of the so-called Frechet subdifferential of ¢ at x defined by

(P =00 ~(x"u—x)

dp(x):=4{x" e R"|limin = >0 (2.4)
U—>x u — x
The symmetric constructions
0" p(¥) = —0(~9)(X), 0" p(X) = ~0(—p)(¥) (2.5)

to (2.2) and (2.4) are called, respectively, tha basic superdifferential and the Frechet
superdifferential af ¢ at x . Note that
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0" (X) :=4{x" € R"|lim sup 7 _(p(|x> __<|x - x>
X=X x—X

<0 (2.6)

and that both é(p()_c) andé*(p()_c) are nonempty simultaneously if and only if ¢ is

Frechet differentiable at x , in which case they both reduce to the classical (Frechet)

derivative of ¢ at this point:

0p(X) = 0" p(X) = {Vop(%)} (2.7)

In contrast, the basic subdifferential and superdifferential are simultaneously

nonempty for every locally Lipschitzian function; they may be essentially different,
e.g., for p(x) = |x| on R when 0¢(0) = [— 1,1]and 0 p(0)= {— 1,1}. Note also that if ¢

is Lipschitz continuous around X , then

0p(X) =0"p(x) = {Vo(x)} (2.8)

if and only if ¢ is strictly differentiable at x, i.e.,

i P () — (Vo(x),x - x)
im

XX |x — x'|
X'—X

=0

which happens, in particular, when ¢ is continuously differentiable around x . The

singleton relations (2.8) may be violated if ¢ is just differentiable but not strictly

differentiable at x. For example, if ¢(x) = x° sin(1/ x) for x # 0 with ¢(0) = 0, then
0p(0) = 0" p(0) = [~ L1] while dp(0) =" (0) = {0}
Recall [3] that ¢ is lower regular at x if O@(x) =é(p(3_c) . This happens, in

particular, when ¢ is either strictly differentiable at x or convex. Moreover, lower

regularity holds for the class of weakly convex functions [34], which includes both
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smooth and convex functions and is closed with respect to taking the maximum over
compact sets. Note that the latter class is a subclass of quasidifferentiable functions is
the sense of Pshenichnyi [38].

A large class of lower regular functions (in somewhat stronger sense) has
been studied in [41] under the name of amenability. It was shown there that the class
of amenable functions enjoys a fairly rich calculus and includes a large core of
functions frequently encountered in finite-dimensional minimization.

Symmetrically, ¢ is upper regular at x if 0 ¢(x) = é+(o()_c) . It follows from
(2.5) that this property is equivalent to the lower regularity of - ¢ at x . Thus all the

facts about subdifferentials and lower regularity relative to minimization can be
symmetrically transferred to superdifferentials and upper regularity relative to
maximization. The point is that in the next section we are going to apply
superdifferentials and upper regularity relative to maximization problems. The

following proposition is useful in this respect.

Proposition 2.1.1. Let ¢:R" — R be Lipschitz continuous around x and upper

regular at this point. Then 0 # é*(p(?c) =0p(X) .

Proof. The nonemptiness of é*go()_c) follows directy from 0¢p(X) = 0 for locally
Lipschitzian functions and the definition of wupper regularity. Due to
0¢(x) =codp(X) , any local Lipschitzian function is lower regular at X if and only if
é(p()_c) = 0¢(X) . Hence the upper regularity of ¢ at x¥ and the plus-minus symmetry

of the generalized gradient imply that

0" (%) = —0(-p)(X) = —0(~)(X) = (%)

which ends the proof of the proposition.
Note that all the assumptions of Proposition 2.1.1. hold for concave functions

continuous around X .
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2.2 Superdifferential form of the discrete maximum principle

The following problem (P) of the Mayer type is considered as the basic model:
minimize J(x, u):= p(x(t, )) (1)

over discrete control processes {x(.),u(.)} satisfying

x(t+h)=x@)+hf (¢, x(@),x(t-1)u®), x(,)=x,€R" (i1)
uyeU, teT =1{t,.t, + h....t, — hj, (iii)
x(t) = c(t), t €Ty ={t, —t,ty —+hyst, —h}, (iv)

where #)0 is a discrete stepsize, 7=Nh 1is a time delay with some
NeN:= {1, 2,...}, U, is a compact set describing constraints on control values in
(ii1), and c(.) is a given function describing the initial “delay” condition (iv) for the
delayed system (ii).

