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ABSTRACT 

A MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM  

FOR INCOMPATIBLE PRODUCTS 

TAŞAR, Bahar 
MSc in Industrial Engineering 

Co-Supervisor: Assoc. Prof. Dr. Deniz TÜRSEL ELİİYİ  
Co-Supervisor: Prof. Dr. Levent KANDİLLER  

April 2016, 88 pages 

 This thesis focuses on a special category of distribution problems for the case of 
incompatible products. To satisfy different type of demands with minimum logistics 
costs, incompatible products are carried on the same vehicle but in different 
compartments.  The scope of this study is to explore new mathematical models for 
the corresponding Multi-Compartment Vehicle Routing Problem (MCVRP) and its 
variants. While there exists a vast amount of Vehicle Routing Problem (VRP) 
literature covering several variants, the MCVRP is still open for research. Our study 
is motivated by a real life instance of a livestock feed distribution system, where each 
livestock farm demands one type of feed from a single depot. We consider some 
variants of the MCVRP, as multiple trips of vehicles and the splitting of demand. A 
taxonomic framework for VRP literature is also suggested. A general mathematical 
model, and its variants are formulated. A computational experiment is designed for 
testing the performance of the developed models. Exact solution schemes are 
evaluated for small sized problem instances, whereas heuristic algorithms are 
proposed for larger instances. Our results indicate that the proposed methodology is 
applicable to real life logistics problems such as food, fuel and other chemical 
distribution. 

Keywords: Multi compartment vehicle routing problem, split delivery, multi-trip, 
mathematical modeling, heuristics. 



 
 

iv 
 

ÖZET 

KARIŞAMAYAN ÜRÜNLER İÇİN ÇOK KOMPARTIMANLI ARAÇ 

ROTALAMA PROBLEMİ  

Bahar TAŞAR 
Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Deniz TÜRSEL ELİİYİ                                               
    Tez Danışmanı: Prof. Dr. Levent KANDİLLER 

April 2016, 88 sayfa 

 Bu tez dağıtım problemlerinin özel bir kategorisi olan karışamayan ürünlere 
odaklanmıştır. En az lojistik maliyeti ile farklı tip talepleri karşılamak için, 
karışamayan ürünler aynı araçta fakat farklı kompartımanlarda taşınmaktadır. Tez 
kapsamında Çok Kompartımanlı Araç Rotalama Problemi (ÇKARP) ve varyantları 
için yeni matematiksel modeller önerilmektedir. Birçok varyantı olan Araç Rotalama 
Problemi (ARP)’nin çok geniş bir literatürü mevcut olduğu halde, ÇKARP alanı hala 
araştırmaya açıktır. Tez kapsamında ARP literatürü için bir taksonomik çerçeve 
önerilmiştir. Çalışmamız bir gerçek hayat problemi olan, her çiftliğin tek bir depodan 
tek tip yem talep ettiği bir canlı hayvan yem dağıtım sisteminden yola çıkarak ortaya 
çıkmıştır ve ÇKARP’nin varyantları olan çoklu seferleri ve bölünmüş dağıtımları göz 
önüne almaktadır. Genel bir matematiksel model ve varyantları formüle edilmiştir. 
Geliştirilen matematiksel modellerin performanslarını test etmek için sayısal bir 
deney tasarlanmıştır. Büyük boyutlu problemler için sezgisel yöntemler önerilirken, 
kesin çözüm planları küçük boyutlu problem örnekleri için değerlendirilmiştir. 
Sonuçlarımız geliştirilen yöntemlerin gıda, yakıt ve diğer kimyasal dağıtım gibi 
gerçek hayat problemleri için de uygulanabileceğini göstermektedir. 

Anahtar sözcükler: Çok kompartımanlı araç rotalama problemi, bölünmüş dağıtım, 
çoklu sefer, matematiksel modelleme, sezgisel yöntemler. 
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1 INTRODUCTION 

 Supply chain management involves managing materials and information flows 
between suppliers, manufacturers, wholesalers/retailers and customers. Within the 
supply chain network, logistics has a critical role to sustain the continuity of the 
system flows. That is why industries focus on improving their distribution processes 
to decrease their costs while satisfying their customer demands. 

 Vehicle Routing Problem (VRP) arises from the logistics field, and deals with 
the distribution of goods to customers. It is a generalization of the Traveling 
Salesman Problem (TSP). In TSP, a vehicle visits customers to satisfy their demands 
by minimizing the transportation cost. If total customer demand exceeds vehicle 
capacity, transportation requires more than one vehicle and the problem becomes 
VRP, which is a combinatorial optimization problem dealing with the assignment of 
products to vehicles and the routing of the vehicles in such a way that a desired 
objective is optimized. Since the problem is NP-Hard (Lenstra and Rinnooy Kan, 
1981), heuristic methods have been developed to find near-optimal solutions.  

A well-studied form of the VRP is the Capacitated Vehicle Routing Problem 
(CVRP). The vehicles start from a single depot to satisfy the demands of a set of 
customers and return to the depot. The problem is constrained by vehicle capacity, 
while meeting customer demand with minimum total distance traveled. The variants 
of CVRP are obtained by relaxing some constraints. The concept of multi-
compartment VRP (MCVRP) includes separated compartments carrying 
incompatible products for one or more customer demand. The problem aims to meet 
different types of customer demands in the same vehicle, through seeking minimum 
route cost. 

 A real life problem provided a motivation for this thesis work. Çamlı Yem 
Besicilik Inc. is a leading group of companies in Turkish food chain sector. The 
company runs a wide supply chain network in the turkey-breeding, organic dairy 
breeding, aquaculture and manure sector. The feed production occurs in the facilities 
located in Pınarbaşı.  
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 We first analyzed the current system, and developed solution methodologies to 
improve operational decisions. The distribution of feeds is provided with special 
vehicles having several compartments. The fleet is considered to be homogenous. A 
compartment on a vehicle can carry only one type of feed at a time. The problem is to 
deliver the turkey feeds from a single depot via 6 vehicles to 60 contracted farms. 
Each vehicle has 4 compartments with 4 tons capacities. The type of feeds changes 
with respect to turkey’s growing periods. In each growing period, only one type of 
feed is used. So, each farm demands a single type of feed. Each compartment can 
carry only one type of feed but different compartments on the same truck can carry 
different feed types. Moreover, the same type of demands from different farms can be 
transported in the same compartment. The weekly plan is currently made manually by 
one dispatcher without taking distances into consideration. The aim is to meet daily 
demands in a timely manner at minimum cost. 

 Motivated by the distribution system explained above, we have formulated 
mathematical models for several variants of the problem, and solved these on a 
commercial solver. As the problem sizes gets large in practical applications, we have 
also developed a heuristic for the corresponding MCVRP on hand.  

 The rest of this thesis is organized as follows. The problem is defined and the 
related literature is reviewed in Chapter 2. Chapter 3 includes the mathematical model 
formulation and solution approaches for the studied problem. The computational 
study is presented in Chapter 4. We finally provide an overall summary of the thesis, 
and address possible future research directions in Chapter 5. 
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2 PROBLEM ENVIRONMENT 

  In VRP, the goods (products) are kept in storage at one or more locations 
(depots). The distribution of products from the depot to end users (customer) is 
provided via resources (vehicles). VRP tries to satisfy customer demands from one or 
more depots by a given set of vehicles and selecting the appropriate routes within a 
given time period. Main components of the VRP are described below. 

 The road network is described through a graph whose arcs represent the road 
sections and whose vertices correspond to the road junctions, which includes the 
depot and customer locations.  

 The customers must be served and their demands must be satisfied in given 
time period. The characteristics of the customers are listed below: 

• Customer’s location in the road graph; 

• Amount of goods (demand), possibly of different types, which must be 

delivered or collected; 

• Periods of the day (time windows) during which the customer can be served; 

• Durations required to deliver or collect the goods at the customer location 

(loading or unloading times) possibly dependent on the vehicle type; 

• Subset of the available vehicles that can be used to serve the customer. 

 The depots are the stations where vehicles load their goods. Transportation of 
goods is performed by using a fleet of vehicles whose composition and size can be 
fixed, or defined according to the requirements of the customers. The vehicle 
characteristics are listed below: 

• Home depot of the vehicle and the possibility to end service at a depot other 

than home; 

• Capacity of the vehicle, expressed as the maximum weight, volume or number 

of boxes that the vehicle can load; 

• Possible subdivision of the vehicle into compartments, each characterized by 

its capacity and by the types of goods that can be carried; 
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• Devices available for loading and unloading operations; 

• Costs associated with utilization of the vehicle (per distance unit, etc.) (Toth, 

2002). 

 The drivers operate the vehicles by satisfying several constraints required by 
union contracts and company regulations (Toth, 2002). VRP solution methods have 
been designed with respect to desired objectives. Although VRP has several 
objectives, the most commonly used objective is to minimize the total cost, as the 
distribution of goods is a necessary but non-value added activity. The typical set of 
objectives used is given below: 

• Each movement of the vehicles brings fuel cost, and the total travel cost is 

minimized by choosing the shortest distance routes. 

• In the case that the vehicles are rented with respect to time, total travel time 

can be minimized. 

• If the vehicles have purchasing, driver and depreciation costs, an objective can 

be the minimization of the number of vehicles used. 

• The waiting time of the customers is minimized in some humanitarian 

logistics problems. 

• The maximum tour length or duration can be minimized. 

• The tour lengths or times should be balanced for drivers and vehicle 

depreciations. So the range of minimum and maximum tour measurement unit 

should be minimized to have load balancing. 

• Some constraints can be soft and the penalties of exceeding these constraints’ 

RHSs can be minimized. 

 These objectives can be separated or combined in the objective function.  

 In the way of deciding on the objective, there are some restrictions and 
requirements. The main necessity of the problem is that each customer demand is 
satisfied. The finite resource is the capacity; the number of vehicles and vehicles’ 
sizes is limited. Therefore, capacity is the main constraint. Tour constraints provide 
the continuity and the connection of routes and vehicles.  
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A well-studied form of the VRP is the Capacitated Vehicle Routing Problem 
(CVRP). The vehicles start from a single depot to satisfy the demands of a set of 
customers and return to the depot. The problem is constrained by the vehicle capacity, 
while meeting customer demand with minimum total distance traveled. The variants 
of CVRP are obtained by relaxing some constraints of the CVRP. 

VRP types can be divided to four main classes with respect to the constraints 
to describe the problem structure such as operational policy, vehicle, product and 
period as summarized in Figure 2.1. Operational policy dimension represents 
problem characteristics and constraints regarding system configuration and operating 
principles. In a VRP having time windows, each customer is associated with a time 
interval for delivery. VRP problems can be classified as ones having no time 
windows (TW’), soft time windows that can be violated with a penalty (STW) (Bin 
and Fu, 2003), and hard time windows where no violation is possible (HTW) (Chang 
et al., 2009).  Pickup and Delivery (PD) (Savelsbergh and Sol, 1995, Chuah and 
Yingling, 2005, Rais et al., 2014), in which vehicles pick up products from certain 
customers and deliver them to their destinations is another category in the operational 
policy dimension. Other possibilities of carrying include Backhaul (BH) 
(Goetschalckx and Jacobs-Blecha, 1989) where vehicles pick up from customers and 
deliver to the depot, Linehaul (LH) where vehicles deliver demands to customers, and 
Backhaul and Linehaul (BH&LH) as a hybrid policy. If the demand of a customer can 
be satisfied by more than one vehicle, VRP with Split Delivery (SD) is considered 
(Dror and Trudeau, 1989 and 1990, Laporte et al., 1999, Fleischmann et al., 2004, 
Archetti et al., 2005), otherwise the problem does not allow any split delivery (SD’) 
(Fu, 2002, Gendreau et al., 1996a). Single Trip (ST) VRP and Multi-Trip (MT) VRP 
(Salhi, 1987) allow single or several trips per vehicle, respectively.   

VRP solutions take shape according to their desired objectives. The problem 
can have various objectives, but most of the objectives in literature focus on the 
minimization of the total distribution cost or time, as the distribution of goods is a 
necessary but non-value adding activity. Therefore, minisum type objectives are most 
commonly used, which include the minimization of the total distribution cost 
(MSTC), total distribution time (MSTT) or length (MSTL). Minimizing the total 
waiting time of the customers (MSWT) is also considered to increase customer 
satisfaction. Minimax type objectives as minimizing the maximum travel time 
(MMTT) or travel length (MMTL) can be useful in balancing, as well as load 

http://www.sciencedirect.com/science/article/pii/S0360835215000480#b0020
http://www.sciencedirect.com/science/article/pii/S0360835215000480#b0020
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balancing objectives (LBTT and LBTL) used for fairness  between drivers and 
balancing vehicle depreciations (Lee and Ueng 1999, Corberan et al., 2002). Other 
objectives can also be considered depending on the problem structure, such as 
nonmonetary objectives in humanitarian logistics problems. 

Figure 2.1 Taxonomic Review of VRP Literature 

 In the vehicle dimension, identical or heterogeneous vehicles (Rego and 
Roucairol, 1995, Cordeau and Laporte, 2001) determine the fleet type. The fixed 
capacitated VRP (FC) is the most studied in the VRP literature (Jaw et al., 1986, 
Angelelli and Speranzo, 2002). While FC class has fixed capacities of vehicles, in 
flexible fleet size (FLC) (Letchford and Englese, 1998), the number of vehicles or 
vehicle capacities can be increased. Vehicles can consist of a single compartment 
(SC), fixed size multiple compartments (FMC), or flexible-size multiple 
compartments (FLMC) (Derigs, 2011). In another dimension, the distribution may 
involve a single product (SP), multiple compatible (MCP) or incompatible (MICP) 
products. In terms of short or long term planning, the planning horizon may involve a 
single time period (STP) or multiple time periods (MTP).  
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 VRP has a vast literature, but taxonomic studies are not many. Some of the 
VRP taxonomic studies in the literature can be listed as Reisman (1992), Bodin 
(1975), Bodin and Golden (1981), Desrochers et al. (1990), Laporte and Osman 
(1995), Desrochers et al. (1999), Eksioglu et al. (2009). We propose a methodology 
for classifying VRPs through Figure 1. The problem characteristics are determined 
by the operational policy. Objective, vehicle and product properties change the 
problem structure and solution methodology. Our taxonomy proposal is inspired from 
Kendall’s Notation (Kendall, 1953). The classes are obtained by subclasses and each 
class features are separated by reagents. The notation covering five segments is 
described in Figure 2.2. 

            x, x, x, x | x | x, x, x | x | x 

 

 

Figure 2.2 Proposed Taxonomy 

For instance, MCVRP for Incompatible Products is symbolized as, 

TW’, LH, SD, MT | MSTT | IF, FC, FMC | MICP | STP. 

2.1 Literature Review 

 The VRP problem was proposed by Dantzig and Ramser (1959) as a 
generalization of the well-known TSP. Clarke and Wright (1964) were among the 
first to develop a heuristic algorithm for this combinatorial optimization problem. 

 The split delivery VRP (SDVRP) was introduced by Dror and Trudeau in 1989. 
They indicated that by allowing split deliveries, some savings are made, heuristic and 
exact methods are generated. Archetti et al. (2006) developed a mixed integer 
program (MIP) for the SDVRP. They determined a threshold (k) for the quantity 
delivered on a route (k-SDVRP) and solved by using tabu search algorithm setting 
the length of the tabu list and the maximum number of iterations (SPLITABU). 
Boudia et al. (2007) introduced a memetic algorithm with population management for 
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the split delivery VRP. In this metaheuristic, they used the Genetic Algorithm with 
local search for moves of split deliveries. Moreover, they applied the tabu search 
inspired from Archetti et al. (2006), Chen et al. (2007) developed a heuristic that 
combines endpoint mixed integer programming and record to record travel algorithm. 
They used the Clark and Write algorithm for the starting solution which is improved 
with endpoint integer programming. First of all, they found recorded best feasible 
solution until the time limit as the initial solution with the endpoint integer 
programming. Secondly, the solution was used as the new run of the program. And 
the final solution was calculated by post processing of the second solution with a 
variable length record to record travel algorithm in a reasonable time. Mota et al. 
(2007) presented scatter search methodology as a metaheuristic procedure for the split 
delivery VRP and objective was to minimize the total number of vehicles. They used 
two heuristic algorithms to split the demands such as Big Tour (Lin and Kernighan, 
1973) and parallel Savings Algorithm (Clarke and Wright, 1964). To improve the 
solutions, interchanging one customer from a route with another client in another 
route for the non-split customers and two-split changes (specification of k-split 
changes) were used.  

 Derigs et al. (2009) employed the standard local search-based metaheuristics 
with inter-tour and intra-tour exchange operators for SDVRP. First, they applied 
some local moves such as, 2-Opt (Potvin and Rousseau, 1995), Exchange and 
Relocate (Savelsbergh, 1992). These moves were applied to find the best sequence of 
the deliveries within a tour as the initial solution. In the improvement phase, 
customers were sequenced in random order and tours are improved by 2-Opt. Tours 
were considered as TSPs and if a customer could not be served completely in the 
current tour, demand was splitted and the remaining demand was met in the next tour. 
They also tested their solutions with different metaheuristics such as Simulated 
Annealing (SA) (Kirkpatrick et al, 1983), Record to Record Travel (RRT) (Dueck, 
1993), Attribute Based and Hill Climber heuristic (ABHC) (Whittley and Smith 
2004). Wilck IV and Cavalier (2012) studied on a construction heuristic for the 
SDVRP. Partitioning procedure was used to assign customers to vehicle routes and 
there are three control steps in their algorithm. Vehicles completed their routes and 
unsatisfied demand of customers was assigned to the routes in Control 1. In Control 2 
capacity level was determined and if it is feasible the algorithm proceeds to Control 3. 
If the assigned demand was greater than the capacity level in Control 1, Control 3 
step occurred iteratively. Control 3 selected the number of customers closest to 
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previous selected customers, adds the routes. After all demands were assigned to the 
vehicle routes, a TSP procedure were applied for each of the vehicles. Belenguer et 
al. (2000) proposed a cutting plane approach and some valid inequalities. They 
developed a lower bound and shown the quality of computational results. To 
minimize the total number of vehicles, Lee et al. (2006) studied the shortest path 
approach formulated with dynamic programming. Since the SDVRP is NP-Hard, they 
solved only the small size instances optimally. Jin et al. (2007) also minimized the 
number of vehicles and they used exact approaches as integer programming with 
valid inequalities for the clustering phase by minimizing the total clustering cost, and 
they solved the TSP (the routing phase). 

 The first multi-trip VRP (MTVRP) was introduced by Salhi (1987), the pairs of 
routes were matched with vehicles, and the number of trips was restricted two. 
Fleischmann (1990) developed a constructive heuristic with Savings Algorithm 
(Clarke and Wright 1964) for routing and Bin Packing for assignment part of the 
problem. Taillard et al. (1996) first generated a large set of vehicle routes by tabu 
search algorithm and selected the subset of the routes. These were matched with 
working days by using a Bin Packing heuristic. In those years, Brandao and Mercer 
(1997) worked on the same problem with time window issue. They proposed a 
constructive heuristic as a combination of nearest neighbor and insertion. Salhi and 
Petch (2007) proposed a hybrid Genetic Algorithm for minimizing the maximum 
overtime under fixed number of vehicles. They used chromosome injection, and 
cloning and crossover and mutation operators. For smaller VRP sub-problems, 
Savings Algorithm was used and complete set of vehicle trips are found by using Bin 
Packing heuristics. Azi et al. (2007) proposed an exact algorithm to solve single 
vehicle for multi-usage of vehicle under time window condition. All non-dominated 
feasible routes were generated firstly. In second, the potential routes were selected 
and sequenced according to vehicles working period.  

 Azi et al. (2010) introduced a branch and price algorithm. Lower bounds were 
computed by solving the linear programming relaxation. The pricing sub-problems 
were shortest path problems with resource constraints. In the problem of fixed size 
fleet, vehicles could not meet all customer demands and profit maximization 
determined which customers will be satisfied. Macedo et al. (2011) proposed an exact 
algorithm for the problem with time windows and multi-trip. The algorithm was 
iterative and it relied on a pseudo-polynomial network flow model. The nodes 
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represented time instants, and the arcs represented feasible vehicle routes. They tested 
their algorithm on benchmark instances and their approach was found to be efficient 
according to literature. Hernandez et al. (2014) worked on the multi-trip Vehicle 
Routing Problem with time windows. They provided an exact two-phase algorithm, 
such as listing the customers that match the maximum trip duration and choosing a 
best set of trips by using branch and price. They proposed a set covering formulation 
as the column generation master problem, where columns represented trips and the 
sub-problem selected appropriate timing for trips. 

 The concept of multi-compartment VRP (MCVRP) includes separated 
compartments that have incompatible products for one or more customer demands. It 
aims to meet different types of customer demands by the same vehicle, through 
seeking the set of minimum route cost. VRP has been widely studied in the literature 
but there is not so much research on VRP.  Some of the recent MCVRP studies are 
described in Table 2.1 using our taxonomic classes. 

