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YEMIN METNI

Yiiksek lisans tezi olarak sundugum ”Riesz Spaces on Real Continuous Func-
tions” adh gahsmanin tarafimdan bilimsel ahlak ve geleneklere aykiri disecek
bir yardima bagvurmaksizin yazildigini ve yararlandigim eserlerin referanslarda
gosterilenlerden olugtugunu, bunlara atif yapilarak yararlanilmig oldugunu belirtir
ve bunu onurumla dogrularim.
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OZET

SUREKLI REEL FONKSIYONLARIN RIESZ UZAYI

AYDIN, Emel

Yiiksek Lisans Tezi, Matematik Boliimiu
Tez Danigmant: Prof. Dr. Mehmet TERZILER
ikinci Tez Danigmani: Prof. Dr. Zafer ERCAN

Ocak 2012, 36 sayfa

Bu tez dért boliimden olugmaktadir. Ilk ii¢ boliim Riesz Uzay Teorisi’nin baz
temel sonuglarim ve sondaki ana boliim icin gerekli sonuglan igermektedir.

Son boliimiin amaci: Riesz uzaylarinin en ana ornegi C(X) uzaylandir. Sézle
ifade edersek, topolojik bir X uzay: icin, gercel degerli siirekli fonksiyon uzay-
lardir. Tyi bilinir ki, diizenli tam Riesz uzayi, eger Sirali Unit’e sahipse, kompakt
bir Hausdorff uzay1 olan X i¢in C(X) uzay: olarak da gosterilebilir. Bu Kaku-
tani Gosterilim Teorisi olarak bilinir. Son boliimde, Kakutani Gosterilim Teoremi,
Montalvo, F., Pulgarin, A., Requejo, B. (2006). siirekli gercel fonksiyonlarin Riesz
uzayt makalesinde genellestirilmigtir. Temel olarak, baz1 6zellikler altinda Riesz
uzayl, baz1 kompakt olmasi gerekmeyen topolojik X uzaylan igin, C(X) uzay:
olarak gosterilebilir.

Anahtar Kelimeler: Siral Vektor Uzaylari, Kafes, Riesz Uzayi, Riesz Uzayinda

Idealler, Riesz Uzayinda Hull-Kernel Topoloji, e-uniformly complete, e-semisimple,
e-separating, 2-universally e-complete.
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ABSTRACT

RIESZ SPACES OF REAL CONTINUOUS FUNCTIONS

AYDIN, Emel

MSc. in Mathematics
Supervisor: Prof. Dr. Mehmet TERZILER
Co-Supervisor: Prof. Dr. Zafer ERCAN

January 2012, 36 pages

This thesis contains four chapters. The first three chapters contain some basic
results of the Riesz Spaces Theory and some results which are necessary for the
last main chapter.

The aim of the last chapter: One of the main example of Riesz spaces are C(X)-
spaces, namely the space of real valued continuous functions on a topological space
X. It is well known that a uniformly complete Riesz space can be represented as
C(X)-space for some compact Hausdorff space if the Riesz space has an order unit.
This is known as Kakutani Representation Theorem. In the last chapter, Kakutani
Representation Theorem is generalized, via the paper Montalvo, F., Pulgarin, A.,
Requejo, B. (2006). Riesz spaces of real continuous functions.

Mainly, it will be shown that under certain conditions a Riesz space can be
represented as C(X)-space for some topological space X, which is not necessarily
compact. ‘

Key words: Ordered Vector Space, Lattice, Riesz Space, Ideals in Riesz
Space, Hull-Kernel Topology on Riesz Space, e-uniformly complete, e-semisimple,
e-separating, 2-universally e-complete.
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Introduction

Throughout X denotes a completely regular Hausdorff space and C(X) the set
of real continuous functions on X. A characterization topology has been recently
obtained in [12]. In this thesis we use some methods to characterize C(X) at the
level of the Archimedean Riesz spaces. The first and the most celebrated result
in this direction was due to Yosida [16] in 1942: An Archimedean Riesz Space
E is isomorphic to C(K) for some compact Hausdorff space K if and only if E
contains a strong order unit e > 0 for which it is uniformly closed. On spite of the
numerous contributions realized, a very little effort has been made to extend this
theory for more general topological spaces. Concretely, the unique approach that
we have been able to find in the literature fort he completely regular case is that
of Xiong [15] in 1989, although the solution is ”external” in character requiring
a very strong assumption (recall that by ”internal” we mean either arithmetic
conditions or assertions about certain subspaces). Supposing that an Archimedean
Riesz space I contains a weak order unit e > 0, we define in an internal way to
be e-uniformly complete and e-semisimple in order to represent E as a uniformly
closed Riesz subspace of C(X) for a convenient completely regular Hausdorff space
X. Moreover, the space E* of bounded elements of E is isomorphic to C(K) for
some compact Hausdorff space K. The main task in the paper consist in finding
internal conditions for C*(X) and C(K) to be isomorphic. We introduce the notion
of e-separation to this aim. We conclude, by using an interesting property called
2-universal e-completeness which is closely related with to be E inverse-closed in

C(X).



Chapter 1

Riesz Spaces

1.1 Vector Spaces

In this section we will give the definition of real vector spaces.

Definition 1.1.1 A real vector space is a triple (X, +, -) where X is a non-empty
set, "+ : X x X — X7 and 7 : Rx X — X7 are functions satisfying the following
aTioms:

We write x +y and rx instead of +(z, y) and -(r, z), respectively.

1) For each z, y, z € X i.e, (X, +) is an abelian group. We have:
a) z +y =y + z (commutative under addition);

b) (z+y) +z=x+ (y+ 2) (associative under addition);
c) There ezists an element 0 € L , called zero element such that z +0 =z ;
d) There ezists an element —z, called the negative of x, such that
z+ (—z)=0;
2) o, f € R a) a(Bz) = (aB)z (associative under multiplication);
b) 1z =z (There is a scalar with multiplicative identity).
3) a) (a+ B)z = ax + Pz (distributive over scalars);
b) a(z + y) = az + ay (distributive over vectors).

The fundemantal examples of the vector spaces are function spaces, for exam-
ple; the set of real valued functions on a set X is a vector space under the following
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operations.

(f+9)(@) = f2) +g(z) and (rf)(z)=rf(=).

In particular the sequence spaces I, ¢, ¢, I, spaces are examples of vector spaces.

1.2 Partially Ordered Sets

In this section we introduce the definition of a partial order on X.

Definition 1.2.1 Let X be a non-empty set and < C X x X. (We write z < y
whenever (z, y) € <). < is called a partial order on X if:

Ve, y, z€ X
1) z <z (reflexive);
ii) z <y and yRz implies z < z (< is transitive );
ili) z <y and y < z implies x =y (< is anti-symmetric).
The set X, equipped with a partial order, is called a péftially ordered set.