In this section we first study the discrete optimal control problem (P) defined

in (1)-(iv) and then consider its multiple delay generalization. Let {x(.),u(.)} be a

feasible process to (P), and let {)_C(.),L_t(.)} be an optimal process to this problem. For

convenience sake we introduce the following notation:

§(0) = (x(0), x(1 = 7)), & (1) = (X(1),%(t — 7)),

S&EW) = f(6x(0),x(t = ),u(0), [(t&,u)= f(t,X(0),%(t = 1),u(t)),
ft+7,5u) = f(t+7,x(t+7),x(¢),u(t + 1)),

Ax(1) = x(t) = X(t), A ()= [(t&,0)- f(L.E,T),

A SO =fGE0)-f(LE,T).
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Using this notation, we define the adjoint system

p@0) = p(t+ W+ h L. Eypa+h)

. ox (2.9)
+hL
oy

(t+7.8,u)p(t+7+h),teT

to (2.2) along the optimal process {)_c(.),ﬁ (.)}. Consider the Hamilton-Pontryagin

function
H (1, p(t+ h),E(0),u(®)) = (p(t + h), [ (t,E(0),u(1))), (2.10)

which allows us to rewrite the adjoint system (2.9) in the simplified form
pt)=pt+h)+h a—H(t) +8—H(t+ 7)
Ox oy

with H(t):= H(t, p(t + h),&(¢),u(t)) . Form the set
A@©) = e Uf(t.Eu) e o (£, E,0): (L, EV))]. 2.11)
where o(q;Q) denotes the star-neighborhood of ¢ € Q relative to Q

o(q;0) = {a € Q‘Elgk 0 such that g + &, (a—q)eQforallk e N} (2.12)

It easily follows from (2.11) and (2.12) that A(u(¢))=U if theset f(¢,&,U)is

convex. The following theorem establishes a new superdifferential form of the

discrete maximum principle for both delayed and non-delayed systems.
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Theorem 2.2.1. Let {)_C(.),L_l (.)} be an optimal process to (P). Assume that
@:R" — Ris finite at X(¢,) and that é+(/)()_c(t1 )) # 0. Then for any x" e é*(o()_c(tl )

one has the discrete maximum principle

H(t, p(t+h),x(t),x(t —7),u(t))
= max H(t, p(t+h),x(),x(t—71),u(t)), teT,

ueA(t)

(2.13)

where p(.) is an adjoint trajectory satisfying (2.9) and the transversality conditions
pt)=—x", p(t)=0 fort)t,. (2.14)

The maximum condition (2.13) is global over all u € U if the set f(t,&,U)is

convex.

Proof. Take an arbitrary x~ e é+(/)()_c(t1 )) . It follows from (2.6) that
o)~ (1) < (x" 3 —x(1)) + ol x~ %(1,)) (2.15)

for all x sufficiently close to X(z,). Put p(t,):=—x"and derive from (2.15) and (i)

that
J(eu) = J (%, 10) =~ p(t, ), Ax(t,)) + of|Ax(z,))) (2.16)

for all feasible process {x(.),u(.)} to (P) such that x(z,)is sufficiently close to x(¢,).

One always has the identity

t—h

(p(1,),Ax()) = Y p(t+h) = p(1), Ax(2))
(2.17)

t—h

+ > { p(t+h),Ax(t + h) - Ax(1))

t=t,
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Due to (ii) we get the representation

Ax(t + 1) — Ax(t) = hAF (£)

_I{A ra+< g L E i+ L 2 SN f)+77(t)}

where the remainder 7(¢) is computed by

n(0) =(Zlaf,u)ﬁ(namjmo)+[@(u§,u>ﬁ<n5,ﬁ>]mo—r)
X ox oy oy )
+0(|Ax(t)|)+0(|Ax(t—r)|)

This allows us to present the second sum in (2.17) as

ti—h

D {p(t+h,Ax(t+h)— Ax(1))

t=t,

—hZ<p(t+h)Af(t)+ Y2, max) + 2 g SO r>+n(r)>

t=t,

Using the equalities

Ax(t)=0fort<t¢t,, p(t+h)=0fort =1,
and shifting the summation above, we have

ti—h

Y DA —
Z< p(t+h, . (t,&,u)Ax(t 2')>

=\ (2.18)
= lZ<p(t+ T+ h),,g—f(t+ T,E,U)Ax(f)>
Y

t=t,
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Finally, substituting (2.9), (2.17), and (2.18) into (2.16), we obtain

J(x,u) = J(X,1) = —hti‘: A H(f)

t=t,

—h3 ple+ ) n(0)+o|Ax(z)]) 2 0

t=t,

(2.19)

withA H(t):= H(t, p(t + h),E (), u(t))— H(t, p(t + h),E(1),u(t)) where Ax(t)is
sufficiently small.