Table 2.1 Recent MCVRP Literature 
 

Authors Year Problem 

Van der Bruggen et al. 1995 TW', LH,  SD', ST  | MMTC                      | HF, FC, FMC   | MICP | STP 

Avella et al. 2004 TW', LH,  SD', ST  | MMTL                      | IF, FC, FMC     | MICP | STP 

Suprayogi et al. 2006 TW', LH,  SD, MT | MSV, MMTT, LBTT  | IF, FC, FMC     | MICP | STP 

El Fallahi et al. 2008 TW', LH,  SD, ST   | MMTL                      | IF, FLC, FMC   | MICP | STP 

Derigs et al. 2011 TW', LH,  SD', ST  | MMTL                      | IF, FC, FMC     | MICP | STP 

Mendoza et al. 2010 TW', LH,  SD', ST  | MMTL                      | IF, FLC, FMC   | MICP | STP 

Surjandari et al. 2011 TW', LH,  SD, ST   | MMTL                      | HF, FC, FMC   | MICP | MTP 

Benantar and Oufi 2012 TW, LH,  SD', ST   | MMTL                      | HF, FC, FMC   | MICP | STP 

Asawarungsaengkul et al. 2012 TW', LH,  SD, ST   | MMTL                      | HF, FC, FMC   | MICP | STP 

Lahyani et al. 2014 TW', LH,  SD, ST   | MSV, MMTL            | HF, FC, FMC   | MICP | MTP 
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 Van der Bruggen et al. (1995) studied on multi-compartment assignment 
problem for a large oil company. They considered the number and size of trucks and 
driver schedules. They first decided which customers are assigned to which depots 
and created vehicle routes and driver shifts with delivery schedules. Avella et al. 
(2004) introduced a multi-period routing problem and each compartment has to be 
full or empty. Once the assignments are made, the routing phase that corresponds to a 
TSP that can be solved individually for each vehicle. They developed a greedy 
heuristic to solve the problem. Suprayogi et al. (2007) worked on a multi-objective 
delivery problem in Indonesia and East Timor. They used sequential insertion and 
local search algorithms to obtain solutions.  

 Fallahi et al. (2008) discussed on the distribution of cattle food to farms and 
proposed the memetic algorithm and tabu search for solution of the MCVRP with 
split delivery for different type of products. They assumed that each compartment 
was dedicated to a single product, where a product may denote different types of 
goods that have common properties. The option to bring different products ordered 
by a customer using multiple vehicles was also allowed.  

 Derigs et al. (2011) introduced food and petrol distribution examples and a 
general model formulation for VRP. They added the multi-compartment vehicle 
constraints for incompatible products with extensions. In their problem, each 
compartment could carry any product, but different products could not be mixed in 
one compartment. A customer may place several orders, each referring to more than 
one single product. To solve their problem, they showed some heuristics such as, 
local search, large neighborhood search, adaptive search, construction heuristics and 
metaheuristics. They also discussed the flexible multi-compartment VRP.  

 Mendoza et al. (2010) proposed a memetic algorithm with genetic operators 
and local search procedures for MCVRP where customer demands were stochastic. 
Surjandari et al. (2011) introduced a Petrol Station Replenishment Problem (PSRP) in 
Indonesia, in which vehicles carried incompatible products and customer demands 
should be in multiples of compartment capacity. They proposed a mathematical 
model and a tabu search algorithm as the solution methodology. Benantar and Oufi 
(2012) also studied on MCVRP under time window constraints and proposed 
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construction heuristics as well as tabu search. Asawarungsaengkul et al. (2012) 
proposed two different splitting patterns for assigning the products to compartments 
in MCVRP. They used Savings Algorithm for large size problem instances. Finally, 
Lahyani et al. (2014) studied on collection of olive oil with heterogeneous multi-
compartment vehicles with split delivery for different type of products and they 
solved the problem by using a branch and cut algorithm.  

 In our study, we consider a MCVRP for Incompatible Products, which can be 
denoted as TW’,LH,SD,MT | MSTC | IF,FC,FMC | MICP | STP based on the 
developed taxonomy. Our problem involves separated compartments that can carry 
incompatible products for one or more customers while minimizing total cost. 
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3 METHODOLOGY 

In this thesis, the basic, multi-trip and split delivery models as operation 
decisions of the MCVRP’s solution are formulated. After the mathematical models 
are built and solved for small size data, the heuristic methods are constructed to 
obtain the solutions of large size instances. Moreover, to test the heuristic solutions’ 
performances, some lower bounds are generated. The following sections describe the 
specifics of our methodology. 

3.1 Formulation 

 As it was explained in the first chapter, the distribution system has a fleet of 
homogenous vehicles having several compartments, where a compartment on a 
vehicle can carry only one type of feed at a time. Each farm demands a single type of 
feed, and the same type of demands from different farms can be transported in the 
same compartment. The aim is to meet daily demands in a timely manner at 
minimum cost. We propose a basic mixed integer programming model formulation 
for this MCVRP. All decision variables are binary except the ones related to time. 
The extensions of the problem can be easily adapted using the basic model 
formulation in this section. 

 Assumptions 3.1.1

The problem is solved under following the set of assumptions: 

A1 There is a single depot. 

A2 There are enough products for each type at the depot. 

A3 All vehicles are available and fully loaded at the depot. 

A4 Fleet vehicles are identical. 

A5 There is no breakdown. 

A6 All vehicles have the same average speed. 

A7 There is an 8 hour shift for all vehicles. 

A8 Each compartment on a vehicle is dedicated to one type of product. 

A9 Loading and unloading times are included in the traveling time. 

A10 There is no customer priority. 
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A11 Each customer can order only one type of product. 

A12 Customer demands cannot exceed a vehicle capacity. 

A13 The same type of product from different customers can be mixed in       

the same compartment. 

The following are the indices and parameters used in the formulation: 

k : Vehicle index (k =1,…,K)    

l  : Compartment (silo) index (l=1,…,L)    

i,j : Customer indices (i,j=1,…,N) 

p  : Product index (p=1,…,P) 

fk :  Fixed cost for vehicle k (TL) 

Clk  : Capacity of compartment l of vehicle k (tons) 

Dip  : Demand of customer i for product type p (tons) 

sij : Distance from customer i to customer j (km) 

∝   : Fuel cost (TL/km) 

Tk   : Time capacity of vehicle k (min) 

Tij  : Time from customer i to customer j (min) 

We define our decision variables below. 

 xki= �
 

1, if vehicle k serves customer i
0, otherwise

   

 yk= �
 

1, if vehicle k is used
0, otherwise

   

 uij= �
 

1, if route from customer i to customer j is used
0, otherwise

   

 zi= �
 

1, if route from depot to customer i is used
0, otherwise
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vi= �
 

1, if route from customer i to depot is used
0, otherwise

   

alkp= �
 

1, if compartment l of vehicle k is used for product type p 
0, otherwise

   

tijk =The time taken by vehicle k from customer i to customer j 

 Mathematical Model 3.1.2

 Based on the above definitions, the mathematical model is as follows: 

{ }0 01 1 1
(s ) ( ) ( )K N N

k k i i i i ij ijk i j
Min f y v s z s uα

= = =
 + + + ∑ ∑ ∑     (1)                                        

Subject to: 

1

N
ki ki

x Ny
=

≤∑               1,...,k K∀ =               (2)                            

1

N
ip ki lk lkpi

D x C a
=

≤∑ ∑              1,..., 1,...,k K p P∀ = ∀ =     (3) 

1

P
lkp kp

a y
=

≤∑                1,..., 1,...,l L k K∀ = ∀ =     (4) 

1
1K

kik
x

=
=∑                1,...,i N∀ =       (5) 

1
z 1N

j iji
u

=
+ =∑               1,...,j N i j∀ = ≠      (6) 

1
v 1N

i ijj
u

=
+ =∑               1,...,i N i j∀ = ≠      (7) 

1 1

N K
i ki k

z y
= =

=∑ ∑            (8) 

1 1

N K
i ki k

v y
= =

=∑ ∑                (9) 

x (1 )ki ij kju x− − ≤               1,..., , 1,...,k K i j N i j∀ = ∀ = ≠       (10) 
x (1 )kj ij kiu x− − ≤               1,..., , 1,...,k K i j N i j∀ = ∀ = ≠       (11) 

t (2 )k
ij ij ij ki ijT T x u≥ − − −              1,..., , 1,...,k K i j N i j∀ = ∀ = ≠       (12) 

0 0 0t (2 )k
j j j kj jT T x z≥ − − −              1,..., 1,...,k K j N∀ = ∀ =                (13) 

0 0 0t (2 )k
i i i ki iT T x v≥ − − −              1,..., 1,...,k K i N∀ = ∀ =             (14) 

1

K k
ij ij ijk

t T u
=

≤∑               , 1,...,i j N i j∀ = ≠              (15) 

0 01

K k
j j jk

t T z
=

≤∑               1,...,j N∀ =               (16) 

0 01

K k
i i ik

t T v
=

≤∑               1,...,i N∀ =               (17) 

0 01 1 1 1

N N N Nk k k
j i ij kj i i j

t t t T
= = = =

+ + ≤∑ ∑ ∑ ∑            1,...,k K∀ =               (18) 
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1ij jiu u+ ≤       , 1,...,i j N i j∀ = ≠                          (19) 
2ij ji im jm mi mju u u u u u+ + + + + ≤  , , 1,...,i j m N i j m∀ = ≠ ≠                           (20) 

, , , , {0,1}ki k i i ijx y z v u ∈    1,..., , 1,...,k K i j N i j∀ = ∀ = ≠                  (21) 
{0,1}lkpa ∈     1,..., 1,..., 1,...,l L k K p P∀ = ∀ = ∀ =             (22) 

0 0, t , 0k k k
ij j it t ≥     1,..., , 1,...,k K i j N i j∀ = ∀ = ≠                  (23) 

 The objective function in (1) minimizes the total transportation cost including 
the fixed costs of the vehicles and the fuel costs. Constraint set (2) ensures that a 
vehicle can serve customers only if it is in use. Constraint set (3) ensures that the 
amount of any product cannot exceed the capacity of the assigned silo. Constraint set 
(4) ensures that there can be only one type of product in one silo of a vehicle. 
Constraint set (5) ensures that a customer can be served by only one vehicle, while 
constraint sets (6) and (7) guarantee flow balance. Constraint sets (8) and (9) ensure 
that the total number of departures (arrivals) from (to) the depot is equal to the total 
number of vehicles used. Constraint sets (10) and (11) ensure that customers on the 
same route are visited by the same vehicle, guaranteeing continuity of the routes. 
Constraint set (12) is used to form feasible routes in terms of travel times between 
nodes. Constraint sets (13) and (14) determine the times and routes between depot 
and a customer. Constraint sets (15), (16) and (17) relate time and route variables. 
While constraint set (18) ensures time limits for the routes, constraint set (19) and 
(20) enforces sub-tour elimination for only two and three-customer sub-tours. We add 
these constraints to prevent the sub-tours initially, since they are of cubic number. 
However, we add constraints for 4 and more customers whenever we detect sub-tours 
in the solution, as will be explained later. Finally, constraint sets (21), (22) and (23) 
dictate the structures and sign restrictions of the decision variables. As the simple 
VRP is NP-hard, so is our problem. The size of the model is defined with binary and 
continuous variables, and number of constraints in Table 3.1. 

Table 3.1 Size of the Model 

Binary Variables Continuous Variables Constraints 

�𝑁2� + 𝐾(𝑁 + 𝑃𝑃 + 1) + 2𝑁 𝐾 ��𝑁2� + 2𝑁� 15𝑁 + 9𝐾 + 𝐿 + 𝑃 
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 Extensions 3.1.3

 The basic model is extended with some modifications and additions. We 
propose two main extensions as multi-trips for vehicles and split delivery for 
customers. In addition, there can be an improvement for objective value by relaxing 
the time overtime constraint. The extensions are independent from each other. 

Overtime: 

 Currently, all drivers work kT -hour shifts. For evaluating the possibility of 

allowing overtime at a higher wage rate, a new nonnegative continuous decision 
variable is defined as follows: 

ok: overtime of vehicle k (min) 

  Constraint (18) is updated to include the overtime for each vehicle: 

0 01 1 1 1

N N N Nk k k
j i ij k kj i i j

t t t T o
= = = =

+ + ≤ +∑ ∑ ∑ ∑      1,...,k K∀ =                                       (18’) 

 The overtime of each vehicle is penalized in the objective function: 

0 01 1 1
( ) ((s ) ( ) ( ))K N N

k k o k i i i i ij ijk i j
Min f y c o v s z s uα

= = =
+ + + +∑ ∑ ∑              (1’)  

where k
o

k

fc
T

=  is defined as the unit cost of overtime, computed as the fixed cost of a 

vehicle per minute. 

Multiple Trips: 

 This extension of the basic model allows at most R trips per vehicle, with 
multiple visits to the depot during the working day. For this purpose, we define a trip 
index r = 1,…, R, and the number of vehicles in the model is replaced by k = 1,…,K, 
K+1,…,2K,…,2K+1,…,RK. With this representation, k+1,…,2K represent the second 
trips of the original K vehicles. A new constraint is formed to ensure that a vehicle 
can make its next tour only if it performs its previous one, as follows. 
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( 1)rK k r K ky y+ − +≤      1,..., , 1,...,k K r R∀ = ∀ =                   (24) 

 To satisfy the time constraint for the same vehicle in different trips, constraint 
(18) is updated as (18’’): 

( 1) ( 1) ( 1)
0 01 1 1 1 1 1 1

R N R N R N Nr K k r K k r K k
j i ij kr j r i r i j

t t t T− + − + − +
= = = = = = =

+ + ≤∑ ∑ ∑ ∑ ∑ ∑ ∑ 1,...,k K∀ = (18’’) 

Split Delivery: 

 When split delivery is allowed, a customer’s demand can be met through visits 
of several vehicles. In such a case, Constraint set (5) should be omitted from the 
model. To allow split delivery, a vehicle index is added to decision variables u, z and 
v. Constraint (6) and (7) are modified. The following constraint (25) is added to the 
model to ensure flow balance through the routes of the vehicles.   

1
z N

kj kij kji
u x

=
+ =∑            1,..., 1,...,k K j N i j∀ = ∀ = ≠            (6’) 

1
v N

ki kij kii
u x

=
+ =∑            1,..., 1,...,k K i N i j∀ = ∀ = ≠             (7’)

1 1

N N
kji ki kij kji i

u v u z
= =

+ = +∑ ∑                      1,..., 1,...,k K j N i j∀ = ∀ = ≠              (25) 

 Another change handles the fulfillment of customer demand through the 
definition of a new continuous nonnegative decision variable qki between 0 and 1, 
representing the percentage of customer i’s demand met by vehicle k. Constraint set 
(3) is then replaced by (3’) to accommodate this change. Additional constraint set 
(26) ensures that a vehicle can satisfy a demand percentage of a customer only if it 
visits that customer. Demand of each customer is met via additional constraint set 
(27), and the new decision variable is defined by constraint set (28). 

1 1

N L
ip ki lk lkpi l

D q C a
= =

≤∑ ∑        1,...,K 1,..., Pk p∀ = ∀ =                    (3’)

qki kix≤          1,..., 1,...,k K i N∀ = ∀ =                   (26)

1
1K

kik
q

=
=∑          1,...,i N∀ =                          (27)

q 0ki ≥        1,..., 1,...,k K i N∀ = ∀ =             (28) 
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 Constraint sets (15), (16) and (17) are updated as below to handle the relations 

between vehicle visits and corresponding time. 

k
ij ij kijt T u≤                 , 1,...,i j N i j∀ = ≠            (15’)

0 0
k

j j kjt T z≤                 1,...,j N∀ =                        (16’)

0 0
k
i i kit T v≤                 1,...,i N∀ =             (17’) 

3.2 Solution Approach 

 VRP is a fundamental problem in combinatorial optimization. The problem can 
be modeled and solved with general purpose solvers such as Lingo, Excel-Solver, 
OPL, etc. However, as it is known as an NP-Hard problem, it is hard especially to 
treat the sub-tour elimination constraints. Therefore, heuristic approaches are needed 
for real life problem instances. Many heuristic and metaheuristic approaches have 
been developed specifically for VRP by seeking good solutions in reasonably small 
time periods. 

 We first developed a mathematical model and solved it optimally for small 
sized test problems by using IBM ILOG OPL CPLEX 12.6 solver. The formulation 
that we discussed in Section 3.1 is solved only with sub-tour elimination constraints 
for two and three customers. Existent sub-tours for more customers are checked at the 
end of each solution. If any sub-tour occurs, the proper sub-tour constraints are 
activated.  

 Figure 3.1 illustrates an example how sub-tours are eliminated for more than 
three customers. Customers 4, 6, 7 and 10 have a closed loop, and there is no 
connection with the depot. To break the loop, the following constraint is appended to 
the formulation: 

4,6 4,7 4,10 6,4 6,7 6,10 7,4 7,6 7,10 10,4 10,6 10,7 3u u u u u u u u u u u u+ + + + + + + + + + + ≤   
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Figure 3.1 Example of sub-tour elimination 

We could not find an optimal solution for the basic model after 15 customers, 
and after 10 customers for multi trips and split delivery models in a reasonable time. 
Therefore, some construction and improvement heuristics are developed and coded in 
C++ integrated with Visual Studio Express. The heuristic approaches for the basic, 
multi-trip and split delivery cases are explained below. We use a sample problem to 
illustrate all steps. In the problem instance there are 10 customers and their demands 
and product types are given in Table 3.2. The vehicle fixed cost is 400TL. The 
symmetric distance matrix is given in Table 3.3. Each vehicle has 4 compartments, 
each with a capacity of 4 tons.   

Table 3.2 Example Customer Demands 

Customers 1 2 3 4 5 6 7 8 9 10 

Demand (tons) 12 12 1 15 12 9 9 11 2 7 
Product Type 3 3 1 3 1 4 2 2 1 4 

Table 3.3 Example Distance Matrix 

Customers 1 2 3 4 5 6 7 8 9 10 

1 - 156.76 167.26 97.95 123.92 16.47 38.56 142.31 111.46 6.27 
2 156.76 - 185.08 180.33 176.10 164.64 152.48 152.73 102.10 154.74 
3 167.26 185.08 - 79.33 46.92 156.36 200.44 33.64 88.40 172.09 
4 97.95 180.33 79.33 - 32.52 83.94 135.37 68.79 83.47 103.75 
5 123.92 176.10 46.92 32.52 - 111.65 159.31 40.34 74.14 129.21 
6 16.47 164.64 156.36 83.94 111.65 - 54.76 133.50 108.51 22.72 
7 38.56 152.48 200.44 135.37 159.31 54.76 - 172.82 133.50 32.34 
8 142.31 152.73 33.64 68.79 40.34 133.50 172.82 - 54.76 146.53 
9 111.46 102.10 88.40 83.47 74.14 108.51 133.50 54.76 - 113.82 
10 6.27 154.74 172.09 103.75 129.21 22.72 32.34 146.53 113.82 - 
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 Basic Model 3.2.1

 Initially, customer demands are divided by compartment capacity to find a 
bound for the needed number of compartments. For instance; if a customer has 13 
tons of a product, it should have (�13

4� � =) 4 compartments. After initialization step, 

customer demands are converted to the needed number of silos as shown in Table 
3.4. 

Table 3.4 Initialization of Customer Demands and Product Types 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (tons) 12 12 1 15 12 9 9 11 2 7 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 

Construction Step: 

We have four different construction heuristics to build the initial solutions. The 
parameters and variables that are used in the procedures are given below; 

:number of customers
x : selected customer

:selected customer demand
: current vehicle load
: the vehicleof customer
: number of iterations

x

k

x

n

d
c
v x
r

 

a. Random Start Heuristic 1 (RSH_1) 

Customers are assigned to a vehicle one by one randomly, as long as there is 
enough capacity in the vehicle. If no more customers can be assigned to the vehicle, a 
new vehicle is opened. The procedure continues until all customers are assigned to 
vehicles.  
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( )_1

customer isselected randomly from ( )
capacity and timeconstraints are satisfied after 
customer  is loaded into current vehicle 

1

1
current vehicle l

x

k k x

procedure RSH v
do

do
x n

if
x

v k
c c d
n n

end if
r r

while

=

 
 
 

←
← +
← +

← +

( )

oad is less than vehiclecapacity
and iteration limit is not reached

1
0
0

not all customers areassigned to vehicles 
k

k k
r
c

while
return v

endprocedure

 
 
 

← +
←
←

 

At the end of RSH_1, vehicles are assigned to the customers randomly, and each 
vehicle has a route as shown in Table 3.5. The objective value of our example RSH_1 
construction solution is 5149.37 TL. 

Table 3.5 RSH_1’s Solution 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 5 1 2 6 2 3 8 7 1 4 

 
b. Random Start Heuristic 2 (RSH_2) 

 In this heuristic, the customers are paired randomly. If the selected pair’s 
demand can fit into a single vehicle, they are both assigned; else they are released. 
After all possible pairs are assigned; each remaining single customer is assigned to an 
individual vehicle.  
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( )
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=
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 
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← +
←
←
← +

ion limit is not reached
return v

endprocedure

 
 
 

 

At the end of the RSH_2, vehicles are assigned to the customers two by two randomly and 
each vehicle has a route shown in Table 3.6. Objective value of RSH_2 construction 
solution is 5231.18 TL. 

Table 3.6 RSH_2’s Solution 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 3 4 1 5 1 2 6 7 2 8 

 
c. Smart Start Heuristic 1 (SSH_1) 

 SSH_1 construction heuristic is similar to the nearest neighborhood algorithm 
for TSP. The first customer of a vehicle is the closest customer from the depot and 
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the next customer in the sequence is always the closest to the current customer. It 
continues by satisfying the capacity constraint. When the capacity is exceeded, a new 
vehicle is opened and the same procedure is used. 

( )_1

capacity and timeconstraints are satisfied after 
customer x is loaded into current vehicle

nearst custo

1

current vehicle load is less tha

mer from current position

x

k k x

procedure SSH v
do

do

if

v k
c c d
n n

end if
w i e

x

h l

=
= +
=

=

+

( )

( )

n vehiclecapacity
1

0
not all customers areassigned to vehicles

k

k k
c

while
return v

endprocedure

= +
=

 

 At the end of the SSH_1, vehicles are assigned to the customers according to 
nearest neighborhood search and each vehicle has a route as shown in Table 3.7. 
Objective value of SSH_1 construction solution is 5162.53 TL. 