Example 1.2.1 Let X be a non-empty set. Then X zs a partially ordered set
under the following order:
<Ly &r=y.

Example 1.2.2 The usual order on R is a partial order.

Example 1.2.3 Let X be a non-empty set and E be the set of real valued functions
on X. X s a partially ordered set under the order

f<g flz)<g(z) in R,VzeR

Theorem 1.2.1 Let (X, <) be a partially ordered set. Then, for each nonempty
subset Y of X, (Y, <y) is a partially ordered set, where

<y=<nN (Y X Y),
that is, <y 1s the restriction of < into Y.

In the other sections some different examples of partially ordered sets will be given.
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Definition 1.2.2 Let X be a partially ordered set. A subset A of X is bounded
above if there ezists x € A such that a < z for each a € A. In this case, x is called
an upper bound of A. Similarly, A is called bounded below if there ezists z € X
satisfying x < a for each a € A and, in this case z is called a lower bound of A.

Definition 1.2.3 Let X be an ordered set and A C X.

An element x € X 1is called the least upper bound of A if z is an upper bound of
A and z < y for each upper bound y of A. In this case z called supremum of A
and it is denoted by sup A.

An element x € X 1is called the greatest lower bound of A if = is a lower bound of
A and y < z for each lower bound of A. In this case x called infimum of A and it
1s denoted by inf A.

In a partially ordered set X if z = sup A and z € A then z is called mazimum
of A. In this case we write z = max A. For eaxmple in R, max(0, 1] = 1, but there
is no maximum of the open interval (0,1).

If z = inf A and z € A then z is called minimum of A. In this case we write
z = min A. For eaxmple in R, min[0, 1] = 0, but there is no minimum of the open
interval (0, 1).

If v is the least upper bound of a subset A C E, then we may write

v:sup(A):\/z:sup{x:xeA}

z€A

If u is the greatest lower bound of A, then we will write

u:inf(A):/\z:inf{x:xeA}

z€A

Definition 1.2.4 An ordered set (E, <) is called lattice if for any two elements
z,y € E, sup{z, y} and inf{z, y} emist.

Example 1.2.4 Let X be a non-empty set.

(i) If L is the set of all subsets of L ordered by inclusion, then L is a lattice
which has X as the greatest element.

(i) Suppose that X is infinite. Let N be the collection of all subsets A of X
such that either A is finite or the complement A® of A is finite. It is easy
to see that N is a lattice. Now consider a subset Y C X such that Y ¢ N.
B = {{z} : z € Y} is a subset of N which does not have any least upper
bound in N 4



1.3 Ordered Vector Spaces

Definition 1.3.1 Let E be a vector space and < be a partial order on E. E is
called an ordered vector space if the following axiom is satisfied:

r<y=ar+z<ay+z Va>0,z€E.
Example 1.3.1 The real numbers with the usual order is an ordered vector space.

Example 1.3.2 Let E be the set of polynomials on [0,1]. Under the pointwise
order is E an ordered vector space, but it is not a lattice.

Example 1.3.3 Let C([0,1]) be the set of real valued continuous functions on
[0,1]. Under the pointwise order C(|0,1]) is an ordered vector space and it is a
lattice.

Example 1.3.4 Let E be a vector space. And let L(E,R) be the set of linear
functionals on E. (A linear functional f on E is function from E into R such that

flax + By) = af(z)+ Bf(y), for allz, y € E.)

Then L(E,R) is an ordered vector space under the pointwise order.

1.4 Riesz Space

In 1928, at the International Mathematical Congress in Bologna, Italy, F. Riesz
triggered the inverstigation of what is today called the theory of Riesz spaces.
Soon after, in the mid-thirties, H. Freudenthal and L. V. Kantorovich indepently
set up the axiomatic foundation and derived a number of properties dealing with
the lattice structure of Riesz spaces. From then on the growth of the subject was
rapid. In the forties and early fifties the Japanese school led by H. Nakano, T.
Ogasawara, K. Yosida and the Russian school, let by L. V. Kantorovich, A. I
Judin, and B. Z. Vulikh, made fundamental contributions.

Definition 1.4.1 Let E be an ordered vector space with the additional property.
If (E, <) is a lattice, then E is called a Riesz space (or vector lattice).

Example 1.4.1 Let R*(n > 1) be the real linear space of all real n-tuples
f=, -, fa)

with coordinatewise addition and multiplication by real numbers. If we define that
f < g means that fi < gx holds for 1 < k < n, then R™ is a Riesz space with
respect to this iniroduced partial ordering.
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Example 1.4.2 If L is the real linear space of all real finite valued functions f(z)
on the arbitrary non-empty point set X with pointwise addition and multiplication
by real constants, then L is a Riesz space with respect to the partial ordering in-
troduced by defining that f < g means that f(z) < g(z) holds for every x € X.

Example 1.4.3 Let C(X) be the vector space of all real continuous functions on
the topological space X. The space C(X) is partially ordered by defining that f < g
holds whenever f(z) < g(z) for all x € X. Indeed,

i f<r
( flz) < f(z) for all z € X ). (reflexive)

(i) f<gandg< f
(f(z) < g(z) and g(z) < f(z) for all x € X). Then f(z) = g(z), Vz € X.
So f = g (anti-symmetric)

(iii) f<gandg<h
(f(z) < g(z) and g(z) < h(x) for all z € X). Then f(z) < h(z), Vz € X.
So f < h (transitive)

And C(X) implies following azioms.
(i)
f<g= f(z) <g(z), Vz € X.
= f(z) + h(z) < g(z) + h(z), VA >0, Vz € X.
=f+h<g+h.
(i)
f>0=f(z)>0,Vz e X.

=af(z)>0,Vze X, a>0,
= af > 0.

Then C(X) is an ordered vector space.

Now, we should show that for f, g € C(X), sup{f, g} exzists in C(X). (Then
follows from the following inequality:

I(fVg)e) - (f VWl < If(=) = fW)l + lg(z) — 9w)])-
Hence C(X) is a Riesz space.



Example 1.4.4 A= {f|f :R = R, f(z) = az + b continuous}
A is an ordered vector space with pointwise ordering.
Let f(z) =1z, g(z) =—z€ A
sup{f(z), 9(z)} = f(z) Vg(z) =z V (~z) = |z], Vz € R
sup{f(z), g(z)} = |z| ¢ A

So A is not a Riesz space.

