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ABSTRACT

EFFICIENT COMPUTATION OF ELLIPTIC CURVE PRIMITIVES

Yassı, Mert
MSc, Computer Engineering

Advisor: Assist. Prof. Hüseyin HIŞIL, Ph.D.
August 2022

In elliptic curve cryptography, it is of great importance to be able to perform computa-
tions associated with elliptic curves efficiently. To achieve this, the primitives of the
elliptic curve cryptography, such as elliptic curve scalar multiplication and elliptic curve
point counting, should be done using fast methods. Elliptic curve scalar multiplication
is the process of multiplying a non-trivial point on an elliptic curve with a scalar. It is
one of the bottleneck-forming challenges in elliptic curve cryptography, and different
efficient methods, such as the Montgomery ladder, are used to overcome this challenge.
A fast 4-way vectorized Montgomery ladder that works with all types of Montgomery
curves is presented in the first part of this thesis. One of the other fundamental primitives
emphasized in this thesis is the point counting operation on elliptic curves. Accurately
determining the number of points on an elliptic curve defined over a finite field Fp

has always been an essential and exhausting task. The difficulty level of the discrete
logarithm problem, which is used in elliptic curve cryptography, and thus its security, is
related to the number of points on the elliptic curve. Therefore, point counting is an
essential operation in choosing a safe curve. In 1985, the first polynomial time elliptic
curve point counting algorithm was found by René Schoof. The developments of Atkin
and Elkies followed this, and in 1995, the SEA algorithm was introduced. Even today,
improved versions of the SEA algorithm are used to find the number of points on an
elliptic curve defined over a large finite field. Detecting whether two elliptic curves are
isogenous is related to point counting, and this detection is generally done using the SEA
algorithm. According to Sato-Tate’s Isogeny Theorem from 1966, two elliptic curves
are isogenous if and only if the numbers of points on them are equal. Based on this
theorem, Schoof’s and SEA algorithms are explained in detail, the implementations of
these algorithms are given, and a new early abort method for detecting (non-)isogenous
elliptic curves is presented in the second part of this thesis.

Keywords: Elliptic curve scalar multiplication, Montgomery ladder, Kummer lines,
Elliptic curve point counting, Schoof’s algorithm, SEA algorithm, trace computation,
modular polynomials, isogeny, isogenous curves
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ÖZ

ELİPTİK EĞRİ PRİMİTİFLERİNİN VERİMLİ HESAPLANMASI

Yassı, Mert
Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Dr. Öğr. Üyesi Dr. Hüseyin HIŞIL
Ağustos 2022

Eliptik eğri kriptografisinde, eliptik eğriler ile ilgili hesaplamaların verimli yapıla-
bilmesi büyük önem taşımaktadır. Bunu başarmak için, eliptik eğri skaler çarpması ve
eliptik eğri nokta sayımı gibi eliptik eğri kriptografisinin primitifleri hızlı yöntemler
kullanılarak yapılmalıdır. Eliptik eğri skaler çarpımı eliptik bir eğri üzerindeki basit
olmayan bir noktayı bir skaler ile çarpma işlemidir. Bu, eliptik eğri kriptografisinde
darboğaz oluşturan zorluklardan biridir ve Montgomery merdiveni gibi verimli yön-
temler bu zorluğun üstesinden gelmek için kullanılır. Bu tezin ilk bölümünde, tüm
Montgomery eğrileri ile çalışan hızlı 4 kanallı vektörleştirilmiş bir Montgomery merdi-
veni sunulmaktadır. Bu tezde üzerinde durulan diğer temel primitiflerden biri de eliptik
eğriler üzerindeki noktaları sayma işlemidir. Sonlu bir Fp alanı üzerinde tanımlanan
bir eliptik eğri üzerindeki noktaların sayısını doğru bir şekilde belirlemek, her zaman
gerçekleştirmesi önemli ve yorucu bir görev olmuştur. Eliptik eğri kriptografisinde
kullanılan ayrık logaritma probleminin zorluk derecesi, ve dolayısıyla güvenliği, eliptik
eğri üzerindeki nokta sayısı ile doğrudan ilişkilidir. Bu nedenle, güvenli bir eğri seçi-
minde nokta sayımı büyük önem taşımaktadır. 1985 yılında, ilk polinomsal zamanda
çalışan eliptik eğri nokta sayma algoritması René Schoof tarafından bulunmuştur. Bunu
Atkin ve Elkies’in geliştirmeleri izlemiştir ve 1995’te SEA algoritması ortaya konmuş-
tur. Bugün bile, geniş bir sonlu alan üzerinde tanımlanan bir eliptik eğri üzerindeki
noktaların sayısını bulmak için SEA algoritmasının geliştirilmiş versiyonları kullanıl-
maktadır. İki eliptik eğrinin izojen olup olmadığının tespiti, nokta sayımı ile doğrudan
ilişkilidir ve bu tespit genellikle SEA algoritması kullanılarak yapılır. Sato-Tate’in 1966
tarihli İzojeni Teoremi’ne göre, iki eliptik eğri, ancak ve ancak üzerlerindeki noktaların
sayısı eşitse izojendir. Bu teoreme dayanarak, bu tezin ikinci bölümünde Schoof’un
ve SEA algoritmaları ayrıntılı olarak açıklanmış, ilgili uygulamalar verilmiş ve izojen
eliptik eğrileri tespit etmek için yeni bir erken iptal yöntemi sunulmuştur.

Anahtar Kelimeler:Eliptik eğri skaler çarpma, Montgomery merdiveni, Kummer doğru-
ları, Eliptik eğri nokta sayımı, Schoof’un algoritması, SEA algoritması, iz hesaplama,
izojeni, izojen eğriler
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CHAPTER 1

INTRODUCTION

Various cryptographic components are widely used to maintain an adequate level of
security in digital communication, such as key exchange schemes, digital signatures,
hash functions and secure pseudorandom number generators. These components are
some basic building blocks that make up the concepts of symmetric and asymmetric
(public-key) cryptography. The public-key cryptography relies on creating two separate
keys and keeping one of the keys private for the creator while allowing the public use
of the other. The main idea to consider here is the reciprocal encryption-decryption
mechanism, i.e., a message encrypted using a public key can only be decrypted using a
private key, and vice-versa applies. Detailed information about public-key cryptography
can be found in (Menezes, Katz, van Oorschot, & Vanstone, 2018).

Elliptic curve cryptography (ECC) is one of the fundamental concepts of public-key
cryptography. It is mainly based on elliptic curves over finite fields. The foundations of
ECC were laid by the independent works of Miller (1985) and Koblitz (1987) on elliptic
curves. ECC gains an advantage over other alternatives by using small-sized keys to
provide the same level of security, increasing its popularity. In ECC, there is a problem
named the elliptic curve discrete logarithm problem (ECDLP). This problem is a compu-
tational problem defined on an elliptic curve E/Fp where P and Q are two given points
in E(Fp). The security of ECDLP is ensured with the difficulty of finding an integer k
that satisfies Q = [k]P . Here, point Q is found with elliptic curve scalar multiplication
methods. Performing an efficient elliptic curve scalar multiplication routine is one of
the significant challenges faced in ECC. Montgomery (1987) proposed the Montgomery
ladder algorithm to multiply points on a Montgomery curve (i.e., a particular elliptic
curve used in efficient implementations) in constant time. Montgomery curves allow
working only with the x-coordinate, speeding up the computations. This property has
increased the popularity of Montgomery curves, and various Montgomery ladder-based
implementations currently exist. Recently, these ladders are being implemented using
single-instruction multiple-data (SIMD) instructions and multiple channel vectoriza-
tions, as architectures that allow parallel computation have become widespread. The
vectorized implementations of the Montgomery ladder are generally gathered around
2-way vectorization. Karati and Sarkar (2017) stated that the Montgomery ladder
structure is unsuitable for producing a sufficiently parallelized SIMD implementation.

1



However, it was seen that the Montgomery ladder could be efficiently 4-way vectorized
by performing proper arrangements in the ladder shape. Therefore, utilizing AVX2 and
AVX-512 instruction sets and performing 4-way SIMD operations in implementing the
Montgomery ladder would make perfect sense.

Returning to ECDLP, the elliptic curve chosen for use should be defined on a rea-
sonably large finite field to provide adequate security. In this way, the cardinality of
E(Fp) will be high, and it would be harder to find the required integer k. Therefore,
it is crucial to correctly determine the number of points on an elliptic curve to ensure
the safety of ECDLP. Initially, a naive approach was used to count the points on an
elliptic curve. The naive point counting method is the process of selecting points in
the field that satisfy the curve equation. Although it could be used when the field size
on which the elliptic curve is defined is small, the need for more efficient methods has
increased as the field size has grown. At first, Shanks (1971) developed a more efficient
algorithm named Baby-step Giant-step (BSGS) to count points on an elliptic curve. This
algorithm and its variants were extensively used in point counting until Schoof (1985)
found a point counting algorithm that works in polynomial time. Schoof’s algorithm
had become a pioneer in point counting and led to numerous improvements in space
and time efficiency. Thanks to the developments of Atkin and Elkies, Schoof (1995)
introduced the Schoof-Elkies-Atkin (SEA) algorithm. SEA algorithm employs lower
degree modular polynomials in the computations, unlike Schoof’s algorithm, which
utilizes division polynomials with much higher degrees. The efficiency of the SEA
algorithm comes from this improvement, and it is still the most efficient algorithm used
for counting points on elliptic curves defined over very large finite fields.

A structure-preserving map can be defined between two elliptic curves. These maps
are called isogenies. If there exists an isogeny between two elliptic curves, they are
identified as isogenous curves. Tate (1966) showed that two elliptic curves are isogenous
if and only if the numbers of points on these elliptic curves are equal. Therefore, it is
reasonable to use the SEA algorithm to check whether the elliptic curves are isogenous
since it is the most efficient algorithm used in elliptic curve point counting.

In this thesis, at first, preliminary information will be given for creating the necessary
infrastructure to understand upcoming chapters about elliptic curve scalar multiplication
and point counting methods. Then, a fast 4-way vectorized Montgomery ladder that
works with the complete set of Montgomery curves will be introduced. Next, Schoof’s
and SEA algorithms will be explained in detail and illustrated with toy examples.
Finally, the thesis will be concluded by introducing an early abort method for detecting
both isogenous and non-isogenous curves, based on checking the equality of small
traces obtained in the Elkies parts of the SEA algorithm.
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1.1. MOTIVATION

Protocols and applications derived from the ECC are widely used in industry, and
optimizing these protocols and applications as much as possible is of great importance.
Therefore, it will be helpful to improve the efficiency of the elliptic curve primitives of
the ECC. The primary motivation for writing this thesis is to provide efficient methods
for the computation of elliptic curve primitives, such as elliptic curve scalar multipli-
cation and elliptic curve point counting. At first, the subject of elliptic curve scalar
multiplication was studied, and consequently, a new 4-way vectorized Montgomery
Ladder was introduced. Then, the problem of counting points on elliptic curves was
discussed. Brief research on the methods of counting points was done, and Schoof’s
algorithm was found interesting for investigation. After understanding Schoof’s algo-
rithm, efficient and up-to-date point counting algorithms were examined, and the focus
was shifted to the SEA algorithm.

While searching the areas where the SEA algorithm is used, it was seen that Bosma,
Cannon, and Playoust (1997) use the SEA algorithm in the IsIsogenous function
to check whether the elliptic curves are isogenous. Another motivation is to find an
alternative method for detecting (non-)isogenous curves by thoroughly investigating the
SEA algorithm. This investigation was strengthened by implementing the algorithm.
To produce comprehensive and informative public implementations of Schoof’s and
SEA algorithms is another motivation for this thesis.

1.2. AIMS AND OUTCOMES

The objectives intended to be achieved by writing this thesis are as follows:

• Producing an efficient implementation of the Montgomery ladder by utilizing
SIMD architectures and parallelism.

• Elaborately explaining efficient methods used to determine the number of points
on elliptic curves, such as Schoof’s and SEA algorithms.

• Studying the improvements that will speed up the SEA algorithm in theory and
practice.

• Presenting implementations of Schoof’s and SEA algorithms.

• Investigating the methods for detecting (non-)isogenous curves.

Based on these aims, the following outcomes were obtained as a result of this thesis:

• A new 4-way vectorized Montgomery ladder that works on the complete set of
Montgomery curves was presented, and efficient 4-way SIMD AVX2 and 8-way

3



AVX-512 implementations of this ladder were produced.

• Schoof’s algorithm and SEA algorithm were explained in detail. Numerical
examples for these algorithms were provided.

• Methods and optimization techniques that can increase the efficiency of the SEA
algorithm have been studied and added to the implementation.

• Magma implementations of Schoof’s algorithm and SEA algorithm were pre-
sented.

• An early abort method was developed for detecting (non-)isogenous curves, and
a Magma implementation for this method was presented.

1.3. LITERATURE REVIEW

The literature review of Chapter 3 is given in Section 3.1 not to disrupt the self-contained
structure of the chapter. This section only provides the literature review on elliptic curve
point counting methods.

Point counting operation on elliptic curves has always been exhausting. Point
counting was done using a naive approach until efficient procedures were discovered.
Sundriyal (2008) explained the naive algorithm in detail. This algorithm stems from the
Lang-Trotter method, expressed by Washington (2008). Various number theorists and
computer scientists struggled for many years to find a way to count points on elliptic
curves effectively. Harris (2005) stated that the first seemingly efficient way to deal
with the problem of point counting was using the BSGS algorithm (Shanks, 1971).
Zelenova (2011) gave descriptive information about this algorithm and discussed the
improvements the algorithm provided. As field prime started to grow to enormous sizes
with cryptographic advances, this algorithm became inefficient due to its running-time
complexity O(p1/4+o(1)). Although it is impractical to count points on elliptic curves of
genus one, Matsuo, Chao, and Tsujii (2002) used the BSGS algorithm to count numbers
on hyperelliptic curves efficiently. Also, there is an improved version of the BSGS
algorithm in the context of point counting, called the Shank-Mestre algorithm (Cohen,
1993). In this method, Mestre decreased the overall computational effort needed to
find the trace ap by applying the BSGS algorithm to the quadratic twist of the elliptic
curve E to compute #E = p+ 1− ap. The Shank-Mestre algorithm utilizes Hasse’s
Bound (Hasse, 1936) to determine the possible number of points on an elliptic curve
and Lagrange’s Theorem (Roth, 2001), demonstrating that the order of any point on an
elliptic curve must divide the total number of points on the same curve. This method
was also implemented and heavily used in the PARI computer algebra system (Batut,
Belabas, Bernardi, Cohen, & Olivier, 1990). Additionally, there are methods preferred
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in terms of space efficiency, such as Pollard’s Rho algorithm and Pollard’s Kangaroo
algorithm, proposed by Pollard (1978). However, all of these methods had exponential
running time complexity.

The popularity of the BSGS algorithm and its variants started to decline with the
emergence of Schoof’s algorithm (Schoof, 1985). Schoof’s groundbreaking work
on counting points on elliptic curves paved the way for various developments in the
field. The algorithm was the first elliptic curve point counting algorithm that ran in
polynomial time. It achieved this by computing trace value t modulo different small
prime numbers and building t with the help of Hasse’s bound and Chinese Remainder
Theorem (CRT) at the end of the algorithm. The running-time complexity of Schoof’s
algorithm is O(log8p). Menezes (1993) proposed Schoof’s algorithm implementation
for counting points on an elliptic curve defined over a field of characteristic two. The
F2m-points are chosen because of their suitability for efficient computation. As a side
note, McGee (2006) implemented Schoof’s algorithm using Mathematica (Inc., n.d.),
and Hsieh and Yang (2010) published a study about designing a graphical interface
to implement Schoof’s algorithm on Windows platforms. Detailed explanations of
Schoof’s algorithm and its extensions are given by (Blake, Seroussi, & Smart, 1999).
Before heading to these extensions, the other methods used in elliptic and hyperelliptic
curve point counting will be mentioned.

Lercier, Lubicz, and Vercauteren (2005) gave overviews of both p-adic and ℓ-adic
methods used in elliptic curve point counting. The p-adic methods include approaches
that benefit from zeta functions and canonical lifts to count the number of points
on an elliptic curve. At first, Kato and Lubkin (1982) found the relation between
p-adic cohomology theory and zeta matrices of elliptic curves. They devised a p-
adic algorithm that finds the number of points on an elliptic curve in polynomial
time. Then, Satoh (2000) showed that canonical lifts could be used to create efficient
implementations of point counting, more efficient than ℓ-adic methods when p is small
enough. Also, Satoh, Skjernaa, and Taguchi (2003) discussed the fast computation
methods of canonical lifts of elliptic curves and their relation with point counting.
Satoh’s work was crucial for the progress of p-adic methods since several improvements
started to be proposed by different people after the emergence of his fast algorithm.
In the same year as the appearance of Satoh’s work, Fouquet, Gaudry, and Harley
(2000) presented an extension of his algorithm that optimises the computations in small
characteristics, especially in characteristics two and three. Then, an improvement over
Satoh’s algorithm in terms of space efficiency was published (Vercauteren, Preneel,
& Vandewalle, 2001). In 2002, Satoh surveyed advancements in p-adic algorithms
(Satoh, 2002). Furthermore, Skjernaa (2003) provided an efficient variant of Satoh’s
algorithm specific to characteristic two. Also, Madsen (2005) applied Satoh’s p-adic
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point counting methods to the elliptic curves in Legendre form.

Apart from Satoh’s algorithm and its variants, Arithmetic-Geometric Mean (AGM)
based algorithms fall under the p-adic methods category. Mestre (2000) used this
method to count points on elliptic curves. Next, he provided an algorithm to count
points on hyperelliptic curves in a separate work (Mestre, 2002). Kedlaya’s algorithm
(Kedlaya, 2001) is a point counting method also used for counting points on hyperelliptic
curves. This algorithm works with the help of zeta functions and Monsky–Washnitzer
cohomology group (Monsky & Washnitzer, 1968; Monsky, 1968). Denef and Ver-
cauteren (2002) extended Kedlaya’s algorithm to Artin-Schreier curves in characteristic
two. They also developed an algorithm that expanded Kedlaya’s algorithm on general
hyperelliptic curves in characteristic two (Denef & Vercauteren, 2006). In addition,
Gaudry and Gürel (2003) explained how the point counting operation with Kedlaya’s
algorithm works on hyperelliptic curves of medium characteristics. Also, the same
year, Lercier and Lubicz (2003) provided an implementation-friendly algorithm for
counting points on elliptic curves over finite fields of small characteristics while running
in quasi-quadratic time. Study of Lauder (2005) reviewed rigid cohomology-based
algorithms that compute the zeta function of an algebraic variety over a finite field.
Then, Carls and Lubicz (2009) designed an algorithm that computes the number of
points on the Jacobian variety of a generic ordinary hyperelliptic curve by combining
the canonical lifting of Satoh and AGM-based algorithm of Mestre with having a time
complexity of O(log(p)2+o(1)).

Schoof’s and SEA algorithms fall into the ℓ-adic methods category. SEA algorithm
arose from the works of Atkin and Elkies. These improvements revealed the real
potential of Schoof’s algorithm. Atkin (1988, 1991) put forward an algorithm to detect
the order of the Frobenius endomorphism in the projective general linear group acting on
the ℓ-th torsion group E[ℓ] of an elliptic curve E/Fp. Elkies (1991) found a method to
decrease the degree of the ℓ-th division polynomial used in Schoof’s algorithm. Instead
of using the ℓ-th division polynomial of degree (ℓ2 − 1)/2 in the computations, Elkies
used a kernel polynomial of degree (ℓ − 1)/2, and this led to a significant speedup
in the algorithm. Schoof (1995) combined all these advancements and explained the
complete SEA algorithm in detail. The running-time complexity of the SEA algorithm
is Õ(log4p), which indicates a significant improvement in efficiency. This work of
Schoof is of great importance since it also includes several enhancements to existing
algorithms used in point counting. Schoof (1995) also provided an extension of Mestre’s
theorem on the bounds of the order of the group of points. The original theorem was
valid for p > 457, yet Schoof expanded it to p > 229, where p is the prime of a prime
field Fp. Cremona and Sutherland (2010) extended this bound to p > 49 for all finite
fields and p > 29 for all prime fields. Additionally, Schoof (1995) explained a method
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of elliptic curve point counting with the knowledge of the endomorphism ring of the
elliptic curve E by using Cornacchia’s algorithm (Cornacchia, 1908).