Let us prove that (2.19) implies that, A, H(¢) <Oforanyz e T"andu € A(u(?)),

which is equivalent to the discrete maximum principle (2.13). Assuming the

contrary, we find
GeTanduec Au(0) A,HO)=a)0. (2.20)

By definitions (2.11) and (2.12), there are sequences

g, ¥ 0and u, € U such that

[0.8. @)+, f(0,5.u)~ [(0,8.u)= f(8,5,u) € f(0,£,U),

which is equivalent to
A, fO)=[(0.&,u)~ [(0.8,0)=¢.(f(0.5,u)~ [(0.&,u)):=e,A,1(6).

Now let us consider needle variations of the optimal control defined as

L if t=0,
O =150 it teT 10},

which are feasible to (P) for all k€N, and let A,x(z)be the corresponding

perturbations of the optimal trajectory generated by v, (¢) . One can see that
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Ax(t)=0fort =1,,...,0 and|A, x(t) = O(g,) for t = 6 + h,...,1, .

This implies that

(gl(tagavk)_g(taé?al’_l)jAkx(t)

X ox

+(g(t,g,vk)—g(t,g,fl))Akx(t—T) =0,reT
oy oy

and that 7, (t) = o(&, ), k € N, for the corresponding remainders 7, (.) defined above.

Hence
J(x,,v,) = J(X,u) =—hA, H(O)—- hti( p(t+h),n, (1)) =—&.ha+0(g,){0

for all large k € N due to (2.20). Since x,(¢,) = X(¢,)ask — oo, this contradicts

(2.19) and completes the proof of the theorem.

Let us present two important corollaries of Theorem 2.2.1. The first one
assumes that ¢ is (Frechet) differentiable at the point x(z,) . Note that it may not be
strictly differentiable (and hence not upper regular) at this point as for the function
@(x) = x* sin(1/ x) for x # 0 with ¢(0) = 0 (see definitions in Section 2). If ¢ is
continuously differentiable around X(¢,) and f = f(¢,x,u) in (ii), then this result and

its proof go back to the discrete maximum principle for non-delayed systems

established in [19, Chapter IX].

Corollary 2.2.2. Let {)_c(.),ﬁ (.)} be an optimal process to (P), where ¢ is assumed to
be differentiable at x(¢,) . Then one has the discrete maximum principle (2.13) with

p(.) satisfying (2.9) and

p(t) =-Vo(x(t,)), p(r)=0forz)z, (2.21)
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Proof. It follows from Theorem 2.2.1. due to the second relation in (2.7), which
ensures that (2.14) reduces to (2.21).
The next corollary provides a striking result for upper regular and Lipschitz

continuous cost function ¢. In this case the discrete maximum principle holds with
the transversality condition p(¢,) = —x  given by any vector x  from the generalized

gradient 0g(x(z,)), while conventional results ensure such conditions only for some

subgradient.

Corollary 2.2.3. Let {)_c(.),ﬁ (.)} be an optimal process to (P), where ¢ is assumed to
be Lipschitz continuous around x(#,) and upper regular at this point. Then for every

vector x € é(p(y_c(tl )) # 0 one has the maximum principle (2.13) with p(.) satisfying
(2.9) and (2.14).

Proof. Follows from Theorem 2.2.1 and proposition 2.1.1.

Now let us consider an extension (F,)of problem (P)to the case of multiple

delays: minimize (i) over discrete control processes {x(.),u(.)} satisfying the system

x(t+h)=x()

(2.22)
+hf (t,x(t),x(t—1),....x(t = 7,),u(t)),x(t,) =x, €R"

with many delays 7, = N ,ifor N, e Nandi=1,...,m subject to constraints (iii) and

(iv), where f = f(t,x,x,,...,x, ,u) satisfies our standing assumption and where the

m?

initial interval Ty is correspondingly modified.

Denote ¢(¢) = (x(¢),x(t —1,),....,x(t —7,))and define p(.) satisfying (2.14)

and the adjoint system

p(t)zp(t+h>+h%(t,5,ﬁ)p(r+h)
+hi%*(t+ri,f,ﬁ)p(t+ri+h)
X

i=1

(2.23)
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for ¢t € T, which can be rewritten in the Hamiltonian form

OH m OH
p(t) = p(t+h)+h§(t)+hza—(t+ri)

i=1 OX;

in terms of (2.10) with H(¢):= H(t, p(t + h),E (¢),u(t)). The proof of the following

theorem 1is similar to the basic case of Theorem 2.2.1. and can be omitted.

Theorem 2.2.4. Let {)_c(.),ﬁ(.)} be an optimal process to (P;) with é*(p()_c(t1 ) #0.

Then for any x € é*(p()_c(t1 )) one has the discrete maximum principle

H{(t, p(t+h),E (), (1))
= max H(t, p(t+h),E(t),u) forallteT

ueA(u(t)

(2.24)

where p(.) is an adjoint trajectory satisfying (2.14) and (2.23).