Example 1.4.5 Let X be a non-empty set and let B(X) be the collection of all
bounded real valued functions defined on X. It is a simple and well-known fact
that B(X) is a vector space which is ordered by the positive cone

B(X), ={f e B(X)|f(t) >0 for allt € X}

Thus f > g holds if and only if f — g € B(X);. Obviously,
(f v 9)(t) = max{f(t), g(t)} and (f A g)(t) = min{f(t), 9(t)}

for everyt € X and f, g € B(X). This shows that B(X) is a Riesz space.

Example 1.4.6 A function space is a vector space E of real valued functions on
a set §) such that for each pair f, x € E the functions

[/ V gl(w) : = max{f(w), g(w)} and [f A g](w) : = min{f(w), g(w)}

both belong to E. Clearly, every function space E with the pointwise ordering (i.e.
f < g holds in E iff f(w) < g(w) for allw € Q) is a Riesz space.

Theorem 1.4.1 For arbitrary elements z, y, z of a Riesz space, the following
identities hold:( Aliprantis, 1985)

Lzvy=—[—2)A(-y)] and z Ay = —[(=2) V (-y)];
2. z4+y=(xAy)+ (zVy)
.24+ @wVva)=(+y)V(z+2)andz+(yAz)=(z+y) A(z+2); and

4. a(z Vy) = (az) V (ay) and a(z Ay) = (az) A (ay) for a > 0.
7




Proof: (1) Fromz <z Vyandy <z Vy we get
—(zVy)< -z and — (zVy) < -y, andso — (zVy) < (—z) A (—y).
On the other hand, if
—z>zand —y >z then —z2>zand —z>y,

and hence —z > z Vy. That is, —(z V y) > z holds, which shows that —(z V) is
the infimum of the set {—z, — y}. Thus,

(—z) A (~y) = —(z Vy).

To get the identify for z A y replace z by —z and y by ~y in the above proven
identity.

(2) From z Ay < y it follows that z < x4y —z Ay, and similarly y < T+y—zAy.
Hence,

zVy<z+y—zAy,andsozAy+zVy<z+y.
On the other hand, from y < 2V y we see that z +y —z Vy < z, and similarly,
| zt+y<zAy+zVy,
and the identity follows.
(3) Clearly, z+y<z+yVzandz+z<z+7yVz and thus
(z+y)VE+z2)<z+yVe

- On the other hand, we have y = —z + (z +y) < —z+ (z + y) V (z + 2), and
likewise

z<—z+(x+y)V(r+z),andsoyVz< —z+(z+y)V(z+2).
Therefore,
z+yVz<(z+y)Viz+2)

also holds, and thus
z+yVz=(x+y)V(z+=2).

The other identity can be proven in a similar manner.
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(4) Fix o > 0.
Clearly, (az) V (ay) < alz Vy). If ar < z and ay < z both hold, then
r<otzandy < alz

also hold, and so zVy < a 'z

This implies that a(z V y) < z, which shows that a(z V y) is the supremum of
the set {az, ay}.

Therefore,

(az) V (ay) = a(z Vy).

The other identity can be proven similarly.[]

If A is a subset of a Riesz space for which sup A exists, then
(a) inf(—A) exists and
inf(—A) = —sup 4;

(b) the supremum of the set z + A := {z +a : a € A} exists and
sup(z + A) = x + sup A4;
(c) for each o > 0 the supremum of the set a4 := {aa : a € A} exists and
sup(aA) = asup A.

Let E be a Riesz space. The set {z € E : z > 0} is called positive cone of E
and it is denoted by E,. In particular for each x € F, we define

tt:=zV0,z7 :==(~z) V0, and |z| := z V (—z).

The element z* is called the positive part, = the negative part, and |z| the absolute
value of . The vectors 2, 2™, and |z| satisfy the following important properties.

Theorem 1.4.2 (Aliprantis, 1985) If x is an element of a Riesz space, then we
have

l.z=zgt—z";
2. lz| =2t +2; and

3.zt Az =0.



Moreover, the decomposition in (1) is unique in the sense that if T =y —z
holds with y A z =0, then y = z* and z = z~.

Proof: (1) From Theorem 1.4.1 we see that
z=z4+0=zV0+zA0=2V0—(—z)V0=2z"—2z".
(2) Using Theorem 1.4.1 and (1), we get

lz| =2V (—2z)=(2z) VO—z=2(zV0) -z
=2zt —z=2z" - (zt —z7 )=zt + 2.

(3) Note that

gt AT =@ -z )AN0+z" =z A0+2”
=—[(-z)VO]+z~ =—z" +2~ =0.

For the last part, let £ =y — z with y A z = 0. Then by Theorem 1.4.1 we have
st =(y—2)V0=yVz—z=(y+z—yAz)—z2=y.
Similarly, z= = z. [

Observe that if T : E — F is a positive operator between two Riesz spaces,
then from +z < |z| we see that +Tz < T|z]|, and so

ITa| < Tal

holds for all z € F.
In terms of the positive part, identity in Theorem 1.4.1(2) takes the following use-

ful form:
z= -y +zAy.
(To see this, note that

z=zVy—y+zAy=(x—-y)Vy—y)+zAy
=xz—-y)VO+zAy=(z—y)t+z Ay

Regarding the absolute value, we have the following useful identities.)
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Theorem 1.4.3 (Aliprantis, 1985) If z and y are arbitrary elements in a Riesz
space, then we have

1. xVy:%(zc+y+|x——y]) and:v/\y:%(ery—lx—yl);
2 |lz—yl=zVy—zAy;
3. |z V Iyl = 3(lz + y| + |z — y|);

4 |z Ayl = 3llz + 3yl - |z — y].
Proof: (1) Note that

c+yt+lz—yl=r+y+(@z-y)V(y—z)
=[@+y)+E-yY)ViEz+y) +y—1)]
=(2z) V (2y) = 2(z V).

(2)Subtract the two identities in (1).

(3) Using (1), we have
le+yl+le -yl =+y V-2 -y +|z -yl

=letytlz—yllvi-z—y+]z -yl
=2([z vyl vi(-2) Vv (~y)])
=2z v (=2)]VIyV(-y)
= 2(|z[ v [y])-

(4) Using (1) and (3), we see that

llz+yl =z =yl =2(z+yl V|z — y)) - (lz +y| + |z — y])

= 2(lz] + lyl) - 2(I=] v |y])
= 2(|z[ A ly]).0

It should be noted that the formulas in (1) show that an ordered vector space
is a Riesz space if and only if

|z| =2V (~x)
exists for each z.

11



In a Riesz space, two clements z and y are said to be disjoint (in symbols,
z L y) whenever |z| Aly| = 0 holds. Note that by Theorem 4.2.1(4) we have z L y
if and only if |z + y| = |z — y|. Two subsets A and B of a Riesz space are called
disjoint (denoted by A L B) whenever a L b holds for all a € A and all b € B.
If A is a non-empty subset of a Riesz space E, then its disjoint complement A% is
defined by

At :={zcE:x Lyforalyc A}.
We write A% for (A%)%. Note that AN A¢ = {0}.