After the improvements of Atkin and Elkies on Schoof’s algorithm, many studies
on the SEA algorithm began to appear. Couveignes and Morain (1994) investigated
attributes of the isogeny cycles. They showed how to efficiently use the powers of good
primes by using isogenies between curves over the ground field. Lercier and Morain
(1995) considered different strategies for point counting and discussed the performances
while presenting an efficient point counting implementation for an elliptic curve over a
field GF (2n) for n ≤ 500. Then, Lercier and Morain (1996) gave the first successful
implementation of Couveignes’s algorithm. Elkies (1997) discussed the computational
issues dependent on elliptic and modular curves over finite fields. Dewaghe (1998)
described different methods to apply in the SEA algorithm when any small prime ℓ is
considered "good" or "bad", according to being an Elkies or Atkin prime, respectively.
Izu, Kogure, Noro, and Yokoyama (1998) described how to efficiently implement
Schoof’s algorithm by integrating Atkin and Elkies’ improvements, the Match and Sort
algorithm of Atkin and the isogeny cycles method. Optimization of the SEA algorithm
for the case of characteristic two was presented by Vercauteren (2000). Next, Joux and
Lercier (2001) suggested an alternative method to the Match and Sort algorithm called
the Chinese and Match algorithm, which uses less memory space while having similar
time complexity. Joux and Lercier (2006) also gave a point counting algorithm specific
for elliptic curves of medium characteristics.

The eigenvalue computation phase is one of the most crucial parts of the SEA algo-
rithm. Maurer and Müiler (2001) discussed the eigenvalue search algorithms suitable
for Elkies’ part of the procedure. Moreover, Gaudry and Morain (2006) provided a few
improvements for the eigenvalue computation phase. These improvements advanced the
SEA algorithm both theoretically and practically. One year later, Mihailescu, Morain,
and Schost (2007) found a method to compute the eigenvalue using Abelian lifts. The
Abelian properties of division polynomials allowed them to build fast eigenvalue com-
putation algorithms. Bostan, Morain, Salvy, and Schost (2008) discussed isogeny
computation algorithms for Elkies’ part of the SEA algorithm. They provided a fast
isogeny computation algorithm that does not need the sum of roots to operate.

Modular polynomials are important mathematical structures employed in the SEA
algorithm’s kernel polynomial construction. Numerous theorists also heavily work on
these structures to get the maximum benefit. Broker, Lauter, and Sutherland (2010)
propounded a new algorithm for computing classical modular polynomials using isogeny
volcanoes. Moreover, Sutherland (2013) proposed new procedures to evaluate modular
polynomials. He also set a point-counting record with this work by utilizing his proposed
methods. These studies helped Sutherland break the new point counting record in the
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area of elliptic curves of genus one. Sutherland (2013) managed to compute the number
of points on an elliptic curve defined over a prime field, with the prime having more
than 5000 digits.

The ℓ-adic point counting methods also apply when the genus of the curve is greater
than one. Gaudry and Harley (2000) provided several algorithms to get the number of
points on hyperelliptic curves and their Jacobians defined over finite fields. Lercier et al.
(2005) comprehensively described methods for finding the cardinality of hyperelliptic
curves. Lercier and Lubicz (2006) provided an algorithm for counting points on
Jacobians of ordinary hyperelliptic curves in quasi-quadratic time. In 2007, Hubrechts
addressed this topic and gave a polynomial time point counting algorithm suitable for
the families of hyperelliptic curves (Hubrechts, 2007a) and specifically for characteristic
two (Hubrechts, 2007b). Then, Gaudry, Kohel, and Smith (2011) proposed an efficient
point counting algorithm suitable for genus two curves which utilized real multiplication
endomorphism in the computations. Also, Gaudry and Schost (2012) improved the
point counting method for Jacobians of genus two curves over a large prime field.
They detected a cryptographically secure curve with a state-of-the-art security level of
approximately 2128. A comprehensive overview of hyperelliptic curve point counting
can be found in (Doliskani, 2011) and (Abelard, 2018).

There are many implementations of the SEA algorithm on different platforms. One of
the most commonly used implementations is the one in the PARI-GP software (Batut et
al., 1990). Also, it exists in SageMath Mathematics Software System (T. S. Developers
et al., 2020), Magma Computer Algebra System (Bosma et al., 1997) and the MIRACL
Core Cryptographic Library (T. M. Developers, 2018). In addition, there are also
individual implementations arising from various articles and theses. For instance, Hsieh,
Yang, and Ahn (2008) implemented the SEA algorithm suitable for working on Windows
platforms. Then, Kok (2013) implemented the SEA algorithm with the NTL library
(Shoup & Developers, 1990). Morain, Scribot, and Smith (2016) suggested a practically
faster point counting algorithm than SEA while providing a C++ implementation of
their algorithm using the NTL library. Furthermore, Stankovic (2017) implemented
the SEA algorithm in a Python-Sage environment. Besides these examples, this thesis
also presents an open-source Magma implementation of the SEA algorithm. A clear
explanation of the SEA algorithm can be found in (Blake et al., 1999), (Csirik, 2000)
and (Galin, 2007).

1.4. CONTRIBUTIONS

The introduction of a fast 4-way vectorized Montgomery ladder is the first main contri-
bution of this thesis. The 4-way AVX2 implementation got competitive results among
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the other fast vectorized implementations in the field. The 8-way AVX-512 implemen-
tation set the new speed record in the area with an improvement of approximately nine
per cent.

The second main contribution of this thesis is the presented early abort method
for detecting (non-)isogenous curves. The detection of cases when given two elliptic
curves are non-isogenous can be done very quickly with this method. This method
was implemented using Magma. This thesis also presents publicly available Magma
implementations of Schoof’s and SEA algorithms. SEA algorithm was implemented
using both classical modular polynomials and Atkin modular polynomials, and a fast
kernel polynomial computation technique is employed in the version using Atkin
modular polynomials. In addition, the literature review section summarises various
works on elliptic and hyperelliptic curve point counting. This thesis can also be a
helpful resource for non-experts interested in elliptic curve point counting.

1.5. ORGANIZATION

The rest of the thesis is organized as follows. Several necessary preliminaries are given
in Chapter 2 to fully understand the inner workings of elliptic curve scalar multiplication,
Montgomery ladder, Schoof’s algorithm and SEA algorithm. Chapter 3 provides all
the necessary information about the fast 4-way vectorized Montgomery ladder for the
complete set of Montgomery curves, including the implementation details. Chapter 4
introduces a new early abort method to detect (non-)isogenous curves. Before heading
into the process, detailed explanations of Schoof’s and SEA algorithms are given. For
Schoof’s algorithm, trace computations modulo two and consecutive odd primes are
expressed, and a numerical example is given. For the SEA algorithm, the improvements
of Atkin and Elkies are fully clarified, Match and Sort algorithm is explained, and a
toy example is given. After presenting the SEA algorithm in detail, the method for
detecting (non-)isogenous curves with implementation details is provided. In the last
chapter, the work done in this thesis is summarized, and possible future work related to
this thesis is discussed.
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CHAPTER 2

PRELIMINARIES

To better understand the algorithms described in Chapter 3 and Chapter 4, gathering
information about some structures and their properties would be helpful. This prelimi-
nary chapter gives several necessary definitions and properties of elliptic curves first.
Then, the group law defined on a group of points on an elliptic curve is mentioned.
After that, isogenies between elliptic curves and the Frobenius endomorphism map are
described. Then, Hasse’s bound related to the number of points on an elliptic curve is
briefly explained. Finally, division polynomials, which are frequently used in Schoof’s
algorithm and SEA algorithm, and modular polynomials that play a significant role in
obtaining the improvements in the SEA algorithm are described.

2.1. ELLIPTIC CURVES

Nowadays, elliptic curves are used extensively in many areas of cryptography, such as
key exchanges, digital signatures and pseudorandom number generators. Although ellip-
tic curves have been known for many years throughout history, they have recently been
used in cryptographic applications. They were first seen in Diophantus’ Arithmetica
in the second century AD. Number theorists such as Cauchy, Levi, Lucas, Sylvester
and Poincaré worked on them until the 1920s. They were used in the Mordell–Weil
Theorem (Mordell, 1922), one of the four theorems that constructed the Diophantine
Geometry. Miller (1985) and Koblitz (1987) independently proposed the relation of
elliptic curves with cryptography under a notion called ECC. Their first application in
ECC happened with the Lenstra elliptic-curve factorization method (ECM) (Lenstra,
1987). ECC variants of the existing cryptographic schemes have been proposed (e.g.,
Elliptic Curve Diffie-Hellman key exchange, Elliptic Curve Digital Signature Algo-
rithm), which have widened the usability of elliptic curves significantly. Elliptic Curve
Diffie-Hellman key exchange (ECDH) is one of the significant contributions of elliptic
curves to the world of digital security. It is based on a complicated problem and is
considered a reliable key agreement protocol because of this problem. The problem that
ensures the security of ECDH is named ECDLP. The safety of ECDLP is based on the
difficulty of reaching a number k that R = [k]P while knowing two points P and R on
an elliptic curve E.
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ECC follows a public-key cryptographic (or asymmetric cryptographic) approach by
employing public keys in both parties, as in Rivest-Shamir-Adleman (RSA) cryptosys-
tem. The main advantage of ECC over RSA is that it can provide equivalent security,
with the key sizes being much smaller. For example, according to (Mahto & Yadav,
2017), an equal cryptographic strength can be ensured by using 256-bit keys in ECC,
whilst in the RSA cryptosystem, 3072-bit keys are needed. The smaller keys mean
more memory space efficiency, enabling the usage of elliptic curve-related methods on
devices with small memory sizes and low CPU consumption due to faster arithmetic
operations. Also, the key generation phase in ECC takes less time than the one in the
RSA. Considering these advantages, working with elliptic curves would be a sensible
choice.

Elliptic curves are broad concepts to go into detail. Providing some background
information about these curves would be handy to cope with the complex nature of the
elliptic curve scalar multiplication methods and point counting algorithms.

Definition 2.1.1. An elliptic curve is a non-singular algebraic curve of genus one
denoted with E and defined with the affine Weierstrass equation,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

having O ∈ E as the base point (or called the point at infinity) and defined over a
field K. The coefficients a1, a2, a3, a4 and a6 ∈ K and the characteristic of K is
represented with p = char(K), multiplicative identity with 1K , additional identity with
0K satisfying 1K + 1K + . . .+ 1K︸ ︷︷ ︸

p times

= 0K .

The field K can be chosen as, for example, Q,R or C. Usually, E is defined over
a finite field and in such cases, the number of points on E becomes countable. In the
cryptographic setting, the chosen finite field is bounded by a large prime p, and the
field is denoted with Fp. The representation of the curve can change according to the
characteristic of the underlying field K. The isomorphism 1 of elliptic curves can help
simplify the Weierstrass form. This simplification can be achieved with the help of the
transformation map in the following definition.

1An isomorphism is an invertible bijective map between two mathematical structures which maintains
the structural properties.
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Definition 2.1.2. Let E1 and E2 be two elliptic curves over a field K in the Weierstrass
form as

E1 : y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6,

E2 : y
2 + a′1xy + a′3y = x3 + a′2x

2 + a′4x+ a′6.
(2.2)

An isomorphism between E1 and E2 exists if and only if there exist some variables
u, r, s, t ∈ K, u ̸= 0 which satisfy the map

(x, y) 7→ (u2x+ r, u3y + u2sx+ t) (2.3)

that causes a transformation from the equation of E1 to E2. These types of transforma-
tions are called admissible changes of variables.

For an elliptic curve E/Fp in the Weierstrass form, when char(Fp) = 2 and the
curve is supersingular, meaning that the number of points on E is equal to p+ 1, the
transformation map in Definition 2.1.2 turns the equation of E/Fp to

E/Fp : y
2 + a3y = x3 + a4x+ a6 (2.4)

by the use of the map
(x, y) 7→ (x+ a2, y).

In the non-supersingular case, the equation appears as

E/Fp : y
2 + xy = x3 + a2x

2 + a6 (2.5)

by the use of the map

(x, y) 7→ (a21x+
a3
a1
, a31y +

a21a4 + a23
a31

).

If char(Fp) = 3 and the curve is supersingular, then the equation of E/Fp appears as

E/Fp : y
2 = x3 + a4x+ a6 (2.6)

by the use of the map
(x, y) 7→ (x, y + a1x+ a3).

In the non-supersingular case, it turns into

E/Fp : y
2 = x3 + a4x

2 + a6 (2.7)
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by the use of the map

(x, y) 7→ (x+
a4 − a1a3
a21 + a2

, y + a1x+ a1
a4 − a1a3
a21 + a2

+ a3).

At last, if char(Fp) ̸= 2, 3, the equation turns into

E/Fp : y
2 = x3 + a4x+ a6 (2.8)

by the use of the map

(x, y) 7→ (
x− 3a21 − 12a2

36
,
y − 3a1x

216
− a31 + 4a1a2 − 12a3

24
).

Equation (2.8) is called the short Weierstrass equation. Defining elliptic curves in the
short Weierstrass form simplifies group law and the expressions related to the curves.
For example, the discriminant of an elliptic curve in the Weierstrass form is defined as

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6 (2.9)

where

d2 = a21 + 4a2, d4 = 2a4 + a1a3,

d6 = a23 + 4a6, d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

while the discriminant of a short Weierstrass curve is defined in a much shorter way as

∆ = −16(4a34 + 27a26). (2.10)

This situation also applies the expressions of the j-invariants of elliptic curves. One
property to note here is that the j-invariant of two elliptic curves are equal if and only
if these are isomorphic. The admissible change of variables becomes applicable only
when the curves have the same j-invariant. The j-invariant of an elliptic curve E in the
Weierstrass form is defined as

j(E) = (d22 − 24d4)
3/∆. (2.11)

If E is defined in short Weierstrass form, then the expression shortens and takes the
form of

j(E) = 1728a34/4∆. (2.12)

More information about the j-invariants is given in Section 2.7.

There are other elliptic curves, such as Montgomery, Edwards, Twisted Edwards, and
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Hessian. They have different representations from the short Weierstrass form. Also, the
arithmetic on them is done with different formulas. Information about Montgomery
curves is given in Section 3.1. Schoof’s and SEA algorithms employ elliptic curves in
short Weierstrass form. Therefore, examining the group law on these curves will be
helpful.

2.2. GROUP LAW

Let E : y2 = x3 + a4x+ a6 be an elliptic curve in short Weierstrass form over a finite
field Fp. The set of points on E, including the point at infinity, constitutes a group with a
binary group operation (also called the composition law on E) represented by ⊕. Every
group element can be obtained thanks to the binary operation and geometric construction
of points. Let P = (x1, y1) andQ = (x2, y2) be two distinct points onE(Fp). By simply
drawing a line which connects these points, another point R = (x3,−y3) = −(P ⊕Q)
is found from the intersection of the curve. Projecting point R according to the x-axis
allows obtaining point R′ that R′ = (x3, y3) = P ⊕ Q. This operation is named
point addition on elliptic curves, and the visual demonstration of the operation is given
in Figure 2.1.

E

P

Q
R = −(P +Q)

R′ = P +Q

Figure 2.1. Point Addition on Elliptic Curves

Adding a point P = (x1, y1) to itself can also be constructed geometrically by draw-
ing a tangent line at P and again taking the projection at the x-axis. This operation is
named point doubling on elliptic curves, and the visual demonstration of the procedure
is given in Figure 2.2.
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E

P −[2]P

[2]P

Figure 2.2. Point Doubling on Elliptic Curves

Here, the point at infinity O can be imagined as a point parallel to the y-axis and
located very far away from the origin. It is the identity element of the group that for a
point P = (x1, y1) ∈ E(Fp), P ⊕O = O ⊕ P = P holds. Also, the addition of P and
its negative −P = (x1,−y1) results in P ⊕ −P = O and is visualized by a line that
connects P with −P , meanwhile intersecting with O.

The explicit formulas to detect the coordinates of the resulting points in addition and
doubling are derived by first finding the slope of the intersecting line as

λ =


y1 − y2
x1 − x2

if x1 ̸= x2 i.e., P ̸= ±Q,
3x21 + a4

2y1
if x1 = x2, y1 = y2 i.e., P = Q.

(2.13)

Then, the coordinates of the point R = (x3, y3) are found as

x3 =

λ2 − x1 − x2 if P ̸= ±Q,

λ2 − 2x1 if P = Q,
(2.14)

and
y3 = λ(x1 − x3)− y1, (2.15)

whether P is equal to Q or not. Detailed information about the group law of elliptic
curves and proof of the composition law can be found in (Silverman, 2009, pp. 51-58).
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2.3. ISOGENIES

Isogenies of elliptic curves have become a prominent topic recently, especially with the
increasing importance of post-quantum cryptography. The Supersingular Isogeny Diffie
Hellman key exchange is an extensively studied scheme. It is built with supersingular
isogenies and the isogeny graphs created with these isogenies. Isogenies are also used
in the Elkies part of the SEA algorithm. Thus, discussing isogenies and their properties
in this thesis will be beneficial. Isogenies can be established among various algebraic
varieties. Here, the isogeny of elliptic curves will be discussed.

Definition 2.3.1. Let E1/K and E2/K be two elliptic curves where K is a field. An
isogeny is a non-constant surjective morphism defined between E1 and E2, mapping
the identity O1 of E1 to the identity O2 of E2 as

ϕ : E1 7→ E2,

ϕ(O1) = O2.
(2.16)

The isogeny ϕ associates the elliptic curves E1 and E2 with each other. Therefore E1

and E2 can be called isogenous curves. Theorem 2.3.1 gives a critical property related
to this case.

Theorem 2.3.1. Let E1 and E2 be two elliptic curves that are isogenous over the field

K and ϕ : E1 7→ E2 is an isogeny which maps the identity of E1 to the identity of E2.

Then, ϕ is a group homomorphism from E1(K) to E2(K).

Proof. See (Silverman, 1986, pp.75-76).

An isogeny can either be separable, inseparable or purely inseparable. If ϕ is identified
as

ϕ(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
, (2.17)

where u, v and s, t are pairwise coprime polynomials in K, then ϕ is a separable
isogeny if

(u
v

)′
̸= 0. The isogenies involved in cryptography are mostly separable

ones. The degree of a separable isogeny is determined by the number of elements in its
kernel (Silverman, 1986, Theorem III.4.10). The following definition helps understand
this statement better.

Definition 2.3.2. The kernel of an isogeny is a set of points in E1(K̄) that every element
in E1(K̄) is mapped to the identity element O2 of E2 with the isogeny ϕ, i.e.,

ker(ϕ) = {P ∈ E1(K̄) : ϕ(P ) = O2}. (2.18)
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If every element P ofE1(K̄) is mapped toO2 with ϕ, then ϕ is a constant map named
zero isogeny. As the name suggests, its degree is zero. If the degree is one, meaning
the kernel has only one element, ker(ϕ) = {O}, the mapping is an isomorphism.
Isomorphisms are invertible, and an isomorphism can be merged with the inverse of
it to build an identity map. Isogenies do not have inverses. However, they have dual

isogenies. They are combined with the isogenies to create multiplication-by-d maps
where d is the degree of the isogeny used. The definition given below solidifies this
statement.

Definition 2.3.3. LetE1 andE2 be isogenous elliptic curves defined as in Theorem 2.3.1,
and ϕ be an isogeny that ϕ : E1 7→ E2. Then,

ϕ̂ : E2 7→ E1 (2.19)

is a unique map called the dual isogeny. The composition

ϕ̂ ◦ ϕ = [d]E1 (2.20)

gives the multiplication-by-d map on E1. The opposite case,

ϕ ◦ ϕ̂ = [d]E2 , (2.21)

gives the multiplication-by-d map on E2.

The kernel of a multiplication-by-d map forms the d-torsion group. This property is
very crucial for both the Schoof’s and SEA algorithms, as the scalar multiplication of
points on elliptic curves is frequently used in them. Definition 2.3.4 gives insight into
the torsion groups and points.

Definition 2.3.4. Let E be an elliptic curve defined over a field K. An ℓ-torsion
subgroup of E is defined as

E[ℓ] = {P ∈ E(K̄) : [ℓ]P = O}, (2.22)

where ℓ ≥ 1 and O is the identity of E. Also, every element in E[ℓ] is called an
ℓ-torsion point.

In addition, for points P,Q ∈ E(K̄), every point R ∈ E(K) can be written as
[α]P + [β]Q where α, β ∈ Z. This statement can be generalized as

E[ℓ] ∼= Z/ℓ× Z/ℓ. (2.23)
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The following theorem paves the way for the improvements of Atkin and Elkies over
Schoof’s algorithm.

Theorem 2.3.2. Let E be an elliptic curve defined over a finite field Fp and ℓ be a prime

where gcd(ℓ, p) = 1. Then, the ℓ-torsion subgroup E[ℓ] = Z/ℓ × Z/ℓ has precisely

ℓ+ 1 cyclic subgroups Ci for i = 0, . . . , ℓ and |Ci| = ℓ.

Proof. See (Galin, 2007, p. 19).

2.4. FROBENIUS ENDOMORPHISM

Frobenius endomorphism is a special type of endomorphism frequently used in elliptic
curve point counting. It is a map defined between groups with the characteristic p,
where p is a prime number, and it is generally associated with elliptic curves and their
arithmetic. In this thesis, Frobenius endomorphism will always be related to elliptic
curves over finite fields since the operations in the algorithms that will be explained
are always done in finite fields. To be able to grasp the idea of what the Frobenius
Endomorphism is, the homomorphism property between groups should be defined first.