Table 3.7 SSH_1’s Solution 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 5 8 3 2 3 4 7 1 1 6 

 
d. Smart Start Heuristic 2 (SSH_2) 

 SSH_2 heuristic aims to minimize the total number of vehicles. Firstly, 
customers are sorted in decreasing order according to their demands in terms of 
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compartments. The algorithm starts to put away the customers to a vehicle and until 
the vehicle is full. When there is no customer demand that can be loaded, a new 
vehicle is opened and algorithm returns the beginning of the array.  
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{ }
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k k
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 At the end of the SSH_2, the vehicles are assigned to the customers according 
to minimum usage by compressing the demands to the vehicles and each vehicle has 
a route as shown in Table 3.8. The objective value is 5162.53 TL. 

Table 3.8 SSH_2’s Solution 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 1 2 3 4 5 6 7 8 2 3 

Improvement Step: 

 The construction heuristics provide initial solutions indicating how customers 
are assigned to vehicles and they determine the routes of the vehicles. At the end of 
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the each construction heuristic, the following Variable Neighborhood Search (VNS) 
algorithm is used to improve the route of each vehicle. 
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 The improvement is based on the following idea. At the beginning of the 
improvement the customer demands are aggregated into number of compartments. 
So, there could be empty places inside the compartments. By combining different 
customer demands, the number of vehicles and also route costs can be decreased. In 
our improvement heuristic, all computations are made in terms of tons, that are, the 
actual demands. 

 In the first step of the improvement algorithm, the vehicles are sorted in 
increasing order according to their total current capacities. The first customer demand 
is successively removed from current location, the algorithm checks whether there 
exists a vehicle whose remaining capacity for the same type of product is greater and 
equal to the customer’s demand. The displacement is started from the first customer 
of the first vehicle and the procedure tries to find a room in the last vehicle. As it is 
not easy to close the vehicle that has the maximum capacity, the aim is to maximize 
the total amount of demand served by that vehicle. It is tried to start processing from 
the vehicle with the minimum capacity usage. If there is not enough capacity in the 
last vehicle, other vehicles are tried in the backward manner. 
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 The vehicle wanted to be closed/removed from schedule, is called “chosen 
vehicle”. The selected customer in chosen vehicle is named as “chosen customer” and 
the vehicle that is tried to be put away is called “found vehicle”. If there is enough 
capacity for the chosen customer in found vehicle and the product type is proper, the 
customer (demand) is directly assigned to that vehicle.  The initial and changed route 
costs are recalculated for both chosen and found vehicles. The new routes are 
improved by using VNS. The difference of initial and changed cost for chosen 
vehicle is kept as “saving” and the difference between initial and changed cost for 
found vehicle is called “loss”. The remaining capacity is updated and the next 
customer of the same vehicle will be processed. After all customers that could be 
removed in the same vehicle are processed, the total losses are computed..  

 If the summation of saving and loss is positive, the value is subtracted from the 
objective value. It means that the change yields a better route and chosen customer 
remains in the found vehicle route. If the result is negative and the vehicle is empty, 
all negative changes are added and compared with the vehicle fixed cost. If vehicle 
fixed cost is grater, negative changes remain and the difference is subtracted from the 
objective value. If the vehicle cost is less than negative changes, all negative 
movements for chosen vehicle are withdrawn. Finally, if the vehicle is not empty, 
negative changes are also withdrawn for all movements of the chosen vehicle. Such 
movement of the customers constitutes a myopic solution. Some movement decisions 
depend on the other customers on the same route. Therefore, a second chance is given 
to improvement step to recover some gaps, and the algorithm has two replications in 
such a way that the current solution is recalled for a second run when the first 
improvement phase is ended.  

 All of our construction algorithms except RSH_2 have quadratic worst-case 
time complexities as 2( )O N , where N is the number of customers. The algorithmic 

complexity of RSH_2 is defined as
2

2
N

O
  
     

. The order of VNS algorithm is also 

2( )O N . At the beginning of the improvement step, the vehicles are sorted with the 
bubble sort method, of complexity 2( )O N . The customers are switched among the 
vehicles, and the complexity of this operation is 3( )O KN where K represents the 

number of vehicles. Hence, the overall complexity of the improvement becomes
3( )O KN . 
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 The vehicles’ time constraints (where the time limit is 8 hours for each vehicle) 
are considered in all construction steps of the heuristic algorithms. But in the 
improvement phase, we first ignore the time constraint to provide flexibility of 
customer changes between vehicles. At the end of the improvement step, tour 
completion times are calculated, and if there is a violation, the same improvement 
algorithm with time-controlled version is applied. To illustrate the improvement 
phase, the solution steps on the example problem are shown in Table 3.9. The current 
total cost is recorded as 5149.37 TL with 8 vehicles in Table 3.9. Table 3.10 
indicates the vehicles that contain the assigned customers. 

Table 3.9 Vehicle Assignment to the Customers - RSH_1 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 5 1 2 6 2 3 8 7 1 4 

 Vehicles sorted in decreasing order according to their capacities are shown in 
Table 3.11.  

Table 3.10 Initial Vehicle Routes - RSH_1 

Vehicles 1 2 3 4 5 6 7 8 
Customers 2,9 3,5 6 10 1 4 8 7 

Table 3.11 Vehicle Routes with Sorted Vehicle Capacities - RSH_1 

Vehicles 1 2 3 4 5 6 7 8 
Customers 10 6 7 8 1 3,5 2,9 4 

 The first step of the improvement phase starts with the first vehicle. The vehicle 
visits customer 10 in the initial solution. The customer is tried to be removed from the 
first vehicle, and another vehicle is searched starting from the last vehicle in the 
order. There is enough capacity and proper product type in vehicle 2, so customer 10 
switches to vehicle 2. The route of vehicle 2 is changed; routing cost increases by an 
amount of 44.30 TL with increasing number of customers. Otherwise, the routing 
cost of vehicle 1 decreases 226.62 TL. As a result, vehicle 1 becomes empty, it is 
closed with 182.32 TL gain and a saving of 400TL fixed cost. As a result, the 
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objective value decreases from 5149.37 TL to 4567.05 TL with 7 vehicles as shown 
in Table 3.12.  

Table 3.12 Vehicle Routes with Dischargement of Vehicle 1- RSH_1 

Vehicles 1 2 3 4 5 6 7 8 
Customers  - 6,10 7 8 1 3,5 2,9 4 

 The same procedure is applied for vehicles 2, 3, 4 and 5 but customers that are 
in these vehicles could not find any proper place to be moved. In processing vehicle 
6, customer 3 is switched to vehicle 7.  The routing cost of vehicle 6 decreases by an 
amount of 112.45 TL, while the routing cost of vehicle 7 increases by 205.79 TL. The 
loss for routing is 93.34 TL. If there is no customer remaining in vehicle 6, it can be 
closed if the routing cost is less than the vehicle’s fixed cost. Because customer 5 
could not move to another vehicle, there is a loss and customer 3 goes back to vehicle 
6 as shown in Table 3.13.  

Table 3.13 Vehicle Routes with Dischargement of Vehicle 6 - RSH_1 

Vehicles 1 2 3 4 5 6 7 8 
Customers  - 6,10 7 8 1 5 2,9,3 4 

 A similar case is observed for vehicle 7. Customer 9 changes its place to 
vehicle 6.  The routing cost of vehicle 7 decreases by 22.76 TL when the routing cost 
of vehicle 6 increases by 41.74 TL. The loss for routing is 18.98 TL. If there is no 
customer left in vehicle 7, it can be closed because the routing cost is less than 
vehicle’s fixed cost. Since there is a net loss, customer 9 goes back to vehicle 7 
shown as in Table 3.14.  

Table 3.14 Vehicle Routes with Dischargement of Vehicle 7- RSH_1 

Vehicles 1 2 3 4 5 6 7 8 
Customers -  6,10 7 8 1 5,3,9 2 4 

 At the end of the first iteration, the results of the remaining vehicle routes are 
shown in Table 3.15 and vehicle assignment to customers is given in Table 3.16; 
objective value remains as 4567.05 TL. 
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Table 3.15 Vehicle Routes - RSH_1 

Vehicles 1 2 3 4 5 6 7 
Customers 6,10 7 8 1 5,3 2,9 4 

Table 3.16 Vehicle Routes - RSH_1 -Improvement 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 4 6 5 7 5 1 2 3 6 1 

 After 1000 replications, the final objective value for the basic model is found as 
4542.98 TL with 7 vehicles as is given in Table 3.17. 

Table 3.17 Final Vehicle Routes - RSH_1 -Improvement 

Customers 1 2 3 4 5 6 7 8 9 10 
Demand (#of silos) 3 3 1 4 3 3 3 3 1 2 
Product Type 3 3 1 3 1 4 2 2 1 4 
Vehicle 3 5 5 7 4 1 2 6 4 1 

As well as basic mode, the multi-trip and split delivery models have the same 
construction heuristics, but they differ in the improvement phase and thereafter.  

 Multi-Trip Model 3.2.2

 Multi-trip model has similar improvement steps as compared with the basic 
model, but the total tour completion times of two determined vehicles (it is assumed 
that a vehicle can have at most two trips in an 8 hour time limit) should be less than 8 
hours. As these two vehicles actually represent two trips of the same vehicle, the 
fixed cost of one of the two determined vehicles is subtracted from the objective 
function. All construction and improvement steps are the same as the basic model; 
but at end of the improvement step, the tour completion times are calculated and 
sorted in decreasing order and two vehicles with total tour completion time less than 
8 hours are named as the same vehicle. Therefore, one vehicle fixed cost is subtracted 
from the objective value. 
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 At the end of the basic model, the computed tour completion times are given in 
Table 3.18. 

Table 3.18 Vehicles’ Tour Completion Times - RSH_1 -Improvement 

Vehicles 1 2 3 4 5 6 7 
Route Times 175 211 134 154 207 264 114 

 The completion times are sorted in decreasing order as given in Table 3.19 and 
paired up by considering the time constraint that is 480 minutes (8 hour shift) as 
repeated in Table 3.20. It is possible to decrease the number of vehicles from 7 to 4 
by allowing multiple tours, and the objective value becomes 3342.98 TL. 

Table 3.19 Tour Completion Times in Decreasing Order - RSH_1-Improvement 

Vehicles 6 2 5 1 4 3 7 
Route Times 264 211 207 175 154 134 114 

Table 3.20 Vehicle Combinations - RSH_1- Improvement 

Vehicles 6 2 5 1 4 3 7 
Route Times 264 211 207 175 154 134 114 

 Split Delivery Model 3.2.3

 In split delivery model, we assume that one or two vehicles can meet one 
customer demand. In the case that there are two vehicles visiting a customer, 
percentage of a customer demand served by one of the vehicles should be greater than 
25%, called as the minimum splitting ratio. The heuristic algorithm has the same 
construction and improvement steps. However, at the end of the improvement phase, 
each vehicle is tried to be closed. According to split delivery assumptions, if some 
customers remain in a vehicle at the end of the improvement phase of that vehicle, 
these customers’ demands are split into two parts and sent to the two different 
vehicles.  

 To split a customer demand, the minimum splitting ratio rule is applied. For 
example, if the first found vehicle’s remaining capacity for the same type of product 
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is less than the 25% of the chosen customer demand in the chosen vehicle, it is 
skipped. If the first found vehicle’s remaining capacity for the same type of product is 
greater than 75% of the chosen customer demand in the chosen vehicle, 75% of the 
chosen customer’s demand in the chosen vehicle is loaded to the first found vehicle. 
However, the first found vehicle’s remaining capacity for the same type of product is 
greater than 25% and less than 75% of the chosen customer’s demand, all remaining 
capacity of the first found vehicle is used. At the end of the splitting procedure, if the 
chosen vehicle cannot be closed, all customers that cause the increasing in routing 
costs are returned back to their original vehicles.  

 The split procedure is applied after each replication of the basic problem. To 
illustrate the procedure, we use the same problem data. The first step of the split 
algorithm is to sort the vehicle capacities in increasing order. The improvement step 
output for Table 3.15 is given in Table 3.21. 

Table 3.21 Vehicle Routes with Sorted Vehicle Capacities - RSH_1_Split 

Vehicles 1 2 3 4 5 6 7 
Customers 7 8 1 5,3 2,9 4 6,10 

 The algorithm first tries to discharge vehicle 1. The actual demand of customer 
7 is 9 tons in terms of 2nd product type and also there is no place for customer 7 to 
change its vehicle. The remaining capacity of each vehicle is calculated, and the 
remaining capacity of vehicle 2 is 1 ton for 2nd product type and it has 1 empty 
compartment (4 tons) that can be proper for all types of products. Moreover, the 
remaining capacity of vehicle 3 is also equivalent to an empty compartment (4 tons). 
So, the demand of customer 7 is divided into two parts; 5 tons of the demand is 
placed into vehicle 2, and 5 tons goes to vehicle 3 as shown in Table 3.22. 

Table 3.22 Vehicle Routes with Dischargement of Vehicle 1 - RSH_1 - Split 

Vehicles 1 2 3 4 5 6 7 
Customers  - 8,7 1,7 5,3 2,9 4 6,10 

 The replacement of customer 7 yields a decreased route cost for vehicle 1, 
while an increased cost for vehicles 2 and 3. The routing cost of vehicle 1 decreases 
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by an amount of 295.80 TL, whereas vehicle 2’s cost increases 295.62 TL and vehicle 
3’s is 93.39 TL, leading to a loss of 93.21 TL. However, vehicle 1 can be closed, and 
the fixed cost could be saved as 400TL.  Therefore, the movement of customer 7 
generates net savings and the new objective value becomes 4260.26 TL with 6 
vehicles. For other vehicles, there is no improvement; the replacement of customers 
causes only losses and/or vehicles cannot be closed. The final routes are given in 
Table 3.23.  

Table 3.23 Final Vehicle Routes - RSH_1_Split 

Vehicles 1 2 3 4 5 6 
Customers 8,7 1,7 5,3 2,9 4 6,10 

3.3 Lower Bound  

 Our basic model can be solved up to 15 customers and we could not find 
optimal solutions for 20 customers and more. For split delivery and multi-trip models 
can only be solved up to 15 customers. Since the problem is NP-Hard, some 
combinatorial optimization methods and some smart approaches can provide feasible 
solutions as lower bounds. To test our heuristic model for large size problem 
instances, we compute some lower bound values that consist of routing cost and fixed 
cost.   

 In basic model, the lower bound of the total fixed cost is computed by 
multiplying the total number of vehicles with the fixed cost of a vehicle. To find the 
number of vehicles, the total amount of demand for each type of product is divided 
into the compartment capacity, and the upper integer represents the total number of 
required compartments for product type. The total number of needed compartments is 
divided into the number of compartments that are located in the vehicles; this upper 
bound value gives the total number of required vehicles. This number is compared 
with the number of customers whose demands are more than half of the vehicle 
capacity. As each of these customers should be visited by only one vehicle, the 
highest value is taken. An example to find the lower bound for number of vehicles for 
the same sample data in Table 3.2 is shown below: 
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 Next, the demands of customers higher than 8 tons are counted, and 7 such 
customers are found. Hence, minimum 7 vehicles are needed. As this check gives the 
higher value, the fixed cost of the problem is equal to 2800TL (7x400TL). 

 In the multi-trip model, the lower bound of the fixed cost is computed by 
dividing the number of vehicles found in basic model by two if the number is even; 
and if it is odd, the number is increased by one and then divided by two. For the split- 
delivery model, the lower bound of the fixed cost is the same as basic model, but 
without the check for high demand customers. There are three different lower 
bounding methods for the routing part, as explained below. 

Lower Bound-1: 

 The first lower bound method tries to find the minimum distribution distance by 
seeking the customers’ neighbors individually. The procedure starts from the first 
customer and selects two different closest customers that are nearest. This is applied 
for each customer, and each customer’s connection nodes consist of the two closest 
neighbors, as shown in Figure 3.2.  

 

Figure 3.2 Customers Neighbors - LB-1 
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 After these connections are included in the route, there is one entrance and one 
exit, and a customer can be a neighbor for two different customers. So, the customer 
can be counted twice. After the neighbor customers are found, multiple counts are 
eliminated. If a customer is counted more than twice, minimum two distances for that 
customer are kept and the rest are erased as illustrated in Figure 3.3. After the 
multiple counts are eliminated, the new situation is shown in Figure 3.4.  

 

Figure 3.3 Marking Multiple Counts - LB-1 

 

Figure 3.4 Eliminating Multiple Counts - LB-1 
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 The next step is to enforce the depot connection arcs. The number of 
entrances/exits from/to depot should be equal to lower bound of the number of 
vehicles (7 vehicles), and for each vehicle the closest customers from the depot are 
selected as starting nodes. Selected customers’ previous connections are deleted, and 
their all arcs are connected to depot, as shown in Figure 3.5. The total of all arc 
distances are multiplied by fuel cost and the result gives a lower bound for the routing 
cost. 

 

Figure 3.5 Customer-Depot Connections - LB-1 

 The total distances of the connected arcs on the network is equal to 1065.35 km 
and the total routing cost is found as 1491.49 TL by multiplying total distance with 
the 1.4 TL/km fuel cost. The objective value is equal to 4291.49TL (routing cost + 
fixed cost, 1491.49TL + 2800TL). 

Lower Bound-2: 

 The second lower bound is found by solving an assignment problem without 
depot and sub-tour elimination constraints. The example problem is solved in CPLEX 
OPL and solution is visualized in Figure 3.6.  
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Figure 3.6 Solution of Assignment Problem - LB-2 

 To add the depot connections on the assignment solution, the closest 7 
customers from the depot are selected. Selected customers’ connection arcs are 
deleted and they are connected to the depot as shown in Figure 3.7. The total of all 
distances are multiplied by the fuel cost, and the result gives a lower bound for the 
routing cost. In our example, the total distance of the connected arcs is 921.87 km, 
and the total routing cost is found as 1278.01 TL by multiplying total distance with 
the 1.4 TL/km fuel cost. The lower bound for the objective value becomes 4078.01TL 
(routing cost + fixed cost, 1278.01TL + 2800TL). 

 

Figure 3.7 Customer-Depot Connections - LB2 
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Lower Bound-3: 

 The last lower bound is obtained by solving the original model on CPLEX 
OPL, and taking the best solution after 5 minutes as the lower bound. As the example 
has only 10 customers, it gives the optimal solution on CLPLEX OPL in less than 5 
minutes. So, this lower bound gives the optimal for the example as 4542.98 TL. As it 
will be depicted in the next chapter, this lower bound performs very well for larger 
problem instances. 
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4 COMPUTATIONAL STUDY 

4.1 Experimental Design 

 To test our methodology for different kinds of problems, we generated 10 
random problem instances for each combination of factor levels. The parameter 
values and how they are generated are explained below: 

Number of customers: 

 The number of customers directly affects the problem size. The levels for 
number of customers are determined as 10, 15, 20, 50 and 100. First, 100 customers’ 
data are generated for each combination and the data for less number of customers are 
obtained by taking the related portion. 

Product type: 

 We assume that there are 4 different types of products and each customer can 
receive only one type of them. The product types are assigned to customers 
uniformly.  

Demand: 

 The demand of the customers cannot exceed the total vehicle capacity which is 
assumed to be 16. Three different ranges are decided for the customer demands. In 
the first demand range D[1,16] (Uniformly distributed between 1 and 16), a customer 
can demand  as high as the vehicle capacity. To decrease the variance without 
changing the mean of the demand distribution among customers, the second demand 
range is defined as D[4,12]. The third level has less amount of demands, and also low 
variance, that is D[1,8]. This level allows that at least two customer demands are 
carried in a vehicle.  

Coordinates: 

 Customers are located in a large square (-200000m; +200000m) and the depot 
is fixed at the origin (0, 0). We divide the area in 16 equal square regions. Some 
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regions have many customers, and some of them have a few numbers of customers. 
To reflect the realistic scatter of customers, the area is divided into low and high 
density regions. The number of low density regions is three times that of the high 
density regions, but the high density regions are 4 times denser than low density 
regions: All in all, there are 12 low density regions and 4 high density regions, as 
shown in Figure 4.1. 

 After the regions are fixed, customers are created randomly with respect to 
densities. The number of customers in the low density region is calculated 
by�𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

28 (=4x4+12)
�. The denominator comes from the number of high 

density regions times the multiplier (4) adding number of low density regions.  

 

Figure 4.1 Regions and customers on the area 
 

Number of vehicles: 

 The number of vehicles is not a given parameter. The total amount of demand is 
divided by the vehicle capacity to yield the lower bound (V). The second level is 
found by adding 1 to first level, and the third level (V+1) is found incrementally one 
more time (V+2).  

 The pilot experimentation is designed to evaluate the performance for the basic 
model including several factor levels to generate data sets. Table 4.1 presents the 
factors and their levels used in the experimentation. The number of customers is set 
as 10 and 15, because a general solver can obtain the optimal values for these sizes. 
As explained above, the locations of the customers are generated uniformly over a 
200,000 by 200,000 grid, and Euclidian distances are computed between each pair of 
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nodes. The single depot is located at (0,0) coordinates. The demand of each customer 
is generated from a discrete uniform distribution, as explained, as well as the number 
of vehicles. The fuel cost is assumed as α= 1.4 TL/km in all settings, while the fixed 
cost of using a vehicle on a working day is set as 200 TL and 400 TL at two levels. 

Table 4.1 Factors and Levels of Instances 

Factors Levels 
Number of customers 10, 15 

Demand U[1,8], U[1,16], U[4,12] 
Number of vehicles V, V+1, V+2 

Fixed cost of vehicle 200TL, 400TL 

 Ten instances are generated from each setting, and 360 instances in total. Table 
4.2 presents the computational results of the pilot experiment where each row 
represents the ten instances of the same setting. Due to the high fixed cost of the 
vehicles as compared to the fuel cost, the optimal solution does not use any extra 
vehicles and keeps the minimum feasible number of vehicles used.  