Of course, we have the corollaries of Theorem 2.2.4. similar to the above
ones for Theorem 2.2.1. Let us obtain another corollary of Theorem 2.2.4. for a
counterpart (P,) of the optimal control problem (P) involving discrete systems of

neutral type

x(t+h)=x()

R x(0), x(t — ), SEZ T =) (2.25)

P u(), teT

x(t—t+h)—x(t—-71)
h

where can be treated as an analog of the delayed derivative

x(t—7)under the time discretization and where f = f(,x,y,z,u)satisfies our
standing assumption.

Given an optimal process {)_c(.),ﬁ (.)} to (P,), we put

E(t) = ()_c(t),?c(t N Gk hz —x( - 7)], teT, (2.26)
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and define the adjoint discrete neutral-type system

p(©) = ple+ i+ h L@ EDp(r+h)
+hi*(t+r,g?,z7)p(t+r+h)
?y (2.27)
+%(r+r—h,§,ﬁ)p(t+r)
—i*(t+r,g,u)p(t+r+h), teT
oz

Corollary 2.2.5. Let {)_c(.),ﬁ(.)} be an optimal process to (P,) with é*(o()_c(tl )#0.
Then for any x € é*(p()_c(tl )) one has the discrete maximum principle (2.24), where

£(\)is defined in (2.26) and where p(.) is an adjoint trajectory satisfying (2.14) and
(2.27).

Proof. Observe that the neutral system (2.25) can be easily reduced to (2.22) with
two delays. Thus this corollary follows from Theorem 2.2.4. via simple calculations.
A drawback of the superdifferential form of the discrete maximum principle
established above is that the Frechet superdifferential may be empty for nice
functions important in nonsmooth minimization, e.g., for convex functions that are
not differentiable at the minimum points. In the next section we derive results on the
discrete maximum principle that cover delayed problems of type (P) with general

nonsmooth cost functions ¢ . Results of the latter subdifferential type are applicable

to a broad class of nonsmooth problems, but they may not be as sharp as the

superdifferential form of Theorem 2.2.1. when it applies.
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2.3 Discrete maximum principle in terms of basic normals and subgradients

In this section of the thesis, we present nonsmooth versions of the discrete
maximum principle for the delayed problem (P) in (i)-(iv) with transversality
conditions expressed in terms of basic normals and subgradients defined in Section
2.1. The corresponding modifications for problems (P;) and (P,) can be made

similarly to Section 2.2.

Theorem 2.3.1. Let {)_c(.),ﬁ(.)} be an optimal process to (P), and let x :=Xx(¢)).
Assume that the set f(¢,x,y,U)is convex around (x(¢),x(¢—7))forallz € T. Then
one has the following assertions.

(a)Let ¢ be lower semicontinuous around X . Then there is a nonzero vector

(x",A) e R™" such that 1>0

(x",—A) € N((X,9(X));epip) , and the discrete maximum principle

H(t, p(t+h),x(¢),x(t—7),u(t))
= max H(t, p(t+h),x@),x(t—71)u), teT

(2.28)
holds with p(.) satisfying (2.9) and (2.14).
(b) Let ¢ be Lipschitz continuous around x . Then there is x* € d¢(x) such

that (2.28) holds with p(.) satisfying (2.9) and (2.14).

Proof. We will proceed similarly to the non-delayed case using the method of metric
approximation (cf. [28, Section 11]). This method allows us to approximate the
original nonsmooth problem by a family of smooth discrete problems with delays
and then arrive at the desired conclusions by a limiting procedure involving the
corresponding results.

Let us first prove assertion (a). Taking a parameter y € R, we consider a
parametric family of the following optimal control pronlems (P,)for delayed

discrete systems with the distance-type cost functional:
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Minimize J, (x,u) = dist((x(t,),);epig) + i|x(t) — )_c(t)|2

t=t,

over control processes {x(.),u(.)} subject to constraints (i1)-(iv).
Let 7 == ¢(x(¢,)), and let {)?7 ().u, (.)} be optimal processes to (P,) that
obviously exist by the classical Weierstrass theorem due to the standing assumptions.