Definition 2.4.1. A homomorphism is a function between two groups keeping each
group’s structure the same after the application of binary operation. Let G and H be the
groups with the binary operations ∗ and +, respectively. Then f is a homomorphism
that f : G→ H between G and H if

f(x ∗ y) = f(x) + f(y), (2.24)

for every pair x, y ∈ G.

In light of this, the endomorphism map for group G can be defined as the following.

Definition 2.4.2. An endomorphism is a homomorphism of a group G to itself. It
preserves the originality of the group structure. Then, g is an endomorphism that
g : G→ G for a group G with the binary operation ∗ related to G if

f(x ∗ y) = f(x) ∗ f(y), (2.25)

for every pair x, y ∈ G.

After defining the endomorphism for groups, it is now suitable to define the Frobenius
endomorphism.
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Definition 2.4.3. (Frobenius Endomorphism) Consider an elliptic curve E/Fp and
a point P = (x, y), which lies on F̄p, the algebraic closure of Fp. The Frobenius
endomorphism φ ∈ EndFp(E) (i.e., the endomorphism ring of Fp-endomorphisms of
elliptic curve E) and is defined as

φ : E/F̄p → E/F̄p,

φ(x, y) = (xp, yp),

φ(O) = O.

(2.26)

With the Frobenius endomorphism, every element in F̄p is mapped to its p-th power,
which is already present in F̄p. The characteristic equation used for detecting the trace
of Frobenius in Schoof’s algorithm employs the Frobenius endomorphism. Such an
equation can be built thanks to Hasse’s Bound.

2.5. HASSE’S BOUND

Hasse (1936) showed that there is a bound that determines a range for the possible
number of points on a non-singular elliptic curve E/Fp. This bound restricts the number
of points on E/Fp with the inequality

| #E(Fp)− p− 1 | ≤ 2
√
p (2.27)

where #E(Fp) is the number of points on E/Fp and p is the characteristic of the finite
field F.

It would be convenient to give proof of Hasse’s theorem on elliptic curves after some
necessary background information.

Let α and β be endomorphisms defined from E/Fp to itself. These endomorphisms
can be considered as separable isogenies from E/Fp to E/Fp. Here, the orders of the
kernels of isogenies are equal to the degrees of isogenies. The degree of an isogeny can
also be determined by looking at the highest degree term of the irreducible polynomial
if and only if the isogeny is defined with an irreducible polynomial. As stated by Tolkov
(2009), the multiplicative property of the degree of polynomials can be used for the
degrees of endomorphisms as

deg(α ◦ β) = deg(α)deg(β), (2.28)

and since these endomorphisms form a ring of endomorphisms of E, EndFp(E), they
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also have the addition and composition properties for a point P on E/Fp such as

(α + β)(P ) = α(P ) + β(P ), (α ◦ β)(P ) = α(β(P )). (2.29)

Then, the following inequality holds for the endomorphisms α and β.

| deg(α− β)− deg(α)− deg(β) | ≤ 2
√

deg(α)deg(β). (2.30)

The proof of the above statement can be found in (Silverman, 1986). Keeping Equa-
tion (2.30) in mind will help us understand the proof of Hasse’s theorem of elliptic
curves. The proof declared here is taken from (Tolkov, 2009).

Proof. Let α be the Frobenius Endomorphism of the elliptic curve E over Fp. The
degree of α is p since it sends a point P = (x, y) to (xp, yp). With xp ≡ x mod p, which
comes from Fermat’s Little Theorem, every point P on E/Fp is fixed using Frobenius
endomorphism α as α(P ) = P . Then, α(P )− P = 0 and (α− 1)(P ) = 0. So, it can
be deduced that P is in the kernel of α− 1. This kernel is isomorphic to E/Fp, and the
number of elements in this kernel equals the number of points on E/Fp. Therefore,

deg(α− 1) = #E/Fp. (2.31)

If Equation (2.30) and Equation (2.31) are associated,

| deg(α− 1)− deg(α)− deg(1) | ≤ 2
√

deg(α)deg(1),

and deg(α− 1) = #E/Fp, deg(α) = p, deg(1) = 1. In the end, by combining all,

| #E(Fp)− p− 1 | ≤ 2
√
p.

2.6. DIVISION POLYNOMIALS

Division polynomials play a significant role in elliptic curve point counting algorithms
such as Schoof’s algorithm and SEA algorithm. Working modulo ℓ-th division polyno-
mial causes a remarkable speed up while performing necessary operations.

To describe the division polynomials, let E be an elliptic curve defined over a field
Fp with prime characteristic p and given in short Weierstrass form as E/Fp : y2 =

x3 + a4x
2 + a6. For ℓ > 0, there exist some polynomials ψℓ, ϕℓ, ωℓ ∈ F̄p[x, y] and the

existence of these polynomials enables getting the coordinates of the ℓ-th multiple of
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a point P , where P = (x, y) ∈ E(Fp) and [ℓ]P ̸= O. The ℓ-th multiple of P can be
expressed as

[ℓ]P =

(
ϕℓ(x, y)

ψℓ(x, y)2
,
ωℓ(x, y)

ψℓ(x, y)3

)
. (2.32)

Here, ψℓ(x, y) is called the ℓ-th division polynomial and ϕℓ and ωℓ can be derived
with the help of ψℓ as

ϕℓ = xψ2
ℓ − ψℓ−1ψℓ+1, (2.33)

and

ωℓ =
ψℓ+2ψ

2
ℓ−1 − ψℓ−2ψ

2
ℓ+1

4y
, (2.34)

where ℓ ≥ 1. Combining the expressions leads to the emergence of

[ℓ]P =

(
x− ψℓ−1ψℓ+1

ψ2
ℓ

,
ψℓ+2ψ

2
ℓ−1 − ψℓ−2ψ

2
ℓ+1

4yψ3
ℓ

)
. (2.35)

The proof of the derivation of this expression can be found in (Galin, 2007).

One important property of the division polynomials is that they can be generated
recursively. Since E is a short Weierstrass curve, the variables a1 = a2 = a3 =

0. Therefore in the expressions, x, y, a4 and a6 will be free variables in Fp. The
recursive construction of the ℓ-th division of polynomial of E can be demonstrated as
the following:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6a4x
2 + 12a6x− a24,

ψ4 = 4y(x6 + 5a4x
4 + 20a6x

3 − 5a24x
2 − 4a4a6x− 8a26 − a34),

...

ψ2ℓ =

(
ψℓ

2y

)
(ψℓ+2ψ

2
ℓ−1 − ψℓ−2ψ

2
ℓ+1), where ℓ ≥ 3,

ψ2ℓ+1 = ψℓ+2ψ
3
ℓ − ψℓ−1ψ

3
ℓ+1, where ℓ ≥ 2.

According to Lang (1978, p. 37), the division polynomial formulas for both odd
and even degrees can be represented in the x-coordinate only form. This conversion
is done using induction techniques and the proper substitution of y-coordinates with
x-coordinates using the equation y2 = x3 + a4x + a6. The formulas resulting from
these processes are given below. Note that fℓ is equal to ψℓ or ψℓ/2y depending on
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whether ℓ is odd or even, respectively.

f0 = 0,

f1 = 1,

f2 = 1,

f3 = 3x4 + 6a4x
2 + 12a6x− a24,

f4 = 2(x6 + 5a4x
4 + 20a6x

3 − 5a24x
2 − 4a4a6x− 8a26 − a34),

...

f2ℓ = fℓ(fℓ+2f
2
ℓ−1 − fℓ−2f

2
ℓ+1),

f2ℓ+1 =

fℓ+2f
3
ℓ − 16(x3 + a4x+ a6)

2fℓ−1f
3
ℓ+1, where ℓ is odd,

16(x3 + a4x+ a6)
2fℓ+2f

3
ℓ − fℓ−1f

3
ℓ+1, where ℓ is even.

Galin (2007) gave the construction of such polynomials with a theorem and the corre-
sponding proof.

2.7. MODULAR POLYNOMIALS

In Schoof’s Algorithm, division polynomials are utilized to increase computational
efficiency in calculating tℓ values. Nonetheless, division polynomials’ feasibility is
only valid to a certain degree. Schoof’s algorithm uses division polynomials of degree
(ℓ2 − 1)/2 for an odd prime ℓ. Due to the ℓ values getting large, the usage of division
polynomials in trace computations will lose its practicality quickly as the workload
increases. That is why Atkin and Elkies thought that when the discriminant of the
characteristic polynomial is a square modulo a prime ℓ (will be called an Elkies Prime),
a factor with the degree of (ℓ− 1)/2 of the division polynomial ψℓ can be found and
used in the trace computation (Schoof, 1995). This factor is called kernel polynomial,
and its usage decreases the computational workload significantly. Section 4.2.1 gives
detailed information about selecting such primes. According to Schoof (1995), modular
polynomials are needed to work with Elkies primes. Modular polynomials are also used
in the classification part of the primes as Atkin or Elkies, so it would be helpful to be
informed about them.

Modular polynomials are named according to their corresponding prime number ℓ.
The ℓ-th classical modular polynomial Φℓ(x, y) is a symmetric bivariate polynomial
having coefficients in Z, each of whose degree is ℓ + 1, where (x, y) ∈ E. A critical
feature of this polynomial is that there exist ℓ + 1 ℓ-isogenous curves to E, with the
j-invariant values being the roots of Φℓ(x, j) = 0 (Blake et al., 1999, p. 51). The ℓ-th
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classical modular polynomial can be used in kernel computation by benefiting from this
feature, as stated in Section 4.2.2.1.

The most well-known method for computing the classical modular polynomials
includes elliptic curves, which are isogenous over a complex field C. These elliptic
curves can be uniquely associated with lattices (Silverman, 1986). The complex analytic
side of elliptic curves must be investigated to understand the computation process
clearly.

Let Λ be a lattice defined as

Λ = ω1Z+ ω2Z,

where Λ ⊂ C, ω1, ω2 ∈ C are the periods constructing the basis of the lattice Λ and
are R-linearly independent. By using the lattice Λ, the Weierstrass elliptic function ℘
can be defined as

℘(z,Λ) =
1

z2
+

∑
ω∈Λ\{0}

1

(z − ω)2
− 1

ω2
, (2.36)

which has a double pole on C/Λ and has the Laurent expansion ℘(z) = z−2 + 0z0 +

g2z
2 + g3z

4 + O(z6). The theorem below builds the connection between lattices and
elliptic curves over complex fields.

Theorem 2.7.1. Let E/C be an elliptic curve with the Weierstrass Equation (2.1) and

C is a complex field. Between E and a lattice, Λ ⊂ C, there exists an isomorphism that,

C/Λ→ E,

℘(z) 7→

(xΛ, (℘
′(z)− a1xΛ − a3)/2), z /∈ Λ

O, z ∈ Λ

(2.37)

with ℘(z) = −a
2
1 + 4a2
12

. This map is a bijection. Therefore, for any lattice Λ, there

is a unique elliptic curve E/C satisfying the given map.

Proof. See (Silverman, 1986, p. 161).

Theorem 2.7.1 is valid when E is in the Short Weierstrass form. In this case, the map
can be defined as

℘(z) 7→ (℘(z), ℘′(z)/2), z /∈ Λ,
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and the coefficients can be identified as

a4 = −g2/ 3
√
4, a6 = −g3,

where

g2 = 60
∑

ω∈Λ\{0}

1

ω4
, g3 = 140

∑
ω∈Λ\{0}

1

ω6
.

Note that any unique elliptic curve E/C that complies with Theorem 2.7.1 can also be
stated as E = {(x, y) ∈ C2, y2 = 4x3 − g2x − g3} and the functions for coefficient
computations can also be defined as

g2(τ) = 60
∑

(α,β)̸=(0,0)

1

(α + τβ)4
, g3(τ) = 140

∑
(α,β)̸=(0,0)

1

(α + τβ)6
,

using a variable τ = ω1/ω2. This variable is actually an element of an upper half-plane
H = {α + iβ | β > 0; α, β ∈ R}. For this reason, the j-invariant of the elliptic curve
E/C is a function of τ in the upper half-plane. The j-invariant of the corresponding
lattice (1, τ) is constructed as

j(τ) = 1728
g32

g32 − 27g23
. (2.38)

Furthermore, let SL2(Z) be the modular group of 2× 2 matrices with determinant 1,
which acts onH via fractional linear transformations as(

a b

c d

)
τ = (aτ + b)/(cτ + d). (2.39)

Then, it appears that the lattices (1, τ) and (1, δτ) correspond to isomorphic elliptic

curves for any τ ∈ H and any δ ∈ SL2(Z). So, j(τ) = j(δτ) and with δ =

(
0 1

−1 0

)

or δ =

(
1 1

0 1

)
, j(τ) = j(−1/τ) or j(τ) = j(1 + τ) can be obtained, respectively.

Thus, the j-invariant has a Fourier expansion in q = e2πiτ ∈ C (Schoof, 1995). Assum-
ing Λ is a lattice associated with an elliptic curve E/C. Then j-invariant of this curve
can be denoted with

j(q) =
1

q
+ 744 +

∞∑
n=1

cnq
n, (2.40)

where cn ∈ Z. It is clear that the choice of τ has no effect on the construction of j(q), and
τ can be picked from a fundamental domain F = {τ ∈ H : |Re(τ)| ≤ 1/2, |τ | ≥ 1}.
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Relevant proof can be found in (Silverman, 1986, p. 343).

In addition, the set of matrices is defined

C(ℓ) =

{(
a b

0 d

)
: a, b, d ∈ Z, ad = ℓ, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1

}
(2.41)

and for all γ =

(
a b

0 d

)
∈ C(ℓ), the action onH is

γτ =
aτ + b

d
. (2.42)

Definition 2.7.1. The ℓ-th classical modular polynomial Φℓ(x, y) is a polynomial such
that

Φℓ(x, j(τ)) =
∏
γ∈ℓ

(x− j(γτ)), (2.43)

where (x, y) ∈ C, |C(ℓ)| = ℓ+ 1 and also it is monic in x with degree ℓ+ 1.

The arithmetic properties of the ℓ-th modular polynomial are given in the following
theorem.

Theorem 2.7.2. Let n be a positive integer.

1. Φn(x, y) ∈ Z[x, y]

2. Φn(x, y) is irreducible as a polynomial in x.

3. Φn(x, y) = Φn(y, x).

4. If n is not a perfect square, then the degree of Φn(x, x) > 1, whose leading

coefficient is ±1.

5. If n is prime, then Φn(x, y) = (xn − y)(x− yn) mod nZ[x, y].

Proof. See (Cox, 2013, p. 210).
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CHAPTER 3

FAST 4-WAY VECTORIZED LADDER FOR THE COMPLETE SET OF
MONTGOMERY CURVES
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• This chapter has been published in Hüseyin Hışıl, Berkan Eğrice, and

Mert Yassı, "Fast 4-way vectorized ladder for the complete set of Mont-

gomery curves", International Journal of Information Security Science,
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but this chapter.
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providing us access to OMU-i9, a Skylake i9-7900X machine. We
developed the AVX-512 implementation on OMU-i9. The related mea-
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valuable comments.

This paper introduces the 4-way vectorization of the Montgomery ladder on any
Montgomery form elliptic curve. Our algorithm takes 2M4 + 1S4 (M4: A vector
of four field multiplications, S4: A vector of four field squarings) per ladder step
for variable-scalar variable-point multiplication. It is a theoretical improvement over
the squared Kummer ladder, which takes 2M4 + 1S4 + 1d4 per ladder step. This
paper also introduces new formulas for doing arithmetic over GF (2255 − 19). We
provide two implementations of curve25519 using our proposed algorithm. The
first implementation uses the AVX2 instruction set and takes 98484 cycles, which is
competitive with the current speed record of 95437 cycles by Nath and Sarkar. The
second implementation uses the AVX-512 instruction set and takes 74368 cycles, which
sets the new speed record over Faz-Hernández, López, and Dahab’s implementation,
which takes 81600 cycles.
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3.1. INTRODUCTION

Elliptic curve cryptography was proposed by Miller (1985) and Koblitz (1987) in the late
80s. In the past three decades, elliptic curves have become one of the central objects in
public key cryptography. The group law computations on elliptic curves are particularly
interesting as they allow efficient computer arithmetic. In addition, hard instances
of the discrete logarithm problem can be defined on elliptic curves over finite fields
of reasonably small size. These two properties of elliptic curves make them perfect
candidates for many cryptographic primitives, such as key exchange, key encapsulation
mechanisms, and digital signatures. In these primitives, the bottleneck operation is the
multiplication of a point on an elliptic curve with a scalar. This operation is called scalar
multiplication. Optimizing scalar multiplication is one of the main challenges in elliptic
curve cryptography.

An elliptic curve can be represented in several different forms. One of these forms
was introduced by Peter L. Montgomery in his celebrated article (Montgomery, 1987).
An elliptic curve in Montgomery form is written as in Equation (3.1)

By2 = x3 + Ax2 + x (3.1)

with constants A and B satisfying B(A2 − 4) ̸= 0. Let P be a point on this curve.
Let x(P ) be the x-coordinate of P . Let k be a positive integer. The Montgomery
ladder algorithm, also proposed by Montgomery (1987), computes x(kP ) by accessing
a point doubling and a point addition operation per iteration of its main loop. In this
setting, Montgomery provides doubling formulas to compute x(2P ) given x(P ) and
differential addition formulas to compute x(P +Q) given x(P ), x(Q), and x(P −Q).
The ladder maintains the auxiliary value x(P − Q) naturally. This regular structure
of the Montgomery ladder made it a perfect candidate to be used in elliptic curve
cryptography.

D. Bernstein (2006) proposed an elliptic curve Diffie-Hellman key exchange function,
Curve25519, which uses the Montgomery ladder and a twist-secure Montgomery curve
over the field GF (2255 − 19). D. Bernstein (2006) also provided fast software that
implements Curve25519, runs in constant-time, and can defend against timing attacks.
Bernstein’s design is later re-specified by the Internet Research Task Force in RFC 7748
memorandum.

The Montgomery ladder was also adapted to other elliptic curve forms. For exam-
ple, (Brier & Joye, 2002) presented formulas for any elliptic curve written in short
Weierstrass form y2 = x3 + a4x + a6, covering all elliptic curves over a field k with
char(k) ̸= 2, 3. Analogous formulas over a field of characteristic 2 were given by
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López and Dahab (1999). Additional alternative differential additions formulas can be
found in (Castryck, Galbraith, & Farashahi, 2008), (D. J. Bernstein, Lange, & Reza-
eian Farashahi, 2008), (Rezaeian Farashahi & Hosseini, 2016) and (Rezaeian Farashahi
& Hosseini, 2017).

Building on an earlier work of Chudnovsky and Chudnovsky (1986), Gaudry in-
troduced doubling and differential addition analogues on genus 2 Kummer surfaces
(Gaudry, 2007). As follow-up work, Gaudry and Lubicz introduced genus 1 analogues
of Kummer surfaces (Gaudry & Lubicz, 2009). Their study covers both odd and even
characteristics. We refer to these Kummer lines as canonical Kummer lines in this
work, following the language of (Renes & Smith, 2017). Explicit formulas for squared
Kummer lines appeared in EFD1 with credits to (Gaudry, 2007) and (Gaudry & Lubicz,
2009).

Emerging hardware trends in single-instruction multiple-data (SIMD) circuits led
researchers to develop vectorized implementations of ladders. A SIMD implementation
of the Gaudry-Schost squared Kummer surface (Gaudry & Schost, 2012) was introduced
by D. Bernstein, Chuengsatiansup, Lange, and Schwabe (2014). Their implementation
is currently the speed leader in the genus 2 setting. The genus 1 setting is actively in
development. Chou (2015, Alg. 3.1) put forward a 2-way vectorized implementation of
the Montgomery ladder using the inherent 2-way parallelism in the classic formulas.
Chou’s implementation uses the 2-way vectorized 32 × 32 → 64-bit multipliers on
Sandy Bridge and Ivy Bridge. A 4-way vectorized implementation of squared Kummer
lines was presented by Karati and Sarkar (2017). Their implementation uses the 4-
way vectorized 32 × 32 → 64-bit multipliers on Haswell and Skylake. Karati and
Sarkar report that their implementation offers competitive performance in Kummer line-
based scalar multiplication for genus one curves over prime order fields using SIMD
operations. Faz-Hernández, López, and Dahab provided a 2× 2 way implementation of
Montgomery ladder on Haswell and Skylake, see (Faz-Hernández, López, & Dahab,
2019). The arithmetic of the underlying field is 2-way vectorized in their implementation
(hence the notation 2× 2).

Putting the vectorization option of the underlying field aside (which is also an option
for squared Kummer lines), the sequence of recent advances in ladder implementations
may lead to the illusion that Montgomery curves are less vectorization-friendly than
Kummer lines. In this work,

• we show that Montgomery curves are efficiently 4-way vectorizable. See Sec-
tion 3.3.