Table 4.2 Analysis of Basic Model Run Results 

 

Avg. 
Obj. 

Max 
Obj. 

Min 
Obj. 

Avg. 
CPU 
(sec.) 

Max 
CPU 
(sec.) 

Min 
CPU 
(sec.) 

Avg. 
V. 

Max 
V. 

Min 
V. 

N10_D1-16_FC400 4203.27 5455.25 3208.92 0.79 1.34 0.56 7 9 5 
N10_D1-16_FC200 2903.27 3655.25 2208.92 0.65 1.31 0.30 7 9 5 
N15_D1-16_FC400 6064.13 7328.18 4515.45 254.15 691.38 26.92 10 11 7 
N15_D1-16_FC200 4224.13 5128.18 3115.45 493.73 2456.03 14.28 10 11 7 
N10_D1-8_FC400 2609.85 2941.97 2073.28 1.16 3.52 0.28 4 4 3 
N10_D1-8_FC200 1889.85 2141.97 1473.28 1.07 2.24 0.28 4 4 3 
N15_D1-8_FC400 3551.98 4237.26 2806.13 330.34 686.00 9.28 5 6 4 
N15_D1-8_FC200 2591.98 3037.26 2006.13 524.34 1187.32 12.11 5 6 4 
N10_D4-12_FC400 4128.67 5227.14 3508.14 1.44 2.73 0.79 7 8 5 
N10_D4-12_FC200 2868.67 3627.14 2452.31 1.62 2.05 0.95 7 8 5 
N15_D4-12_FC400 5826.20 7237.26 4963.84 316.57 982.94 10.13 9 11 8 
N15_D4-12_FC200 4099.75 5037.26 3363.84 356.22 934.25 8.63 9 11 8 

 As it can be seen from Table 4.2, the least average objective values belongs to 
D[1,8] settings. The logic is to load as many customer demands as possible into a 
vehicle. So, the route cost increases while the number of required vehicles with 
expensive fixed cost decreases. The number of vehicles of D[1,16] and D[4,12] 
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settings are similar. But D[1,16] has high variance, and some vehicles can carry many 
customers, some of them visits only one customer, and this increases the routing cost. 
Therefore, D[1,16] problem instances give high objective values. Expectedly, the 
small amount of demands D[1,8] has significantly higher computation times on 
average. Because, the vehicles can carry many number of customers’ demands, and 
this increases the possible assignment combinations and causes increasing CPU 
times. D[4,12] yields the fastest results, as the amount of demands are high and the 
variance is low. The customer demands are assigned to vehicles easily. The average 
CPU time of setting D[1,16] is better than D[1,8] due to high demand but worse than 
D[4,12] due to high variance. As it can be seen in Table 4.2, the combinatorial nature 
of the problem prevails when the number of customers is increased. CPU times and 
objective values also increase, and most of the problem instances cannot be solved in 
reasonable times.  

 To test the quality of the heuristic algorithms, the controllable factors and their 
levels are determined as shown in Table 4.3. 

Table 4.3 Factors and Levels for Heuristic Algorithm 

Factors Levels 
Number of replications 1, 10, 100, 500, 1000 

Number of replications for 
improvement 

1, 2 

 RSH_1 and RSH_2’s construction heuristics are not smart algorithms, and to 
find the better solutions, the algorithms try many alternative solutions with random 
selections and assignments. When the number of replications increases, the amount of 
alternative solutions also increase with increasing the CPU time. Table 4.4 shows the 

CPU times and GAP% ( heuristic result-optimal result
optimal result

) between optimal and RSH_1 

heuristic results. 
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Table 4.4 Results of RSH_1 

  

# of Replications 

1 10 100 500 1000 

GAP 
CPU 
(sec.) GAP 

CPU 
(sec.) GAP 

CPU 
(sec.) GAP 

CPU 
(sec.) GAP 

CPU 
(sec.) 

N10_D1-16_FC400 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.04 0.00% 0.07 
N10_D1-16_FC200 0.00% 0.00 0.00% 0.00 0.00% 0.02 0.00% 0.06 0.00% 0.11 
N15_D1-16_FC400 4.00% 0.00 2.21% 0.00 1.40% 0.01 0.00% 0.08 0.00% 0.12 
N15_D1-16_FC200 6.00% 0.00 3.22% 0.00 2.04% 0.01 0.00% 0.05 0.00% 0.13 
N10_D1-8_FC400 14.00% 0.00 3.20% 0.00 0.00% 0.02 0.00% 0.10 0.00% 0.07 
N10_D1-8_FC200 19.00% 0.00 4.52% 0.00 0.00% 0.00 0.00% 0.04 0.00% 0.07 
N15_D1-8_FC400 18.00% 0.00 10.74% 0.00 1.12% 0.03 0.90% 0.12 0.00% 0.16 
N15_D1-8_FC200 17.00% 0.00 10.52% 0.00 1.05% 0.01 0.35% 0.07 0.00% 0.18 
N10_D4-12_FC400 0.00% 0.00 0.00% 0.00 0.00% 0.01 0.00% 0.05 0.00% 0.06 
N10_D4-12_FC200 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.06 0.00% 0.07 
N15_D4-12_FC400 3.00% 0.00 0.72% 0.00 0.40% 0.01 0.00% 0.06 0.00% 0.13 
N15_D4-12_FC200 4.00% 0.00 1.03% 0.00 0.58% 0.01 0.00% 0.05 0.00% 0.14 

 As seen in the Table 4.4, when the number of replications increases, the GAP% 
value decreases as expected. We decided to fix the number of replications as 500 and 
1000 to have the better solutions. 

At the end of the each construction step, to improve the current tours, our 
improvement step is applied. Our modified VNS algorithm provides the better routes 
in each movement of the customers for both the chosen vehicle and found vehicle 
routes. The number of iterations in VNS is determined by the number of customers. 

 Increasing the number of replications of the improvement step affects solution 
quality. Figure 4.2 shows how improvement step replication size changes the 
solution. Customer X is in vehicle A, customers Y and Z are in vehicle B, and 
customer T is in vehicle C. In the discharging steps of vehicle A, customer X does not 
move to vehicle B because of increasing route cost in the first step. After vehicle B 
tries to discharge all its customers, only customer Y moves brings saving. But at this 
point, one should consider customer X. If customer Y has not been in vehicle B at the 
beginning, customer X could come to vehicle B. So, the improvement step should be 
double checked. 
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Figure 4.2 Example of Improvement Replication Effect 

  

The results for increasing replication size of the improvement step are shown in 
Table 4.5.  
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Table 4.5 Results of Replications for Improvement 

  

Improvement Replication - 1 Improvement Replication - 2 

500 1000 500 1000 

GAP CPU(sec.) GAP CPU(sec.) GAP CPU(sec.) GAP CPU(sec.) 
N10_D1-16_FC400 0.00% 0.07 0.00% 0.13 0.00% 0.08 0.00% 0.16 
N10_D1-16_FC200 0.00% 0.05 0.00% 0.13 0.00% 0.10 0.00% 0.18 
N15_D1-16_FC400 0.00% 0.22 0.00% 0.38 0.00% 0.26 0.00% 0.53 
N15_D1-16_FC200 0.00% 0.22 0.00% 0.39 0.00% 0.28 0.00% 0.65 
N10_D1-8_FC400 0.00% 0.20 0.00% 0.36 0.00% 0.33 0.00% 0.58 
N10_D1-8_FC200 0.00% 0.16 0.00% 0.36 0.00% 0.33 0.00% 0.56 
N15_D1-8_FC400 0.02% 0.68 0.00% 1.59 0.01% 1.13 0.00% 2.25 
N15_D1-8_FC200 0.01% 0.90 0.00% 1.34 0.01% 1.31 0.00% 2.12 
N10_D4-12_FC400 0.00% 0.02 0.00% 0.05 0.00% 0.04 0.00% 0.05 
N10_D4-12_FC200 0.00% 0.02 0.00% 0.04 0.00% 0.02 0.00% 0.10 
N15_D4-12_FC400 0.00% 0.06 0.00% 0.15 0.00% 0.16 0.00% 0.15 
N15_D4-12_FC200 0.00% 0.07 0.00% 0.17 0.00% 0.09 0.00% 0.15 

  Although the double checking of improvement phase does not create a big 
difference for 10 and 15 customers, it is useful for larger size problems.  

 According to the test results of the factor levels for the solution method, Table 
4.6 gives the summary of the selected levels for evaluating the performance of our 
heuristics. 

Table 4.6 Reduced Factor Levels for Heuristics 

Factors Levels 

Number of replications 500, 1000 

Number of replications for improvement 2 

4.2 Computational Analysis 

 The basic, multi-trip and split delivery models are solved with generated data 
sets under determined levels on the general purpose solver OPL for optimal solutions, 
and C++ compiler for heuristic solutions. All runs are made on a PC with Intel® 
Core™ İ5-3360M CPU @ 2.80GHz and 8.00 GB RAM. The results are summarized 
as average, maximum and minimum values for 10 problem instances at each setting. 
The tables for maximum and minimum values are provided in Appendix 1. The 
average values are shown and discussed in subsections below. 
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 Basic Model 4.2.1

 The optimal solutions of the basic model can be obtained up to 20 customers. 
Table 4.7 represents the computational results of average optimal values, CPU times, 
lower bounds and their gaps from optimal value, four heuristic results with GAPs% 
and their CPU times.  

 The table shows that, both lower bound-1 and lower bound-2 values are not 
close to the optimal values. The best lower bound is obtained mostly from lower 
bound-2. RSH_1 and RSH_2 heuristics reach the optimal values for each problem 
variants within reasonable times only. Since 1000 replication results give better 
results with respect to 500 replications, we show the results for 1000 replications 
from this point onwards. 

Table 4.7 Summary of the Basic Model Results for 10 Customers 

  

AVG 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 4203.27 2903.27 2609.85 1889.85 4128.67 2868.67 
CPU(sec) 0.79 0.65 1.16 1.07 1.44 1.62 

LB_1 3606.03 2346.03 2008.06 1288.06 3355.84 2175.84 
GAP_LB_1 17.23% 25.14% 28.51% 44.76% 23.27% 32.45% 

LB_2 3618.13 2358.13 2129.59 1409.59 3398.46 2218.46 
GAP_LB_2  16.62% 24.11% 21.13% 32.07% 21.57% 29.66% 
BEST LB 3642.88 2382.88 2139.02 1419.02 3410.75 2230.75 

BEST GAP 15.98% 23.09% 20.65% 31.31% 21.14% 28.99% 

RSH_1 # of 
Rep 

1000 4203.27 2903.27 2609.85 1889.85 4128.67 2868.67 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.23 0.24 0.74 0.69 0.10 0.12 

RSH_2 # of 
Rep 

1000 4203.27 2903.27 2609.85 1891.51 4128.67 2868.67 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.42 0.43 0.70 0.70 0.30 0.30 

SSH_1 # of 
Rep 

1 4325.44 2997.70 2844.30 2043.65 4230.18 2970.18 
GAP 0.03% 0.03% 0.09% 0.08% 0.03% 0.04% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 4271.62 2971.62 2813.05 2073.05 4239.86 2979.86 
GAP 0.02% 0.03% 0.08% 0.11% 0.03% 0.04% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4203.27 2903.27 2609.85 1889.85 4128.67 2868.67 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

  The heuristic results for all customer sizes demonstrate similar characteristics 
with the optimal results in Table 4.2.  Decreasing fixed cost from 400TL to 200TL 
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provide positive effect on the objective value. The high demand variance D[1,16] 
causes increasing costs with respect to low variance D[4.12]. In addition, low demand 
D[1,8] decreases the objective value under increasing CPU times. When the number 
of customers is increased to 15, the instances can still be solved by the solver 
optimally. Table 4.8 shows the results of optimal, lower bound and heuristic results. 

Table 4.8 Summary of the Basic Model results for 15 customers 

  

AVG 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

OPT 6064.13 4224.13 3551.98 2591.98 5862.20 4099.75 
CPU (sec) 152.15 473.73 330.34 524.34 366.57 296.22 

LB_1 4881.85 3161.85 2676.93 1716.93 4562.40 2942.40 
GAP_LB_1 24.37% 33.98% 29.30% 45.81% 28.51% 39.55% 

LB_2 4949.19 3229.19 2872.09 1912.09 4659.00 3039.00 
GAP_LB_2  22.58% 31.00% 20.39% 30.66% 25.84% 35.10% 
BEST LB 4949.19 3229.19 2872.09 1912.09 4659.00 3039.00 

BEST GAP 22.58% 31.00% 20.39% 30.66% 25.84% 35.10% 

RSH_1 # of 
Rep 

1000 6064.13 4224.13 3566.07 2613.48 5862.20 4102.25 
GAP 0.00% 0.00% 0.37% 0.85% 0.00% 0.07% 

CPU (sec) 0.73 0.76 2.77 2.73 0.29 0.29 

RSH_2 # of 
Rep 

1000 6077.04 4224.13 3580.03 2630.04 5862.20 4099.75 
GAP 0.20% 0.00% 0.78% 1.51% 0.00% 0.00% 

CPU (sec) 0.96 0.97 2.09 2.07 0.63 0.66 

SSH_1 # of 
Rep 

1 6302.62 4410.08 3937.07 2899.32 6171.19 4351.19 
GAP 4.16% 4.44% 11.06% 11.89% 5.41% 6.35% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 6287.39 4447.39 4003.26 3023.26 6210.32 4390.32 
GAP 4.08% 5.87% 12.66% 16.64% 6.05% 7.25% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 6064.13 4224.13 3557.39 2605.96 5862.20 4099.75 

BEST GAP 0.00% 0.00% 0.14% 0.52% 0.00% 0.00% 

  The lower bound gaps increase with increasing number of customers. Also, 
heuristic result gaps increase a little bit for D[1-8] settings. As there are many 
possible assignment combinations to get the optimal value, the heuristic could not 
catch the optimal among these many combinations.   

 The summary results for 20 customers are given in Table 4.9. For 20 
customers, we cannot obtain any optimal values, and the heuristic results are 
compared with the best lower bound ones. As we mentioned before, the lower bound 
values are not satisfactory to be used instead of the optimal values. Therefore, we can 
say that the large gaps between the best lower bound and heuristic results occur 
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because of the weakness of the lower bounds. At this point, we use lower bound-3, 
obtained from the CPLEX solver with a time limit of 5 minutes. The gaps from the 
optimal values are given by CPLEX, and it has better values with respect to lower 
bound-1 and lower bound-2. To indicate the difference of lower bound-3 from other 
two lower bounds, “GAP (w/o CPLEX)” is shown for best gap of lower bound-1 and 
lower bound-2. For instance, as it seen in Table 4.9, “N20_D1-16 FC400” of “BEST 
GAP” states lower bound-3 and equal to 10.40%. However, the gap between lower 
bound-3 and the optimal value is shown as 9.81%. It means that the “BEST GAP” 
would be less if the lower bound-3 were more effective. The value of “GAP (w/o 
CPLEX)” is worse, because of lower bound-1 and lower bound-2 are weaker than 
lower bound-3. From this perspective, the performance of the heuristic algorithms can 
be assessed more clearly. 

Table 4.9 Summary of the Basic Model Results for 20 Customers 

  

AVG 
N20_D1-
16 FC400 

N20_D1-
16-FC200 

N20_D1-
8-FC400 

N20_D1-8-
FC200 

N20_D4-
12-FC400 

N20_D4-12-
FC200 

LB_3 7365.21 5011.02 4045.84 2780.99 6883.86 4645.79 
GAP_LB_3 9.81% 11.10% 13.74% 18.65% 16.07% 17.24% 

LB_1 6608.95 4268.95 3512.20 2252.20 6058.46 3898.46 
LB_2 6712.70 4372.70 3784.35 2524.35 6190.68 4030.68 

BEST LB 7405.00 5028.19 4045.84 2780.99 6883.86 4645.79 

RSH_1 # of 
Rep 

1000 8166.29 5644.27 4731.62 3486.67 7890.56 5481.78 
GAP 10.40% 12.36% 16.95% 25.43% 14.42% 17.86% 

CPU (sec) 1.46 1.42 5.85 6.19 0.55 0.55 

RSH_2 # of 
Rep 

1000 8167.18 5653.87 4766.04 3462.61 7891.36 5483.30 
GAP 11.31% 14.29% 19.07% 27.19% 16.09% 20.65% 

CPU (sec) 1.21 1.56 5.91 5.81 0.66 0.69 

SSH_1 # of 
Rep 

1 8419.31 5968.45 5188.74 3877.16 8265.51 5805.51 
GAP 15.05% 21.42% 30.21% 43.92% 22.23% 28.78% 

CPU (sec) 0.00 0.00 0.01 0.01 0.00 0.00 

SSH_2 # of 
Rep 

1 8562.89 6002.89 5294.53 4045.63 8299.00 5826.69 
GAP 17.40% 22.56% 33.19% 50.44% 22.85% 29.43% 

CPU (sec) 0.00% 0.00% 0.20% 0.50% 0.00% 0.00% 
BEST UB 8163.98 5644.19 4726.71 3448.66 7885.71 5474.65 

BEST GAP 10.40% 12.36% 16.95% 24.91% 14.42% 17.86% 
GAP (w/o LB_3) 21.84% 29.39% 24.95% 36.86% 27.17% 35.66% 

 Table 4.10 and Table 4.11 show the results of 50 and 100 customers for the 
basic model. CPLEX could not find a solution in 5 minutes, so there is no lower 
bound-3 value. The gaps and also CPU times increase with the number of customers. 
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Table 4.10 Summary of the Basic Model Results for 50 Customers 

  

AVG 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 15237.85 9797.85 7953.30 5013.30 14267.32 9147.32 
LB_2 15418.79 9980.42 8486.40 5541.80 14496.48 9376.93 

BEST LB 15435.94 9996.70 8486.40 5541.80 14501.71 9381.65 

RSH_1 # of 
Rep 

1000 19482.46 13622.82 11812.80 8796.98 19024.30 13422.50 
GAP 26.43% 36.74% 39.47% 59.42% 31.35% 43.51% 

CPU (sec) 32.07 32.53 147.57 147.62 9.33 9.57 

RSH_2 # of 
Rep 

1000 19411.24 13633.43 11794.71 8756.93 19016.03 13422.76 
GAP 25.97% 36.88% 39.30% 58.68% 31.31% 43.47% 

CPU (sec) 24.09 24.37 132.61 133.41 8.22 8.28 

SSH_1 # of 
Rep 

1 20164.71 14187.63 11960.76 8708.81 19909.32 14018.08 
GAP 30.87% 42.48% 41.23% 57.88% 37.50% 49.88% 

CPU (sec) 0.04 0.03 0.14 0.16 0.01 0.00 

SSH_2 # of 
Rep 

1 20500.95 14440.95 12798.17 9705.74 20248.32 14368.32 
GAP 33.07% 45.01% 51.12% 75.77% 39.77% 53.56% 

CPU (sec) 0.01 0.01 0.14 0.14 0.00 0.00 
BEST UB 19374.19 13587.46 11701.86 8612.46 18930.74 13379.02 

BEST GAP 25.73% 36.41% 38.14% 56.00% 30.71% 43.02% 

Table 4.11 Summary of the Basic Model Results for 100 Customers 

  

AVG 
N100_D1- 
16-FC400 

N100_D1-
16-FC200 

N100_D1-
8-FC400 

N100_D1-8-
FC200 

N100_D4-
12-FC400 

N100_D4-
12-FC200 

LB_1 29546.83 18866.83 15122.83 9402.83 27777.14 17677.14 
LB_2 29919.05 19239.21 16088.74 10347.50 28232.56 18129.93 

BEST LB 29950.29 19268.77 16088.74 10347.50 28242.59 18138.97 

RSH_1 # of 
Rep 

1000 39328.37 27351.65 24128.48 17655.12 37987.49 26820.95 
GAP 31.61% 42.39% 50.07% 71.02% 34.63% 48.23% 

CPU (sec) 318.83 322.14 1531.01 1948.37 96.12 94.06 

RSH_2 # of 
Rep 

1000 39356.18 27379.98 24103.54 17636.28 37944.45 26858.94 
GAP 31.71% 42.53% 49.94% 70.81% 34.49% 48.46% 

CPU (sec) 257.26 259.35 1417.76 1732.29 77.26 77.36 

SSH_1 # of 
Rep 

1 41749.83 28916.59 25062.22 18145.16 40610.19 28619.56 
GAP 39.69% 50.51% 55.87% 75.76% 43.94% 58.20% 

CPU (sec) 0.29 0.33 1.37 1.39 0.07 0.06 

SSH_2 # of 
Rep 

1 42367.11 30661.91 27132.10 22913.34 39890.24 30162.60 
GAP 41.81% 59.72% 68.56% 121.95% 41.46% 66.84% 

CPU (sec) 0.27 0.28 1.14 1.15 0.11 0.09 
BEST UB 38598.23 27293.73 23413.92 17213.80 36551.42 26766.31 

BEST GAP 29.13% 42.07% 45.59% 66.84% 29.56% 47.94% 
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 Multi-Trip Model 4.2.2

 In multi-trip model, multiple visits to customers are allowed and we assume 
that a vehicle can have two distinct tours at most. As expected, multi-trip model 
results for the same problems give better objective values. If two distinct tours are 
assigned to a single vehicle, one of the fixed costs will be saved. Multi-trip model is 
more complex than the basic model. So, the CPU times of our general solver are 
increased, and the solver cannot give an optimal solution for 15 customers in 
reasonable times. By using the same data set for 10 customers, we solved 10 
instances from each setting, and the summary of the results are shown in Table 4.12. 