If A and B are subsets of a Riesz space, then we shall write

|A] = {lal : a € A};

At :={a*:a € A};

A7 :={a" :a € A}
AVB:={aVb:a€ Aandbe B};
AANB:={aAb:a€ Aandbe B};
zVA:={zVa:ac€ A}
zNA:={zANa:a€ A}

The next theorem tells us that every Riesz space satisfies the infinite distribu-
tive law.

Theorem 1.4.4 (Aliprantis, 1985) Let A be non-empty subset of a Riesz space.
If sup A exists, then sup(z A A) ezists for each z and

sup(z A A) = z A sup A.
Similarly, if inf A exists, then inf(x V A) ezists for each x and
inf(z vV A) =z Vinf A.

Proof: Assume that sup A exists, and let y = sup A. Clearly, x Aa < z Ay holds
for alla € A. Now let z Aa < z for all a € A. Since for each a € A we have

a=zANa+zrzVa-z<z+xVYy—=1,

it follows that y < z4+z Vy — z.
12



That is, zAy =z +y— 2z Vy < z holds, and this shows that sup(z A A) exists
and sup(z A A) = z Asup A holds. The other statement can be proven in a similar
manner.l]

The next result includes most of the major inequalities that are used exten-
sively.

Theorem 1.4.5 (Aliprantis, 1985) For arbitrary elements z, y and z in a Riesz
space the following inequalities hold:

L |lz] = Jyl| < |z +y| < |z| + |y| (the triangle inequality);
2. lzvz—yVzel<|z—ylandz Az—y Az < |z —yl;
3. If in addition z, y and z are all positive, then

zAy+z)<zAy+zAz

Proof: (1) Clearly, z +y < |z| + |y| and —z — y < |z| + |y| both hold. Thus,
lz+yl=(z+y)V(-z—y) <|z|+yl.

From this we see that |z| = |(z +y) —~y| < |z +y| +y and so |z| — |y| < |z + y|.
Similarly, |y| — |z| < |z 4+ y| and hence ||z| — |y|| < |z + y| also holds.

(2) Note that
gVz—yVz=[z-2)V0+2z]—[(y—2) VO + 2]
=@-2"-(y—-2)"
=E-y+y-2" - -2)*
<le-9)"+y-21-@-2*
=@-y)*<lz—yl

Similarly, yVz~2zVz < |z —y|andso [z Vz—yV 2| < |z —y|. The other
inequality can be proven in a similar manner.

(3) Let a=z A (y + z). Then
c<zanda<y+zandsoa—z<a<z

and a — z < y from which it follows that a — 2 < z Ay. Thus,a—zAy < z and in
viewofa—z Ay <a <z, weseethat a—z Ay <z Az Thatis,a<zAy+zAz
holds, as required. []
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In particular, note that in a Riesz space we have

lz¥ -yt < |z -yl

1.5 Archimedean Space
Definition 1.5.1 The Riesz space E is said to be Archimedean if
1
inf ~x =0
U
holds for every x € E*.

Corollary 1.5.1 (Zaanen, 1997) Let E be a Riesz space.

(i) The space E is Archimedean if and only if it is true for every u € E*
that inf{e,u :n =1, 2, ...} =0 holds for any sequence (£,) of non-negative real
numbers satisfying €, — 0.

(ii) The space E is an Archimedean if and only if given u and v in Et such
that 0 < nv < wu forn=1,2, ... it follows that v = 0. In other words, for any
u >0, v =0, the sequence (nv:n=1, 2, ...) is not bounded above.

Example 1.5.1 R? is an Archimedean space with coordinatewise ordering.
Let (0,, b); (‘TOJ yﬂ) € R?

1
0<(a,b) < - (2o, %), Vn €N

1
0<(a, b) Sinf(;b' (zo, %0)) =0, Vn €N
Soa,b=0

But R? is not an Archimedean space with lezicographical ordering. i.e.
(z1,11) < (T2,12) = 31 < 2o o1 (21 =22 and y1 < ya)
(0, 1), (1, 0) e R?,
(0, 0) < (0, 1) < (1, 0), Vn € N or (0, 0) < (0, 1) < .71; (1,0), Vn € N
Then inf(Z (1, 0)) = (0, 0)

But (0, 1) # (0, 0)
14



Example 1.5.2 C|0, 1] is an Archimedean space. The ordering is given by
f<g:e f(z) <g(z), Vz €0, 1]
Let f, g€ C[0, 1] = {f|f : X — R continuous}

nf<g=fz) < - gle), Ve, Vo e o, 1]

= f(z) =0, Vz € [0, 1]
= f=0

Example 1.5.3 Assume that n > 2. We define the lexicographical order on R™
in the following way.

z= (1, ., Tn) <(W1,--, Yn) =¥
if there exzists k € {0, ..., n} such that
T1=Y1, -, Tk =Yk and Trip1 < Yy

It can easily be checked that R™ equipped with this order is a Riesz space. Further,
it is totally ordered such that the order is non-Archimedean: If

z=1(0,1,0, ...) andy=(1,0, ..., 0),

then nx <y for every n € N.

1.6 TUniformly Convergent

Definition 1.6.1 A sequence (z,) in a Riesz space is said to be decreasing (in
symbols, T, | ) whenever o« > B implies z, < z5. The notation x, | * means that
Zo 4 and inf(z,) = x both hold.

Definition 1.6.2 It is said that the sequence {f,} in the Riesz space L is order
convergent to the element f € L whenever there exists a sequence p, | 0 in L such
that |f — fn| < pn holds for all n. This will be denoted by f, — f.

Definition 1.6.3 A sequence (f,) in an Archimedean Riesz space E with an ele-
ment e > 0 of E is said to be e-uniformly Cauchy if for each € > 0 there exists
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N € N such that |f, — fm| < €e for all n, m > N. The sequence {fn}n is
e-uniformly convergent to some f € F if for each € > 0 there ezists N € N such
that |f, — f| < ee for alln > N.

E said to be e-uniformly complete when
(I) Each e-uniformly Cauchy sequence of E is e-uniformly convergent to some el-
ement f € I.

A subset D of E is said to be e-uniformly dense whenever for each f € E, there
exists a sequence in D which is e-uniformly convergent to f.

In C(X) to be l-uniformly Cauchy, 1-uniformly convergent, 1-uniformly com-
plete and 1-uniformly dense, coincides with the classical definitions of to be uni-
formly Cauchy, uniformly convergent, uniformly complete and uniformly dense,
respectively. Furthermore, the set C(X)* of 1-bounded elements of C(X) coin-
cides with the space C*(X) of bounded functions of C(X), and both C(X) and
C*(X) are uniformly complete.