It follows from the structure of (P,) and the optimality of {)_c(.),ﬁ (.)} in the original

problem (P) that x, (¢) > x(¢1)asy — y forallte T'U {T1 } Moreover,
m,, = dist((x, (¢,),7);epiy)) O whenever y (7 . (2.29)

The latter allows us to conclude that, for any y(y, the process {)_cy (),u, (.)} is

optimal to the smooth problem (137 ) of minimizing the functional

T, (xu) = Qx(tl)—xy‘z +‘}/—w7‘2)1/2 4 i|x(t) —x(0)

t=t,

subject to (ii)-(iv), where (x,,w,)is an arbitrary element of the Euclidean projector
I((x, (z,),7);epip) of (x,(¢),7) to the closed set epig. Introducing an additional

state variable x,,,(¢) by

Y X, () =0 (2.30)

X, (¢ +h) = X, (O) +[x(t) = %(0)

we rewrite problem (f’y) in the equivalent form of minimizing the Mayer-type

functional

_ ) P 1/2
Jy(xaxnw“)::(‘x(tl)_xy‘ +‘7/—Wy‘ )

3, (8) + |x(0) =X (8|

2.31)
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over {x(.),x,,,(.),u(.)} satisfying (ii)-(iv) and (2.30).

Denote Ey (1) = (x,(2),x,(t — 7)) and observe that the sets f(z, Ey (1),U)are
convex for all # € T while the cost function in (2.31) is differentiable at
(x,(4),x,,,(t)), where x,,,(.)is generated by x,(.) in (2.30). Now applying
Corollary 2.2.4. to problem (P,)as y(y and taking into account the structure of the

cost function (2.31), we arrive at the discrete maximum principle
H(t, p, (t+h).&, (0.1, () = max H(t, p, (t+ h).&, (Ou), t T,

where p, (.)satisfies the adjoint system (2.9) along {)_cy (),u, (.)} with the

transversality conditions

(t)

x -X
p,(t)=——"——"=2(x,(t)-X(t,)), p,(t)=0fort)¢ ,
m7

where m,, ) 0is given in (2.29), and where

SRl
m7 m7

Passing to the limit as » T 7 in the above relations and using the constructions of the
basic normal cone (2.1), we arrive at all the conclusions of (a).

To justify (b) when ¢ is Lipschitz continuous around X(#,) , we observe that
in this case one has x” € 10¢(X(¢,)) from (a) and (2.3). The latter implies that A # 0,
which yields (b) by normalization.

Let us compare the superdifferential and subdifferential forms of the discrete
maximum principle from Theorems 2.2.1. and 2.3.1., respectively. As mentioned

above, Theorem 2.3.1. is applicable to a broad class of nonsmooth problems (P)

while Theorem 2.2.1. requires that é*(o()_c(tl )) # 0, which excludes many nonsmooth
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functions. On the other hand, the superdifferential form has essential advantages for
special classes of cost functions.

First we observe that Theorem 2.2.1. implies the gradient form (2.21) of
transversality when ¢ is just differentiable at X(¢,) (it may even not be Lipschitz
continuous around this point) while Teorem 2.3.1. ensures (2.21) only when ¢ is
strictly differentiable at x(¢,) (see (2.8) and the related discussion in Section 2). The

most striking difference between subdifferential and superdifferential transversality
conditions appears in the case of upper regular and locally Lipschitzian cost

functions. In this case Theorem 2.3.1. provides the discrete maximum principle

generated by some subgradient x* e é(p(y_c(z‘1 ) < é(p(x(tl ))in (2.14) while Corollary

2.2.5. ensures it for every x~ € dp(%(t,)) . This is a big difference!
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3. OPTIMALITY CONDITIONS VIA EXHAUSTERS AND
QUASIDIFFERENTIABILITY IN SWITCHING CONTROL PROBLEM

3.1 Some knowledge about quasidifferential and exhausters

Let us begin with basic constructions of directional derivative (or its generalization)
used in the sequel. We refer the reader to the book by Demyanov and Rubinov [14,
15] and articles Roshchina [43, 44, 45], Demyanov and Roshchina [16, 17, 18]. Let

f:X > R, X €R" be an open set. The function f, ; (f; ,j ) is called Hadamard upper

(lower) derivative of the function f* at the point x in the direction g if there exist limit

fi(.g):= timsup ~[/(+ag)~ f(0) G
g ol+0.e] X
(f; (x.8) = wg;gggé[f@+ag’)—f(x)]j (32)

Note that limit in (3.1, 3.2) always exist, but are not necessarily finite. This
derivative is positively homogeneous function of direction. The Gateaux upper

(lower) subdifferential of the function /" at a point x, € X can be defined as follows

07/ (x) :{ve R’

limsupf(xo +t%)_f(x0) S(V,g),Vg ERH}
40

lirgionf S(xy + tgt) - f(x,)

[aaf(xo) ={veR”

>(v,g2),Vg e R"H

The set

hmsupf(x)—fﬁzo_);ﬁv,x—xJ O}

limsup? )= @) ~lvx =)

0
X=X ||X - x0|| }J

IN

é+f(x0)={veR”

[éf(xo){veR"