Table 4.12 Summary of the Multi-Trip Model Results for 10 Customers 

  

AVG 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 3027.53 2323.27 1991.12 1571.12 2932.46 2252.46 
CPU (sec) 40.78 44.20 12.14 14.70 44.83 37.59 

LB_1 2446.03 1766.03 1328.06 1008.06 2235.84 1615.84 
GAP_LB_1 25.84% 33.93% 52.04% 59.82% 31.13% 39.99% 

LB_2  2458.13 1778.13 1449.59 1129.59 2278.46 1658.46 
GAP_LB_2  24.93% 32.51% 38.73% 41.96% 28.58% 36.22% 
BEST LB 2482.88 1802.88 1459.02 1139.02 2290.75 1670.75 

BEST GAP 23.99% 31.17% 37.96% 40.86% 27.88% 35.27% 

RSH_1 # of 
Rep 

1000 3027.53 2323.27 1997.52 1577.52 2954.74 2274.30 
GAP 0.00% 0.00% 0.32% 0.40% 0.63% 0.80% 

CPU (sec) 0.27 0.26 0.70 0.73 0.08 0.07 

RSH_2 # of 
Rep 

1000 3027.53 2323.27 1999.77 1579.77 2954.74 2274.30 
GAP 0.00% 0.00% 0.44% 0.56% 0.63% 0.80% 

CPU (sec) 0.33 0.37 0.59 0.57 0.16 0.17 

SSH_1 # of 
Rep 

1 3165.44 2417.70 2536.77 1896.12 3110.18 2410.18 
GAP 3.86% 3.89% 20.89% 16.87% 5.66% 6.51% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 3151.62 2411.62 2452.61 1892.61 3159.86 2439.86 
GAP 3.51% 3.76% 17.41% 16.26% 6.67% 7.14% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 3043.27 2323.27 1997.52 1577.52 2954.73 2274.30 

BEST GAP 0.00% 0.00% 0.32% 0.40% 0.62% 0.80% 

  When the multi-trip model is compared with the basic model, the multi-trip 
model lower bounds are worse, but the heuristics have small gaps from optimal 
values that can be ignorable, and the CPU times are a bit more. Unexpectedly, 
D[4,12] settings have the highest gaps for multi-trip models. When we consider the 
heuristic algorithm of the multi-trip model, the combination of vehicles at the end of 
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the improvement phase could not match the two vehicles’ routes properly. The 
general solver tries to combine two vehicles route under time constraints. But, the 
heuristic algorithm does not try to combine routes until the last part of the solution. 
The setting is very similar to D[1,16] because of their close mean values and the 
objective values are also close. However, D[1,16] setting has no gap. The propensity 
of the D[1,16] is a little bit different.  

 To show the reason of the gap difference between D[1,16] and D[4,12] models, 
the following example can be useful. The D[1,16] and D[4,12] problems use similar  
numbers of vehicles. So, we can assume that the problem of both D[1,16] and 
D[4,12] heuristic solutions have 6 vehicles and the vehicles routing times (distances) 
are gives as T(D[1,16])={400, 400, 240, 240, 80, 80} with unbalanced routes due to 
high variance demands and T(D[4,12])={250, 250, 240, 240, 310, 80}. At the end of 
the improvement step of each solution, the vehicles’ routes are able to combine under 
the time constraint. The heuristic algorithm combines vehicles such as 
T*(D[1,16])={480, 480, 480} and T*(D[4,12])={330, 250, 480, 310}. It shows that 
the heuristic algorithms of the D[1,16] problems is able to combine vehicles easily 
with respect to D[1,8] and gets nearer to the optimal results. 

Table 4.13 Summary of the Multi-Trip Model Results for 15 Customers 

  

AVG 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_3 4041.04 3111.46 2446.56 1875.67 3578.26 2709.76 
GAP_LB_3 6.28% 8.28% 8.52% 10.72% 12.53% 14.10% 

LB_1 3281.85 2361.85 1897.45 1656.93 3002.40 2162.40 
LB_2  3349.19 2429.19 2032.09 1791.57 3099.00 2259.00 

BEST LB 4041.04 3111.46 2446.56 1976.70 3615.92 2712.85 

RSH_1 # of 
Rep 

1000 4366.47 3392.07 2772.30 2194.07 4192.35 3252.40 
GAP 8.26% 9.34% 13.69% 11.35% 16.30% 20.69% 

CPU (sec) 0.62 0.62 2.25 2.26 0.21 0.21 

RSH_2 # of 
Rep 

1000 4389.02 3384.13 2804.92 2224.45 4192.35 3252.40 
GAP 8.84% 8.98% 14.97% 12.83% 16.30% 20.69% 

CPU (sec) 0.69 0.68 1.93 1.97 0.36 0.36 

SSH_1 # of 
Rep 

1 4582.62 3590.08 3242.00 2502.00 4506.34 3570.06 
GAP 13.85% 15.78% 32.25% 26.21% 24.75% 32.46% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 4572.28 3592.28 3723.31 2883.31 4678.20 3618.20 
GAP 13.91% 16.46% 52.37% 45.89% 29.87% 34.20% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4366.47 3384.13 2766.81 2188.98 4128.34 3252.40 

BEST GAP 8.26% 8.98% 13.47% 11.02% 14.41% 20.69% 
BEST GAP (w/o CPLEX) 31.66% 40.93% 38.41% 28.45% 33.39% 44.48% 
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 The basic model could be solved optimally for 15 customers. However the 
multi-trip model formulation size is more complex than the basic model, hence it 
could not be solved with 15 customers. We used lower bound-3 instead of optimal 
values to compare the heuristic results. As seen Table 4.13, the gaps between 
heuristic and lower bound-3 values are close to the gaps between optimal and CPLEX 
results. This shows that the heuristic gaps would be less if they were compared with 
the optimal results.  

 Table 4.14, Table 4.15 and Table 4.16 show the results for 20, 50 and 100 
customers of the multi-trip model. The CPLEX could not find a feasible solution in 5 
minutes, so there is no lower bound-3 value. The gaps and also CPU times are 
increased with increased number of customers. As large sized problems have high 
CPU times, smart start heuristic solutions may be more reasonable to use in 
operational decisions. 

Table 4.14 Summary of the Multi-Trip Model Results for 20 Customers 

  

AVG 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_3 4977.84 3706.27 2809.56 2134.13 4533.52 3370.66 
GAP_LB_3 16.90% 19.16% 22.62% 26.88% 23.87% 27.42% 

LB_1 5008.95 3468.95 2672.20 1832.20 4498.46 3118.46 
LB_2 5112.70 3572.70 2944.35 2104.35 4630.68 3250.68 

BEST LB 5272.24 3798.63 2981.65 2167.06 4645.07 3373.82 

RSH_1 # of 
Rep 

1000 5779.77 4387.75 3728.09 2992.91 5555.28 4286.54 
GAP 9.86% 15.67% 25.55% 38.39% 19.59% 27.01% 

CPU (sec) 1.29 1.29 5.87 5.90 0.49 0.49 

RSH_2 # of 
Rep 

1000 5780.65 4398.93 3761.47 2940.47 5558.04 4300.19 
GAP 9.86% 15.98% 26.64% 36.08% 19.67% 27.42% 

CPU (sec) 1.24 1.31 5.38 5.41 0.64 0.64 

SSH_1 # of 
Rep 

1 6101.18 4748.45 4268.74 3437.16 6105.51 4725.51 
GAP 15.83% 25.02% 43.97% 58.69% 31.69% 40.21% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 6370.79 4862.89 4683.91 3715.00 6179.00 4766.69 
GAP 21.50% 28.42% 57.84% 72.04% 33.17% 41.59% 

CPU (sec) 0.00 0.00 0.01 0.00 0.00 0.00 
BEST UB 5777.45 4387.66 3714.31 2918.22 5549.37 4286.54 

BEST GAP 9.80% 15.66% 25.07% 34.97% 19.46% 27.01% 
GAP (w/o CPLEX) 13.86% 23.68% 27.15% 39.59% 19.84% 31.87% 
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Table 4.15 Summary of the Multi-Trip Model Results for 50 Customers 

  

AVG 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 9917.85 7137.85 4713.30 3393.30 9267.32 6647.32 
LB_2  10098.79 7320.42 5246.40 3921.80 9496.48 6876.93 

BEST LB 10115.94 7336.70 5246.40 3921.80 9501.71 6881.65 

RSH_1 
# of 
Rep 

1000 16085.11 10673.81 9598.22 7395.24 13403.39 10461.16 
GAP (LB) 59.14% 45.85% 87.02% 91.30% 41.51% 52.79% 
CPU (sec) 42.50 39.95 161.79 156.57 9.95 9.68 

RSH_2 
# of 
Rep 

1000 16309.06 10765.97 9774.84 7474.91 13500.05 10544.09 
GAP (LB) 61.19% 47.10% 90.49% 93.68% 42.54% 53.91% 
CPU (sec) 39.60 36.74 160.52 154.73 9.46 9.08 

SSH_1 
# of 
Rep 

1 15160.95 11006.33 9146.29 6799.30 13741.36 10818.35 
GAP (LB) 49.71% 50.55% 77.17% 74.32% 44.93% 57.78% 
CPU (sec) 0.05 0.04 0.18 0.19 0.01 0.01 

SSH_2 
# of 
Rep 

1 15522.40 11345.74 10553.62 8338.61 14259.00 11213.08 
GAP(LB) 53.26% 55.17% 103.74% 113.83% 50.38% 63.59% 
CPU (sec) 0.02 0.03 0.18 0.19 0.00 0.00 

BEST UB 13934.55 10427.76 8888.21 6652.51 12953.38 10163.18 
BEST GAP 37.67% 42.58% 71.98% 70.47% 36.80% 48.40% 

Table 4.16 Summary of the Multi-Trip Model Results for 100 Customers 

  

AVG 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 18946.83 13566.83 9482.83 6582.83 17775.18 12675.18 
LB_2 19319.05 13939.21 10448.74 7527.50 18254.57 13150.73 

BEST LB 19350.29 13968.77 10448.74 7527.50 18264.60 13159.77 

RSH_1 
# of 
Rep 

1000 27281.09 21262.75 19320.14 14709.69 26273.90 20606.17 
GAP(LB) 41.01% 52.61% 85.49% 96.18% 44.25% 57.25% 
CPU (sec) 426.08 412.21 1594.80 1831.80 101.09 98.08 

RSH_2 
# of 
Rep 

1000 27350.35 21325.98 19444.02 14775.08 26277.64 20652.06 
GAP(LB) 41.37% 53.06% 86.67% 97.00% 44.26% 57.63% 
CPU (sec) 370.63 340.89 1508.46 1745.27 83.01 81.01 

SSH_1 
# of 
Rep 

1 28757.34 22348.64 19532.51 14916.00 27898.58 21848.32 
GAP(LB) 48.60% 60.39% 87.32% 98.41% 53.15% 66.73% 
CPU (sec) 0.30 0.30 1.50 1.50 0.05 0.04 

SSH_2 
# of 
Rep 

1 29516.02 23098.26 21544.86 16491.91 28691.30 22505.60 
GAP(LB) 52.53% 65.77% 106.87% 119.86% 57.62% 71.89% 
CPU (sec) 0.36 0.25 1.28 1.33 0.07 0.06 

BEST UB 27227.37 21202.66 18408.73 13999.02 26148.80 20556.25 
BEST GAP 40.74% 52.16% 76.72% 86.63% 43.56% 56.89% 
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 Split Delivery Model  4.2.3

 The split delivery model is the most complex model of the three. Some of the 
customer demands are splitted into two parts and carried on different vehicles. Both 
optimal and heuristic solutions take more CPU time than the other two models. Table 
4.17 shows the summary results of split delivery model for 10 customers. 

Table 4.17 Summary of the Split Delivery Model Results for 10 Customers 

  

AVG 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 4038.80 2818.80 2595.59 1875.59 3873.46 2693.46 
OPT_GAP 1.98% 4.10% 0.00% 0.00% 2.68% 2.65% 
CPU (sec) 921.75 1300.21 216.12 297.90 1012.96 843.32 

LB_1 3526.03 2306.03 2008.06 1288.06 3355.84 2175.84 
GAP_LB_1 15.22% 23.50% 30.41% 47.82% 15.74% 24.37% 

LB_2  3538.13 2318.13 2129.59 1409.59 3398.46 2218.46 
GAP_LB_2  14.71% 22.60% 22.88% 34.77% 14.20% 21.85% 
BEST LB 3642.88 2318.13 2129.59 1409.59 3398.46 2218.46 

BEST GAP 13.97% 21.46% 22.41% 34.01% 13.82% 21.23% 

RSH_1 # of 
Rep 

1000 4088.76 2848.75 2601.57 1881.57 3934.49 2731.40 
GAP 1.21% 1.01% 0.22% 0.31% 1.50% 1.45% 

CPU (sec) 0.25 0.28 0.63 0.85 0.39 0.17 

RSH_2 # of 
Rep 

1000 4088.76 2848.75 2601.57 1881.57 3934.49 2731.40 
GAP 1.21% 1.01% 0.22% 0.31% 1.50% 1.45% 

CPU (sec) 0.24 0.28 0.63 0.84 0.38 0.17 

SSH_1 # of 
Rep 

1 4265.94 2964.59 2730.39 1973.54 4282.17 2845.98 
GAP 5.45% 4.96% 5.12% 5.11% 10.33% 5.69% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 4296.15 2985.56 2749.72 1987.50 4312.76 2867.05 
GAP 6.20% 5.70% 5.87% 5.85% 11.12% 6.47% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4088.76 2848.75 2601.57 1881.57 3934.49 2731.40 

BEST GAP 1.21% 1.01% 0.22% 0.31% 1.50% 1.45% 

 There is no gap for both basic and multi-trip models with 10 customers, but 
split delivery heuristic results have small gaps because of problem complexity. 
Unexpectedly, split delivery gaps of small size problem instances behave differently 
for D[1-8] demand level. While D[1-8] demand has the highest gaps among other 
demand types in basic and multi-trip model results, split delivery gaps of small size 
problem instances have less gaps than other demand types shown as in Table 4.17, 
Table 4.18 and Table 4.19.  



 
 

55 
 

Table 4.18 Summary of the Split Delivery Model Results for 15 Customers 

  

AVG 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_1 4841.85 3141.85 2676.93 1716.93 4562.40 2942.40 
LB_2 4909.19 3209.19 2872.09 1912.09 4659.00 3039.00 
LB_3 4951.85 3344.85 3135.32 2222.96 4746.28 3149.00 

GAP_LB_3 16.24% 17.85% 9.41% 10.97% 13.12% 19.23% 
BEST LB 5019.34 3355.47 3100.33 2184.72 4813.75 3183.52 

RSH_1 # of 
Rep 

1000 5873.45 4123.28 3531.92 2614.34 5491.78 3929.83 
GAP 17.24% 23.34% 14.25% 20.26% 14.06% 23.53% 

CPU (sec) 1.21 1.23 3.34 3.27 0.62 0.61 

RSH_2 # of 
Rep 

1000 5901.44 4135.05 3578.88 2602.31 5527.98 3931.19 
GAP 17.82% 23.71% 15.66% 19.69% 14.80% 23.54% 

CPU (sec) 1.27 1.29 2.92 2.96 0.75 0.76 

SSH_1 # of 
Rep 

1 6199.66 4391.89 3831.87 2921.17 6053.90 4340.98 
GAP 23.80% 31.39% 24.29% 34.83% 26.01% 36.89% 

CPU (sec) 0.00 0.00 0.00 0.10 0.00 0.00 

SSH_2 # of 
Rep 

1 6255.03 4455.03 3984.71 3004.71 6074.27 4393.63 
GAP 25.08% 33.54% 28.60% 37.96% 26.34% 38.27% 

CPU (sec) 0.00 0.00 0.00 0.20 0.00 0.00 
BEST UB 5868.56 4123.28 3525.93 2591.71 5490.53 3926.83 

BEST GAP 17.14% 23.34% 14.02% 19.24% 14.03% 23.42% 
BEST GAP (wo CPLEX) 19.94% 29.25% 23.44% 36.73% 17.87% 29.31% 

Table 4.19 Summary of the Split Delivery Model Results for 20 Customers 

  

AVG 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_1 6488.95 4208.95 3512.20 2252.20 6058.46 3898.46 
LB_2  6592.70 4312.70 3784.35 2524.35 6190.68 4030.68 
LB_3 6506.68 4240.49 3915.37 2628.61 6015.57 3931.81 

GAP_LB_3 33.52% 41.97% 19.14% 24.71% 34.95% 46.30% 
BEST LB 6650.37 4370.26 3920.10 2642.30 6203.29 4046.02 

RSH_1 # of 
Rep 

1000 7840.40 5493.94 4719.15 3455.08 7411.55 5258.19 
GAP 18.20% 26.18% 20.49% 30.93% 19.41% 29.94% 

CPU (sec) 2.78 2.58 8.10 8.33 1.53 1.43 

RSH_2 # of 
Rep 

1000 7860.47 5502.89 4707.22 3455.89 7468.75 5242.63 
GAP 18.57% 26.33% 20.21% 31.03% 20.34% 29.54% 

CPU (sec) 2.50 2.64 7.91 7.77 1.55 1.58 

SSH_1 # of 
Rep 

1 8294.93 5891.75 5075.74 3785.75 7939.32 5662.36 
GAP 24.96% 35.03% 29.54% 43.52% 28.00% 40.03% 

CPU (sec) 0.00 0.00 0.11 0.01 0.00 0.00 

SSH_2 # of 
Rep 

1 8341.50 5901.50 5264.02 4001.08 7878.75 5679.16 
GAP 25.85% 35.57% 34.54% 51.92% 27.07% 40.53% 

CPU (sec) 0.00 0.00 0.01 0.01 0.00 0.00 
BEST UB 7803.85 5484.87 4693.37 3439.42 7410.11 5232.46 

BEST GAP 17.66% 25.95% 19.86% 30.37% 19.38% 29.31% 
BEST GAP (wo CPLEX) 18.66% 27.60% 24.16% 36.45% 19.63% 29.81% 
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 The split delivery heuristic algorithm has a deficiency for splitting customer 
demands into different vehicles. At the end of the improvement step, to discharge a 
vehicle, the customer in that vehicle is taken and another vehicle is found to send the 
customer demands. If the found vehicle’s empty capacity is greater than 75% of the 
chosen customer demand, 75% of the chosen customer demand is sent to the found 
vehicle. But, when we check the optimal solution, only 60% of the chosen customer 
demands are sent and the remaining capacity is used for another customer demand. 
Our heuristic algorithm has myopic view, and can miss better alternatives. However, 
D[1,8] settings have small demands, and therefore easier to split properly for small 
size instances.    

 Table 4.20 and Table 4.21 show the results for 50 and 100 customers of the 
split delivery model. CPLEX could not find a solution in 5 minutes. The gaps without 
lower bound-3, and also CPU times are increase with number of customers.  

Table 4.20 Summary of the Split Delivery Model Results for 50 Customers 

  

AVG 

N50_D1-
16_FC400 

N50_D1-
16_FC20
0 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 15237.85 9797.85 7953.30 5013.30 14267.32 9147.32 
LB_2 15418.79 9980.42 8486.40 5541.80 14496.48 9376.93 

BEST LB 15435.94 9996.70 8486.40 5541.80 14501.71 9381.65 

RSH_1 # of 
Rep 

1000 19271.78 13442.19 11947.02 8626.43 18283.15 12848.17 
GAP(LB) 25.10% 34.96% 41.12% 56.61% 26.31% 37.46% 
CPU (sec) 67.84 65.21 204.47 211.33 36.09 33.52 

RSH_2 # of 
Rep 

1000 19305.36 13515.15 11952.38 8606.98 18246.55 12776.44 
GAP(LB) 25.40% 35.64% 41.18% 56.22% 26.04% 36.68% 
CPU (sec) 59.82 60.74 190.47 197.93 30.61 30.84 

SSH_1 # of 
Rep 

1 20098.99 14166.54 11835.27 8525.84 19135.17 13786.53 
GAP(LB) 30.37% 42.08% 39.98% 55.37% 32.18% 47.44% 
CPU (sec) 0.06 0.06 0.22 0.23 0.04 0.04 

SSH_2 # of 
Rep 

1 20386.10 14301.99 12992.47 9460.59 19324.25 13673.78 
GAP(LB) 32.28% 43.65% 53.25% 71.40% 33.52% 46.37% 
CPU (sec) 0.06 0.05 0.22 0.24 0.04 0.06 

BEST UB 19159.33 13390.20 11693.57 8297.45 18186.72 12705.97 
BEST GAP 24.33% 34.41% 38.19% 50.80% 25.62% 35.95% 
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Table 4.21 Summary of the Split Delivery Model Results for 100 Customers 

  

AVG 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 29546.83 18866.83 15122.83 9402.83 27777.14 17677.14 
LB_2  29919.05 19239.21 16088.74 10347.50 28232.56 18129.93 

BEST LB 29950.29 19268.77 16088.74 10347.50 28242.59 18138.97 

RSH_1 # of 
Rep 

1000 38962.86 27483.46 24617.57 18247.91 37394.54 26518.84 
GAP(LB) 30.52% 43.11% 53.47% 76.99% 32.61% 46.53% 
CPU (sec) 802.63 856.97 2453.81 2538.54 411.72 422.08 

RSH_2 # of 
Rep 

1000 39311.27 27431.41 24714.48 18319.41 37067.01 26714.37 
GAP(LB) 31.78% 42.80% 54.05% 77.70% 31.51% 47.58% 
CPU (sec) 656.32 730.35 2080.93 2051.99 302.99 341.86 

SSH_1 # of 
Rep 

1 39564.42 28141.12 23558.52 17285.37 38044.13 27393.76 
GAP(LB) 32.33% 46.29% 46.82% 67.53% 34.85% 51.21% 
CPU (sec) 0.77 0.73 2.71 2.74 0.48 0.46 

SSH_2 # of 
Rep 

1 41112.86 29352.83 25916.10 19632.83 39307.56 28469.44 
GAP(LB) 40.28% 55.90% 64.87% 91.21% 39.42% 56.99% 
CPU (sec) 0.57 0.60 2.46 2.59 0.34 0.40 

BEST UB 38550.24 27137.58 23458.18 17088.52 36878.60 26320.99 
BEST GAP 28.28% 39.99% 44.08% 62.26% 30.48% 44.46% 

4.3 Results and Discussions 

 Ten randomly generated problem instances with determined parameters are run 
for the three different MCVRP models. The basic model could be solved 20 
customers optimally, and the performance of lower bound-1 and lower bound-2 are 
tested by these optimal values in Table 4.22. As seen on the table, lower bounds have 
high gaps, while the heuristics gaps that compared with optimal values are almost 
equal to zero. After 20 customers, the heuristic results have to be compared with 
lower bounds instead of the optimal values.  