1.7 Order Unit and Weak Order Unit

Definition 1.7.1 An element e > 0 in a Riesz space E is said to be an order unit
whenever for each x € E there ezists some X > 0 with |z] < Ae.

Definition 1.7.2 An element ¢ > 0 of an Archimedean Riesz space E is said to

be a weak order unit if
|fI Ae=0 implies f =0

Theorem 1.7.1 Let F be a vector lattice and e € E be an order unit of E. Then
e is a weak order unit.

Proof: Let £ > 0 be an element of E.

There exist A > 0 such that z < Xe. (e is an order unit)
TAz < ez
z<deANz=0zANe=0=>XeAz=0)
0<z<0

z=0
Hence e is a weak order unit.
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Example 1.7.1 C(0, 1) = {f|f : (0, 1) = R continuous functions} is a Riesz
space under the pointwise order.

There is no order unit of C(0, 1). Indeed, suppose that e € C(0, 1). We can
suppose that 0 < e for each x € (0, 1). (Otherwise e can be repliced by e + 1)

Let f € C(0, 1) be defined by f(z) = egf). Then there exist A > 0 such that

f < e

Thus for each x € (0, 1) , f(z) = 9%”) < Xe(z). This implies £ < X for each
z € (0, 1).

So there is no order unit of C(0, 1).
On the other hand, the function e(x) =1 is a weak order unit of C(0, 1).

C(X), endowed with the pointwise order, is an Archimedean Riesz space with
the weak order unit 1.

Given an Archimedean Riesz space E with a weak order unit e > 0, the set

E* ={f € F:|f| < ne for some n € N}

of e-bounded elements of E is a Riesz subspace of E also with the weak order unit
e.

1.8 (C(X) Space

Definition 1.8.1 C(X) is a set of real continuous functions. We denote that
C(X) ={f|f : X = R continuous}.

Theorem 1.8.1 The Riesz spaces C(X) is uniformly complete. (Zaanen, 1971)

Proof: Let0< fy € C(X) andlet (f,:n=1,2, ...) be an fy-uniform Cauchy
sequence, i.e., for every € > 0 there exists a natural number ny = ny(g) such that

|fm(2) = fal2)| < £fo(), for z € X5 m, n > no.

It follows that the pointwise limit f(z) = lim, 00 fn(z) exists for all z € X. In
order to prove that f is continuous, fix zg € X and € > 0, and take a neighborhood
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V of 7y such that | fr, (2o)— fn,| < e holdsfor ally € V and | fn, (Z0)—fro (¥)] < €
holds for all y € V and ng = ng(e). It follows now from

[f (@0) = FW)] < | fna(0) = Jno ()] + e{fo(@0) + fo(y)} < €+ e{2fo(z0) + €}

holding for all y € V, that f is continuous. This shows that C(X) is uniformly
complete. []
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Chapter 2

Ideals in Riesz Spaces

2.1 Ideals

Definition 2.1.1 (i) A linear subspace V of L is called A Riesz subspace if
[, g€V implies fVvgeV.

(ii) A linear subspace A of L is called an order ideal (or ideal) if f € A, g € L
and |g| < |f| implies g € A.

(iii) An ideal B of L is called a band if it follows from
D c B, D+#0 and fy = supD

existing in L that f € B.

It is obvious that a band is an ideal and that an ideal is a Riesz subspace.
Example 2.1.1 R? with ordering by

(#1,y1) < (Z2,92) © (21 < 22) or (21 = 22 and y; < y2)

Let B = {(0, z) ¢ R? |, Vz € R}
Let take (0, z), (0, y) € B.
Firstly we should show that B is a subspace of R%. To show that

(0, ) + (0, y) = (0, z + )
a(0, z) = (0, ax)
(0, z) e B=|(0, z)| = (0, z) V (0, — x)
= (0, |z]) € B

Then |(0, z)| € B.
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So B is a subspace of R2.

Now, we should show that B is an ideal in R?.

0,0<g<f,(feB)
(0,0)<g=<(0, =)

According to ordering, g should be like g = (0, z), z € R.
Hence g € B.

So B is an ideal in R2.

Let take D C B such that D = {(0,y) : -1 <y < -3}.

supD = (0, — 1)

z<(0, —1),VzeD
a < (2o, %0), YVa € D
1 ,
0, ~1- 1)< (an, w)
(07 - 1) S (IOJ y()); Vn € N

Hence D is a band in R2.

Definition 2.1.2 The smallest ideal including a given non-empty subset D of E
is called the ideal generated by D. If D consists of one-element f, the ideal gener-
ated by f is called a principal ideal.

The ideal Ap generated by the non-empty subset D can easily be described ez-
plicity. Indeed, Ap consists of all g € E such that

lg] < ]alfll +eeet lanf'n.l

holds for appropriate fy, ..., fn € D and appropriate real a4, ..., a, where n is
also variable, of course.

In particular, the principal ideal generated by the element f € E consists of all g
satisfying |g| < |af| for an appropriate real a.
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2.2 Maximal Ideals

Definition 2.2.1 An ideal I in L is said to be proper if I # L. A maximal ideal
18 a proper ideal that is mazimal among the proper ideals.

Lemma 2.2.1 Let E be an Archimedean Riesz space with a weak order unit e > 0.
If M is a mazimal ideal of E which does not contain e, then every element of the
quotient space E/M is a real multiple of [e] (= class of the element e in the
quotient space). As a consequence, the real vector space E[M is isomorphic to R
by identifying [e] with 1 € R. (Montalvo, 2009)

Remark: Given a homomorphism z € Hom,.(E, R) the set
M, ={fe€E:z(f) =0}

is a vector subspace of E because z is linear. Since equality z(|f]) = |z(f)| holds,
it follows that f € M, if and only if | f| € M,. Hence, if f € M, and |g| < |f], then
0 < z(lg]) < z(|f]) = 0 and therefore |g| € M,, which implies g € M,. Thus, M,
becomes an ideal of E. Furthermore, e ¢ M, and E/M, is isomorphic to R, hence
M, is maximal. On the other hand, if we consider a maximal ideal M of E which
does not contain e, then the quotient morphism 7, : £ — E/M = R belongs to
Hom,(E, R). Thus, there is a one-to-one correspondence between Hom,(E, R) and
the set consisting in maximal ideals of E which does not contain e. Accordingly,
the kernel of the Riesz representation is the set consisting in the intersection of all
the maximal ideals of E' which do not contain e.