IA
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is called, respectively, upper (lower) Frechet subdifferential of the function /" at the
point x,.
It is known that, if f'is a quasidifferentiable function then [15] its directional

derivative at a point x is represented as

f(xg)= max(v,g) + min (w,g)

wedf(x)

where 0f (x),5 f(x) c R" are convex compact sets. From last relation, easly we can

reduce that

(x = min max (v = max min (v
f( ’g) weéf(x)vewﬂy'(x)( ’g) vle(x)weeréf(x)( ’g)

It means that for the function 4(g) = f (x,g) the upper and lower exhausters can be

describe following way

{c = w+t Qf(x)‘w cd f(x)}

£
E. = {C:v+5f(x)|vle(x)}

It follows that the directional derivative of a quasidifferentiable function (as a
function of direction) is positively homogeneous and quasidifferentiable.

If h(g) is upper semicontinuous in g, then [14, 18] A(g) can be expressed as
h(g) = inf max(v,g)
CeE veC
and if h(g) is lower semicontinuous in g, then A(g) can be written as in the form

h(g) = supmin(v, g)

CeBE. V
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In [9], Castellani proved that if / is Lipschitz then /4 can be written in the forms

h(g) = minmax(v, g)
CeE veC
and

h(g) = max min(v, g)

The pair E=[E ,E.] of families of totally bounded, convex compact sets a

biexhausters, £~ being an upper exhausters and E, a lower one. In [17, theorem 3.3]
and in [18, theorem 2], the authors wrote and proved relationship between upper
exhausters and Frechet lower subdifferential. They also wrote about relationship
between lower exhauster and Frechet upper subdifferential and remark that this
relationships can be prove easly by using symmetrical construction. For the
continence of our future work in current article, let us prove this relationship. It is
clear that Frechet upper subdifferential can be Express with the Hadamard upper

derivative following way [17, lemma 3.2]

01 f (%) = 0% [ (x,,0,).
Then:

Theorem 3.1.1. Let E. be lower exhausters of the positively homogeneous function

h:R" — R . Then ﬂC =9*h(0,), where &"h is the Frechet upper subdifferential

CcEx

of the 4 at 0, and for the positively homogeneous function 4#:R" — R the Frechet

superdifferential at the point zero follows,

07 h(0,) = {v e R"|A(x) - (v,x) < 0} (3.3)
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Proof. Take any v, € ﬂC. Then from the definition of lower exhausters that,
CcEx

vy (x) 2 h(x), Vx e R" = (C <9 h(0,)

CcE-

Consider now any v, € 8*4(0,) =
v, (x) = h(x). (3.4)

Let us consider v, ¢ ﬂC . Then there exist C, € E” wherev, ¢ C, .
CcEx

Then by separation theorem there exist x, € R" such that

(%,v) < meclx(xo ,v) < h(x)

It is conducts (3.3) and v, € C for every C € E and due to arbitrary. This means

that v, € ﬂ C. It is complete proof of the theorem.

CcEx

Lemma 3.1.2. The Frechet upper (lower) and Gateaux upper (lower)

subdifferentials of a positively homogeneous function at zero coincide.

Proof. Let #:R" — R be a positively homogeneous function. It is not difficult to

observe that every g € R" and every ¢)0

hO, +t,)—h0,) th(g)
== =h(g)

t

Hence, the Gateaux lower subdifferential of % at 0, take the form

0:h(0,) = ve R"|i(g) < (v,g), Vg € R" }

which coincide with the representation of the Frechet upper subdifferentials of the

positively homogeneous function (see [22], Proposition 1.9).
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3.2 Problem formulation and necessary optimality principle

We consider the following optimization problem:

5o ()= [ (e O (0,0), €[ty nte], K=1,2,..,N (3.5)
x,(t,) = X, (3.6)
Fo(xy(ty)ty)=0, K=1,2,.,N (3.7)
X (Tg) =M (xp ()55 ), K=1,2,...,N-1 (3.8)
N N Ik
min.S(ul,...,uN,tl,...,tN):;(pK(xK(tK))+;t!]L(xK,uK,t)dt (3.9)

Remark 3.2.1. We consider the problem (3.5)-(3.9) in the first section (the problem
(1.1)-(1.5)) but in this section we extend this result in the case of minimizing
functional satisfies quasidifferential and exhauster conditions in the Demyanov and

Rubinov sense.