• we propose a new 9-limb representation of field elements which has the potential

1http://www.hyperelliptic.org/EFD/ (last accessed 2022-03-18)
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to be faster than the widely applied 10-limb representation in implementations
without using field-level vectorization. See Section 3.4.

• we provide timings for our 4× 1 way vectorized implementation on AVX2. See
Section 3.6.

• we provide timings for our 4× 2 way vectorized implementation on AVX-512.
See Section 3.6. This implementation sets the new speed record in variable-scalar
variable-point multiplication over the field GF (2255 − 19).

Source code related to this project is publicly available at the following URL.

https://github.com/crypto-ninjaturtles/montgomery4x

3.2. MONTGOMERY LADDER

This section provides preliminaries on the Montgomery ladder. We will skip detailed
discussions on the group law, the pseudo-group structure, working solely on the x-line,
point recovery etc. These are all very well understood and available in several texts
in the literature, cf. (D. Bernstein & Lange, 2017, Chapter 4) and (Costello & Smith,
2018). Our approach will be more implementation-oriented. Therefore, the treatment in
this section is far from comprehensive.

The abscissa x(P ) of a point P is represented in homogenous projective space P in
the form (x(P ) : 1). In this projective representation, (X : Z) = (λX : λZ) for all
non-zero λ ∈ K. The point (1 : 0) is the pseudo-identity element. From now on, we
update the definition of P and use the projective notation.

Given the points (X3 : Z3), (X2 : Z2), and (X1 : Z1) = (X3 : Z3)− (X2 : Z2), we
have (X5 : Z5) = (X3 : Z3) + (X2 : Z2) and (X4 : Z4) = 2(X2 : Z2). Montgomery
(1987) provided the explicit formulas in (3.2) for (X5 : Z5) and (X4, Z4):(

Z1(X2X3 − Z2Z3)
2 : X1(X2Z3 − Z2X3)

2
)
,(

(X2
2 − Z2

2)
2 : 4X2Z2(X

2
2 + AX2Z2 + Z2

2)
)
, (3.2)

respectively.

These doubling and differential addition formulas are the building blocks of the
Montgomery ladder. Before providing the ladder, we simplify our notation and define
DBLADD and SWAP functions. The function DBLADD inputs three points, where the third
is the difference between the first two and outputs the sum of the two initial points
and the double of the second input point. The output is overwritten to (X3 : Z3) and
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(X2 : Z2), respectively, as given in (3.3).

DBLADD ((X3 : Z3), (X2 : Z2), (X1 : Z1)) (3.3)

The function SWAP inputs two points and a single bit. If swap is 0, then the output
is identical to the input. If swap is 1, then the output is the swapped input points. The
Montgomery ladder is provided succinctly in Algorithm 1.

In cryptographic applications, the output of Algorithm 1 is typically normalized as
X2/Z2 to obtain a unique representative of the output. In addition, ℓ is fixed to fix the
number of iterations. Moreover, one can force k to be multiple of a small power of 2
to surpass active attacks exploiting the existence of small subgroups. Cryptographic
applications which are required to run in constant time must have each sub-operation run
in constant time. We refer to curve25519 specification for full detail (D. Bernstein,
2006).

Algorithm 1: Montgomery ladder

Require: P = (X : Z) ̸= (1: 0) and k =
∑ℓ−1

i=0 ki2
i with kℓ−1 = 1, ki ∈ {0, 1}.

Ensure: kP .
1: (X3 : Z3)← P , ;

(X2 : Z2)← (1 : 0)

2: (X1 : Z1)← P , ;
prevbit← 0

3: for i = ℓ− 1 down to 0 do
4: swap← prevbit⊕ k[i]
5: prevbit← k[i]

6: SWAP(swap, (X3 : Z3), (X2 : Z2))

7: DBLADD((X3 : Z3), (X2 : Z2), (X1 : Z1))

8: end for
9: SWAP(k[0], (X3 : Z3), (X2 : Z2))

10: return (X2 : Z2)

3.3. 4-WAY MONTGOMERY LADDER

Montgomery’s formulas (3.2) lie at the heart of curve25519. Several implementa-
tions of curve25519 are available in the public domain. Karati and Sarkar (Karati
& Sarkar, 2017) commented for the ladder step used in curve25519 specification
(D. Bernstein, 2006, Appendix B):
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“The structure of this ladder is not as regular as the

ladder step on the Kummer line. This makes it diffi-

cult to optimally group together the multiplications

for SIMD implementation.”

In this work, we aim to show that a higher level of parallelism can be achieved with
new tweaks on the ladder step, see Figure 3.1. In the figure, H stands for Hadamard
transformation, which inputs two coordinates, X and Z and outputs X +Z and X −Z.

X3 Z3 X2 Z2

H H

× × × × (M4)

H H

× × × × (S4)

×Z1 ×X1 × ×A (M4)

+
− +

X5 Z5 X4 Z4

Figure 3.1. DBLADD: 4-Way Vectorized Ladder Step for the CurveBy2 = x3+Ax2+x.

The point doubling side of Figure 3.1 is recognizably different from Bernstein’s
diagram. Specifically, the squaring step now utilizes all 4 channels in vectorized form.
On the other hand, an inspection of Figure 3.1 reveals that the outputs X4, Z4, X5, and
Z5 agree with (3.2) up to a multiplication of the coordinates by a constant with no effect
on the correctness of DBLADD routine.

The ladder step in Figure 3.1 takes 2M4 +1S4. Karati and Sarkar’s 4-way vectorized
ladder step (Karati & Sarkar, 2017, Fig. 1) takes 2M4 + 1S4 + 1d4 (d4: A vector of
four field multiplications by four small constants). There is a speed trade-off between
these two approaches, which is not apparent immediately from the high-level operation
counts:

• Multiplication with constants: A squared Kummer line requires one multiplication
by [a2 + b2, a2 − b2, a2 + b2, a2 − b2] followed by reduction (denoted d4), per
ladder step. Such a multiplication-reduction does not occur in Figure 3.1.
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• Extra permutations: Data transfers between SIMD channels occur in Hadamard
transform and constant-time conditional point swap operations in both types of
ladder steps. Our algorithm requires additional transfers and linear operations
following the second Hadamard transform.

These two items constitute a speed trade-off which depends heavily on the cost d4

and the comparative throughput of SIMD multiplication and data transfer instructions,
which can significantly vary depending on the micro-architecture.

3.4. IMPLEMENTATION ON AVX2

This section provides implementation details for the 4-way vectorization of the Mont-
gomery ladder. Implementers are not limited to the specification of this section because
Figure 3.1 is independent of the choices made here. The same applies to Section 3.5.

We fix p = 2255 − 19 and work over GF (p). We start by explaining field multipli-
cation. The discussion is narrowed to a field multiplication. On the other hand, the
implementation computes 4 field multiplications simultaneously in vector form. We
refer to (D. Bernstein et al., 2014) for a comprehensive explanation of the concept. We
use core ideas from (D. Bernstein & Schwabe, 2012), (D. Bernstein et al., 2014), (Chou,
2015), and (Karati & Sarkar, 2017). Yet, we made different implementation choices.

Multiplication. We represent reduced field elements in 9 limbs rather than 10 and
keep unreduced products in 11 limbs rather than 10. We justify how intermediate
values always fit into 64-bit registers without producing overflow. This operation is a
hybridization of two commonly followed methods:

• doing the 255× 255→ 510-bit multiplication first and then reducing to 255 bits,
cf. (Karati & Sarkar, 2017) and

• merging reduction with integer multiplication and keeping elements always in
the specified number of limbs, cf. (D. Bernstein, 2006).

These scenarios are not in the context of the 4-way ladder (Figure 3.1) and are thus
omitted in this work.

We designed a two-layer implementation to carry out field multiplications with
a redundant representation of elements. Both layers use a 3-way splitting strategy.
Therefore, a field element is represented by 9 limbs, each of which can accommodate
non-negative values smaller than 264.

The higher layer is described as follows. A field element u is represented by integers
u0, u1, and u2 such that u = u0 + 285u1 + 2170u2. We note that this is not a unique
representation. Let v be an integer also represented in the same way. We then have
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congruence (3.4).

uv ≡ 20( u0v0+ 19u1v2+ 19u2v1 ) +

285( u0v1+ u1v0+ 19u2v2 ) +

2170( u0v2+ u1v1+ u2v0 ) (mod p)

(3.4)

The congruence 255 ≡ 0 (mod 3) helps significantly in obtaining simple formulas.
If we did not have this condition, the given formulas would have contained several
multiplications by 2 and multiplications by 19. Such a situation would have added more
linear operations to the ladder step.

The nine long multiplications in the form uivj are reduced to six by three Karat-
suba optimizations capable of sharing the sub-expressions uivi. These operations are
provided in (3.5).

20( u0v0+ 19((u1 + u2)(v1 + v2)− u1v1 − u2v2) ) +
285( 19u2v2+ (u0 + u1)(v0 + v1)− u0v0 − u1v1 ) +

2170( u1v1+ (u0 + u2)(v0 + v2)− u0v0 − u2v2 )

(3.5)

This variant leads to more additions/subtractions, some of which can be shared.
We eliminated these repeating operations at the cost of using more registers in our
implementation. The additions of the form ui + uj are 3-limb additions. All other
additions and subtractions are 5-limb additions.

These high-level operations do not provide low-level details. For instance, we
do not have hardware multipliers that can accommodate 85 × 85 → 170-bit integer
multiplications. Therefore, we further split each digit in the higher layer into three
limbs provided in Equations 3.6.

u0 = a0 + 229a1 + 257a2, v0 = b0 + 229b1 + 257b2,

u1 = a3 + 229a4 + 257a5, v1 = b3 + 229b4 + 257b5,

u2 = a6 + 229a7 + 257a8, v2 = b6 + 229b7 + 257b8.

(3.6)

For instance, u0v0 can be computed with the formulas given in Equation (3.7).
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u0v0 = 20( a0b0 ) +

229( a0b1+ a1b0 ) +

257( a0b2+ a2b0+ 2a1b1 ) +

286( a1b2+ a2b1 ) +

2114( a2b2 )

(3.7)

These operations take 9 multiplications and 5 additions, all of which can be directly
carried out by the target hardware. Karatsuba optimization is not used here since the
trade-off between multiplications and additions does not provide a practical speed-up
at this level. The registers a0, a1, and a2 are bounded carefully to prevent overflowing
of the 64-bit registers, allowing the final carries to be delayed to the end of the field
operation. More explicitly, the multiplication algorithm takes 9-limb integers and
produces the 11 limbs given in Equations 3.8.

w0 = a0b0 + 19(a3b6 + a6b3),

w1 = a0b1 + a1b0 + 19(a3b7 + a4b6 + a6b4 + a7b3),

w2 = a0b2 + 2a1b1 + a2b0 + 19(a3b8 + a8b3 + 2(a4b7 + a7b4) + a5b6 + a6b5),

w3 = a0b3 + a3b0 + 2(a1b2 + a2b1) + 19(a6b6 + 2(a4b8 + a5b7 + a7b5 + a8b4)),

w4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 19(a5b8 + a6b7 + a7b6 + a8b5),

w5 = a0b5 + a2b3 + a3b2 + a5b0 + 2(a1b4 + a4b1) + 19(a6b8 + 2a7b7 + a8b6),

w6 = a0b6 + a3b3 + a6b0 + 2(a1b5 + a2b4 + a4b2 + a5b1 + 19(a7b8 + a8b7)),

w7 = a0b7 + a1b6 + a2b5 + a3b4 + a4b3 + a5b2 + a6b1 + a7b0 + 19a8b8,

w8 = a0b8 + a2b6 + a3b5 + a5b3 + a6b2 + a8b0 + 2(a1b7 + a4b4 + a7b1),

w9 = 2(a1b8 + a2b7 + a4b5 + a5b4 + a7b2 + a8b1),

w10 = a2b8 + a5b5 + a8b2,

(3.8)
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satisfying the congruence in (3.9).

uv ≡ w ≡ (w0 + 229w1 + 257w2)+

285(w3 + 229w4 + 257w5)+

2170(w6 + 229w7 + 257w8)+

2255(w9 + 229w10) (mod 2255 − 19)

(3.9)

We do not perform all these 9× 9 = 81 multiplications but just 9× 6 = 54. It is due
to the shared-Karatsuba approach explained earlier.

Input/output specification. We set essential bounds in inequalities (3.10) for the
input and output limbs.

0 ≤ a0, a3, a6 < 229 + k

0 ≤ a1, a2, a4, a5, a7, a8 < 228 + k.

(3.10)

The k = 173 is a constant whose role will become apparent in the reduction step. We
always ensure the accuracy of these bounds after a reduction step, which provides an
easy-to-follow input/output specification.

The limbswi are displayed explicitly (in the item list) to help easily check the output’s
boundaries. In particular, we need to show that these limbs cannot exceed 264. Now,
inputting the largest possible values for each limb of u and v and evaluating the formulas
provided in inequalities (3.11),

w0 < 263.29, w1 < 263.29, w2 < 263.88,
w3 < 263.91, w4 < 262.95, w5 < 262.98,
w6 < 262.59, w7 < 261.05, w8 < 260.17,
w9 < 259.59, w10 < 257.59.

(3.11)

All of these values can be accommodated without overflow in 64-bit registers wi.

Even if we have computed all wi, we are not entirely done yet. We only have a
semi-reduced w satisfying the congruence (3.12).

w ≡ uv (mod 2255 − 19) (3.12)

We must do the carries to eliminate w9 and w10 and match the output requirements in
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inequalities (3.13).

0 ≤ w0, w3, w6 < 229 + k

0 ≤ w1, w2, w4, w5, w7, w8 < 228 + k

(3.13)

The outputs’ bounds agree with the input specification of u and v in (3.10).

Carries (Reduction after multiplication). This operation is composed of several
steps. Each step transforms w towards satisfying the input/output specification without
violating the congruence in (3.12) and producing an overflow. The reduction proceeds
as in the set of assignments (3.14).

1 : t← ⌊w9/2
29⌋, w9 ← w9 mod 229, w10 ← w10 + t,

2 : w0 ← w0 + 19w9, w9 ← 0,

3 : w1 ← w1 + 19w10, w10 ← 0,

4 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t,

5 : t← ⌊w1/2
28⌋, w1 ← w1 mod 228, w2 ← w2 + t,

6 : t← ⌊w2/2
28⌋, w2 ← w2 mod 228, w3 ← w3 + t,

7 : t← ⌊w3/2
29⌋, w3 ← w3 mod 229, w4 ← w4 + t,

8 : t← ⌊w4/2
28⌋, w4 ← w4 mod 228, w5 ← w5 + t,

9 : t← ⌊w5/2
28⌋, w5 ← w5 mod 228, w6 ← w6 + t,

10 : t← ⌊w6/2
29⌋, w6 ← w6 mod 229, w7 ← w7 + t,

11 : t← ⌊w7/2
28⌋, w7 ← w7 mod 228, w8 ← w8 + t,

12 : t← ⌊w8/2
28⌋, w8 ← w8 mod 228, w0 ← w0 + 19t

13 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t.

(3.14)

In this sequence of operations, we are accumulating on registers wi, which contain
values potentially very close to 264. Once more, we need to justify that these additions
do not constitute overflow.

• Step 1: t = ⌊w9/2
29⌋ < 259.59−29 = 230.59. So, w10+ t < 257.59+230.59 < 257.60.

Therefore, the updated value of w10 still fits into 64 bits. A bit of care is needed
now to track the updated w9. Although we computed w9 ← w9 mod 229 for
maximum possible inputs, the updated value of w9 can still get values as large as
229 − 1 for some other input. Therefore, we assume that we take w9 = 229 − 1

from here for the sake of our inspection.
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• Step 2: Now, we must have w0 +19w9 < 263.29 +19(229− 1) < 263.30. Multipli-
cation by 19 here is performed with 32× 32→ 64-bit multiplication instruction
vpmuludq since both 19 and w9 are smaller than 232.

• Step 3: Similarly, we must have w1 + 19w10 < 263.29 + 19(257.60) < 263.75. We
note that 19w10 is computed as 19w10 = 16w10 + 2w10 + w10 by using vpaddq
and vpsllq instructions because w10 can exceed 232 and, thus, is unsuitable to
be inputted to vpmuludq. We note that w9 ← 0 and w10 ← 0 are displayed just
for mathematical correctness.

• Steps 4-11: Repeating the same inspection by computing each step sequentially,
we get w1,...,8 < 264 after additions as expected. Limbs w0,...,7 obey the input/out-
put specification after reducing w1,2,4,5,7 modulo 228 and w3,6 modulo 229. Again,
we assume that w0,3,6 = 229 − 1 and w1,2,4,5,7,8 = 228 − 1 after the modular
reductions are performed for these digits.

• Step 12: We get t = ⌊w8/2
28⌋ < 260.17−28 = 232.17. So, w0 + 19t < (229 −

1) + 19(232.17) < 236.43. Now, w8 obeys the input/output specification after being
reduced to modulo 228. We note that 19t is computed as 19t = 16t+ 2t+ t since
w8 can exceed 232.

• Step 13: We get w1 + t < (228− 1)+ (236.43−29) < 228 +173. This upper bound
explains the value of k. We note that a lower upper bound can be found with
increased precision in calculations. Moreover, much larger values for k work
without producing overflow in reduction2, but 173 is adequate to test the stability
of limbs.

Now, all wi agree with the input/output specification of ui and vi. We intentionally
added k to all limbs in the input/output specification rather than adding just to w1

because

• these additions simplify the notation, and

• we need such extra additions when designing parallel carry chains.

The reduction step can be summarized as h9 → h10, followed by a very long sequence
(3.15).

h8 → h0 → h1 → h2 → h3 → h4 → h5 → h6 →

h7 → h8 → h0 → h1 (3.15)

2We reiterate that we use a redundant representation. Therefore, reduction does not produce a unique
representative. Nevertheless, we still call it reduction since we can do arithmetic in this form.
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We do it faster by computing two sequences given in (3.16)

h4 −−−−→ h5 → h6 → h7 → h8 → h0 → h1,

h9 → h10, h0 → h1 → h2 → h3 → h4 → h5 (3.16)

in parallel at the processor’s ports. We refer to (D. Bernstein & Schwabe, 2012) and
(Chou, 2015) for similar optimizations.

In this parallel reduction, not only w1 but also w5 can exceed 228 − 1 by k. But we
have already relaxed w5 (like all other limbs) by additions of k in our inspection.

Squaring. Squaring can be explained as a simplified multiplication routine given in
(3.17).

20( u20+ 19((u1 + u2)
2 − u21 − u22) ) +

285( 19u22+ (u0 + u1)
2 − u20 − u21 ) +

2170( u21+ (u0 + u2)
2 − u20 − u22 )

(3.17)

The nine long multiplications in the form uivj are now reduced to six squares. In
addition, the computation of u20 can be further optimized at the lower level in the form
given in Equation (3.18).

u2i = 20( a20 ) +

229( (2a0)a1 ) +

257( (2a1)a1+ (2a0)a2 ) +

286( (2a1)a2 ) +

2114( a22 )

(3.18)

Similar applies to the other squarings. Our implementation delays multiplication by
twos and pushes them towards the higher layer.

Squeeze/Unsqueeze. A field element w satisfying the input/output specification can
be squeezed from 9 limbs to 5 by computing (3.19).

wi+4 ← wi+4 ⊕ 232wi for i = 0, 1, 2, 3
(3.19)

Now, w is represented only by w4, w5, w6, w7, and w8. Linear operations such as (field)
additions and subtractions can be handled in this form, provided that computed values
do not exceed 232 − 1. It is always the case in our implementation.

A squeezed field element is unsqueezed into the original form by computing (3.20).
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wi ← wi+4/2
32 for i = 0, 1, 2, 3 and

wi+4 ← wi+4 mod 232 for i = 0, 1, 2, 3
(3.20)

at multiplication, squaring, and reduction moments. We note that we skip computing
wi+4 ← wi+4 mod 232 before multiplication and squaring since the higher 32 bits are
not taken into consideration by vpmuludq instruction. See also (D. Bernstein et al.,
2014).

This squeeze/unsqueeze method is adapted from the software introduced by (D. Bern-
stein et al., 2014). The difference is that we group the limbs of a field element where
Bernstein, Chuengsatiansup, Lange, and Schwabe group points on a genus 2 Kummer
surface.

Despite the added cost of squeezing and unsqueezing, linear operations in squeezed
form can be done faster and save cycles in total.

Double Hadamard. This step can be put in a 4-way vectorized form in modulus
2255 − 19, as given in Equation (3.21).

(H×H)(X3, Z3, X2, Z2) =

(X3 + Z3, X3 − Z3, X2 + Z2, X2 − Z2) =

(X3 + Z3, X3 + (3p− Z3), X2 + Z2, X2 + (3p− Z2))

(3.21)

The additions of 3p are to ensure thatH×H (double Hadamard) produces non-negative
values for output limbs. We drop the word “double” for simplicity. This 3p needs to be
prepared with some care, as given in (3.22).