2.3 Maximal Ideals of C'(X)

Example 2.3.1 Let X be a topological space.
C(X)={f|f: X = R continuous}
Let A(z) = {f € C(X) : f(zo) = 0}
We should check that, A is an ideal in C(X). For this, we should show that:
0<lgl<I|fl; feA=>geA?
feA=|fle A= |f|(z0) =0

= |gl(z0) = 0

=g€A
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Hence A is an ideal.
So, is it mazimal ideal?
Let A C B is an ideal.
Let f € B/A=> f(zo) =1 andlet a € A= g(zy) =0

Then (f —e)(zp) = f(zg) —e(zo) =0=(f —e) € A= (f —e) € B.
Letf —e=geB=e=f—g
=e€B
Let h € C(X).

|h| < |lhlle , B =C(X). Then A is mazimal ideal.
f: X = RifX is compact and f is continuous then C(X) has mazimum value.
Let X be a compact Hausdorff space. Then
{M|M is a mazimal ideal } = {{f € C(X)|f(z) =0} :z € X}
If M ¢ C(X) is mazimal ideal, then Ixy € X such that

M ={f € C(X)|f(zo) = 0}
Let M C C(X) is a mazimal ideal. Suppose that for each
r€X ,3fs€M, fi(z) >0
Vz, 30, C X is open, z € Oy and Va € O, 0 < f.(a)
X =UpexOy, 31, T2, ..., Tn € X ; X = Ui 0y,
h=fo+ fort- + fo, V€ X, h(t) > 07
h(t) = fu, (&) + fuo(8) + - + fo, () > 0 because 30; — t € O;
feC(X), Vz, f(z) >0, 3 > 0 such that f(z) > ¢, Vz € X

Since X is compact, there ezists mingex f(z) = f(zo) > 0.
We choose € = f(zq) orVn €N, O, = {z € X : f(z) > 3}

X =U 0t =0, C0n1 X=0,,neN, f(z) > 1
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2.4 Prime Ideal

Definition 2.4.1 A proper ideal I of a vector lattice E is called prime if z € E,
yeEFEandxz ANy cl impliesx el oryel

Theorem 2.4.1 (Zaanen, 1971) (i) The ideal P is prime if and only if, for any
ideals A, B satisfying AN B C P, one at least of AC P or B C P holds.

(ii) If zo € X and P is an ideal in X, mazimal with respect to the property of
not containing o (i.e. any ideal P C Q such that xy is no member of Q satisfies
Q = P), then P is prime.

(ii) Fvery mazimal ideal in X is prime.

Proof: (i) Let P be prime, and let A, B be ideals such that ANB C P. If neither
A C P nor B C P holds, there exists elements z € A and y € B such that z and
y are no members of P. It follows that

TAye ANBCP,soxePoryeP

since P is prime. Contradiction. Hence, one at least of A C P or B C P holds.

Conversely, let the ideal P have the property that if A, B are ideals such that
ANBC P,then AC Por BC P.

We have to prove that z Ay € P implies z € P or y € P. To this end, let A
and B be the ideals generated by z and y respectively, ie., A = {z: z < z} and
B={z:z<y}.

Then ANB={z:2<zAy},andso ANB C P on account of z Ay € P. It
follows that AC Por BC P,soz € Pory¢€ P.

(ii) Let 2o € X, and P is an ideal in X maximal with respect to the property of
not containing zy. If P is not prime, there exist elements y, z not in P, such that

yAzeP.

The element z, is in the ideal generated by P and y, so g = p; V y; for some
p1 € P and some y; < y. Similarly, z; is in the ideal generated by P and z, so

Zo = pa V 21 for some p, € P and some z; < z. Setting p3 = p; V p,, we have
o < p3Vy and 7o < p3 V 2, S0

Zg < (p3Vy1)/\(p3V53):p3V(y1/\z1) € P,



which implies zy € P, thus contradicting out hypotheses. It follows that P is
prime.

(iii) If P is a maximal ideal, and zo is any element of X not in P, then P is

maximal with respect to the property of nor containing xzg, so P is prime by part
(ii). O
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Chapter 3

Hull-Kernel Topology on Riesz
Spaces

3.1 Riesz Homomorphism

Definition 3.1.1 An operator T : E — F between two Riesz spaces is said to be
a lattice (or Riesz) homomorphism whenever

T(zVy)=T(z)VvT(y)
holds for all x, y € E.
Observe that every lattice homomorphism T is necessarily a positive operator.

(Ifz € E*, thenT(z) = T'(zV0) =T (z)vT(0) = [T(z)]* > 0holdsin F.) Also, it
is important to note that the range of a lattice homomorphism is a Riesz subspace.

Given an Archimedean Riesz space E with a weak order unit e > 0 we may
consider the set

Hom.(E, R) = {z : F — R Riesz homomorphism : z(e) = 1}.

3.2 Kernel of Riesz Homomorphism

Theorem 3.2.1 If A is an ideal in the Riesz space E, the quotient space E/A is
a Riesz space with respect to the ordering defined by given [f] and [g] in E/A, we
shall write [f] < [g] whenever there exist elements f1 € [f] and g1 € [g] satisfying
f1 < g1.(Zaanen, 1997)

Proof: We show first that F/A is an ordered vector space. To do this we have to

prove the following statements:

(i) It is clear that [f] < [f] for every [f].
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(i) If [f] < [g] and [g] < [A], let f1 in [f], g1 in [g] and hy in [A] satisfy fi < g
and g, < hy. Then

fi<gi=g2+ (91— g2) < hi+ (g1 — g2)-
Since g1 — g2 € A, we have hy + (91 — g2) € [h], which shows that [f] < [h].

(iii) Let [f] < [g] as well as [g] < [f]. Then there exist fi, fo in [f] and g1, go in
[g] such that f; < g; and f, < g5. It follows that

0<g—fi<(g—fi)+(fa—g2) = (fa— f1) + (g1 — g2) € A,
so g — f1 € A e, [f] =[g]
We have a partial ordering in E/A, we prove now that the ordering is compati-

ble with the vector space structure. It is obvious that [f] < [g] implies o[f] < a[g]
for every « > 0. Finally, to show that [f] < [g] implies

[f1+[h] < [g] + [A],
choose f € [f] and g € [g] satisfying f < g and choose h € [h] arbitrarily. Then
f+h<g+h,so[f+h]<][g+h]
ie., [f]+[R] < [g] + [Al.