 After 15 customers, the upper bound gaps increase suddenly due to the lower 
bound weakness. The lower bound-3 is obtained for 20 customers, and its effect is 
given in the table. However, after 20 customers, the solver could not find a lower 
bound within 5 minutes and hence the heuristic gaps increase. 
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Table 4.22 Performance of Basic Model Heuristics 

  

BEST LB 
GAP 

BEST UB 
GAP 

UB GAP 
(wo 

CPLEX) 
N10_D1-16_FC400 15.98% 0.00%   
N10_D1-16_FC200 23.09% 0.00%   
N10_D1-8_FC400 20.65% 0.00%   
N10_D1-8_FC200 31.31% 0.00%   
N10_D4-12_FC400 21.14% 0.00%   
N10_D4-12_FC200 28.99% 0.00%   
N15_D1-16_FC400 22.58% 0.00%   
N15_D1-16_FC200 31.00% 0.00%   
N15_D1-8_FC400 20.39% 0.14%   
N15_D1-8_FC200 30.66% 0.52%   
N15_D4-12_FC400 25.84% 0.00%   
N15_D4-12_FC200 35.10% 0.00%   
N20_D1-16_FC400   10.40% 21.84% 
N20_D1-16_FC200   12.36% 29.39% 
N20_D1-8_FC400   16.95% 24.95% 
N20_D1-8_FC200   24.91% 36.86% 
N20_D4-12_FC400   14.42% 27.17% 
N20_D4-12_FC200   17.86% 35.66% 
N50_D1-16_FC400   25.73%   
N50_D1-16_FC200   36.41%   
N50_D1-8_FC400   38.14%   
N50_D1-8_FC200   56.00%   
N50_D4-12_FC400   30.71%   
N50_D4-12_FC200   43.02%   
N100_D1-16_FC400   29.13%   
N100_D1-16_FC200   42.07%   
N100_D1-8_FC400   45.59%   
N100_D1-8_FC200   66.84%   
N100_D4-12_FC400   29.56%   
N100_D4-12_FC200   47.94%   

 

 The multi-trip model tries to decrease the number of vehicles by using the same 
vehicle for a second tour. The lower bound of the multi-trip model is almost half of 
the basic model lower bounds. However, the model size increases and the optimal 
solutions can be obtained up to 15 customers.  Therefore, after 10 customers, we get 
the heuristic gaps by comparing them with the weak lower bounds as seen in Table 
4.23. For 15 and 20 customers, lower bound-3 values are acquired from CPLEX at 
the end of the 5 minutes, and this shows that the actual heuristic gaps might not be as 
bad as it seems after 20 customers. 
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Table 4.23 Performance of Multi-Trip Model Heuristics 

  

BEST LB 
GAP 

BEST UP 
GAP 

UB GAP 
(wo 

CPLEX) 
N10_D1-16_FC400 23.99% 0.00%   
N10_D1-16_FC200 31.17% 0.00%   
N10_D1-8_FC400 37.96% 0.32%   
N10_D1-8_FC200 40.86% 0.40%   
N10_D4-12_FC400 27.88% 0.62%   
N10_D4-12_FC200 35.27% 0.80%   
N15_D1-16_FC400   8.26% 31.66% 
N15_D1-16_FC200   8.98% 40.93% 
N15_D1-8_FC400   13.47% 38.41% 
N15_D1-8_FC200   11.02% 28.45% 
N15_D4-12_FC400   14.41% 33.39% 
N15_D4-12_FC200   20.69% 44.48% 
N20_D1-16_FC400   9.80% 13.86% 
N20_D1-16_FC200   15.66% 23.68% 
N20_D1-8_FC400   25.07% 27.15% 
N20_D1-8_FC200   34.97% 39.59% 
N20_D4-12_FC400   19.46% 19.84% 
N20_D4-12_FC200   27.01% 31.87% 
N50_D1-16_FC400   37.67%   
N50_D1-16_FC200   42.58%   
N50_D1-8_FC400   71.98%   
N50_D1-8_FC200   70.47%   
N50_D4-12_FC400   36.80%   
N50_D4-12_FC200   48.40%   
N100_D1-16_FC400   40.74%   
N100_D1-16_FC200   52.16%   
N100_D1-8_FC400   76.72%   
N100_D1-8_FC200   86.63%   
N100_D4-12_FC400   43.56%   
N100_D4-12_FC200   56.89%   

 According to our assumptions, at most two vehicles can visit a customer. 
Although splitting of a demand increases the route cost, it decreases the number of 
vehicles’ fixed costs. The split delivery model is harder than the basic and the multi-
trip models. Table 4.24 shows that the heuristic gaps are higher than the other model 
heuristics. 

 Since the split delivery route distance cannot be less than the basic model route 
distance and the minimum number of vehicles should be the same without manual 
control for both, the maximum lower bound values of the basic model are used for the 
split delivery model. When we compare the results, their lower bound values are 
close and since the objective value decreases, the lower bound gaps are decreased. 
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But our split delivery heuristic performance is not as good as the basic model 
heuristic. 

Table 4.24 Performance of Split Delivery Model Heuristics 

  

BEST LB 
GAP 

BEST UP 
GAP 

UB GAP 
(wo 

CPLEX) 
N10_D1-16_FC400 13.97% 1.21%   
N10_D1-16_FC200 21.46% 1.01%   
N10_D1-8_FC400 22.41% 0.22%   
N10_D1-8_FC200 34.01% 0.31%   
N10_D4-12_FC400 13.82% 1.50%   
N10_D4-12_FC200 21.23% 1.45%   
N15_D1-16_FC400   17.14% 19.94% 
N15_D1-16_FC200   23.34% 29.25% 
N15_D1-8_FC400   14.02% 23.44% 
N15_D1-8_FC200   19.24% 36.73% 
N15_D4-12_FC400   14.03% 17.87% 
N15_D4-12_FC200   23.42% 29.31% 
N20_D1-16_FC400   17.66% 18.66% 
N20_D1-16_FC200   25.95% 27.60% 
N20_D1-8_FC400   19.86% 24.16% 
N20_D1-8_FC200   30.37% 36.45% 
N20_D4-12_FC400   19.38% 19.63% 
N20_D4-12_FC200   29.31% 29.81% 
N50_D1-16_FC400   24.33%   
N50_D1-16_FC200   34.41%   
N50_D1-8_FC400   38.19%   
N50_D1-8_FC200   50.80%   
N50_D4-12_FC400   25.62%   
N50_D4-12_FC200   35.95%   
N100_D1-16_FC400   28.28%   
N100_D1-16_FC200   39.99%   
N100_D1-8_FC400   44.08%   
N100_D1-8_FC200   62.26%   
N100_D4-12_FC400   30.48%   
N100_D4-12_FC200   44.46%   

  The heuristic algorithms find solutions of small size data in reasonable times. 
The increasing CPU time is associated with the increasing number of customers. 
Figure 4.3 shows the relations between number of customers and CPU times in terms 
of seconds for the basic model with 200TL and 400TL fixed cost for basic model. 
Number of customers and CPU time relations charts for multi-trip and split delivery 
are shown in Figure 4.4 and Figure 4.5. The split delivery heuristics take the longest 
time. The number of replications of the improvement step, splitting the demands to 
different vehicles and withdrawal processes increase the CPU time. As seen on the 
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plots, range D[1-8] has the longest CPU times by far after 50 customers, and it has a 
parabolic curve. The other types of demands have the similar patterns, but take less 
durations.  

 

Figure 4.3 Customer-CPU Time Relations of Basic Model Heuristics 

 

Figure 4.4 Customer- CPU Time Relations of Multi-Trip Model Heuristics  

 

Figure 4.5 Customer-CPU Time Relations of Split Delivery Model Heuristics  
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 Multi-trip and split delivery approaches are operational decisions, and they do 
not need any investments. It can be clearly seen from Table 4.25 that multi-trip 
decision brings higher savings than split delivery. While, split delivery model tries to 
decrease the vehicle number by increasing route cost, in multi-trip the vehicle fixed 
cost, decreases by almost half. Expectedly the percentage savings have a relation with 
the fixed cost of vehicles.  

Table 4.25 Savings of Multi-Trip and Split Delivery over Basic Model 

Fixed 
Cost 

Number of 
Customers Multi-Trip Split Delivery 

400 

10 36.56% 2.61% 
15 36.76% 3.74% 
20 36.95% 3.96% 
50 37.84% 4.54% 
100 37.23% 4.79% 

200 

10 23.88% 2.41% 
15 23.45% 2.61% 
20 24.93% 2.80% 
50 24.98% 3.43% 
100 25.90% 3.83% 
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5 CONCLUSION 

 In this thesis, we consider a multi-compartment vehicle routing problem, which 
is a variant of the vehicle routing problem. We first reviewed the related literature and 
proposed a taxonomic framework for variants of the problem. We analyzed and 
modeled the problem. Different operational decisions of product distribution such as 
multi-trip and split delivery were also examined, and the proposed model formulation 
was extended. To evaluate the effectiveness of our formulations, we conducted an 
experimental study. Random data sets were generated with respect to the determined 
factor levels, such as number of customers, demand type, and fixed cost. We 
observed that the increasing objective value and CPU time was associated with the 
increasing number of customers and fixed cost for the exact solutions of the basic 
model. D[1,8] (uniformly distributed) yielded the least average objective values 
because of fewer vehicle usages. However, its possible assignment combinations 
were more than others, and this increased the CPU time. While the resulting number 
of vehicles for D[1,16] and D[4,12] settings were similar, D[1,16] yielded higher 
objective values due to high variance, whereas D[4,12] with low variance yielded the 
fastest results.  

 Although we got the exact optimal solutions for small size instances, we had to 
resort to heuristic approaches for larger problem instances. The solution of the 
heuristic algorithms for the small size instances were found in milliseconds, but CPU 
time was increased with the increasing number of customers. Our heuristic algorithms 
were compared with the exact solutions reported by a general purpose solver for 
small sized randomly generated instances. We studied lower bounds, and checked 
their percentage gaps from the optimal solutions for small sized instances. These 
bounds were used for the purpose of reporting gaps of our heuristics in the case of 
larger instances, for which the solver cannot find a solution in reasonable times.  

 The heuristic solutions performed excellently, having tiny gaps for small size 
problems, achieving optimum solutions for the majority of the problem instances. 
The performance of our lower bounding schemes for the small instances was not 
quite good. For larger problems, the heuristic results were compared to the lower 
bounds, and the gaps were computed. Although large gaps were observed for larger 
problems, this is considered to be mainly due to the poor performance of our lower 
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bounds. We believe that if the lower bound values were tighter, the heuristic gaps 
would be much more reasonable for larger problem instances. 

 The extensions of the basic model brought considerable savings. The 
operational decisions of the multi-trip model decreased the number of vehicle usage, 
and in turn, the fixed costs. However, the split delivery approach that tries to 
discharge vehicles by splitting the demands into two parts was not found to be as 
effective, as it increased the route costs while trying to decrease number of vehicles.  

  The problem can be extended in various directions. Time window perspective 
can be added to increase the satisfaction of customers. In this extension, the 
customers are visited within a given time interval. The intervals cannot be violated in 
case of hard time windows, or penalties can be included in the form of soft time 
windows.  

 Our study is deterministic and static; the customer demands were generated and 
known beforehand and vehicle routes did not change. When some parameters like 
demand are partially known or estimated, the problem should be considered as 
stochastic. In addition, the routes of vehicles can change over time, or new links 
between customers can be added to the system, in which case the problem becomes a 
dynamic vehicle routing problem.  

 As another future research opportunity, the VRP studied in this thesis can be 
embedded within a more general aggregate production planning framework, where 
the distribution can be triggered by the reorder points of the customer inventories. In 
such a case, the problem would involve integrated multi-period production planning 
and distribution decisions.  

 Another realistic extension may involve pick-up and deliveries. As farms in 
turkey breeding will require different feeds in different stages of growth, one 
customer picked-up leftover feed may be another one’s delivery. In such a case, a 
vehicle starting customer delivery would also pick up the leftover products from 
some customers and transit them to others or return them to the depot. 
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APPENDIX 1 SOLUTION RESULTS 

Heuristic Solutions Results with Minimum and Maximum Values: 
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Part 1 Basic Model  Part 1.1 10 Customers 

  

MAX 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 5455.25 3655.25 2941.97 2141.97 5227.14 3627.14 
CPU (sec) 1.34 1.31 3.52 2.24 2.73 2.05 

LB_1 4718.11 3118.11 2463.79 1663.79 4117.10 2717.10 
GAP LB_1 32.00% 40.68% 46.75% 77.57% 37.18% 50.44% 

LB_2 4758.44 3158.44 2527.17 1727.17 4162.81 2762.81 
GAP LB_2  32.00% 40.68% 36.88% 58.59% 32.67% 42.65% 
BEST LB 4758.44 3158.44 2527.17 1727.17 4162.81 2762.81 

BEST GAP 32.00% 40.68% 36.88% 58.59% 32.67% 42.65% 

RSH_1 # of 
Rep 

1000 5455.25 3655.25 2941.97 2141.97 5227.14 3627.14 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.39 0.38 2.03 2.07 0.27 0.28 

RSH_2 # of 
Rep 

1000 5455.25 3655.25 2941.97 2141.97 5227.14 3627.14 
GAP 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 

CPU (sec) 1.60 1.58 1.81 1.86 1.07 1.03 

SSH_1 # of 
Rep 

1 5455.25 3655.25 3340.66 2340.66 5227.14 3627.14 
GAP 0.13 0.12 0.19 0.20 0.06 0.08 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 5455.25 3655.25 3525.99 2525.99 5227.14 3627.14 
GAP 0.09% 0.12% 0.27% 0.38% 0.12% 0.16% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 5455.25 3655.25 2941.97 2141.97 5227.14 3627.14 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

  
MIN 

N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 3208.92 2208.92 2073.28 1473.28 3508.14 2452.31 
CPU (sec) 0.56 0.30 0.28 0.28 0.79 0.95 

LB_1 2667.19 1667.19 1510.45 910.45 2667.19 1667.19 
GAP LB_1 5.86% 8.70% 17.39% 27.69% 12.62% 19.13% 

LB_2 2758.23 1758.23 1619.37 1019.37 2758.23 1758.23 
GAP LB_2  7.53% 11.34% 7.74% 11.84% 12.62% 19.13% 
BEST LB 2758.23 1758.23 1619.37 1019.37 2758.23 1758.23 

BEST GAP 5.86% 8.70% 7.74% 11.84% 12.62% 19.13% 

RSH_1 # of 
Rep 

1000 3208.92 2208.92 2073.28 1473.28 3508.14 2452.31 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.09 0.08 0.22 0.23 0.05 0.05 

RSH_2 # of 
Rep 

1000 3208.92 2208.92 2073.28 1489.80 3508.14 2452.31 
GAP 0.00 0.00 0.00 0.00 0.00 0.00 

CPU (sec) 0.07 0.09 0.21 0.22 0.07 0.09 

SSH_1 # of 
Rep 

1 3214.59 2214.59 2181.76 1581.76 3714.55 2544.37 
GAP 0.00% 0.00% 0.85% 1.17% 0.00% 0.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 3484.93 2460.39 2362.40 1762.40 3653.05 2453.05 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 3208.92 2208.92 2073.28 1473.28 3508.14 2452.31 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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 Part 1.2 15 Customers 

  

MAX 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

OPT 7328.18 5128.18 4237.26 3037.26 7237.26 5037.26 
CPU (sec) 475.50 2456.03 686.00 1187.32 1482.94 1334.25 

LB_1 6538.01 4338.01 3518.87 2318.87 5258.79 3458.79 
GAP LB_1 37.31% 51.38% 43.56% 68.83% 37.63% 52.16% 

LB_2 6572.00 4372.00 3617.76 2417.76 5304.51 3504.51 
GAP LB_2  34.45% 45.68% 31.98% 48.16% 36.44% 43.74% 
BEST LB 6572.00 4372.00 3617.76 2417.76 5304.51 3504.51 

BEST GAP 34.45% 45.68% 31.98% 48.16% 36.44% 43.74% 

RSH_1 # of 
Rep 

1000 7328.18 5128.18 4273.30 3088.74 7237.26 5037.26 
GAP 0.00% 0.00% 1.50% 2.13% 0.00% 0.66% 

CPU (sec) 1.57 1.75 6.28 6.06 0.51 0.51 

RSH_2 # of 
Rep 

1000 7328.18 5128.18 4288.74 3088.74 7237.26 5037.26 
GAP 2.03% 0.00% 3.55% 6.41% 0.00% 0.00% 

CPU (sec) 1.82 1.77 5.01 5.02 1.93 2.19 

SSH_1 # of 
Rep 

1 7528.83 5328.83 4318.06 3316.90 7364.51 5164.51 
GAP 11.36% 7.98% 24.15% 23.87% 13.03% 13.25% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 7328.18 5128.18 4757.13 3557.13 7373.99 5173.99 
GAP 11.10% 16.09% 21.39% 22.41% 9.68% 14.09% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 7328.18 5128.18 4273.30 3088.74 7237.26 5037.26 

BEST GAP 0.00% 0.00% 0.85% 1.88% 0.00% 0.00% 

 

  

MIN 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

OPT 4515.45 3115.45 2806.13 2006.13 4963.84 3363.84 
CPU (sec) 6.92 14.28 13.78 15.48 10.13 8.63 

LB_1 3779.89 2379.89 2073.03 1273.03 3779.89 2379.89 
GAP LB_1 12.09% 18.21% 20.05% 30.43% 15.82% 24.16% 

LB_2 3874.90 2474.90 2254.78 1454.78 3874.90 2474.90 
GAP LB_2  11.51% 17.30% 11.73% 17.46% 11.04% 16.50% 
BEST LB 3874.90 2474.90 2254.78 1454.78 3874.90 2474.90 

BEST GAP 11.51% 17.30% 11.73% 17.46% 11.04% 16.50% 

RSH_1 # of 
Rep 

1000 4515.45 3115.45 2806.13 2047.82 4963.84 3363.84 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.15 0.16 0.53 0.51 0.15 0.13 

RSH_2 # of 
Rep 

1000 4515.45 3115.45 2806.13 2006.13 4963.84 3363.84 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.20 0.21 0.67 0.66 0.19 0.18 

SSH_1 # of 
Rep 

1 5028.49 3303.04 2889.76 2089.76 5350.74 3750.74 
GAP 0.46% 0.67% 1.35% 4.17% 0.37% 1.19% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 5016.64 3616.64 3033.65 2233.65 5401.90 3801.90 
GAP 0.00% 0.00% 6.93% 9.56% 1.53% 2.19% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4515.45 3115.45 2806.13 2006.13 4963.84 3363.84 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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 Part 1.3 20 Customers 

  

MAX 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB CPLEX 8310.84 5710.84 4522.30 3094.01 7631.13 5257.86 
GAP LB CPLEX 14.93% 16.42% 17.97% 22.41% 23.88% 21.83% 

LB_1 7512.89 4912.89 3993.54 2593.54 6636.39 4436.39 
LB_2 7580.92 4980.92 4257.21 2857.21 6800.94 4600.94 

BEST LB 8310.84 5710.84 4522.30 3094.01 7631.13 5257.86 

RSH_1 # of 
Rep 

1000 9505.64 6505.64 5354.29 3972.34 8977.01 6177.01 
GAP 17.55% 19.64% 21.85% 32.79% 21.79% 23.03% 

CPU (sec) 2.97 3.09 11.07 11.33 0.91 0.88 

RSH_2 # of 
Rep 

1000 9517.51 6517.51 5390.62 3893.30 8977.01 6177.01 
GAP 18.88% 21.68% 23.28% 36.48% 24.90% 27.19% 

CPU (sec) 2.17 4.85 11.27 11.83 1.06 1.08 

SSH_1 # of 
Rep 

1 9718.74 6718.74 5786.65 4533.48 9160.37 6447.94 
GAP 21.91% 37.83% 39.10% 65.78% 27.74% 36.47% 

CPU (sec) 0.00 0.00 0.02 0.02 0.00 0.00 

SSH_2 # of 
Rep 

1 9564.23 6736.26 6026.35 4450.31 9279.22 6479.22 
GAP 25.69% 34.34% 44.30% 66.72% 28.92% 34.65% 

CPU (sec) 0.00 0.00 1.00 3.00 0.00 0.00 
BEST UB 9505.64 6505.64 5354.29 3893.30 8977.01 6177.01 

BEST GAP 17.55% 19.64% 21.85% 32.79% 21.79% 23.03% 
GAP (w/o CPLEX) 30.58% 41.59% 32.38% 48.33% 39.13% 45.79% 

 

  