20([3(229 − 19)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

285( [3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])+

2170( [3(229 − 1)] + 229[3(228 − 1)] + 257[3(228 − 1)])
(3.22)

Observe that each limb3 is greater than the corresponding maximum bound in the
input/output specification.

All of the limbs of X3 + Z3, X3 + (3p − Z3), X2 + Z2, and X2 + (3p − Z2) are
always less than 232 after the first Hadamard operation in Figure 3.1. To show this, we
concentrate on the linear operations at the right of the bottom of the figure.

3The value of each limb appears in square brackets.
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• Z4 is computed as the sum of three values. To simplify our analysis, we assume
that all inputs to these additions take the largest possible values. Then, w0,3,6 =

3((229 − 1) + k) < 231 and w1,2,4,5,7,8 = 3((228 − 1) + k) < 230.

• X4 is computed as the difference between two values. We assume that minuend
takes the largest and the subtrahend takes the smallest possible value. Then,
w0,3,6 = ((229 − 1) + k) + (2(229 − 1) − 0) < 231 and w1,2,4,5,7,8 = ((228 −
1) + k) + (2(228 − 1) − 0) < 230. Observe that we added 2p rather than 3p

this time, which is adequate because 2(229 − 1) > (229 − 1) + k and likewise
2(228 − 1) > (228 − 1) + k. So, even if the subtrahend takes the maximum
possible value, the limbs are still non-negative.

Up to this point, we showed that wi of both X4 and Z4 fit into 31 bits. We now feed
these extreme values4 to the first Hadamard operation. Clearly, we have 0 ≤ wi < 232

for X + Z. Separately, assuming that wi = 0 for Z, we have 0 ≤ wi < 232 for
X + (3p − Z). Analyzing the second Hadamard is even simpler since its inputs are
already reduced values.

Fast carries (Fast reduction after Hadamard). Following a Hadamard step, a
reduction operation must be applied to the output to match the input/output specification.
This time, the reduction can be performed faster since we do not have limbs w9 and w10.
Therefore, a fast reduction can be defined as a trimmed version of the reduction after
multiplication with steps given in a set of assignments (3.23).

1 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t,

2 : t← ⌊w1/2
28⌋, w1 ← w1 mod 228, w2 ← w2 + t,

3 : t← ⌊w2/2
28⌋, w2 ← w2 mod 228, w3 ← w3 + t,

4 : t← ⌊w3/2
29⌋, w3 ← w3 mod 229, w4 ← w4 + t,

5 : t← ⌊w4/2
28⌋, w4 ← w4 mod 228, w5 ← w5 + t,

6 : t← ⌊w5/2
28⌋, w5 ← w5 mod 228, w6 ← w6 + t,

7 : t← ⌊w6/2
29⌋, w6 ← w6 mod 229, w7 ← w7 + t,

8 : t← ⌊w7/2
28⌋, w7 ← w7 mod 228, w8 ← w8 + t,

9 : t← ⌊w8/2
28⌋, w8 ← w8 mod 228, w0 ← w0 + 19t

10 : t← ⌊w0/2
29⌋, w0 ← w0 mod 229, w1 ← w1 + t. (3.23)

4Noticed that all these operations can be performed in squeezed form.
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We do better by computing these operations in squeezed form and computing (3.24)

h0 → h1 → h2 → h3 −−−−→ h4 → h5,

h4 → h5 → h6 → h7 → h8 → h0 → h1 (3.24)

in parallel on two 32-bit SIMD channels. We do not further exploit the processor’s
port-level parallelism since the sequence is short enough to produce low latency.

3.5. IMPLEMENTATION ON AVX-512

AVX-512 provides 8-way SIMD multiplication with the vpmuludq instruction, pro-
viding twice as many 32× 32→ 64-bit multipliers as AVX2. Therefore it is reasonable
to question whether the 4-way vectorized ladder can be computed faster on AVX-512.
Since Figure 3.1 supports up to 4-way vectorization, we need to vectorize the field
arithmetic in 8/4=2-way form to get a 4× 2 way ladder.

Although our 9-limb multiplication fits nicely on 4× 1 ladder, it does not seem to be
the best choice for its 4× 2 counterpart. Yet, there is room for research in finding a fast
2-way vectorization of the 9-limb multiplication described in Section 3.5. We do not
pursue this idea further here.

As a practical solution, we decided to use a 2-way vectorized version of the 10-limb
multiplication algorithm using Radix-225.5 (D. Bernstein, 2006). This algorithm was
previously used with minor modifications by (D. Bernstein & Schwabe, 2012) and
(Chou, 2015). Fortunately, we could reuse optimized codes freely available in the
public domain. In particular, we used the 2-way AVX2 targeted intmul and intsqr
functions from

hp-ecc-vec/src/eltfp25519_2w_redradix.c

by Faz Hernández, López, Dahab 5 and have those functions run on AVX-512. Then,
we applied the ladder step in Figure 3.1 to get a 4×2 = 8-way vectorized implementation
of the Montgomery ladder over the field GF (2255− 19). The speed comparison is given
in Section 3.6.

3.6. RESULTS

The final inversion. Our implementation reduces the output of scalar multiplication to
a unique representative in the underlying field in radix 256. Therefore, we compute

5https://github.com/armfazh/hp-ecc-vec (last accessed 2022-03-18)

42



X2/Z2 after the main loop. We integrated Nath and Sarkar’s (Nath & Sarkar, 2018)
freely available and optimized inversion software without further modification. In
particular, we used

pmp-inv-master/p25519/SL-DCC/1

which requires the BMI2 instruction set. Nath and Sarkar report 9301 Skylake cycles
for this inversion.

Working environment and AVX instructions. As stated in the declaration, the vector-
ized implementations and related measurements were made on an Intel Core™ Skylake
i9-7900X CPU. Here, Skylake represents the codename of the micro-architecture family
used in the processor. It was launched in August 2015. It is the successor to the
Broadwell micro-architecture. Its 14 nm micro-architecture is also used in the following
processor generations, such as Kaby Lake, Coffee Lake and Comet Lake. The processor
number of the CPU is i9-7900X. According to (Intel, n.d.-c), this number consists of the
brand modifier, generator indicator, SKU numeric digits and product line suffix. Intel
Core™ i9-7900X CPU (Intel, n.d.-a) has 10 cores and can work on 20 parallel threads
with the use of Intel® Hyper-Threading Technology. Its base frequency is 3.30 GHz
(with 4.30 GHz max turbo frequency), and it has 13.75 MB L3 CPU cache memory.
We decided to work with this CPU because it allows working with both AVX2 and
AVX-512 instruction sets. The most commonly used vectorized instructions in our
implementations include arithmetic instructions (e.g., addition, subtraction, multiplica-
tion), shift instructions (e.g., left shift, right shift) and swizzle instructions (e.g., shuffle,
blend). The latency and throughput values of some of these AVX2 and AVX-512
instructions on Skylake micro-architecture can be found in Table 3.1 and Table 3.3,
respectively. Note that latency denotes the total number of cycles that must be taken to
execute the given instruction. Throughput means the average number of clock cycles
per instruction, also indicated as CPI (cycles per instruction). In addition, the values
in Table 3.2 and Table 3.4 represent the latency and throughput values of the exact
instructions on Icelake micro-architecture. These values are given so that the values on
Skylake can be compared with the ones on more recent micro-architectures, such as
Icelake, released in September 2019. The values are taken from (Intel, n.d.-b).

Measuring cycles. We measure cycles for variable-scalar variable-point multiplication
only. Our code changes the base point and scalar at each iteration and excludes extra
cycles coming from this randomization. Also, our implementation chains the outputs to
prevent the compiler from removing portions of the code. Measured cycle counts are
given in Table 3.5, along with selected results from the literature. The table is limited to
our results and recently published measurements for the Skylake micro-architecture.
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Instruction Latency Throughput(CPI)

vpaddq 1 0.33

vpsubq 1 0.33

vpmuludq 5 0.5

vpsllq 1 0.5

vpsrlq 1 0.5

vpblendd 1 0.33

vpshufd 1 1

Table 3.1. Latency and Throughput
Values of Selected AVX2 In-
structions on Skylake Micro-
Architecture

Instruction Latency Throughput(CPI)

vpaddq 1 0.33

vpsubq 1 0.33

vpmuludq − 0.5

vpsllq 1 0.5

vpsrlq 1 0.5

vpblendd 1 0.33

vpshufd 1 0.5

Table 3.2. Latency and Throughput
Values of Selected AVX2 In-
structions on Icelake Micro-
Architecture

Instruction Latency Throughput(CPI)

vpaddq 1 0.5

vpsubq 1 0.5

vpmuludq 5 0.5

vpsllq 1 1

vpsrlq 1 1

vpblendmq 1 0.5

vpshufd 1 1

Table 3.3. Latency and Throughput
Values of Selected AVX-
512 Instructions on Skylake
Micro-architecture

Instruction Latency Throughput(CPI)

vpaddq 1 0.5

vpsubq 1 0.5

vpmuludq − 1

vpsllq 1 1

vpsrlq 1 1

vpblendmq 1 0.5

vpshufd 1 1

Table 3.4. Latency and Throughput
Values of Selected AVX-
512 Instructions on Icelake
Micro-architecture

Table 3.5. Skylake Cycles for Variable-Scalar Variable-Point Multiplication

ladder instr. set limbs cycles (median) ratio

4× 1 AVX2 10 123 102, (Karati & Sarkar, 2017) 1x

4× 1 AVX2 10 116 654, this work .95x

1× 1 BMI2 4 113 874, (Oliveira, López, Hışıl, Faz-Hernández, & Rodríguez-Henríquez, 2017) .93x

2× 2 AVX2 5 99 400, (Faz-Hernández et al., 2019) .81x

4× 1 AVX2 9 98 484, this work .80x

4× 1 AVX2 10 95 437, (Nath & Sarkar, 2020) .78x

2× 4 AVX-512 5 81 600, (Faz-Hernández et al., 2019) 1x

4× 2 AVX-512 5 74 368, this work .91x

Table 3.5 justifies our motivation in proposing the 9-limb representation in Section 3.5.
The 9-limb method is faster than 10 in the context of our 4-way ladder and specified
implementation platform. See (Nath & Sarkar, 2020) for new results on another Skylake
CPU with a different micro-architecture. Nath and Sarkar’s fastest implementation
uses a small curve constant where our proposed algorithm does not require such an

44



assumption. Our implementation takes precisely the same number of cycles for any
curve constant, which can be provided parametrically.In contrast, Nath and Sarkar’s
reported cycle counts heavily depend on the size of the hard-coded curve constants. We
note that both implementations use the same elliptic curve, namely curve25519, for
a fair comparison.

Figure 3.1 shows its real potential in our AVX-512 implementation. The reported
74368 cycles set the new record among curve25519 family of implementations, to
the best of our knowledge.

Variable-scalar fixed-base multiplication. Our implementation can be used directly
in fixed-base multiplication without further modification. Nevertheless, one can make
precomputation on a fixed-base point to speed up the process. In that case, we refer to
(Oliveira et al., 2017, Algorithm 5).

Apart from architecture-dependent discussions, we expect that our 4-way ladder will
become even more convenient if the current trend of increasing the level of SIMD
parallelism in hardware continues. We reiterate that the speeds we achieve are common
for all Montgomery curves, not specific to ones with small constants.
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CHAPTER 4

DETECTING (NON-)ISOGENOUS CURVES

In Chapter 4, Schoof’s algorithm is explained and illustrated with a numerical example
as a preparation for the SEA algorithm at first. Then, the SEA algorithm is described
in detail. In addition to Schoof’s and SEA algorithms, all auxiliary algorithms used
in these algorithms are explicitly given. Afterwards, a toy example covering all the
cases of the SEA algorithm is given. Finally, an early abort method for detecting
(non-)isogenous curves is presented at the end of the chapter.

4.1. SCHOOF’S ALGORITHM

Schoof’s Algorithm (Schoof, 1985) determines the number of points on an elliptic curve
defined over a finite field. The algorithm uses Hasse’s Bound, Frobenius endomorphism,
division polynomials and CRT to determine the number of points on an elliptic curve.
It is the first point counting algorithm that has polynomial-time complexity. The
approach Schoof followed led the way to new improvements in the field and caused
the discovery of the SEA algorithm. Before heading into the SEA algorithm, at first
Schoof’s algorithm will be explained in detail.

Let E be an elliptic curve over a finite field Fq with characteristic q ̸= 2, 3. It
can be defined that q = pn, where p is a prime number and n is the degree of the
prime field with n ≥ 1. The curve E is defined with the short Weierstrass equation
y2 = x3 + a4x + a6 where a4, a6 ∈ Fq. The number of points on the elliptic curve
E/Fq, which is the cardinality of E(Fq), can be found as,

#E(Fq) = q + 1− t, (4.1)

where t is the trace of Frobenius for E. The result at the end of Hasse’s theorem of
elliptic curves can be utilized when determining the boundaries of the trace of Frobenius
as |t| ≤ 2

√
q.

Elliptic curves used in cryptography are generally defined over very large fields. As
q gets larger, the computations performed under this bound will be more challenging to
handle. Therefore, the calculation of t must be done modulo a number N . However,
computing the modulus with N having a bound of 4

√
q will be exhausting. So, instead
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of taking t modulo N directly, small prime numbers that are relatively prime with q can
be used. The main strategies of Schoof’s Algorithm and SEA Algorithm stem from
using small primes ℓ at the computation of t. The computations t modulo ℓ, with all
possible small primes constructing a set S, can be stopped according to∏

ℓ∈S

ℓ > 4
√
q. (4.2)

Eventually, the only work to do is to calculate t with the help of CRT. The overall
running time complexity of Schoof’s algorithm is O(log8 q) bit operations. If efficient
implementation methods such as fast polynomial and integer arithmetic are used in the
computations, this complexity decreases to Õ(log5 q) bit operations. More information
about the calculation of the complexity of Schoof’s algorithm can be found in (Blake et
al., 1999).

In Schoof’s algorithm, each trace tℓ collected modulo prime ℓ is stored with the
corresponding prime ℓ. After completing the trace collection, these trace-prime pairs
are sent to CRT to detect the trace of Frobenius t. The trace gathering steps until
the application of CRT are exhausting and should be adequately investigated. The
operations for ℓ = 2 are distinct from the other and more straightforward, so it is good
to handle this case separately.

4.1.1 TRACE COMPUTATION MODULO 2

The trace computation modulo 2 is the simplest case and does not require complex
computation. The trace t modulo 2 can only be 0 or 1, and the choice can be made
by checking the existence of a root of x3 + a4x+ a6 other than 1 in Fq. The presence
of a root of x3 + a4x + a6 indicates a point of order 2. This point is on the elliptic
curve E/Fq in the form of (x, 0) where x ∈ Fq. Substituting this point into the equation
y2 = x3 + a4x+ a6 reveals that there must be a root in the polynomial x3 + a4x+ a6,
which lies on Fq.

The equation ∏
α∈Fq

(x− α) = xq − x.

shows that the roots of the polynomial xq−x are all of the roots in Fq. Hence, computing
the Greatest Common Divisor (gcd) of the polynomials xq − x and x3 + a4x + a6 is
enough to ensure the existence of a root in a more efficient way than finding the roots.
If gcd is not equal to 1, trace t2 is set to 0; otherwise, it is set to 1. When the value of q
is very large (the usual case in the cryptographic setting), computing the gcd will be
tedious and expensive. That is why, first, the polynomial xq − x is reduced modulo
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x3 + a4x+ a6 by using modular exponentiation at xq mod x3 + a4x+ a6, then the gcd
of the result and the polynomial x3 + a4x+ a6 is taken.

4.1.2 TRACE COMPUTATION MODULO ℓ

For odd primes, the trace computation relies on the characteristic equation

φ2 − tφ+ q = 0 (4.3)

where φ is the Frobenius Endomorphism that sends a point P = (x, y) ∈ E/Fq to
(xq, yq) ∈ E/F̄q and t is the trace of Frobenius which is wanted to be calculated. This
characteristic equation can be arranged and written as

(xq
2

, yq
2

)⊕ q(x, y) = t(xq, yq). (4.4)

The coordinates given in the equation can be computed with fast elliptic curve point
multiplication methods, and different values for t can be searched until equality is
found. However, this process will quickly become computationally infeasible due to
the large value of q. Instead, Schoof (1985) thought that for every different odd prime
ℓ, the coordinates could be computed modulo the ℓ-th division polynomial ψℓ. Usage
of the ℓ-th division polynomial makes working in the ℓ-torsion possible because roots
of the ℓ-th division polynomial correspond to the x-coordinates of ℓ-torsion points. A
quotient ring Qℓ = Fq[x, y]/(y

2 − x3 − a4x − a6, ψℓ) can be created by utilizing the
ℓ-th division polynomial. Working under this ring reduces the effort needed to compute
the coordinates in Equation (4.4).

Schoof (1985) expressed that the problem of finding t in Equation (4.4) can be
separated into smaller problems by dealing not with q but with qℓ ≡ q (mod ℓ). Hence,
the original problem turns into

(xq
2

, yq
2

)⊕ qℓ(x, y) = tℓ(x
q, yq) (4.5)

where tℓ ≡ t (mod ℓ) and (x, y) is a point ∈ E[ℓ]. The only unknown variable in the
equation is tℓ, and the terms on the left-hand side can be computed directly. (xq2 , yq2)
can be computed with the help of the fast, modular exponentiation methods such as
square-and-multiply and (xqℓ , yqℓ) = qℓ(x, y) can be computed by elliptic curve scalar
multiplication methods or with Equation (2.35). Herein, there are two different cases
which must be considered. These cases differ according to the equality of the points
(xq

2
, yq

2
) and (xqℓ , yqℓ). Since these expressions are less likely to be equal, the case

(xq
2
, yq

2
) ̸= (xqℓ , yqℓ) is handled first to increase the algorithm’s efficiency. In this case,

the points can be added because of the inequality, i.e., the points do not violate the point
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addition formula. The point addition can be done with the point addition formula given
in Section 2.2 as

x′ =

(
yqℓ − yq

2

xqℓ − xq
2

)2

− xq2 − xqℓ ,

y′ =

(
yqℓ − yq

2

xqℓ − xq
2

)
(xq

2 − x′)− yq2 .
(4.6)

Computing only the x-coordinate at first can increase efficiency, and this can be achieved
if x′ consists only of x values. Therefore, (yqℓ − yq

2
)2 must be rewritten with x-

coordinates. To achieve this, y2 can be left alone, and by using the defining equation
of E/Fq : y2 = x3 + a4x + a6, it can be substituted with x values. Accordingly,
(yqℓ−yq

2
)2 = y2(yqℓ/y−yq

2−1)2 = (x3+a4x+a6)(yqℓ/y−yq
2−1)2. The prime power

q is odd, so q2 − 1 is even. Then, yq2−1 = (x3 + a4x + a6)
q2−1

2 . Moreover, by using
Equation (2.35), yqℓ/y can also be written only with x-coordinates. Therefore, x′ is a
function in x-coordinate only.

After the computation of x′, scalar multiplication with potential t′ values must be
tried in the range t′ ∈ [0, (ℓ− 1)/2] with a brute force approach. Trying the values up
to (ℓ− 1)/2 is enough because, for every value of t′ in the range, scalar multiplication
with t′ and its additive inverse ℓ− t′ gives the same results. The scalar multiplication
t′(xq, yq) = (xqt′ , y

q
t′) can be done by using a suitable method such as double-and-add

or Montgomery Ladder (Montgomery, 1987). For each of the multiplications, xqt′
is compared with x′ modulo ψℓ, since x′ ≡ xqt′ (mod ψℓ) ensures for all the points
(x, y) ∈ E[ℓ] that

(x′, y′) ≡ t′(xq, yq) (mod ψℓ)

(x′, y′) ≡ (xq
2

, yq
2

) + (xqℓ , yqℓ) (mod ψℓ)

(xq
2

, yq
2

) + (xqℓ , yqℓ) ≡ t′(xq, yq) (mod ψℓ)

(xq
2

, yq
2

)± t′(xq, yq) + (xqℓ , yqℓ) ≡ O (mod ψℓ),

i.e., the characteristic equation is satisfied with the given t′ value. The y-coordinates
of both points (x′, y′) and (xqt′ , y

q
t′) are used to determine the sign of t′. If y′ ≡ yqt′

(mod ψℓ), then tℓ = t′ as (xq2 , yq2) + t′(xq, yq) + (xqℓ , yqℓ) ≡ O (mod ψℓ) is satisfied.
Otherwise, tℓ = −t′, as−(x, y) = (x,−y) and (xq

2
, yq

2
)+t′(xq,−yq)+(xqℓ , yqℓ) ≡ O

(mod ψℓ) is satisfied.

Despite trying all the values in the range 0 < t′ < (ℓ − 1)/2, equality may not be
found with a slight chance. In this case, a flag variable can be used to prevent the
disruption of the flow of the algorithm. The flag variable is set to 0 at the start of each
iteration for different prime ℓ and only updated to 1 when a suitable trace t′ is found
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with brute force search. If the flag variable is still 0 after the search, it is realised that
there is no good t′ value that satisfies the characteristic equation, and the other case
must be tried to find a good t′ value. The equality of the points (xq2 , yq2) and qℓ(x, y)
means that the elliptic curve point addition rule cannot be applied. A different approach
must be followed to solve this problem.