It remains to show that E/A is a Riesz space with respect to the ordering.
Precisely, we shall prove that [f] V [g] exists for all [f], [g] and equal to [f V g]. It
is evident that [f V g] > [f] as well as > [g], so it will be sufficient to show that
any upper bound [A] of [f] and [g] satisfies [h] > [f V g]. Given that [h] is an upper
bound, choose elements f, g, b in [f], [g], [] respectively. Then there exist q;, g,
in A such that

h>f+qand h> g+ q,

so for ¢ =q; AN g, € A we have h > f + q and h > g + q. Therefore,

h>(f+gVig+ag)=(fVyg) +a

Since ¢ € A, this shows that [h] > [f V g], as desired. Note that it follows from
f+g=(fVg)+(fAg) that [f] A[g] exists and satisfies

[fIAlg] = [f A g]
The Riesz space F/A is called the quotient Riesz space of E modulo the ideal
A. The mapping f — [f] is a Riesz homomorphism of E onto E/A and A is the
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kernel of the homomorphism. This shows that every quotient space of E modulo
some ideals is a Riesz homomorphic image of E.

Conversely, let T be a Riesz homomorphism of the Riesz space E into the
Riesz space F. The image T'(E) of E is a Riesz subspace of F, so T is a Riesz
homomorphism onto the Riesz space T'(E). Let A be the kernel of 7. Then A is
an ideal in E, and the mapping [f] — T'f is now a Riesz isomorphism of £/A onto
T(F). Hence E/A and T'(E) are Riesz isomorphic.

This shows that every Riesz homomorphic image of a Riesz space E is Riesz
isomorphic to the quotient space of F modulo the kernel of the homomorphism.

3.3 Hull-Kernel Topology

Definition 3.3.1 Let M denote the set of all mazimal ideals of E. For any subset
A of EY put
A ={MeM:Ac M}

There exists a topology on M such that the sets A2(A C E%) are just the
closed subsets of M.
This topology is called the hull-kernel topology.

We shall denote by Spec.(E) the set Hom,(F, R) equipped with the initial
topology defined by E, that is, the weakest topology making continuous the func-
tions

f: Spec.(E) - R, z — f(z) =z(f) (f € E).

The mapping F — C(Spec.(E)), f — f is called the Riesz representation of
E, and it is a Riesz homomorphism which maps e into 1.

It is well-known that the topological space Spec.(E) is a real compact space
(in particular, completely regular and Hausdorff).

On Hom,(E, R) it is also possible to consider the hull-kernel topology by choos-
ing all sets of the form {coz(f) : f € E} as a subbase for such a topology (here

coz(f) = {z € Hom.(E, R) : z(f) # 0}
denotes the cozero-set of the element f € FE). Since

coz(fi) N ...Ncoz(fn) = coz(|fi]| A ... Alfal)
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for any fi, ..., fn € E, then {coz(f) : f € E} becomes a base for the hull-kernel
topology. Next Lemma shows that both topologies coincide.

Lemma 3.3.1 If E is an Archimedean Riesz space with a weak order unit e > 0,
then both the initial topology defined by E and the hull-kernel topology coincide on
Hom.(E, R). ((Montalvo, 2009)

Proof: Fiven f € F and «, 8 € R, a subbasic open set in Spec.(E) is

U ={z € Spec.(E) : a < z(f) < 8}
= {z € Spec(E) : o(f) Vo # a} N {z € Spec.(E) : z(f) V B # B}
= coz(f V ae — ae) Ncoz(f A Be — Be)
= coz(|f Vae —ae| A|f A Be — Be|)

and clearly |f Vae —ae|A|f Afe—Bel € E

The following result is due to [16].

Lemma 3.3.2 Let E be an Archimedean Riesz space with a weak order unit e > 0.
The following statements hold: '

(i) Spece(E*) is a non-empty compact Hausdorff space;
(ii) The Riesz representation E* — C(Spec.(E*)) is injective,

(i) The image of E* under its Riesz representation is uniformly dense in

C(Spec.(E*)).
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Chapter 4

Representation of Riesz spaces as
C(K) space

In this chapter, we will show that:

An Archimedean Rieesz space F is isomorphic to C(X) for some completely
regular Hausdorff space X if and only if there exists a weak order unit e > 0
for which F is e-uniformly complete, e-semisimple, e-separating and 2-universally
e-complete.

4.1 e-semisimplicity

Definition 4.1.1 Let ¥ be an Archimedean Riesz space with a weak order unit
e > 0. F is colled e-semisimple if

(II) The intersection of all the mazimal ideals of E which do not contain e is 0.

To be F e-semisimple means that the image of E under the Riesz representation
E — C(Spec.(F)) is a Riesz subspace of C(Spec.(E)) isomorphic to E. It is
clear that C(X) is 1-semisimple since, as we have already mentioned, the Riesz
representation C'(X) — C(Speci(C(X))) = C(vX) is an isomorphism.

Proposition 4.1.1 If E is an Archimedean Riesz space with a weak order unite >
0, then the restriction morphism Spec.(E) — Spec.(E*) becomes a homeomorphic
embedding. Moreover, Spec.(E*) is a compactification of Spec.(E) if and only if
E 1s e-semisimple. (Montalvo, 2009)

Proof: The ipjectivity of the restriction morphismis immediate: For any x €
Spec.(E) and f € EY, there exists n € N such that z(f) = z(f Ane). Taking into
account that the family {coz(f) : f € F*} is a base for the topology of Spec.(F),
we derive that such a topology must be the initial topology defined by the restric-
tion morphism Spec.(F) — Spec.(E*).
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For the second statement, and since the equality coz(f) = coz(|f| A €)) holds,
it is clear that F is e-semisimple if and only if for g € E*, the condition z(g) = 0
for all z € Spec.(F) implies g = 0. On the other hand, to be Spec.(E) dense
in Spec.(E*) is equivalent to assert that if g € E* such that z(g) = 0 for all
z € Spec.(F), then
z(g) = 0 for all z € Spec.(E").

By virtue of Lemma 3.3.2(ii), F* is e-semisimple and therefore must be g = 0.
We conclude that to be E e-semisimple is equivalent to be Spec.(F) dense in
Spec.(E*). O

Definition 4.1.2 Let E be an Archimedean Riesz space with a weak order unit
e > 0. A subset J of E is said to be a vanished ideal if it is an intersection of
mazximal ideals of E which do not contain e. We shall denote

V(E) = {vanished ideals of E}.

By virtue of Lemma 3.3.1, when E is e-semisimple there is one-to-one cor-
respondence between V(F) and the set consisting of nonempty closed subsets of
Spec.(E) with the vanished ideal I := Nyep M, and any vanished ideal J € V(E)
with the non-empty closed subset F; := NsesZ(f). We agree that E is a van-
ished ideal for which Fg = () and I = E. On the one hand, the set consisting
in closed subsets of Spec.(E) ordered by inclusion becomes a lattice: The infima
and suprema of any finite collection of closed subsets is the intersection and the
union of such closed subsets, respectively. Moreover, such a lattice has the smaller
element () and the bigger element Spec.(E). On the other hand, it is clear that
the one-to-one correspondence between V(F) and the closes subsets of Spec.(E)
reverses the inclusion. As a consequence we obtain:

Lemma 4.1.1 (Montalvo, 2009) Let E be an Archimedean Riesz space with a
weak order unit e > 0. If E is e-semisimple, then the set V(E) ordered by inclusion
becomes a lattice with the smaller element O and the bigger element E.