Here f, :RxR"xR" —>R", M, and F, are continuous, at least
continuously partially differentiable vector-valued functions with respect to their
variables, L:R" xR" x R — R is continuous and have continuous partial derivative
with respect to their variables, ¢,(.) has Frechet upper subdifferentiable

(superdifferentiable) at a point ;K(tK) and positively homogeneous functional,

uy(t):R—->U, cR" are controls. The sets U, are assumed to be nonempty and
bounded. Here (3.8) are switching conditions. It is required to find the control

U,,U,,...,u, , switching points ¢,¢,,...,¢,_, and the end point ¢, (here ¢,,t,,...,t, are
not fixed) with corresponding state x,,x,,...,x, satisfying (3.5)-(3.9) so that the
function S(u,,..uy,t,...ty)in (3.9) is minimized. We will derive necessary

conditions for nonsmooth version of these problems (by using exhausters and

quasidifferentiable in the Demyanov sense).
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Denote:

0= (1,155t y), X() = (X, (1), %, ()0 X (1)), u(t) = (1, (), 25 (1), (1))

Our aim is to find tuple (x(t),u(t), 49) which solves problem (3.5)-(3.9). Such tuple
will be called optimal control for the problem (3.5)-(3.9). At first we assume that
@, () 1s Hadamard upper differentiable at the point Xk (t,) to the zero direction.
Then, ¢, (.) is uppersemicontinuous [47] and it has exhaustive family of lower

concave approximations of ¢, (.)[15, theorem 3]. Then:

Theorem 3.2.2. (Necessary optimality condition in terms of lower exhauster)
Let (I/_lK (.),;K (.),5) be an optimal solution to the control problem (3.5)-(3.9). Then,
every collections of the element from intersection of the subsets of the lower

exhauster of the functional ¢, (;K (y)), x; € ﬂ Cy, K=1,2,..., N, there exist

CxeEx g
vector functions p, (¢), K =1,2,..., N which one has following necessary optimality

condition hold:

1) State equation.

OH  (xy 5y, Py 1)
apK

XK(t) =

2) Costate equation.

OH  (xg U, Py 1)
Ox

pK ()=

3) At the switching points, ¢,,7,,...,¢,_,

aMK (xK (ZK )’ tK)
Ox

x;_pK(tK)_pKn(tK) :O, K=1)27"-9N_1
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4) Stationarity condition

OH  (Xg» Py s g »1)
Ou .

=0, K=1,2,.,N, t €[ty .t;]

5) At the end point ¢,

N
py(ty) = X;/ +Z/1K OFy Gy (ty ). ty)

K=l ox

[i A o (xgt(tN - tN)jé‘L’N - [:Z; P (ty) oM (xai (i )el )](1 — 5L,N ) =0,

,L=N

L=12,..,N here J, , = ,
’ 0, LN

Hy (X ug, pyst) :L(sz“KapKat)"'p1T<fK(xK=”Ksp1<st)o

where E.  is lower exhauster of the functional ¢, (x,(¢;)) and 4, K =1,2,..,. N

are the vectors, p,(.) is defined by the conditions (3.2) and (3.3) in the theorem,

later.

Proof. To prove the theorem, take any elements from intersection of the subset of

the exhauster, x; IS ﬂC v» K=1,2,..., N. Then by using theorem 3.1 we can write

Crekey
that x, e é*(p,{ ()_CK (t,)) . Then, apply the variational description from theorem 1.88
((i)) in [33] to the subgradients —x, € é*(— Dk ()_CK (t, ))). In this way we find
functions s, : X >R for K=I, 2, ..., N satisfying the relations
Sk (;K (te)) =@k (;K (ty)) and s, (x(¢)) 2 @, (x;(¢)) in some neighborhood of
Xk (t,) and such that each s,(.)is continuously differentiable at Xk (t,) with
Vs, (;K(tK ) =x,, K=1,2,..., N. It is easy to check that Xk (.) is a local solution
to the following optimization problem of type (3.5)-(3.9) but with cost continuously

differentiable around xx (). This means that, we deduce the optimal control problem

(3.5)-(3.9) with the nonsmooth cost functional to the smooth cost functional data
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min.S(U, ey 1, 5ees by ) = ZSK(XK(t ))+Z IL(xK,uK,t)dt

K= 1’1( .
taking into account that
Vs, (xx(te)) =x, K=1,2,..,N

Then, by using Lagrange multipliers rule and by using results which described in
first section where we calculated first variation of the minimizing functional. We can

obtain first variation of the minimizing functional in the following form;

= Ox

—_

55" = Z[as'f(x"(’ D) P P )]&K(r

[t $) Filistn)_, m]@c(z)

Ox )y, ox )y,

[ﬁl LY (gpmw8MK<gt<fK>afK>J<1_(sL,N)}tN

N K=1

+

K

OH (X, Py »Ug»1) L OH (X, , Pyt )
K ka K>%k _pK(t)j5xK+Z K\M o PKOTKSY) o)
X = Ou