The points are equal as
(xq

2

, yq
2

) = ±qℓ(x, y). (4.7)

These two cases also result in different consequences. Considering the positive case, by
substituting (xq

2
, yq

2
) = qℓ(x, y) to the equation (xq

2
, yq

2
) + qℓ(x, y) = tℓ(x

q, yq), the
equality

2qℓ(x, y) = tℓ(x
q, yq) (4.8)

is obtained. Multiplying both sides with t2ℓ causes t2ℓ(x
q2 , yq

2
) = t2ℓ(qℓ(x, y)). Since

(xq
2
, yq

2
) = φ2(x, y), the left hand side can be arranged as tℓ(φ(tℓ(φ(x, y)))). By using

Equation (4.8), tℓ(φ(x, y)) can be replaced by 2qℓ(x, y). Thus, tℓ(φ(tℓ(φ(x, y)))) =
(2qℓ)

2(x, y). The equivalence t2ℓqℓ ≡ (2qℓ)
2 (mod ℓ) indicates that qℓ is a quadratic

residue modulo ℓ. So, calculating the modular square root w where qℓ ≡ w2 (mod ℓ)
can be used to determine the trace tℓ. For all the points (x, y) ∈ E[ℓ], if qℓ ≡ w2 (mod
ℓ), then by the positive case of Equation (4.7),

(φ2 − qℓ)(x, y) = (φ− w)(φ+ w)(x, y) = O. (4.9)

Here, checking whether φ(x, y) = ±w(x, y) holds is significant when ensuring the
existence of w. Performing a scalar multiplication (xw, yw) = w(x, y) in the quotient
ring Qℓ and checking

gcd(xq − xw, ψℓ)

would be enough to be sure about having a factorizable characteristic equation using
the root w. If there is no common factor, then tℓ ≡ 0 (mod ℓ). If a common factor
is determined, then Equation (4.9) holds. The sign can be deduced by using the y-
coordinate and checking the result of

gcd(yq − yw/yw, ψℓ).

If there is a common factor, then tℓ ≡ 2w (mod ℓ), otherwise tℓ ≡ −2w (mod ℓ).

In Equation (4.7), the negative case holds if and only if qℓ is not a quadratic residue
modulo ℓ. Here, w cannot exist, and the trace tℓ ≡ 0 (mod ℓ). Schoof’s algorithm is
given in Algorithm 2. In addition, Example 4.1.1 is provided to make understanding the
algorithm easier. The curve in the example is more illustrative since it covers different
cases in the algorithm.
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Algorithm 2: Schoof’s Algorithm
Input :An elliptic curve E : y2 = x3 + a4x+ a6 over a finite field Fq with q = pn is a prime

power where n ≥ 1.
Output :The number of points on the elliptic curve E/Fq .

1 Determine a set S and a bound N with the condition N =
∏

ℓ∈S ℓ > 4
√
q, where every ℓ is a

prime starting from 2 and ℓ ̸= p.
2 if gcd(xq − x, x3 + a4x+ a6) ̸= 1 then
3 Set t2 = 0
4 else
5 Set t2 = 1.
6 end if
7 for every odd prime ℓ ∈ S do
8 Set the Boolean flag variable fl = false.
9 Compute the ℓ-th division polynomial ψℓ.

10 Compute qℓ as qℓ ≡ q (mod ℓ) and |qℓ| < ℓ/2.
11 Choose a quotient ring Qℓ = Fq[x, y]/(y

2 − x3 − a4x− a6, ψℓ).
12 Compute (xq, yq), (xq

2

, yq
2

) and (xqℓ , yqℓ) = qℓ(x, y) in Qℓ.
13 if xq

2 ̸= xqℓ then
14 Compute (x′, y′) = (xq

2

, yq
2

)⊕ (xqℓ , yqℓ).
15 for 1 ≤ t′ ≤ (ℓ− 1)/2 do
16 Compute (xqt′ , y

q
t′) = t′(xq, yq) in Qℓ.

17 if x′ = xqt′ then
18 if y′ = yqt′ then
19 Set tℓ = t′.
20 else
21 Set tℓ = −t′.
22 end if
23 Set fl = true.
24 end if
25 end for
26 end if
27 if fl ̸= true then
28 if qℓ is a quadratic residue mod ℓ then
29 Get modular square root w where qℓ ≡ w2 (mod ℓ).
30 Compute (xw, yw) = w(x, y) in Qℓ.
31 if gcd(xq − xw, ψℓ) ̸= 1 then
32 if gcd(yq − yw)/yw, ψℓ) ̸= 1 then
33 Compute tℓ = 2w (mod ℓ).
34 else
35 Compute tℓ = −2w (mod ℓ).
36 end if
37 else
38 Set tℓ = 0.
39 end if
40 else
41 Set tℓ = 0.
42 end if
43 end if
44 end for
45 Combine tℓ values by using CRT to get the trace t ≡ tℓ (mod ℓ).
46 if |t| > 2

√
q then

47 Compute t = t−N .
48 end if
49 return q + 1− t.
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Example 4.1.1. Consider an elliptic curve E/F13 : y2 = x3 + 5x + 7. If one would
like to use Schoof’s algorithm to calculate the number of points on this curve, the first
task would be determining the set S. After that, the procedure will be applied according
to the elements of S. Since 4

√
13 ≈ 14.42, then N = 2 · 3 · 5 = 30 > 14.42. Therefore

S = {2, 3, 5}.

For ℓ = 2, the existence of a common root between the polynomials x3 + 5x+ 7 and
x13 − x should be checked. So, gcd(x3 + 5x+ 7, x13 − x) = x3 + 5x+ 7 ̸= 1 which
means that there is a point of order 2, (1, 0), and by the existence of this point, the trace
for ℓ = 2 is t2 = 0.

For ℓ = 3, first, the flag variable fl is set as false, and the quotient ring Q3 =

F13[x, y]/(y
2 − x3 − 5x− 7, ψ3) is determined where x and y are the coordinates of a

non-trivial point P of order 3 and ψ3 = 3x4 + 4x2 + 6x+ 1. The scalar multiplication
with q3 is unnecessary because q3 ≡ 13 (mod 3) = 1, so (xq3 , yq3) = (x, y). The
coordinates (x13, y13) and (x13

2
, y13

2
) are computed in the ring Q3 as

x13 = 4x3 + 6x2 + 10x+ 10, y13 = y(8x3 + 12x2 + 7x+ 7),

x13
2

= 10x3 + 9x+ 2, y13
2

= y(8x3 + 2x+ 3).

The x-coordinates of (x132 , y132) and (xq3 , yq3) are not equal, so (x′, y′) = (x13
2
, y13

2
)+

(xq3 , yq3) = (x3 + x2 + 2x + 8, y(2x3 + 2x2 + 4x + 3)). Then the possible traces
in the range 1 ≤ t′ ≤ (3 − 1)/2 are checked. The only possible value for t′ is 1,
so (x13t′ , y

13
t′ ) = (x13, y13). None of the coordinates of (x′, y′) and (x13t′ , y

13
t′ ) is equal.

Thus, the flag variable fl did not change. Therefore, it should be checked whether q
is a quadratic residue modulo ℓ. It can be seen that 13 is a square modulo 3 with the
square root being w = 1 and (xw, yw) = (x, y). Then, gcd(x13 − x, ψℓ) = x + 7 and
gcd((y13 − y)/y, ψℓ) = 1 and t3 is set −2w (mod 3) = 1.

For ℓ = 5, the quotient ring Q5 = F13[x, y]/(y
2 − x3 − 5x− 7, ψ5) where x and y

are the coordinates of a non-trivial point P of order 5 and ψ5 = 5x12 + 11x10 + 8x9 +

x8 + 2x7 + 10x6 + 10x5 + 10x4 + 5x2 + 5x+ 10. This time qℓ = q5 = 13 (mod 5) =
3, and scalar multiplication is needed to compute (xq5 , yq5) = q5(x, y) in the ring Q5.
After the multiplication,

xq5 = 8x11 + 12x10 + 9x9 + 9x8 + 3x7 + 4x6 + 12x5 + 10x4 + 7x3 + 10x2+

7x+ 12,

yq5 = y(4x10 + 12x9 + 5x8 + x7 + 3x6 + x5 + 2x4 + 10x3 + 2x2 + 3x+ 11).
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Also, the coordinates (x13, y13) and (x13
2
, y13

2
) are computed in the ring Q5 where,

x13 = 3x11 + x10 + 5x9 + 10x8 + 11x7 + 11x6 + 11x5 + 12x3 + 12x2 + 11x,

y13 = y(4x11 + 9x10 + 2x9 + 10x8 + 6x7 + 9x6 + 10x5 + 9x4 + 2x3 + 9x2+

2x+ 6),

x13
2

= x11 + 10x10 + 7x8 + 4x6 + x5 + 3x3 + 3x2 + 7x+ 1,

y13
2

= y(4x11 + 3x10 + 3x9 + 3x8 + 9x7 + 8x6 + 6x5 + 4x4 + 4x3 + 10x+ 2).

The x-coordinates of (x132 , y132) and (xq5 , yq5) are not equal, so (x′, y′) = (x13
2
, y13

2
)

+(xq5 , yq5) where,

x′ = 9x11 + x10 + 12x9 + 4x8 + 8x7 + 8x6 + 3x5 + 10x4 + 6x3 + 10x+ 11,

y′ = y(5x11 + 9x10 + 6x9 + 5x8 + 4x7 + x6 + 4x5 + 9x4 + x3 + x+ 10).

The possible values for the candidate trace of Frobenius t′ for ℓ = 5 need to be
checked. Since (5 − 1)/2 = 2, t′ can only be equal to 1 or 2. So, after the scalar
multiplication of (x13, y13) with t′ = 1,

x131 = 3x11 + x10 + 5x9 + 10x8 + 11x7 + 11x6 + 11x5 + 12x3 + 12x2 + 11x,

y131 = y(4x11 + 9x10 + 2x9 + 10x8 + 6x7 + 9x6 + 10x5 + 9x4 + 2x3 + 9x2+

2x+ 6),

and with t′ = 2,

x132 = 9x11 + x10 + 12x9 + 4x8 + 8x7 + 8x6 + 3x5 + 10x4 + 6x3 + 10x+ 11,

y132 = y(8x11 + 4x10 + 7x9 + 8x8 + 9x7 + 12x6 + 9x5 + 4x4 + 12x3 + 12x+ 3).

In the end, x′ = x132 , but y′ ̸= y132 . The flag variable fl is set as true, and there is no
need to do any other operation. Therefore, the trace t5 = −2.

All the collected traces form the congruences

t ≡ t2 = 0 (mod 2),

t ≡ t3 = 1 (mod 3),

t ≡ t5 = −2 (mod 5),

and by using the CRT, the trace of Frobenius t (mod N ) is obtained as t = 28. Since
|28| > 2

√
13 ≈ 7.21, t = t − N = 28 − 30 = −2. Finally, we find the number of

points on E/F13 as q + 1− t = 13 + 1− (−2) = 16.
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4.2. SCHOOF-ELKIES-ATKIN ALGORITHM

4.2.1 ATKIN’S CLASSIFICATION

Due to the advancements in both technology and cryptography, the effectiveness of
the usage of Schoof’s algorithm for point counting on elliptic curves was starting to
decrease. Atkin (1988, 1991) and Elkies (1991) began to investigate the characteristic
polynomial of Frobenius endomorphism

ρ(φ) = φ2 − tℓφ+ pℓ (4.10)

built from Equation (4.3) defined in Section 4.1.2, they found that the splitting of
ρ(φ) can lead to possible enhancements in terms of efficiency in Schoof’s algorithm.
Later, this idea turned into an algorithm called SEA. The underlying thought of the
SEA algorithm is the classification of prime numbers according to the splitting of the
related modular polynomial. This classification is first proposed by (Atkin, 1991). The
following definition gives the method for the classification of prime numbers.

Definition 4.2.1. Let ∆ = t2ℓ − 4pℓ be the discriminant of the characteristic polynomial
of the Frobenius endomorphism ρ(φ) for an elliptic curve E/Fp where ℓ ̸= p. If the
discriminant ∆ is a square modulo ℓ, then ρ(φ) has roots in Fℓ, and ℓ is called an Elkies
prime; otherwise, it is called an Atkin prime.

Definition 4.2.1 suggests that to detect whether a prime is an Atkin or Elkies prime,
the employment of Frobenius endomorphism is needed. However, due to the uncertainty
of the value of trace tℓ, such endomorphism cannot be used directly. This problem is
overcome by using modular polynomials. The theorem below provides a solution for
this problem and is the fundamental building block of the SEA algorithm.

Theorem 4.2.1 (Atkin). Let E/Fp be an ordinary elliptic curve with j-invariant j ̸=
0 and j ̸= 1728, and let Φ̄ℓ(x, j) = f1f2 . . . fn be the factorization of a modular

polynomial Φℓ(x, j) ∈ Fp[x] where every f is an irreducible polynomial. Also, let

r be the order of the Frobenius endomorphism φ in the projective general linear

group PGL2(Fℓ) which acts on the torsion group E[ℓ]. Then the following cases occur

according to the degrees of the polynomials f1, f2, . . . , fn :

1. (1, ℓ) or (1, 1, . . . , 1) : In both cases the discriminant ∆ = t2ℓ − 4pℓ ≡ 0 (mod ℓ).
Then for the first case, r = 1, and for the second case, r = ℓ.

2. (1, 1, r, r, . . . , r) : The discriminant ∆ = t2ℓ−4pℓ is a square modulo ℓ and r |ℓ−1

and φ acts on E[ℓ] as

(
λ 0

0 µ

)
, where λ, µ ∈ F∗

ℓ are the roots of ρ.
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3. (r, r, . . . , r), r > 1 : The discriminant ∆ = t2ℓ − 4pℓ is not a square modulo ℓ,
r | ℓ+ 1. Therefore, φ has an irreducible characteristic polynomial over Fℓ.

For all the cases above, the trace of Frobenius t ensures

t2 ≡ p(ζ + ζ−1)2 (mod ℓ), (4.11)

where ζ ∈ F̄ℓ is a primitive r-th root of unity, and the equation

(−1)s =
(p
ℓ

)
(4.12)

is satisfied, with s being the number of irreducible factors.

Proof. See (Schoof, 1995).

With the help of Theorem 4.2.1, classification for any prime ℓ ̸= p can be done. If the
degrees for the splitting of Φℓ(x, j) correspond to the first or second case, a root exists
in Fp of the equation Φℓ(x, j) = 0, and ℓ is an Elkies prime. Otherwise, the degrees for
splitting suit the third case, and there is no root of the equation Φℓ(x, j) = 0. Therefore,
ℓ is an Atkin prime. Instead of factorizing Φℓ(x, j) and checking the degrees of each
factor, computing

g(x) = gcd(Φℓ(x, j), x
p − x) (4.13)

would be sufficient to detect the existence of a root. Here, if the degree of g(x) is 0, i.e.,
g(x) is constant, ℓ is an Atkin prime. Apart from that, the degree of g(x) can only be
1,2 or ℓ. In one of these cases, a root is found, and ℓ is an Elkies prime.

4.2.1.1 Procedure for Atkin Primes

After the classification process, if the prime ℓ is determined as an Atkin prime, the
method indicated in this section should be employed to complete the Atkin part of the
SEA algorithm. The stated approach follows (Schoof, 1995) and (Lercier et al., 2005).

As stated in Section 4.2.1, the classification can be done by computing g(x) =

gcd(Φℓ(x, j) , x
p − x) and checking the degree of g(x). Since ℓ is an Atkin prime, the

third case of Theorem 4.2.1 applies and r | ℓ+ 1. The exact value of r must be found to
detect the trace tℓ. It can be computed similarly with the computation of g(x) as

f(x) = gcd(Φℓ(x, j), x
pi − x), (4.14)

for i > 1. Herein, each i that divides ℓ + 1 is checked until f(x) = Φℓ(x, j).
The choice of i can be narrowed down using Equation (4.12) as (−1)(ℓ+1)/i =

(p
ℓ

)
.
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Additionally, the calculation of xpi can be achieved efficiently by performing modular
exponentiation with Φℓ(x, j). The efficiency of the order computation can be further
improved by only performing exponentiation for the factors of ℓ+ 1. Since pi = pspi−s

for some integer s ≤ i, exponentiation can be done only up to i− s and the result can
be used in the gcd computation. If gcd is not equal to Φℓ(x, j), then the value of s is
updated to i, and the procedure is tried with a new factor of ℓ+ 1. To sum up, the order
of the Frobenius endomorphism r can be efficiently computed with Algorithm 3.

Algorithm 3: FindOrderFrobenius
Input :An Atkin prime ℓ and the ℓ-th modular polynomial Φℓ(x, j) ∈ Fp[x].
Output :Order r of the Frobenius endomorphism π ∈ PGL2(Fℓ).

1 Set f(x) = x, s = 0.
2 for i = 1 to ℓ+ 1 do
3 if r | ℓ+ 1 and (−1)(ℓ+1)/i =

(p
ℓ

)
then

4 for k = 1 to i− s do
5 Compute f(x) = f(x)p mod Φℓ(x, j).
6 end for
7 if gcd(f(x)− x,Φℓ(x, j)) = Φℓ(x, j) then
8 return i.
9 else

10 Set s = i.
11 end if
12 end if
13 end for
14 return −1.

With the discovery of the order of Frobenius endomorphism, Equation (4.11), one of
the outputs of Theorem 4.2.1, can be utilized. If any primitive r-th root of unity ζ that
belongs to the algebraic closure of Fℓ can be found, then the trace of Frobenius t can be
reached using this equation.

It is known that r | ℓ+ 1 since ℓ is an Atkin prime and the third case of the Theorem
4.2.1 applies. So, for an integer n, ℓ + 1 = nr and ζℓ2−1 = ζ(ℓ−1)(ℓ+1) = ζ(ℓ−1)nr.
Since ζr = 1, then ζ(ℓ−1)nr = 1 and ζ ∈ Fℓ2 . Therefore, one can get equality by trying
different primitive r-th roots of unities in Fℓ2 . The number of possible primitive r-th
roots of unities can be found with Euler’s totient function of r, ϕEul(r), which gives
the number of relatively prime numbers with r in the range between 1 and r. Also,
symmetry exists in the roots of unities, so the total number of values for ζ + ζ−1 is
ϕEul(r)/2, which is the minimum number of iterations to be performed for the collection
of candidate traces. At this point, ζ ∈ Fℓ2 , and this causes the characteristic polynomial
to split into two roots as ρ(φ) = (φ− λ)(φ− µ), where λ, µ ∈ F2

ℓ \ Fℓ. Furthermore,
from Equation (4.10), λµ = pℓ and λ+µ = tℓ. So, λ = a1+a2

√
d and µ = a1−a2

√
d

where a1, a2, d ∈ Fℓ with d being a non-square in Fℓ. Such λ and µ can be defined
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because of the isomorphism between the extension field Fℓ2 and the multiplicative group
Fℓ[
√
d]. Note that γ = λ/µ is a primitive r-th root of unity, and it can be written as

γ = g1 + g2
√
d. The variables a1 and a2 are unknown, but g1 and g2 can be found as

follows.

γ = g1+ g2
√
d =

λ

µ
=
λ2

λµ
=
a21 + 2a1a2

√
d+ da22

pℓ
=
a21 + da22

pℓ
+

2a1a2
pℓ

√
d. (4.15)

So, g1 =
a21 + da22

pℓ
. Then, pℓg1 = a21 + da22 and by the usage of pℓ = a21 − da22,

consequently a21 = pℓ(g1 + 1)/2. For every different primitive r-th root of unity, the
equation gets in the form a2i1 = pℓ(gi1 + 1)/2. Iterating through ϕEul(r)/2 different
roots will be sufficient. The cases for a21 is not a square in Fℓ are passed, and the trace
t ≡ λ+ µ = 2a1 (mod ℓ) is calculated when it is a square in Fℓ. Since it is impossible
to know the correct sign of the square root, both 2a1 and −2a1 are collected for the
candidate traces. For each Atkin prime, candidate traces are stored in a set Atℓ . Every
set is also stored in a set At as pairs with corresponding prime ℓ as (Atℓ , ℓ) to know
which set belongs to which Atkin prime in the information combination part of the
algorithm. The algorithm of Atkin’s procedure is given in Algorithm 4.