Definition 4.1.3 We may define the following transitive relation on V(E):

(a) Given I, J € V(E) we set I < J in case there ezists H € V(E) such that
INH=0adHVJ=E.

If F is e-semisimple, then I A H = 0 if and only if Fg U F1 = Spec.(E) and
HV J=E if and only if FyN Fy = (. Hence, the motivation for this notation is
the following fact: I < J if and only if F; CFy.
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(b) Given J € V(E) we set J* ={f € E:|f|A|g]=0 forall g€ J}.

Since |f| A gl = 0 if and only if f(coz(g)) = 0, it is clear that f € J* if and
only if
0 = f(Ugescoz(g)) = f(Spec.(E)/Fy)

and therefore Fy. = Spec.(F)/F;.

4.2 e-separation

Recall that non-empty subset S of a partially ordered set V is a chain whenever
S endowed with the order induced by V becomes totally ordered.

Definition 4.2.1 Let E be an Archimedean Riesz space with a weak order unit
e > 0. A separating chain in E is a countable chain S of V(E) which salisfies

i) AS=0and\/S=E;
(i) If I, J € & and I C J, then there exists H € S such that I < H < J.

E is said to be e-separating in case

(IIT) For each two members I, J belonging to a separation chain in E, the inclusion
I C J implies that there ezist f € J, g € I'* such that f + g = e.

The following lemma. is due to Johnson and Mandelker, 1971. Recall that two
subsets A and B of a topological space X are said to be completely separated if
there exists f € C(X) such that f(A) =0 and f(B) = 1.

Lemma 4.2.1 Two subsets A and B of a topological space X are completely sepa-
rated if and only if there exists a countable chain F of closed subsets of X satisfying
the following conditions:(Montalvo, 2009)

() NF =0 and UF = X;

(i) If F, G € F and F C G, then there exists W € F such that F QIX/Q w Q(o;',

(iii) There exist C, D € F such that ACC c D C X/B.
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If S denotes a separating chain in C(X) and I, J € § are such that I C J,
then Fy C Fy = v X(vX/Fy).
Accordingly with the previous lemma F; and vX/F; are completely separated
in vX. Taking into account the isomorphism C(X) = C(vX), there exists f €
C(X) such that f(Fl) =0 and f(vX/FJ) = 1.
Then f (vX/F;) = 1 because f is continuous, and we derive that f € I and
g=1— f e J! satisfy f + g = 1. Thus, C(X) is 1-separating.

Theorem 4.2.1 Let A be an Archimedean Riesz space with weak order unit e > 0
for which it is both e-semisimple and e-separating. If A, B is a pair of completely
separated subsets of Spec.(E), then there ezists

he E*,0<h<e

such that z(h) = 0 for every z € A and z(h) = 1 for every z € B. (Montalvo,
2009)

Proof: Lemma 4.2.1 ensures that there exists a countable chain F of close subsets
of Spec.(F) satisfying:

NF =0 and UF = Spec.(E);if F,G € F
and f C G, then there exists W € F such that F QI/?/Q W gé; there exist

C, D € F such that
ACC cDC Spec.(E)/B.

By virtue of the one-to-one correspondence between V(E) and the cloes subsets of
Spec.(E), the family
S = {I r:FFeF }

becomes a separating chain in E. Since Ip, Ic € 8§ and Ip C Ig, by hypothesis
there exist f € I and g € Ip™* such that

ftg=e
One the one hand, if z € A C C = Fj, then z(f) = 0; on the other hand, if
z € B C Spec.(E)/D C Spec(E)/D = F;_.

then z(g) = 0 and therefore z(f) = z(e — g) = 1 — z(g) = 1. Considering
h=|f| A e € E* we conclude the proof. [J
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4.3 2-universal e-completeness

Definition 4.3.1 A sequence (f,)n in an Archimedean Riesz space E with a weak
order unit e > 0 is said to be 2-disjoint in case for eachn, | fu|A|f| # 0 for at most
two indices k distinct from n. FE is said to be 2-universally c-complete provided that

(IV) For any 2-disjoint sequence (f,), of E such that for every mazimal ideal M
of E which does not contain e there is some m such that f, ¢ M, then (f.), has
a least upper bound \/, f, in E.

Theorem 4.3.1 (Montalvo, 2009) Let E be an Archimedean Riesz space with a
weak order unit e > 0 for which it is both e-semisimple and e-uniformly complete.
The following conditions are equivalent:

(i) E is 2-universally e-complete;

(i) If f € E is such that z(f) # 0 for every x € Spec.(E), then the function
1/f € C(Spec.(F)) belongs to E.

Now, to verify that C(X) = C(vX) is 2-universally 1-complete is immediate.
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Main Result

Finally our main theorem yields:

Theorem 4.3.2 An archimedean Riesz space E is isomorphic to C(X) for some
completely reqular space X if and only if there exists a weak order unit e > 0 for
which

(I) E is e-uniformly closed;

(II) £ is e-semisimple;
(II1) E is e-separating;
(IV) E is 2-universally e-complete.

Proof: For the sufficiency, we have already seen along the paper that C(X)
satisfies (I)-(IV) for the weak order unit 1. For the necessity, condition (II) asserts
that Spec.(E*) is a compactification of Spec.(E) (see Proposition 4.1.1) If Z;, Z,
is a pair of disjoint zero-sets in Spec.(E), then conditions (II)-(III) ensure that
there exists h € £*, 0 < h < e such that h =0 on Z; and h = 1 on Z5 (Theorem
42.1)

By (I), we have the isomorphism E* = ¢(Spec.(E*)) , and therefore

{z € Spec.(E*) : h(z) = 0} and {z € Spec.(E*) : h(z) =1}

are disjoint closed subsets in Spec.(E*) containing Z; and Z» respectively. We
have proven that disjoint zero-sets in Spec.(E) have disjoint closures in Spec.(E*),
which is equivalent to affirm that both Spec.(E*) and BSpec.(F) are homeomor-
phic, and consequently we obtain the isomorphism E* = C*(Spec.(F)).

Lastly, given f € C(Spec.(F)) both the function

fi=1/(f*+1) and fo=1/(f~+1)

belong to C*(Spec.(E)) = E* and satisfy z(f1) # 0 and z(f2) # 0 for every
x € Spec.(FE). .

By (II), (IV) and by applying Theorem 4.3.1, we have that 1/f;, 1/f, € F and
therefore

f=1fi-1/f, € E.
We conclude that £ is isomorphic to C(Spec.(E)).
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