+
04= Ib4- 0=

+

OH . (x,,pyv u,,t
K( k pK K )_pK(t)]®K
op

>
0

The latter sum is known because

OH . (x, ., u.,p,,t )
x (X Uy, Py )=xK(l‘)
apK

According to a necessary condition for an optimal solution &/'=0. Setting to zero

coefficients of the independent increments Ox, (¢, ), 0% (¢; ),y ,0u, and dp, and

taking into account that

Vs, (xx(t)=xp, K=1,2,.,N
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yields the necessary optimality condition in the following form

OH  (uy, Xy, py>t)

X (1) = P , K=1,2,..,.N
K
pK(t)zaHK(xKa,xugapKat)’ K=1,2,..N
K
O lu-X Pl g g Zy0,. N
auK b b b b
. OM  (x,(t,),t
X = Pr(tx) = Pra(ty) = K(al; x) K):Oa K=12,.,N-1
K
R OF, (x, (ty),t
xN+z/1K i g( x) N)_pN(tN):O
K=l X N
-, OF (xy (ty),ty)
[Zﬂ’l{ K gt N/J'N 5L,N
K=l N
N OM y (xg (tx)s1x)
_(ZpKﬂ(tK): £ aI; 2t (1_5L,N):O'
K=l K

This completes the proof of the theorem.

Theorem 3.2.3. (Necessary optimality conditions for switching optimal control

system in terms of Quasidifferentiability) Let the minimization functional ¢, (.)to be
positively homogeneous, quasidifferentiable at a point Xk (.)and (; K(.),)_c K(.),E) be
an optimal solution to the control problem (3.5)-(3.9). Then there exist vector

functions p,(t), K =1,2,..., N and there exist convex compact and bounded

set M (¢, (.)), which for any elements x, € M (g, (.))the necessary optimality

conditions 1)-5) in the theorem 3.2.2. are satisfied.

Proof. Let minimization functional ¢, (.) to be positively homogeneous,
quasidifferentiable at a point Xk (;K). Then there exist totally bounded lower
exhausters E,, for the ¢,(.)([17] theorem 4). Let us make substitution
M (@i () = E. x , take any element xy € M(p, (). Then x, € E.  also and if we

follow the prove description and result in theorem 3.2.2., we can prove the theorem

3.2.3.
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If we use relationship between Gateaux upper subdifferential and Dini upper
derivative[15, lemma3.6], put substitution 7, (g) =@y , ()_CK (;K ),g) then we can
write following corollary. (here ¢, , ()_c K (; x ),g)1s Hadamard upper derivative of the

minimizing functional @, (.)in the direction g )

Corollary 3.2.4. Let the minimization functional ¢,(.) to be positively

homogeneous, Dini upper differentiable at a point Xk (.)and (; K(.),)_c K(.),E) be an
optimal solution to the control problem (3.5)-(3.9). Then for any elements
X, €05he(0,) there exist vector functions p.(¢), K =1,2,..,N such that the

necessary optimality conditions 1)-5) in the theorem 3.2.2. hold.

Proof. Let take any element x, € 054, (0,). Then by using lemma 3.8 in [17], we
can write x, €05k, (0,). Next, if we use lemma 3.2 in [17], then we can put

Xy €050y ()_CK (;K)) . At least, if we follow the theorem 3.1.1. (relationship between

upper Frechet subdifferential and exhausters) and the theorem 3.2.2. (necessary
optimality condition in terms of exhausters), we can prove the result of the corollary

3.2.4.
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CONCLUSION

In thesis, results for nonsmooth optimal control of switching systems are
reported. The method takes advantage of the special structure of nonlinear optimal
switching control systems with smooth and nonsmooth minimizing functional.
Application of necessary optimality condition to the switching optimal control
problem is also reported. A further research topic can be carried on the development
of methods to search optimality conditions for the nonsmooth switching optimal
control problem for the differential and discrete inclusion, nonsmooth optimal
switching control problem with delay and neutral type.

We also investigated necessary optimality condition for discrete system in the
nonsmooth case. It is first time obtained optimality condition for given problem.

In thesis we tried to get necessary optimality conditions for the switching
optimal control problem in terms of exhausters and quasidifferentiable in the
Demyanov sense. By using necessary results about relationship Frechet upper
subdifferential, Quasidifferentiability and exhausters which was obtained by
Demyanov and Roshchina [15], Roshchina [18], and by using results connection
Gateaux subdifferentiable and Dini derivative which obtained by Demyanov and
Roshchina in [15], it is obtained necessary condition for switching control problem.
It is first time studied application quasidifferentiability and exhausters in the
switching optimal control problem. But there are some open problem, like Clarke
and Penot subdifferentiable in the switching optimal control problem, reduction of
the exhausters which it will be help for us to get more constructive optimality

condition for the switching control problem.
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