After a certain point, it may not make sense to perform Atkin’s procedure and store
candidate traces even if the prime ℓ is an Atkin prime. As the primes get larger, the
number of stored candidate traces will increase significantly. Therefore, combining the
information obtained from Atkin and Elkies procedures and recovering the correct trace
t will be more challenging. For instance, if the number of candidate trace sets collected
from Atkin’s method is high while the number of exact traces collected from the Elkies’
procedure is low, the probability of finding a match with a random point P selected
from E(Fp) will be low. Thus, applications of Atkin’s procedures can be stopped at
a certain point to reduce the time taken in the information gathering part, which has
exponential time complexity. Any Atkin prime ℓ after this point is ignored, and the
algorithm continues with the following prime number. The implementations related
to this thesis adjust the total information gathered from Atkin procedures according to
the greatness of p. The details of this adjustment are given in Section 4.4. There are
also variants of the SEA algorithm that differ in frequency of use of the Atkin or Elkies
procedures. Information about these variants can be found in (Kok, 2013).

4.2.2 ELKIES’ IMPROVEMENTS

In the case that the prime ℓ is decided as an Elkies prime, the discriminant ∆ = t2ℓ − 4pℓ

is a square modulo ℓ, according to Theorem 4.2.1. This case leads to the split of the
characteristic polynomial of Frobenius endomorphism ρ(φ) in Fℓ as ρ(φ) = (φ −
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Algorithm 4: AtkinAlgorithm
Input :An Atkin prime ℓ and the ℓ-th modular polynomial Φℓ(x, j) ∈ F[x].
Output :Set of candidate traces and related prime sets At.

1 Compute r = FindOrderFrobenius(ℓ,Φℓ(x, j)).
2 Set d = 0.
3 for i = 1 to ℓ− 1 do

4 if
(
i

ℓ

)
= −1 then

5 Set d = i.
6 break.
7 end if
8 end for
9 Create the multiplicative group Fℓ[

√
d].

10 Get the r-th root of unity g in Fℓ[
√
d].

11 Set S = {}.
12 for i = 1 to r − 1 do
13 if gcd(i, r) = 1 then
14 Set Si = {gi}.
15 Set S = S ∪ Si.
16 end if
17 end for
18 Set Atℓ = {}.
19 for i = 1 to ϕEul(r)/2 do
20 Get g1i from Si = g1i + g2i

√
d.

21 Compute a = p(g1i + 1)/2 (mod ℓ).

22 if
(a
ℓ

)
= 1 then

23 Compute b =
√
a (mod ℓ).

24 Set Atℓ = Atℓ ∪ {2b,−2b}.
25 end if
26 end for
27 Set Atℓ = Sort(Atℓ).
28 Set At = At ∪ {Atℓ , ℓ}.
29 return At.
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λ)(φ− µ) = 0 where λ, µ ∈ Fℓ. This split is, in fact, the main idea of the procedure for
Elkies primes which follows (Elkies, 1991). From here, determination of the trace t can
be done as

t ≡ λ+ µ = λ+
pℓ
λ

(mod ℓ). (4.16)

The correct value for λ can be found by trying the values in the range 1 ≤ λ ≤ ℓ− 1

and checking if the equality
(xp, yp) = [λ](x, y) (4.17)

holds for a point P = (x, y) ∈ E[ℓ]. The values of λ and µ in Equation (4.16) can be
equal. For each case, there exist subgroups of E[ℓ], which are stable under the action of
ρ(φ). The details for these cases can be found in (Blake et al., 1999, Section VII.3).

The benefit of working in Fℓ is the decrease of degrees of division polynomials used
at the computations in the quotient ring. Instead of using the ℓ-th division polynomial ψℓ

with degree (ℓ2 − 1)/2 as in the usual case of Schoof’s Algorithm, a factor of ψℓ whose
degree is (ℓ − 1)/2 can be used with the knowledge of being ℓ an Elkies prime. By
employing the quotient ring created with a factor of ψℓ, the trace search operation can
be completed much faster. The real work to be done here is finding the mentioned factor.
This factor is also called kernel polynomial. The roots of this polynomial come from
the kernel of an isogeny of degree ℓ between the curve E/Fp and an isogenous curve to
this curve. The kernel of this isogeny is denoted as Cℓ, and the kernel polynomial can
be created as

Fℓ(x) =
∏

±P∈Cℓ\{O}

(x− X(P )) (4.18)

where X(P ) is the x-coordinate of the point P , an element of the kernel. It is sufficient
to take only one point for each pair ±P since the x-coordinate is sign-independent,
leading to the mentioned decrease in the degree of Fℓ. Section 4.2.2.1 explains how to
find such a factor and recover the correct trace value using this factor.

4.2.2.1 Procedure for Elkies Primes

As described in Section 4.2.2, an isogeny needs to be determined to find a factor of the
ℓ-th division polynomial with a degree of (ℓ− 1)/2. Frobenius endomorphism φ acts
on the kernel of this isogeny, namely Cℓ. This acting applies as multiplication by λ or µ
on Cℓ, supporting the creation of the polynomial in Equation (4.18). The critical path
to follow to get the desired kernel polynomial, Fℓ, is to determine an isogenous curve
E/Cℓ to E/Fp and get the coefficients of each term of Fℓ by using points of Cℓ. Then,
the sum of the x-coordinates of the points in Cℓ gives the first coefficient of Fℓ, and
with the help of it, the other coefficients are constructed. The method described after
this point follows (Schoof, 1995), based on (Elkies, 1991). More detailed information
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can be obtained from these sources.

Definition 4.2.2. Let E/Fp be an ordinary elliptic curve whose j-invariant ̸= 0 or
1728. As stated in Section 2.7, E can be associated with E/C via an isogeny where
C is a complex field. Let q = e2πiτ ∈ C, and the j-invariant of E/C, j(q), be as in
Equation (2.40). Then, the following expressions are valid for Laurent series Z[[q]]:

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
, (4.19)

E4(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
, (4.20)

E6(q) = 1− 504
∞∑
n=1

n5qn

1− qn
, (4.21)

where the discriminant

∆(q) = q
∞∏
n=1

(1− qn)24 = E4(q)
3 − E6(q)

2

1728
, (4.22)

and
E4(q)

3 = j(q)∆(q), E6(q)
2 = (j(q)− 1728)∆(q). (4.23)

Let f(q) =
∑

n anq
n be any Laurent series and f ′(q) =

∑
n nanq

n be q times the
derivative of it. Then, the following inference can be reached.

Proposition 4.2.1. The following equalities can be established where every variable is

defined in Z[[q]].
j′(q)

j(q)
= −E6(q)

E4(q)
, (4.24)

j′(q)

j(q)− 1728
= −E

2
4(q)

E6(q)
, (4.25)

j′′(q)

j′(q)
= −E2(q)

6
− E2

4(q)

2E6(q)
− 2E6(q)

3E4(q)
. (4.26)

Proof. See (Schoof, 1995, p. 244).

Next, the power series Z[ζ, 1/(ζ(1 − ζ))][[q]] should be defined to construct the
following proposition.
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Proposition 4.2.2. The following equalities hold in Z[ζ, 1/(ζ(1− ζ))][[q]] :

y2 = x3 − E4(q)

48
x+

E6(q)

864
(4.27)

where

x = x(ζ; q) =
1

12
− 2

∞∑
n=1

qn

(1− qn)2
+
∑
n∈Z

ζqn

(1− ζqn)2
,

y = y(ζ; q) =
1

2

∑
n∈Z

ζqn(1 + ζqn)

(1− ζqn)3
,

and ∑
ζ∈µℓ

x(ζ; q) =
ℓ

12
(E2(q)− ℓE2(q

ℓ)) (4.28)

where µℓ denotes the set of complex ℓ-th roots of unity.

Proof. Proof of the proposition is given in (Schoof, 1995, p. 245).

This equation takes the shape of the short Weierstrass form, and the coefficients can
be reduced modulo a prime ideal B with the residue field Fp, which means having an
equation defined in Fp. Also, in Fp, the sum in Equation (4.28) stands for the sum of
x-coordinates of the points in the desired kernel of the isogeny. This sum, denoted by
p1, is the coefficient of the term with the degree (ℓ − 3)/2 in the kernel polynomial.
The coefficients of other terms can be found using p1 and the involvement of modular
polynomials. The procedure given here applies to classical modular polynomials. The
different types of modular polynomials can also be used in the kernel polynomial
determination phase. Blake et al. (1999) gave a procedure using Müller’s modular
polynomials. Also, Stankovic (2017) used Atkin modular polynomials efficiently in
the kernel polynomial calculation phase. Using Atkin modular polynomials increases
efficiency since their coefficients are much shorter than those of the classical modular
polynomials. That is why these polynomials are more commonly used in implementa-
tions. Among the implementations related to this thesis, the fastest one utilizes Atkin
modular polynomials, thanks to the method given in (Stankovic, 2017).
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Theorem 4.2.2. Let j denote the Laurent series j(q) and ȷ̃ denote the Laurent series

j(qℓ). For the ℓ-th classical modular polynomial Φℓ(x, y) ∈ Z[x, y], the following

equalities of the Laurent series hold:

Φℓ(j, ȷ̃) = 0, (4.29)

ȷ̃′ = −j
′Φℓx(j, ȷ̃)

ℓΦℓy(j, ȷ̃)
, (4.30)

where Φℓx and Φℓy denote the partial derivatives
∂Φℓ

∂x
and

∂Φℓ

∂y
, respectively,

j′′

j′
− ℓ ȷ̃

′′

ȷ̃′
= −

j′2Φℓxx(j, ȷ̃) + 2ℓj′ȷ̃′Φℓxy(j, ȷ̃) + ℓ2ȷ̃′2Φℓyy(j, ȷ̃)

j′Φℓx(j, ȷ̃)
, (4.31)

where Φℓxx ,Φℓxy and Φℓyy denote the partial derivatives
∂2Φℓ

∂x2
,
∂2Φℓ

∂x∂y
and

∂2Φℓ

∂y2
, respec-

tively.

Proof. See (Schoof, 1995, p. 246).

One condition to be aware of here is that the partial derivatives can vanish at the
condition of Φℓx(j, ȷ̃) = Φℓy(j, ȷ̃) = 0 if (j, ȷ̃) is a singular point of Φℓ(x, y) over Fp.
However, the probability of encountering such a situation is minimal due to the very
large p. Otherwise, the used curve is discarded, and another random curve is chosen.

As stated earlier, all the arithmetic related to Equation (4.27) can be done in Fp under
the reduction of a prime ideal B. Equation (4.30) and Equation (4.31) are defined
over Laurent series owing to j(q) and j(qℓ). If all the computation is to be done in Fp,
these variables must also be defined in Fp. The Fp analogue of j(q) already exists as
the j-invariant of E/Fp, but an analogue for j(qℓ) must be found. It can be found by
computing

gcd(Φℓ(x, j), x
p − x),

which is the same operation done in Atkin’s classification. Now the result of this
operation exposes whether there are roots of the ℓ-th modular polynomial in Fp or not.
Here, the situation complies with the one specified at the end of the Section 4.2.1 and
one of the two roots can be decided as the ȷ̃ in Fp. This root is the j-invariant of the
isogenous curve E/Cℓ, according to the proposition given in (Schoof, 1995, p. 236).
Then, with the use of Equation (4.30), the equation of the isogenous curve in short
Weierstrass form appears as

Ẽ = E/Cℓ : y
2 = x3 + ã4x+ ã6 (4.32)

63



where
ã4 = −

ȷ̃′2

48ȷ̃(ȷ̃− 1728)
, ã6 = −

ȷ̃′3

864ȷ̃2(ȷ̃− 1728)
. (4.33)

Also, from the equalities in Proposition 4.2.1,

Ẽ4 ≡ −48ã4 (mod B), Ẽ6 ≡ 864ã6 (mod B) (4.34)

hold, with the property j(qℓ) ≡ ȷ̃ (mod B).

As in Equation (4.28), in Fp, the sum corresponds to the sum of x-coordinates
of the points in the kernel. Reducing this sum with a prime ideal B and utilizing
Equation (4.31), the sum of x-coordinates of the points in the kernel is formed as

p1 =
ℓ

2
J +

ℓ

4

(
E2

4

E6

− ℓẼ2
4

Ẽ6

)
+
ℓ

3

(
E6

E4

− ℓẼ6

Ẽ4

)
, (4.35)

where J =
j′′

j′
− ℓ ȷ̃

′′

ȷ̃′
as given in Equation (4.31) and E4 and E6 are the analogues of

Equation (4.20) and Equation (4.21) in Fp with the expressions

E4 ≡ −48a4 (mod B), E6 ≡ 864a6 (mod B). (4.36)

The elliptic curveE/Fp is isomorphic to an elliptic curveE/C defined over a complex
field C as declared in Section 2.7, and it can be associated with a lattice Λ = ω1Z+ω2Z.
The isogeny discussed here is an ℓ-isogeny modulo the prime ideal B, defined as

C/(ω1Z+ ω2Z)→ C/(ω1Z+ ℓω2Z)

with the map z 7→ ℓz. Schoof (1995) states that working with a different isogeny with
the same kernel as the above would be better. This isogeny facilitates the computations
to be done and is defined as

C/(ω1Z+ ω2Z)→ C/(
ω1

ℓ
Z+ ω2Z)

with the map z 7→ z and the isogenous curve equation

Ê : y2 = x3 + â4x+ â6. (4.37)

where â4 = ℓ4ã4 and â6 = ℓ6ã6.

The coefficients of the remaining terms of the kernel polynomial can be found using
the relationship between the polynomial and the Weierstrass elliptic function. Rewriting
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the Weierstrass elliptic function ℘ in Equation (2.36) as

℘(z) =
1

z2
+

∞∑
k=1

ckz
2k, (4.38)

where coefficients ck ≥ 1 are computed with the recursion

c1 = −
a4
5
, c2 = −

a6
7
, (4.39)

ck =
3

(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j, where k ≥ 3. (4.40)

Also, for the lattice
ω1

ℓ
Z + ω2Z, another Weierstrass elliptic function ˆ℘(z) can be

defined as

℘̂(z) =
1

z2
+

∞∑
k=1

ĉkz
2k, (4.41)

where the coefficients ĉk ≥ 1 are computed with the recursion

ĉ1 = −
â4
5
, ĉ2 = −

â6
7
, (4.42)

ĉk =
3

(k − 2)(2k + 3)

k−2∑
j=1

ĉj ĉk−1−j, where k ≥ 3. (4.43)

Based on all this information, the following theorem helps find the remaining coef-
ficients of the kernel polynomial Fℓ(x). Note that the naive linear algebra method
given in this theorem finds the kernel polynomial with the complexity of O(ℓ3). More
efficient methods are used to reach the kernel polynomial, such as the method given in
(Galbraith, 2012), provided by Andrew Sutherland. The running time complexity of
this method is O(ℓ2), which is used in the implementations presented in this thesis.

Theorem 4.2.3. Let Fℓ(x) be a polynomial whose roots are the x-coordinates of the

points in the kernel of an ℓ-isogeny ϕℓ : E → Ê. Then,

Fℓ(℘(z)) = z1−ℓ exp

(
−p1

2
z2 −

∞∑
k=1

ĉk − ℓck
(2k + 1)(2k + 2)

z2k+2

)
. (4.44)

Proof. See (Schoof, 1995, p. 246).

Theorem 4.2.3 gives the expression of Fℓ(℘(z)), which includes the Laurent series.
Since every variable has a counterpart in Fp, expanding the series up to d = (ℓ− 1)/2

will be enough. Then, Fℓ(x) can be reached with the method given in (Blake et al.,
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1999). In the solution, the coefficients are found with the recursion

ad−i = [A(w)]i −
i∑

k=1

(
k∑

j=0

(
d− i+ k

k − j

)
[C(w)k−j]j

)
ad−i+k, (4.45)

for 1 ≤ i ≤ d, where

w =z2,

C(w) =
d∑

k=1

ckw
k,

A(w) = exp

(
−p1

2
w −

d∑
k=1

ĉk − ℓck
(2k + 1)(2k + 2)

wk+1

)
.

In addition, in the beginning, ad = 1 and [C(w)]k−j
j denotes the k − j-th power of the

coefficient of wj in an arbitrary power series C(w). If the kernel polynomial Fℓ(x) is
defined as Fℓ(x) = adx

d + ad−1x
d−1 + . . .+ a0, then the first three coefficients after ad

appear as

ad−1 =−
p1
2
,

ad−2 =
p21
8
− ĉ1 − ℓc1

12
− ℓ− 1

2
c1,

ad−3 =−
p31
48
− ĉ2 − ℓc2

30
+ p1

ĉ1 − ℓc1
24

− ℓ− 1

2
c2 +

ℓ− 3

4
c1p1.

The steps for finding the kernel polynomial are given in Algorithm 5. After obtaining
the kernel polynomial, the detection of the trace will be an easy task to do. Instead of
working under the quotient ring Qℓ = Fp[x, y]/(y

2−x3−a4x−a6, ψℓ), a new quotient
ring can be created by using the kernel polynomial Fℓ(x) as Qℓ = Fp[x, y]/(y

2 −
x3 − a4x− a6, Fℓ(x)) and then, the approach in Equation (4.17) can be followed. The
computations under this ring will be more efficient because of the low degree kernel
polynomial usage. In Equation (4.17), scalar multiplication can be performed with
repeated point additions to speed up the equality checks. Algorithm 6 handles every
case encountered when adding two affine points on an elliptic curve E/Fp in the short
Weierstrass form. When equality is found between xp and X([λ](x, y)), y-coordinates
are checked. If yp and Y([λ](x, y)) are equal, the needed value to calculate the trace is
λ; otherwise, it is −λ. Then, Equation (4.16) is used to get the trace t (mod ℓ) which is
stored in an array with the corresponding prime ℓ. After concluding the procedure for the
Elkies prime ℓ, the algorithm continues with the following prime number. Application of
an Elkies procedure takes aroundO(log6 p) bit operations and employing fast arithmetic
in the computations further decreases this to Õ(log4 p), which constitutes a significant
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Algorithm 5: FindKernelPolynomial
Input :An Elkies prime ℓ and an elliptic curve E/Fp.
Output :A factor of the ℓ-th division polynomial whose degree is d = (ℓ− 1)/2.

1 Compute the j-invariant of E/Fp as j = 1728
4a34

a34 + 27a26
∈ Fp.

2 Compute E4 ≡ −48a4 (mod B) and E6 ≡ 864a6 (mod B).

3 Compute j′ ≡ j′(q) (mod B) ≡ −jE4

E6

(mod B).

4 Set ȷ̃ ∈ Fp as a root of Φℓ(x, j).

5 Compute ȷ̃′ = −j
′Φℓx(j, ȷ̃)

ℓΦℓy(j, ȷ̃)
.

6 Compute ã4 = −
ȷ̃′2

48ȷ̃(ȷ̃− 1728)
and ã6 = −

ȷ̃′3

864ȷ̃2(ȷ̃− 1728)
.

7 Compute Ẽ4 ≡ −48ã4 (mod B) and Ẽ6 ≡ 864ã6 (mod B).

8 Compute J =
j′′

j′
− ℓ ȷ̃

′′

ȷ̃′
= −

j′2Φℓxx(j, ȷ̃) + 2ℓj′ȷ̃′Φℓxy(j, ȷ̃) + ℓ2ȷ̃′2Φℓyy(j, ȷ̃)

j′Φℓx(j, ȷ̃)
.

9 Compute p1 =
ℓ

2
J +

ℓ

4

(
E2

4

E6

− ℓẼ2
4

Ẽ6

)
+
ℓ

3

(
E6

E4

− ℓẼ6

Ẽ4

)
.

10 Compute c1 = −
a4
5
, c2 = −

a6
7

.

11 Compute ck =
3

(k − 2)(2k + 3)

∑k−2
j=1 cjck−1−j for 3 ≤ k ≤ d.

12 Compute â4 = ℓ4ã4 and â6 = ℓ6ã6.

13 Compute ĉ1 = −
â4
5
, ĉ2 = −

â6
7

.

14 Compute ĉk =
3

(k − 2)(2k + 3)

∑k−2
j=1 ĉj ĉk−1−j for 3 ≤ k ≤ d.

15 Set w = z2 ∈ Z[[z]].
16 Compute C(w) =

∑d
k=1 ckw

k.

17 Compute A(w) = exp

(
−p1

2
w −

∑d
k=1

ĉk − ℓck
(2k + 1)(2k + 2)

wk+1

)
.

18 Compute ad−i = [A(w)]i −
∑i

k=1

(∑k
j=0

(
d−i+k
k−j

)
[C(w)k−j]j

)
ad−i+k for

1 ≤ i ≤ d.
19 Compute Fℓ(x) = xd +

∑d
i=1 ad−ix

d−i.
20 return Fℓ(x).
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improvement compared to the complexity of Schoof’s algorithm. More information
about the calculation of the complexity of the SEA algorithm can be found in (Blake et
al., 1999). The algorithm of Elkies’ procedure is given in Algorithm 7.

Algorithm 6: AddAffinePointsGeneric
Input :Two affine points P = (x1, y1) and Q = (x2, y2) on an elliptic curve

E/Fp : y
2 = x3 + a4x+ a6 and i1 and i2, Boolean indicators of being

the identity element O = (0, 0) for point P and Q, respectively.
Output :An affine point R = P +Q = (x3, y3) on E/Fp and a Boolean

indicator of this point which is the identity element O.
1 if i1 = true then
2 return x2, y2, i2.
3 else if i2 = true then
4 return x1, y1, i1.
5 else if x1 = x2 then
6 if y1 = 0 then
7 return 0, 0, true.
8 else if y1 ̸= y2 then
9 return 0, 0, true.