MIN 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB CPLEX 6050.73 3951.85 3288.16 2279.93 6173.37 4172.58 
GAP LB CPLEX 4.42% 5.27% 3.75% 10.55% 7.34% 11.92% 

LB_1 4864.48 3064.48 2676.76 1676.76 5478.74 3478.74 
LB_2 5143.86 3343.86 3012.70 2012.70 5712.59 3646.87 

BEST LB 6254.64 4123.59 3288.16 2279.93 6173.37 4172.58 

RSH_1 
# of 
Rep 

1000 6740.18 4735.50 3876.74 2940.65 6761.45 4700.67 
GAP 4.48% 5.57% 13.04% 20.49% 7.59% 12.66% 

CPU (sec) 0.67 0.67 1.98 3.82 0.30 0.30 

RSH_2 
# of 
Rep 

1000 6717.00 4734.63 3942.26 2943.93 6761.45 4700.67 
GAP 5.28% 8.96% 15.34% 18.78% 8.48% 14.11% 

CPU (sec) 0.58 0.55 3.46 3.43 0.22 0.41 

SSH_1 
# of 
Rep 

1 6832.02 4763.72 4223.58 3279.19 7102.19 4902.19 
GAP 6.23% 14.09% 15.26% 29.13% 11.99% 19.33% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 
# of 
Rep 

1 6984.86 4984.86 4622.75 3612.96 7474.93 5209.93 
GAP 10.25% 15.49% 20.47% 43.23% 15.06% 19.44% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 6717.00 4734.63 3876.74 2940.65 6761.45 4700.67 

BEST GAP 4.48% 5.57% 13.04% 18.78% 7.59% 12.66% 
GAP (w/o CPLEX) 14.42% 16.89% 18.73% 25.09% 18.36% 25.56% 
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Part 1.4 50 Customers 

  

MAX 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 17323.53 11323.53 8908.31 5874.57 15470.89 10226.11 
LB_2 17152.03 11496.11 9422.61 6418.47 15838.36 10637.04 

BEST LB 17323.53 11496.11 9422.61 6418.47 15838.36 10637.04 

RSH_1 # of 
Rep 

1000 21071.20 14808.10 12849.20 9518.55 20452.10 14202.20 
GAP 34.68% 46.35% 50.95% 77.93% 36.93% 52.52% 

CPU (sec) 60.43 63.29 208.29 210.56 15.66 15.76 

RSH_2 # of 
Rep 

1000 20979.30 14698.80 12782.40 9595.99 20412.50 14284.80 
GAP 32.65% 47.19% 51.42% 76.60% 36.41% 51.28% 

CPU (sec) 53.80 53.44 195.86 189.63 13.82 14.20 

SSH_1 # of 
Rep 

1 21944.00 15390.40 13022.10 9322.06 21105.30 14910.20 
GAP 42.25% 55.17% 52.36% 75.17% 45.31% 60.23% 

CPU (sec) 0.07 0.10 0.24 0.35 0.02 0.02 

SSH_2 # of 
Rep 

1 22105.00 15613.40 13871.90 10671.90 22117.50 15517.50 
GAP 41.75% 56.57% 58.82% 90.33% 48.00% 66.25% 

CPU (sec) 0.04 0.04 0.23 0.22 0.01 0.01 
BEST UB 20979.30 14698.80 12782.40 9322.06 20412.50 14202.20 

BEST GAP 32.65% 46.35% 50.95% 70.52% 36.41% 51.28% 

 

  

MIN 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 12741.54 8141.54 6895.94 4295.94 12741.54 8141.54 
LB_2 13130.44 8537.15 7533.61 4816.61 13067.80 8472.17 

BEST LB 13130.44 8537.15 7533.61 4816.61 13067.80 8472.17 

RSH_1 # of 
Rep 

1000 16373.30 11824.30 10508.90 7936.50 17317.30 12333.50 
GAP 20.24% 28.81% 32.90% 48.30% 25.81% 33.52% 

CPU (sec) 17.69 17.76 115.40 114.26 6.38 6.76 

RSH_2 # of 
Rep 

1000 16520.50 11856.30 10482.80 7866.73 17256.20 12237.10 
GAP 21.10% 27.86% 33.02% 46.42% 23.27% 34.29% 

CPU (sec) 11.89 11.36 96.03 96.26 6.18 6.01 

SSH_1 # of 
Rep 

1 17122.90 12582.70 10516.10 7848.20 18534.40 13053.20 
GAP 22.54% 30.05% 32.87% 43.71% 31.65% 39.94% 

CPU (sec) 0.01 0.01 0.10 0.09 0.00 0.00 

SSH_2 # of 
Rep 

1 17197.60 12397.60 11569.40 8840.90 17810.00 12810.00 
GAP 24.58% 32.31% 45.16% 65.72% 33.04% 43.57% 

CPU (sec) 0.00 0.00 0.07 0.09 0.00 0.00 
BEST UB 16373.30 11824.30 10482.80 7848.20 17256.20 12237.10 

BEST GAP 20.24% 27.86% 32.87% 43.71% 23.27% 33.52% 
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Part 1.5 100 Customers 

  

MAX 

N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1
-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 32735.85 21535.85 16785.66 10785.66 30195.20 19795.20 
LB_2 33610.69 22401.26 17822.25 11784.26 31002.14 20590.66 

BEST LB 33610.69 22401.26 17822.25 11784.26 31002.14 20590.66 

RSH_1 # of 
Rep 

1000 41879.30 29676.70 26181.37 19122.70 40475.40 28840.90 
GAP 49.06% 59.44% 56.17% 79.16% 45.42% 64.43% 

CPU (sec) 586.39 613.97 2031.54 4145.47 151.27 146.67 

RSH_2 # of 
Rep 

1000 42022.06 29696.80 26286.10 19061.00 40623.30 28603.50 
GAP 49.66% 60.07% 56.79% 79.95% 46.00% 65.09% 

CPU (sec) 435.74 457.45 2305.15 5415.92 114.79 111.99 

SSH_1 # of 
Rep 

1 46224.27 31764.88 28914.71 20867.39 44685.63 31138.17 
GAP 64.62% 76.08% 72.47% 94.81% 60.61% 81.60% 

CPU (sec) 0.53 0.71 1.62 2.18 0.15 0.12 

SSH_2 # of 
Rep 

1 48739.45 34652.59 32010.76 32010.76 48747.97 33968.91 
GAP 79.59% 92.09% 103.32% 215.79% 75.21% 98.11% 

CPU (sec) 0.53 0.71 1.62 1.59 0.39 0.27 
BEST UB 41854.64 29676.70 26181.37 18894.78 40461.46 28603.50 

BEST GAP 49.06% 59.44% 56.17% 76.40% 45.42% 64.43% 

 

  

MIN 

N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1
-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 25916.07 16316.07 13225.93 8025.93 25312.15 15912.15 
LB_2 26344.24 16752.86 14448.93 9218.29 25730.34 16338.12 

BEST LB 26344.24 16752.86 14448.93 9218.29 25730.34 16338.12 

RSH_1 # of 
Rep 

1000 35216.40 25092.60 21468.80 16249.80 34915.20 24886.70 
GAP 24.60% 32.48% 42.29% 59.59% 30.56% 39.21% 

CPU (sec) 166.59 175.25 1092.26 1030.31 59.96 56.26 

RSH_2 # of 
Rep 

1000 35315.10 24825.70 21446.00 16143.00 34943.60 24899.50 
GAP 23.85% 32.57% 40.47% 58.86% 28.55% 38.91% 

CPU (sec) 143.06 149.67 1086.38 1084.16 57.29 60.22 

SSH_1 # of 
Rep 

1 35196.10 24917.40 20916.90 15617.90 35911.90 25311.90 
GAP 27.30% 33.86% 34.74% 45.81% 32.28% 41.86% 

CPU (sec) 0.11 0.06 1.14 1.10 0.02 0.02 

SSH_2 # of 
Rep 

1 32010.76 26723.00 19483.80 17402.50 32010.76 26657.00 
GAP 9.42% 38.73% 25.63% 63.14% 11.04% 44.87% 

CPU (sec) 0.11 0.06 0.19 0.25 0.02 0.02 
BEST UB 32010.76 24825.70 19483.80 15617.90 32010.76 24886.70 

BEST GAP 9.42% 32.48% 25.63% 45.81% 11.04% 38.91% 
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Part 2.1 10 Customers 

  

MAX 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 3855.25 2855.25 2541.97 1941.97 3855.25 2855.25 
CPU (sec) 100.47 91.72 34.00 40.38 91.73 95.90 

LB_1 3118.11 2318.11 1663.79 1376.61 2917.10 2117.10 
GAP_LB_1 50.10% 56.71% 98.96% 96.58% 49.01% 54.81% 

LB_2  3158.44 2358.44 1727.17 1521.89 2962.81 2162.81 
GAP_LB_2) 50.10% 56.71% 73.19% 70.45% 41.31% 45.93% 

BEST LB 3158.44 2358.44 1727.17 1521.89 2962.81 2162.81 
BEST GAP 50.10% 56.71% 73.19% 70.45% 34.26% 45.93% 

RSH_1 
# of 
Rep 

1000 3855.25 2855.25 2541.97 1941.97 4027.14 3027.14 
GAP 0.00% 0.00% 3.19% 3.98% 4.27% 5.68% 

CPU (sec) 0.78 0.86 2.15 2.25 0.15 0.12 

RSH_2 
# of 
Rep 

1000 3855.25 2855.25 2541.97 1941.97 4027.14 3027.14 
GAP 0.00% 0.00% 3.19% 3.98% 4.27% 5.68% 

CPU (sec) 1.05 1.41 1.15 1.15 0.41 0.49 

SSH_1 
# of 
Rep 

1 3855.25 2855.25 2890.34 2112.48 4027.10 3027.14 
GAP 15.48% 12.71% 32.37% 27.49% 15.70% 17.13% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 
# of 
Rep 

1 3855.25 2855.25 3525.99 2525.99 4027.14 3027.14 
GAP 14.67% 13.24% 41.03% 33.53% 28.50% 29.53% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 3855.25 2855.25 2541.97 1941.97 4027.10 3027.14 

BEST GAP 0.00% 0.00% 3.19% 3.98% 4.27% 5.68% 

 

  

MIN 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 2408.92 1808.92 1673.28 1273.28 2452.31 1852.31 
CPU (sec) 9.40 13.05 1.64 1.89 14.30 12.74 

LB_1 1867.19 1267.19 976.61 710.45 1867.19 1267.19 
GAP_LB_1 8.13% 10.98% 27.69% 12.09% 19.13% 25.77% 

LB_2  1958.23 1358.23 1121.89 819.37 1958.23 1358.23 
GAP_LB_2) 10.58% 14.48% 11.84% 1.39% 19.13% 25.77% 

BEST LB 1958.23 1358.23 1121.89 819.37 1958.23 1358.23 
BEST GAP 8.13% 10.98% 11.84% 1.39% 19.13% 25.77% 

RSH_1 # of 
Rep 

1000 2408.92 1808.92 1673.28 1273.28 2452.31 1852.31 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.07 0.05 0.21 0.19 0.04 0.04 

RSH_2 # of 
Rep 

1000 2408.92 1808.92 1673.28 1273.28 2452.31 1852.31 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.06 0.09 0.18 0.18 0.08 0.07 

SSH_1 # of 
Rep 

1 2414.59 1814.59 1781.76 1381.76 2544.37 1944.37 
GAP 0.00% 0.00% 0.97% 1.27% 0.00% 0.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 2460.39 1860.39 1962.40 1562.40 2453.05 1853.05 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 2408.92 1808.92 1673.28 1273.28 2452.31 1852.31 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Part 2.2 15 Customers 

  

MAX 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_CPLEX 5173.75 3899.21 2806.11 2048.07 4166.37 3177.43 
GAP_LB_CPLEX 17.52% 17.61% 16.53% 22.48% 20.93% 23.36% 

LB_1 4538.01 3338.01 2423.55 2089.91 3658.79 2658.79 
LB_2  4572.00 3372.00 2423.55 2306.40 3704.51 2704.51 

BEST LB 5173.75 3899.21 2806.11 2306.40 4166.37 3177.43 

RSH_1 # of 
Rep 

1000 5328.18 4128.18 3073.30 2488.74 5237.26 4037.26 
GAP 21.56% 16.04% 32.89% 21.52% 26.42% 41.01% 

CPU (sec) 1.35 1.32 3.41 3.48 0.40 0.41 

RSH_2 # of 
Rep 

1000 5328.18 4128.18 3136.67 2513.97 5237.26 4037.26 
GAP 24.23% 16.04% 33.32% 24.81% 26.42% 41.01% 

CPU (sec) 1.78 1.73 2.98 3.07 0.68 0.67 

SSH_1 # of 
Rep 

1 5528.83 4328.83 4230.56 3030.56 6013.63 4553.20 
GAP 23.64% 25.42% 63.45% 41.33% 45.47% 52.37% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 5328.18 4128.18 4746.00 3546.00 5407.56 4207.56 
GAP 32.59% 36.38% 83.36% 63.44% 40.11% 46.05% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 5328.18 4128.18 3073.30 2488.74 5237.26 4037.26 

BEST GAP 21.56% 16.04% 32.89% 21.52% 26.42% 41.01% 
GAP (w/o CPLEX) 51.11% 70.62% 83.24% 87.28% 50.09% 59.50% 

 

  

MIN 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_CPLEX 3105.01 2211.91 1836.73 1439.26 2855.38 2259.24 
GAP_LB_CPLEX 0.53% 0.81% 0.20% 0.78% 5.08% 6.83% 

LB_1 2579.89 1779.89 1273.03 873.03 2579.89 1779.89 
LB_2  2674.90 1874.90 1454.78 1054.78 2674.90 1874.90 

BEST LB 3105.01 2211.91 1836.73 1439.26 2981.26 2259.24 

RSH_1 # of 
Rep 

1000 3315.45 2515.45 2006.13 1647.82 3363.84 2563.84 
GAP 2.98% 1.05% 0.99% 3.91% 5.35% 7.97% 

CPU (sec) 0.18 0.19 1.41 1.41 0.12 0.12 

RSH_2 # of 
Rep 

1000 3315.45 2436.13 2006.13 1606.13 3363.84 2563.84 
GAP 2.98% 1.05% 0.99% 3.51% 5.35% 7.97% 

CPU (sec) 0.17 0.20 1.25 1.27 0.19 0.18 

SSH_1 # of 
Rep 

1 3828.49 2703.04 2089.76 1689.76 3558.48 2950.74 
GAP 6.86% 7.14% 9.69% 10.10% 5.20% 12.28% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 3816.64 3016.64 2633.65 2033.65 3801.90 3001.90 
GAP 2.98% 5.87% 24.19% 25.78% 11.42% 12.80% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 3315.45 2436.13 2006.13 1606.13 3363.84 2563.84 

BEST GAP 2.98% 1.05% 0.99% 3.51% 5.20% 7.97% 
GAP (w/o CPLEX) 16.54% 22.43% 16.93% 3.51% 16.50% 22.94% 
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Part 2.3 20 Customers 

  

MAX 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_CPLEX 5781.04 4338.15 3240.95 2440.76 5134.68 3899.56 
GAP_LB_CPLEX 26.47% 27.02% 29.42% 35.10% 32.64% 34.98% 

LB_1 5868.17 4068.17 3193.54 2193.54 5036.39 3636.39 
LB_2  5980.92 4180.92 3457.21 2457.21 5200.94 3800.94 

BEST LB 5980.92 4338.15 3457.21 2457.21 5200.94 3899.56 

RSH_1 # of 
Rep 

1000 6705.64 5105.64 4063.06 3322.41 6177.01 4832.84 
GAP 16.10% 27.38% 42.80% 51.79% 29.49% 35.31% 

CPU (sec) 2.49 2.51 9.24 9.45 0.80 0.76 

RSH_2 # of 
Rep 

1000 6717.51 5117.51 4161.84 3245.36 6178.03 4832.84 
GAP 15.85% 27.35% 45.80% 55.47% 28.62% 35.31% 

CPU (sec) 3.33 3.49 8.59 8.84 0.89 0.93 

SSH_1 # of 
Rep 

1 6918.74 5372.88 5027.73 4533.48 7047.94 5447.94 
GAP 21.91% 41.14% 73.84% 90.05% 57.82% 59.07% 

CPU (sec) 0.00 0.00 0.01 0.01 0.00 0.00 

SSH_2 # of 
Rep 

1 7248.72 5648.72 5450.31 4250.31 7208.50 5285.43 
GAP 35.11% 42.77% 90.27% 98.01% 52.11% 59.57% 

CPU (sec) 0.00 0.00 0.02 0.01 0.00 0.00 
BEST UB 6705.64 5105.64 4063.06 3245.36 6177.01 4832.84 

BEST GAP 15.85% 27.35% 42.80% 49.98% 28.62% 35.31% 
GAP (w/o CPLEX) 33.10% 46.81% 56.80% 70.14% 28.62% 40.62% 

 

  

MIN 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_CPLEX 3847.88 2847.13 2429.54 1829.54 3918.20 2929.73 
GAP_LB_CPLEX 9.89% 9.33% 10.11% 20.42% 14.64% 17.26% 

LB_1 3264.48 2264.48 1876.76 1276.76 3878.74 2678.74 
LB_2  3543.86 2543.86 2212.70 1612.70 4112.59 2846.87 

BEST LB 4082.76 2932.67 2429.54 1829.54 4112.59 2929.73 

RSH_1 # of 
Rep 

1000 4740.18 3619.91 3046.48 2444.18 4761.45 3700.67 
GAP 4.12% 2.73% 9.73% 23.66% 7.85% 17.71% 

CPU (sec) 0.69 0.69 3.95 3.95 0.32 0.33 

RSH_2 # of 
Rep 

1000 4717.00 3634.25 3069.58 2372.80 4780.44 3700.67 
GAP 4.12% 3.14% 10.56% 20.05% 7.85% 17.71% 

CPU (sec) 0.54 0.55 3.45 3.55 0.43 0.39 

SSH_1 # of 
Rep 

1 4832.02 3763.72 3466.70 2879.19 5102.19 3902.19 
GAP 10.19% 11.16% 13.57% 27.23% 12.29% 24.12% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 5384.86 3856.42 4012.96 3212.96 5209.93 4009.93 
GAP 8.49% 9.45% 39.60% 55.72% 14.66% 27.55% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4717.00 3619.91 3046.48 2372.80 4761.45 3700.67 

BEST GAP 4.12% 2.73% 9.73% 20.05% 7.85% 17.71% 
GAP (w/o CPLEX) 4.12% 2.73% 9.73% 20.05% 7.85% 17.71% 
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Part 2.4 50 Customers 

  

MAX 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 11323.53 8323.53 6074.57 4474.57 10270.89 7626.11 
LB_2  11497.00 8696.11 6622.61 5018.47 10638.36 8037.04 

BEST LB 11497.00 8696.11 6622.61 5018.47 10638.36 8037.04 

RSH_1 # of 
Rep 

1000 35595.50 11808.10 10786.00 8586.16 14697.70 11602.20 
GAP 256.17% 61.65% 156.98% 147.88% 51.35% 67.80% 

CPU (sec) 104.12 93.36 249.61 216.96 17.67 17.53 

RSH_2 # of 
Rep 

1000 36307.41 11859.85 11040.60 8398.07 14538.30 11684.80 
GAP 263.30% 64.88% 162.12% 152.84% 54.38% 68.11% 

CPU (sec) 113.49 101.77 272.08 233.48 19.26 19.11 

SSH_1 # of 
Rep 

1 20614.14 12390.40 11058.20 7843.19 15431.25 12110.20 
GAP 90.87% 69.30% 122.01% 110.04% 58.45% 75.78% 

CPU (sec) 0.10 0.06 0.30 0.28 0.02 0.01 

SSH_2 # of 
Rep 

1 20955.17 12813.40 13071.90 10271.90 16935.81 13042.44 
GAP 94.03% 70.99% 132.68% 150.76% 73.69% 91.23% 

CPU (sec) 0.07 0.05 0.24 0.23 0.00 0.00 
BEST UB 16129.63 11698.80 10496.90 7824.28 14538.30 11602.20 

BEST GAP 56.38% 55.48% 116.74% 98.87% 51.02% 67.80% 

 

  

MIN 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 8341.54 5941.54 3322.10 2722.10 8341.54 5941.54 
LB_2  8730.44 6247.77 3890.09 3280.15 8667.80 6126.25 

BEST LB 8730.44 6247.77 3890.09 3280.15 8667.80 6126.25 

RSH_1 # of 
Rep 

1000 11083.24 8388.26 8546.75 6098.62 12679.70 9730.59 
GAP 25.32% 34.26% 61.42% 59.71% 26.84% 32.98% 

CPU (sec) 23.66 22.95 97.03 100.67 3.34 2.25 

RSH_2 # of 
Rep 

1000 11304.91 8556.02 8717.68 6220.60 12695.80 9837.09 
GAP 27.82% 34.53% 64.27% 62.90% 29.38% 35.63% 

CPU (sec) 17.76 16.45 105.76 109.73 3.64 2.45 

SSH_1 # of 
Rep 

1 12516.73 9265.74 6570.08 4869.84 10965.84 8722.76 
GAP 36.40% 23.94% 38.19% 45.65% 12.09% 24.95% 

CPU (sec) 0.02 0.02 0.13 0.12 0.00 0.00 

SSH_2 # of 
Rep 

1 12797.60 9612.71 8181.79 5874.39 11368.01 9127.19 
GAP 41.02% 28.59% 64.36% 75.70% 16.20% 30.74% 

CPU (sec) 0.00 0.00 0.11 0.12 0.00 0.00 
BEST UB 11083.24 8388.26 6570.08 4869.84 10965.84 8722.76 

BEST GAP 25.32% 23.94% 38.19% 45.65% 12.09% 24.95% 
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Part 2.5 100 Customers 

  

MAX 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 21535.85 15935.85 10785.66 7785.66 19795.20 14595.20 
LB_2  22410.69 16801.26 11822.25 8784.26 20602.14 15390.66 

BEST LB 22410.69 16801.26 11822.25 8784.26 20602.14 15390.66 

RSH_1 # of 
Rep 

1000 32095.82 24086.23 21813.60 17322.70 29274.50 23303.80 
GAP 54.64% 79.07% 100.55% 123.48% 59.56% 68.14% 

CPU (sec) 1060.41 923.46 2292.62 4665.54 168.26 164.31 

RSH_2 # of 
Rep 

1000 32320.49 24254.83 21883.10 17428.50 28836.90 23003.50 
GAP 55.72% 80.32% 100.72% 122.46% 60.68% 68.90% 

CPU (sec) 1102.82 960.40 2384.33 4852.16 174.99 170.88 

SSH_1 # of 
Rep 

1 35229.34 26437.77 22976.54 17905.80 29808.90 23608.90 
GAP 69.74% 96.55% 113.87% 124.42% 75.14% 84.10% 

CPU (sec) 0.55 0.67 1.72 2.24 0.08 0.08 

SSH_2 # of 
Rep 

1 35552.54 26680.31 25261.80 19895.80 31462.80 25062.80 
GAP 71.29% 98.36% 124.92% 149.20% 76.75% 92.70% 

CPU (sec) 1.35 0.75 1.72 2.24 0.18 0.18 
BEST UB 32095.82 24086.23 20932.86 16067.72 28836.90 23003.50 

BEST GAP 54.64% 79.07% 94.85% 104.58% 59.56% 68.14% 

 

  

MIN 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 16316.07 11516.07 8025.93 5425.93 16092.57 11292.57 
LB_2  16744.24 11952.86 9248.93 6618.29 16750.46 11946.11 

BEST LB 16744.24 11952.86 9248.93 6618.29 16750.46 11946.11 

RSH_1 # of 
Rep 

1000 21909.89 16759.25 16945.62 11974.67 24462.10 19041.69 
GAP 30.85% 39.96% 52.86% 71.47% 28.23% 35.14% 

CPU (sec) 245.34 256.04 859.03 984.30 33.23 19.10 

RSH_2 # of 
Rep 

1000 22063.25 16876.57 17064.24 12058.49 24633.33 19174.98 
GAP 31.77% 40.94% 53.93% 72.67% 29.13% 36.08% 

CPU (sec) 143.89 150.46 893.39 1023.67 34.56 19.87 

SSH_1 # of 
Rep 

1 24048.95 18395.46 16425.30 12940.00 25511.90 20111.90 
GAP 33.80% 40.38% 52.37% 63.73% 40.75% 48.33% 

CPU (sec) 0.08 0.09 1.05 1.12 0.03 0.03 

SSH_2 # of 
Rep 

1 24269.58 18564.23 18770.66 13264.34 26857.00 21092.48 
GAP 41.35% 50.45% 69.33% 89.94% 42.04% 49.69% 

CPU (sec) 0.08 0.04 0.04 0.27 0.03 0.03 
BEST UB 21909.89 16759.25 16425.30 11974.67 24462.10 19041.69 

BEST GAP 30.85% 39.96% 52.37% 63.73% 28.23% 35.14% 
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Part 3.1 10 Customers 

  

MAX 
N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 5029.52 3429.52 2941.97 2141.97 4557.74 3157.74 
OPT_GAP 8.77% 11.99% 0.00% 0.00% 13.07% 11.94% 
CPU (sec) 2410.04 2712.89 814.79 966.92 2199.98 2300.10 

LB_1 4718.11 3118.11 2463.79 1663.79 4117.10 2717.10 
GAP_LB_1 20.31% 32.49% 44.02% 73.04% 21.09% 32.96% 

LB_2  4758.44 3158.44 2527.17 1727.17 4162.81 2762.81 
GAP_LB_2  19.88% 31.13% 37.11% 54.63% 17.11% 26.55% 
BEST LB 4758.44 3158.44 2527.17 1727.17 4162.81 2762.81 

BEST GAP 19.88% 31.13% 37.11% 54.63% 17.11% 26.55% 

RSH_1 # of 
Rep 

1000 5057.10 3457.10 2941.97 2141.97 4877.00 3246.06 
GAP 7.87% 7.32% 1.29% 1.79% 7.00% 3.93% 

CPU (sec) 0.41 0.39 0.87 1.23 1.39 0.40 

RSH_2 # of 
Rep 

1000 5057.10 3457.10 2941.97 2141.97 4877.00 3246.06 
GAP 7.87% 7.32% 1.29% 1.79% 7.00% 3.93% 

CPU (sec) 0.39 0.40 0.87 1.18 1.33 0.38 

SSH_1 # of 
Rep 

1 5562.81 3802.81 3125.45 2245.45 5958.41 3343.44 
GAP 12.18% 11.62% 10.00% 10.00% 50.00% 10.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 5607.31 3833.23 3150.46 2263.42 6006.07 3370.19 
GAP 12.74% 12.17% 10.88% 10.88% 51.20% 10.88% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 5057.10 3457.10 2941.97 2141.97 4877.00 3246.06 

BEST GAP 7.87% 7.32% 1.29% 1.79% 7.00% 3.93% 

 

  
MIN 

N10_D1-
16_FC400 

N10_D1-
16_FC200 

N10_D1-
8_FC400 

N10_D1-
8_FC200 

N10_D4-
12_FC400 

N10_D4-
12_FC200 

OPT 3208.92 2208.92 2073.28 1473.28 3216.76 2216.76 
OPT_GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
CPU(sec) 112.18 423.53 18.99 21.92 170.61 164.32 

LB_1 2667.19 1667.19 1510.45 910.45 2667.19 1667.19 
GAP_LB_1 0.07 0.10 0.17 0.25 0.11 0.16 

LB_2  2758.23 1758.23 1619.37 1019.37 2758.23 1758.23 
GAP_LB_2 5.70% 8.58% 8.09% 11.84% 9.32% 13.85% 
BEST LB 2758.23 1758.23 1619.37 1019.37 2758.23 1758.23 

BEST GAP 5.70% 8.58% 8.09% 11.84% 9.32% 13.85% 

RSH_1 # of 
Rep 

1000 3208.92 2208.92 2073.28 1473.28 3272.83 2272.83 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.13 0.17 0.23 0.41 0.12 0.08 

RSH_2 # of 
Rep 

1000 3208.92 2208.92 2073.28 1473.28 3272.83 2272.83 
GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CPU (sec) 0.12 0.16 0.23 0.39 0.12 0.08 

SSH_1 # of 
Rep 

1 3337.28 2297.28 2156.21 1532.21 3403.74 2363.74 
GAP 3.00% 1.38% 3.00% 3.00% 3.00% 3.00% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 3363.98 2315.66 2173.46 1544.47 3430.97 2382.65 
GAP 3.51% 1.88% 3.82% 3.82% 3.82% 3.82% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 3208.92 2208.92 2073.28 1473.28 3272.83 2272.83 

BEST GAP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Part 3.2 15 Customers 

  

MAX 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_1 6538.01 4338.01 3518.87 2318.87 5258.79 3458.79 
LB_2 6572.00 4372.00 3617.76 2417.76 5304.51 3504.51 

LB_CPLEX 5951.69 3966.89 3842.39 2653.14 5462.77 3698.42 
GAP_LB_CPLEX 24.52% 27.09% 16.53% 21.27% 18.20% 26.95% 

BEST LB 6572.00 4372.00 3842.39 2653.14 5462.77 3698.42 

RSH_1 # of 
Rep 

1000 7298.88 5098.88 4237.26 3088.74 6437.60 4635.25 
GAP 26.28% 37.04% 27.95% 42.23% 17.84% 35.59% 

CPU (sec) 2.14 1.93 3.94 4.01 0.97 1.13 

RSH_2 # of 
Rep 

1000 7328.18 5106.21 4289.98 3129.79 6478.57 4678.57 
GAP 28.74% 37.04% 27.95% 43.25% 18.59% 35.60% 

CPU (sec) 2.78 2.42 3.50 4.00 1.19 1.11 

SSH_1 # of 
Rep 

1 7528.83 5328.83 4313.97 3298.10 7177.69 5048.47 
GAP 39.26% 54.35% 44.84% 72.01% 42.71% 54.66% 

CPU (sec) 0.00 0.00 0.01 1.00 0.00 0.00 

SSH_2 # of 
Rep 

1 7328.18 5128.18 4731.08 3531.08 7047.04 5240.56 
GAP 34.32% 45.48% 46.23% 69.84% 36.62% 55.23% 

CPU (sec) 0.00 0.00 0.00 1.00 0.00 0.00 
BEST UB 7298.88 5098.88 4237.26 3088.74 6437.60 4635.25 

BEST GAP 26.28% 37.04% 27.95% 42.23% 17.84% 35.59% 
GAP (w/o CPLEX) 27.15% 41.73% 37.24% 60.42% 27.11% 41.32% 

 

  

MIN 
N15_D1-
16_FC400 

N15_D1-
16_FC200 

N15_D1-
8_FC400 

N15_D1-
8_FC200 

N15_D4-
12_FC400 

N15_D4-
12_FC200 

LB_1 3779.89 2379.89 2073.03 1273.03 3779.89 2379.89 
LB_2  3874.90 2474.90 2254.78 1454.78 3874.90 2474.90 

LB_CPLEX 4007.40 2587.38 2552.08 1771.59 3872.96 2540.94 
GAP_LB_CPLEX 9.81% 12.62% 5.27% 5.58% 5.58% 11.41% 

BEST LB 4007.40 2587.38 2552.08 1771.59 3874.90 2540.94 

RSH_1 # of 
Rep 

1000 4539.37 3115.45 2806.13 2060.34 4515.36 3124.30 
GAP 11.06% 14.19% 6.74% 8.98% 4.48% 14.62% 

CPU (sec) 0.38 0.35 2.78 2.29 0.33 0.31 

RSH_2 # of 
Rep 

1000 4539.37 3115.45 2857.99 2060.34 4502.91 3102.91 
GAP 11.51% 14.19% 11.04% 10.58% 8.22% 14.62% 

CPU (sec) 0.37 0.36 2.12 2.11 0.33 0.33 

SSH_1 # of 
Rep 

1 4803.93 3326.23 2889.76 2089.76 5350.74 3750.74 
GAP 14.56% 18.23% 12.27% 17.55% 17.54% 24.37% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 4806.97 3406.97 3033.65 2233.65 5294.03 3694.03 
GAP 11.51% 17.30% 17.37% 19.25% 19.28% 27.71% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 4539.37 3115.45 2806.13 2060.34 4502.91 3102.91 

BEST GAP 11.06% 14.19% 6.74% 8.98% 4.48% 14.62% 
GAP (w/o CPLEX) 11.06% 16.63% 9.60% 18.57% 4.48% 16.29% 
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Part 3.3 20 Customers 

  

MAX 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_1 7512.89 4912.89 3993.54 2593.54 6636.39 4436.39 
LB_2  7580.92 4980.92 4257.21 2857.21 6800.94 4600.94 

LB_CPLEX 7612.68 5015.50 4430.46 3013.29 6829.55 4615.08 
GAP_LB_CPLEX 43.04% 49.00% 26.57% 34.63% 46.62% 56.16% 

BEST LB 7612.68 5015.50 4430.46 3013.29 6829.55 4615.08 

RSH_1 # of 
Rep 

1000 8751.12 6151.12 5285.45 3933.45 8210.16 5868.70 
GAP 27.62% 39.74% 25.05% 40.48% 29.02% 41.79% 

CPU (sec) 4.93 4.31 10.35 11.05 2.29 2.05 

RSH_2 # of 
Rep 

1000 8751.12 6151.12 5227.94 3853.53 8216.42 5842.79 
GAP 29.01% 39.21% 26.02% 39.67% 29.02% 39.79% 

CPU (sec) 4.78 5.09 9.94 10.29 2.34 2.36 

SSH_1 # of 
Rep 

1 9176.66 6576.66 5811.20 4442.07 8944.92 6181.56 
GAP 31.52% 53.42% 35.36% 56.04% 40.85% 50.28% 

CPU (sec) 0.00 0.01 1.00 0.02 0.00 0.00 

SSH_2 # of 
Rep 

1 9085.87 6466.33 5856.47 4627.00 8672.28 6276.32 
GAP 35.22% 49.95% 48.30% 71.26% 36.55% 51.64% 

CPU (sec) 0.00 0.00 0.03 0.02 0.00 0.00 
BEST UB 8751.12 6151.12 5227.94 3853.53 8210.16 5804.45 

BEST GAP 27.62% 39.21% 25.05% 39.67% 29.02% 39.79% 
GAP (w/o CPLEX) 28.88% 41.06% 31.09% 45.71% 29.26% 39.79% 

 

  

MIN 
N20_D1-
16_FC400 

N20_D1-
16_FC200 

N20_D1-
8_FC400 

N20_D1-
8_FC200 

N20_D4-
12_FC400 

N20_D4-
12_FC200 

LB_1 4864.48 3064.48 2676.76 1676.76 5478.74 3478.74 
LB_2  5143.86 3343.86 3012.70 2012.70 5712.59 3646.87 

LB_CPLEX 5194.77 3388.36 3187.53 2162.51 5185.29 3384.89 
GAP_LB_CPLEX 19.62% 31.68% 13.02% 19.76% 28.77% 33.18% 

BEST LB 5194.77 3388.36 3187.53 2162.51 5712.59 3646.87 

RSH_1 # of 
Rep 

1000 6629.48 4646.54 3943.15 2932.42 6482.34 4482.34 
GAP 12.58% 18.43% 16.11% 22.19% 12.80% 19.26% 

CPU (sec) 1.41 1.11 6.70 6.41 1.08 0.95 

SSH_1 # of 
Rep 

1000 6701.69 4612.46 3943.16 2924.65 6467.91 4467.91 
GAP 14.08% 17.56% 14.75% 22.50% 12.61% 19.34% 

CPU (sec) 0.90 0.86 6.11 5.71 1.00 1.02 

RSH_2 # of 
Rep 

1 6832.02 4763.72 4314.50 3076.26 6655.17 4655.17 
GAP 20.15% 25.32% 24.74% 29.45% 15.87% 24.34% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 

SSH_2 # of 
Rep 

1 6915.67 4715.67 4447.20 3447.20 7024.68 5024.68 
GAP 16.75% 20.19% 25.02% 37.36% 17.23% 25.81% 

CPU (sec) 0.00 0.00 0.00 0.00 0.00 0.00 
BEST UB 6629.48 4612.46 3943.15 2924.65 6467.91 4467.91 

BEST GAP 12.58% 17.56% 14.75% 22.19% 12.61% 19.26% 
GAP (w/o CPLEX) 13.05% 17.56% 17.99% 26.95% 12.61% 19.34% 
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Part 3.4 50 Customers 

  

MAX 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 17323.53 11323.53 8908.31 5874.57 15470.89 10226.11 
LB_2  17152.03 11496.11 9422.61 6418.47 15838.36 10637.04 

BEST LB 17323.53 11496.11 9422.61 6418.47 15838.36 10637.04 

RSH_1 # of 
Rep 

1000 20871.17 14599.90 13249.22 9823.92 19207.30 14010.00 
GAP 31.87% 40.27% 50.59% 75.57% 32.10% 49.98% 

CPU (sec) 103.83 115.51 260.23 262.68 62.94 65.30 

RSH_2 # of 
Rep 

1000 20871.17 14727.75 13433.18 9683.17 19408.90 13983.90 
GAP 36.51% 41.22% 51.67% 75.73% 32.40% 48.51% 

CPU (sec) 105.09 120.61 229.70 270.07 53.11 54.31 

SSH_1 # of 
Rep 

1 22871.17 15240.85 12701.15 9310.79 20754.33 15170.05 
GAP 38.68% 51.04% 52.15% 79.78% 37.50% 59.71% 

CPU (sec) 0.10 0.09 0.28 0.30 0.08 0.10 

SSH_2 # of 
Rep 

1 23271.17 15614.30 15402.57 11848.21 20811.90 15411.90 
GAP 39.50% 52.17% 73.90% 102.10% 42.61% 62.99% 

CPU (sec) 0.09 0.12 0.27 0.26 0.08 0.10 
BEST UB 20871.17 14573.11 12701.15 9310.79 19207.30 13983.90 

BEST GAP 31.46% 40.27% 50.21% 74.96% 32.10% 48.13% 

 

  

MIN 
N50_D1-
16_FC400 

N50_D1-
16_FC200 

N50_D1-
8_FC400 

N50_D1-
8_FC200 

N50_D4-
12_FC400 

N50_D4-
12_FC200 

LB_1 12741.54 8141.54 6895.94 4295.94 12741.54 8141.54 
LB_2  13130.44 8537.15 7533.61 4816.61 13067.80 8472.17 

BEST LB 13130.44 8537.15 7533.61 4816.61 13067.80 8472.17 

RSH_1 # of 
Rep 

1000 16475.20 11732.90 10372.60 7488.48 17114.50 11304.87 
GAP 16.43% 15.65% 24.56% 27.35% 17.30% 17.99% 

CPU (sec) 40.78 43.71 169.33 169.32 19.72 19.67 

RSH_2 # of 
Rep 

1000 16449.80 11780.50 10441.10 7504.34 16639.30 11035.73 
GAP 16.43% 19.42% 25.15% 29.23% 17.04% 15.18% 

CPU (sec) 38.42 39.70 163.55 130.00 14.73 17.04 

SSH_1 # of 
Rep 

1 17246.90 11759.23 10906.20 7192.48 17968.40 12021.64 
GAP 19.80% 28.59% 22.83% 22.32% 21.72% 25.47% 

CPU (sec) 0.04 0.05 0.20 0.17 0.03 0.02 

SSH_2 # of 
Rep 

1 17281.10 12481.10 11043.61 7994.27 17622.20 12401.73 
GAP 19.07% 23.04% 31.12% 36.61% 23.48% 29.44% 

CPU (sec) 0.03 0.03 0.18 0.18 0.03 0.04 
BEST UB 16449.80 11732.90 10372.60 7192.48 16639.30 11035.73 

BEST GAP 16.43% 15.65% 22.83% 22.32% 17.04% 15.18% 
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Part 3.5 100 Customers 

  

MAX 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 32735.85 21535.85 16785.66 10785.66 30195.20 19795.20 
LB_2  33610.69 22401.26 17822.25 11784.26 31002.14 20590.66 

BEST LB 37069.90 22401.26 17822.25 11784.26 31002.14 20590.66 

RSH_1 # of 
Rep 

1000 46007.81 32513.14 29326.33 21779.16 41906.10 29651.42 
GAP 55.69% 67.20% 81.66% 106.56% 48.24% 65.09% 

CPU (sec) 1188.78 1487.24 3027.55 3344.93 669.48 758.57 

RSH_2 # of 
Rep 

1000 45602.69 32643.82 29597.60 21525.06 40959.31 28721.13 
GAP 64.87% 64.52% 83.34% 110.56% 54.62% 65.60% 

CPU (sec) 1086.84 1304.16 2438.48 2452.66 409.25 567.66 

SSH_1 # of 
Rep 

1 47956.68 32357.52 27433.35 20273.45 44872.13 32898.86 
GAP 80.00% 60.31% 69.93% 89.55% 54.32% 72.37% 

CPU (sec) 1.47 1.37 3.34 5.38 1.28 1.08 

SSH_2 # of 
Rep 

1 49077.62 34226.77 35032.07 27239.29 44567.23 31222.74 
GAP 86.29% 104.30% 136.72% 184.24% 65.77% 82.56% 

CPU (sec) 1.28 1.29 3.84 4.05 0.51 0.83 
BEST UB 45602.69 32357.52 27433.35 19138.36 40959.31 28637.66 

BEST GAP 48.17% 60.31% 69.93% 81.25% 48.24% 61.85% 

 

  

MIN 
N100_D1-
16_FC400 

N100_D1-
16_FC200 

N100_D1-
8_FC400 

N100_D1-
8_FC200 

N100_D4-
12_FC400 

N100_D4-
12_FC200 

LB_1 25916.07 16316.07 13225.93 8025.93 25312.15 15912.15 
LB_2  26344.24 16752.86 14448.93 9218.29 25730.34 16338.12 

BEST LB 26344.24 16752.86 14448.93 9218.29 25730.34 16338.12 

RSH_1 # of 
Rep 

1000 34798.40 24795.70 21529.50 16234.90 34560.60 24737.22 
GAP 18.37% 32.50% 40.64% 57.28% 24.23% 38.11% 

CPU (sec) 462.18 425.22 1964.71 2116.98 208.28 213.70 

RSH_2 # of 
Rep 

1000 34871.90 24693.90 21678.10 16168.50 34581.10 24885.90 
GAP 20.13% 30.86% 38.74% 54.70% 21.61% 38.61% 

CPU (sec) 365.61 372.25 1890.16 1508.55 157.10 169.57 

SSH_1 # of 
Rep 

1 34743.20 25120.60 20794.50 15282.40 34813.70 24482.12 
GAP 21.94% 31.07% 32.47% 45.81% 22.55% 38.95% 

CPU (sec) 0.45 0.34 2.06 1.30 0.18 0.26 

SSH_2 # of 
Rep 

1 36047.10 25463.58 22835.90 17381.42 35272.20 25500.22 
GAP 25.31% 34.60% 36.50% 56.79% 28.50% 42.32% 

CPU (sec) 0.26 0.17 1.92 1.70 0.25 0.19 
BEST UB 34743.20 24693.90 20794.50 15282.40 34560.60 24482.12 

BEST GAP 18.37% 30.86% 32.47% 45.81% 21.61% 38.11% 
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