10 else

11 Compute L =
3x21 + a4

2y1
.

12 Compute x3 = L2 − 2x1.
13 Compute y3 = L(x1 − x3)− y1.
14 return x3, y3, false.
15 end if
16 else
17 Compute L =

y2 − y1
x2 − x1

.

18 Compute x3 = L2 − x1 − x2.
19 Compute y3 = L(x1 − x3)− y1.
20 return x3, y3, false.
21 end if

4.2.3 BRINGING INFORMATION TOGETHER

After completing the trace collection for each prime ℓ according to the procedure of
Atkin or Elkies, one last operation is needed to obtain the final trace t. In Schoof’s
algorithm, only performing a CRT was enough to find the trace value. However, in the
SEA algorithm, CRT fails because of the candidate traces produced in Atkin procedures.
That is why another process called Match and Sort algorithm (Müller, 1995) is used to
merge the trace values. This method stems from the well-known BSGS algorithm. It is
a sub-exponential time algorithm and is described in the following section.

The first task is to split the candidate traces into two distinct sets, S1 and S2 where
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Algorithm 7: ElkiesAlgorithm
Input :An Elkies Prime ℓ and an elliptic curve E/Fp : y

2 = x3 + a4x+ a6.
Output :Set Et that contains the trace Etℓ and related prime ℓ.

1 Set Et = {}.
2 Compute Fℓ(x) = FindKernelPolynomial(ℓ, E/Fp).
3 Create the quotient ring Qℓ = Fp[x, y]/(y

2 − x3 − a4x− a6, Fℓ(x)).
4 Set (x1, y1) = (0, 0) ∈ Qℓ, (x2, y2) = (x, y) ∈ Qℓ, (xp, yp) = (xp, yp) ∈ Qℓ.
5 Set the Boolean identity indicator i1 = true.
6 for k = 1 to (ℓ− 1)/2 do
7 Compute

(x1, y1) = AddAffinePointsGeneric(x1, y1, i1, x2, y2, false, a4).
8 if x1 = xp then
9 if y1 = yp then

10 Set λ = k.
11 else
12 Set λ = −k.
13 end if
14 Compute Etℓ = λ+

p

λ
(mod ℓ).

15 Set Et = {Etℓ , ℓ}.
16 break.
17 end if
18 end for
19 return Et.
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S denotes all the candidate traces gathered from Atkin procedures, and S1 ∪ S2 =

S, S1 ∩ S2 = Ø. A nice partitioning of S into S1 and S2 can be achieved, in terms of
having the lowest computational cost, by adjusting the cardinalities of the sets obeying
the condition 1 ≤ |S1|/|S2| ≤ 2. After determining the sets, m1,m2 and m3 can be
determined by multiplying corresponding primes for the elements in S1, S2, and the
Elkies trace set Et, respectively. Since Et has no candidate traces (meaning there is only
a single trace modulo a specific prime), the collective trace t3 ≡ t (mod m3) detected
from Et can be easily found using CRT. Note that the traces for m1 and m2 also follow
the same idea as t1 ≡ t (mod m1) and t2 ≡ t (mod m2), where t1 ∈ S1 and t2 ∈ S2.
Here the trace that is needed to be found is t, and there exists an equation

t = t3 +m3(m2r1 +m1r2), (4.46)

where m1,m2,m3 and t3 are known, m1m2m3 > 4
√
p and r1, r2 ∈ Z are unknown.

Under modulo m1 and m2, Equation (4.46) turns into

t ≡ t1 ≡ t3 +m2m3r1 (mod m1),

t ≡ t2 ≡ t3 +m1m3r2 (mod m2),
(4.47)

respectively. Reordering the terms leads to the emergence of

r1 ≡
t1 − t3
m2m3

(mod m1),

r2 ≡
t2 − t3
m1m3

(mod m2).
(4.48)

However, there is still not enough information to determine r1 and r2. Fortunately, the
Lemma below provides helpful information about the possible boundaries of r1 and r2.

Lemma 4.2.1. If the conditions

0 ≤ t3 < m3,

⌊−m1

2
⌋ < r1 ≤ ⌊

m1

2
⌋,

are satisfied, then |r2| ≤ m2 applies.

Proof. See (Blake et al., 1999, Lemma VII.10).

Let P be a non-trivial random point on an elliptic curve E/Fp. From Equation (4.1)
and Equation (4.46),

[p+ 1]P = [t]P = [t3 +m3(m2r1 +m1r2)]P,
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and therefore,
[p+ 1− t3]P − [m2m3r1]P = [m1m3r2]P. (4.49)

The work to be done here is, for every possible t1 ∈ S1, to store each r1 ≡
t1 − t3
m2m3

(modm1) that also ensures the inequality |r1| ≤ ⌊
m1

2
⌋ which was given in

Lemma 4.2.1, together with the left hand side of Equation (4.49) as Qr1 = [p + 1 −
t3]P − [m2m3r1]P . The stored pairs of (Qr1 , r1) can be kept sorted to increase the over-
all performance of the information gathering work. Constructing such pairs corresponds
to the baby-step parts of the BSGS algorithm.

For every possible t2 ∈ S2, determining each value of r2 that keeps r2 ≡
t2 − t3
m1m3

(mod m2) and |r2| ≤ m2 of Lemma 4.2.1 valid and computing the right-hand side of
Equation (4.49) as Qr2 = [m1m3r2]P with the determined r2 values corresponds to the
giant-step parts of the BSGS algorithm. There is no need to store Qr2 values because a
match is sought between the recently calculated Qr2 and Qr1 values of the set created
in baby steps. If a match is not found, another giant step is performed, and equality
is sought again. This process can be done faster by using the binary search algorithm.
Finding a match means that the corresponding r1 and r2 values can be used for detecting
the trace t, as in Equation (4.46).

4.2.4 THE FULL ALGORITHM

The whole procedure for the SEA algorithm starts with the computation of the j-
invariant of the given elliptic curve E. Then, trace modulo 2 is determined by checking
the gcd of xp − x and the curve equation, as in Schoof’s algorithm. The reason for this
can be found in Section 4.1.1. Next, the main loop starts, and after getting the next
consecutive prime and computing the multiplication of primes used, M , the degree of
the gcd of xp − x and the ℓ-th modular polynomial whose y coordinate is evaluated by
the j-invariant of the elliptic curve. If the degree is 0, Atkin’s procedure is performed;
otherwise, Elkies’ procedure is performed. The loop iterates until M reaches 4

√
p.

Finally, collected traces from Atkin and Elkies’ procedures are combined using the
Match and Sort algorithm. The trace obtained at the end of this algorithm is the
desired trace of Frobenius t. Thus, the number of points on E can be calculated as
#E = p+ 1− t. The complete SEA algorithm is given in Algorithm 8. Additionally, a
toy example for the SEA algorithm is provided in Example 4.2.1.
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Algorithm 8: SEA Algorithm
Input :An elliptic curve E : y2 = x3 + a4x+ a6 over a finite field Fp.
Output :#E(Fp).

1 Set M = 1, ℓ = 2, At = {}, Et = {}.

2 Compute the j-invariant of E/Fp as j = 1728
4a34

a34 + 27a26
∈ Fp.

3 if gcd(xp − x, x3 + a4x+ a6) = 1 then
4 Set Et = {(1, 2)}.
5 else
6 Set Et = {(0, 2)}.
7 end if
8 while M < 4

√
p do

9 Set ℓ = NextPrime(ℓ).
10 Compute M =M · ℓ.
11 if deg(gcd(xp − x,Φℓ(x, j))) = 0 then
12 Compute Atℓ = AtkinAlgorithm(ℓ,Φℓ(x, j)).
13 Set At = At ∪ {(Atℓ , ℓ)}.
14 else
15 Compute Etℓ = ElkiesAlgorithm(ℓ, E/Fp).
16 Set Et = Et ∪ {(Etℓ , ℓ)}.
17 end if
18 end while
19 Get t by combining information stored in At and Et with Match and Sort

algorithm.
20 return #E(Fp) = p+ 1− t.

Example 4.2.1. Consider an elliptic curve E/F617 : y
2 = x3 + 347x+ 76. The SEA

algorithm will find the number of points on this curve. Note that every arithmetic
operation will be done in F617.

At first, trace mod 2 should be determined. The gcd(x617−x, x3+347x+76) = x+56

indicates that the result is not equal to 1, the trace t2 = 0 and it is stored with the related
prime ℓ = 2 as (0, 2). Up to which prime the procedures would be applied is determined
by multiplying the consecutive primes and checking if M =

∏k
i=1 ℓi > 4

√
617 where

ℓ ≥ 3 holds or not. So, 4
√
617 = 99.35 and M = 3 · 5 · 7 = 105, the primes to be used

are 3, 5 and 7.

For the case ℓ = 3, the classical modular polynomial

Φ3(x, y) = x4 + 616x3y3 + 381x3y2 + 539x3y + 101x3 + 381x2y3 + 434x2y2+

377x2y + 521x2 + 539xy3 + 377xy2 + 407xy + 568x+ y4 + 101y3+

521y2 + 568y

is first evaluated at (x, j) where j = 1728 · 4 · 3473

4 · 3473 + 27 · 762
(mod 617) = 391.
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The result is Φ3(x, j) = Φ3(x, 391) = x4 + 569x3 + 520x2 + 207x + 515. Then,
gcd(Φ3(x, 391), x

617−x) = x2+261x+140 is computed. The degree of gcd is not equal
to 0, so ℓ = 3 is an Elkies prime. The procedure for Elkies primes should be followed
by first computing E4 ≡ −48 · 347 (mod 617) = 3, E6 ≡ 864 · 76 (mod 617) = 262

and j′ ≡ −391 · 3
262

(mod 617) = 199. Next, one of the roots of Φ3(x, 391), which are
13 and 343, is set as ȷ̃. Let ȷ̃ = 13. Here, Φ3(j, ȷ̃) = Φ3(391, 13) = 0. Then, the partial
derivatives of Φ3(x, y) are computed as

Φ3x(x, y) = 4x3 + 614x2y3 + 526x2y2 + 383x2y + 303x2 + 145xy3 + 251xy2+

137xy + 425x+ 539y3 + 377y2 + 407y + 568,

Φ3y(x, y) = 614x3y2 + 145x3y + 539x3 + 526x2y2 + 251x2y + 377x2 + 383xy2+

137xy + 407x+ 4y3 + 303y2 + 425y + 568,

Φ3xx(x, y) = 12x2 + 611xy3 + 435xy2 + 149xy + 606x+ 145y3 + 251y2 + 137y+

425,

Φ3xy(x, y) = 608x2y2 + 435x2y + 383x2 + 435xy2 + 502xy + 137x+ 383y2+

137y + 407,

Φ3yy(x, y) = 611x3y + 145x3 + 435x2y + 251x2 + 149xy + 137x+ 12y2 + 606y+

425,

and the evaluations of these derivatives at (391, 13) give

Φ3x(391, 13) = 519,

Φ3y(391, 13) = 30,

Φ3xx(391, 13) = 159,

Φ3xy(391, 13) = 525,

Φ3yy(391, 13) = 558.

After that, ȷ̃′ = −j
′Φ3x(391, 13)

ℓΦ3y(391, 13)
= −199 · 519

3 · 30
(mod 617) = 107 is computed.

Now, the coefficients for the isogenous curve Ẽ : y2 = x3+ã4x+ã6 can be computed as

ã4 ≡ −
1072

48 · 13 · (13− 1728)
(mod 617) = 476 and ã6 ≡ −

1073

864 · 132 · (13− 1728)
(mod 617) = 70 with Ẽ4 ≡ −48 · 476 (mod 617) = 598 and Ẽ6 ≡ 864 · 70 (mod

617) = 14. The sum of the roots in the kernel of the isogeny, p1, can be computed by
first computing

J ≡ −1992 · 159 + 2 · 3 · 199 · 107 · 525 + 32 · 1072 · 558
199 · 519

(mod 617) = 66,
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and then

p1 ≡
3

2
· 66 + 3

4
·
(

32

262
− 3 · 5982

14

)
+

3

3
·
(
262

3
− 3 · 14

598

)
(mod 617) = 577.

At this point, the coefficients of the Laurent series related to E and the isogenous curve
Ê : y2 = x3 + â4x+ â6 can be computed up to d = (3− 1)/2 = 1 as

c1 ≡ −
347

5
(mod 617) = 54,

and â4 ≡ 34 · 476 (mod 617) = 302 such that

ĉ1 ≡ −
476

5
(mod 617) = 63.

Setting w = z2 ∈ Z[[z]] results in:

C(w) = 54w,

A(w) = exp

(
−577

2
w − 63− 3 · 54

3 · 4
w2

)
= 1 + 20w + 54w2 + 470w3 + . . . ,

a0 = 20−
((

1

1

)
· 0 +

(
1

0

)
· 0
)
· 1 = 20.

Therefore, the kernel polynomial is x + 20 and the quotient ring to be worked in
can be created as Q3 = Fp[x, y]/(y

2 − x3 − a4x − a6, x + 20) instead of Q3 =

Fp[x, y]/(y
2 − x3 − a4x− a6, ψ3). Under this ring, equality between (x617, y617) and

[λ](x, y) should be checked. The point additions can be made quickly with Algorithm 6.
It can be seen that equality is obtained directly as (x617, y617) = (x, y) = (597, y) in
Q3, so λ = 1 and t3 ≡ 1 + 617 (mod 3) = 0. The trace and prime are stored as (0, 3).

For the case ℓ = 5, the classical modular polynomial

Φ5(x, y) = x6 + 616x5y5 + 18x5y4 + 52x5y3 + 195x5y2 + 113x5y + 73x5 + 18x4y5

+ 452x4y4 + 323x4y3 + 33x4y2 + 520x4y + 31x4 + 52x3y5 + 323x3y4

+ 235x3y3 + 547x3y2 + 334x3y + 35x3 + 195x2y5 + 33x2y4 + 547x2y3

+ 13x2y2 + 422x2y + 612x2 + 113xy5 + 520xy4 + 334xy3 + 422xy2

+ 483xy + 147x+ y6 + 73y5 + 31y4 + 35y3 + 612y2 + 147y + 440

is evaluated at (x, 391). The result is Φ5(x, 391) = x6 + 432x5 + 398x4 + 452x3 +

239x2+38x+214. Then, gcd(Φ5(x, 391), x
617−x) = 1 is computed. The degree of gcd

is 0, so ℓ = 5 is an Atkin prime. The first task to be accomplished is finding the order of
the Frobenius endomorphism φ that acts on the torsion group E[5], which is done using
Algorithm 3. Applying the algorithm results in encountering gcd(0,Φ5(x, 391)) =
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Φ5(x, 391) at the last iteration, so r = 6. Next, a non-square d in F5 is needed to be
found to construct the multiplicative group F5[

√
d], where the characteristic polynomial

would split into two roots. After a short search, d is determined as 2. Later, a primitive
6-th root of unity γ = g1 + g2

√
2 is chosen from this multiplicative group where

g1 = 3 and g2 = 3. Using 3 + 3
√
2 as a generator, the other 6-th roots of unity can

be found by computing (3 + 3
√
2)i when gcd(i, 6) = 1, for 1 ≤ i < 6. As a result,

S = {3 + 3
√
2, 3 + 2

√
2} are determined as all the primitive 6-th roots of unity in

F52 . Due to symmetry, performing ϕEul(6)/2 = 1 iteration will be enough. Thus,
(617 mod 5) · (3 + 1)/2 = 4 is a square in F5 and 3 is the square root of it in F5. The
candidate traces 2 · 3 = 6 and −2 · 3 = −6 are stored as ([1, 4], 5) and the algorithm
proceeds with the next prime.

The last case to be examined is ℓ = 7. The classical modular polynomial

Φ7(x, y) = x8 + 616x7y7 + 272x7y6 + 451x7y5 + 444x7y4 + 163x7y3 + 295x7y2+

336x7y + 84x7 + 272x6y7 + 276x6y6 + 464x6y5 + 61x6y4 + 608x6y3

+ 235x6y2 + 583x6y + 428x6 + 451x5y7 + 464x5y6 + 134x5y5+

199x5y4 + 242x5y3 + 46x5y2 + 459x5y + 588x5 + 444x4y7 + 61x4y6+

199x4y5 + 403x4y4 + 100x4y3 + 278x4y2 + 300x4y + 280x4 + 163x3y7

+ 608x3y6 + 242x3y5 + 100x3y4 + 379x3y3 + 261x3y2 + 118x3y+

583x3 + 295x2y7 + 235x2y6 + 46x2y5 + 278x2y4 + 261x2y3 + 477x2y2

+ 110x2y + 240x2 + 336xy7 + 583xy6 + 459xy5 + 300xy4 + 118xy3

+ 110xy2 + 380xy + y8 + 84y7 + 428y6 + 588y5 + 280y4 + 583y3+

240y2

is evaluated at (x, 391). The result is Φ7(x, 391) = x8+539x7+17x6+556x5+428x4+

283x3 + 327x2 + 541x+ 421. Then, gcd(Φ7(x, 391), x
617 − x) = x2 + 564x+ 608 is

computed. The degree of gcd is 2, so ℓ = 7 is an Elkies prime. Herein, E4, E6 and j′ are
already calculated at the case where ℓ = 3. So, one can directly proceed to find the roots
of Φ7(x, 391), which are 280 and 390. Let ȷ̃ = 280. Then, Φ7(j, ȷ̃) = Φ7(391, 280) = 0.
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The partial derivatives of Φ7(x, y) are computed as

Φ7x(x, y) = 8x7 + 610x6y7 + 53x6y6 + 72x6y5 + 23x6y4 + 524x6y3 + 214x6y2+

501x6y + 588x6 + 398x5y7 + 422x5y6 + 316x5y5 + 366x5y4+

563x5y3 + 176x5y2 + 413x5y + 100x5 + 404x4y7 + 469x4y6+

53x4y5 + 378x4y4 + 593x4y3 + 230x4y2 + 444x4y + 472x4 + 542x3y7

+ 244x3y6 + 179x3y5 + 378x3y4 + 400x3y3 + 495x3y2 + 583x3y+

503x3 + 489x2y7 + 590x2y6 + 109x2y5 + 300x2y4 + 520x2y3+

166x2y2 + 354x2y + 515x2 + 590xy7 + 470xy6 + 92xy5 + 556xy4+

522xy3 + 337xy2 + 220xy + 480x+ 336y7 + 583y6 + 459y5

+ 300y4 + 118y3 + 110y2 + 380y

Φ7y(x, y) = 610x7y6 + 398x7y5 + 404x7y4 + 542x7y3 + 489x7y2 + 590x7y+

336x7 + 53x6y6 + 422x6y5 + 469x6y4 + 244x6y3 + 590x6y2+

470x6y + 583x6 + 72x5y6 + 316x5y5 + 53x5y4 + 179x5y3 + 109x5y2

+ 92x5y + 459x5 + 23x4y6 + 366x4y5 + 378x4y4 + 378x4y3+

300x4y2 + 556x4y + 300x4 + 524x3y6 + 563x3y5 + 593x3y4+

400x3y3 + 520x3y2 + 522x3y + 118x3 + 214x2y6 + 176x2y5+

230x2y4 + 495x2y3 + 166x2y2 + 337x2y + 110x2 + 501xy6 + 413xy5

+ 444xy4 + 583xy3 + 354xy2 + 220xy + 380x+ 8y7 + 588y6+

100y5 + 472y4 + 503y3 + 515y2 + 480y

Φ7xx(x, y) = 56x6 + 575x5y7 + 318x5y6 + 432x5y5 + 138x5y4 + 59x5y3+

50x5y2 + 538x5y + 443x5 + 139x4y7 + 259x4y6 + 346x4y5+

596x4y4 + 347x4y3 + 263x4y2 + 214x4y + 500x4 + 382x3y7+

25x3y6 + 212x3y5 + 278x3y4 + 521x3y3 + 303x3y2 + 542x3y + 37x3

+ 392x2y7 + 115x2y6 + 537x2y5 + 517x2y4 + 583x2y3 + 251x2y2+

515x2y + 275x2 + 361xy7 + 563xy6 + 218xy5 + 600xy4 + 423xy3+

332xy2 + 91xy + 413x+ 590y7 + 470y6 + 92y5 + 556y4 + 522y3+

337y2 + 220y + 480
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Φ7xy(x, y) = 568x6y6 + 318x6y5 + 360x6y4 + 92x6y3 + 338x6y2 + 428x6y + 501x6

+ 318x5y6 + 64x5y5 + 346x5y4 + 230x5y3 + 455x5y2 + 352x5y

+ 413x5 + 360x4y6 + 346x4y5 + 265x4y4 + 278x4y3 + 545x4y2

+ 460x4y + 444x4 + 92x3y6 + 230x3y5 + 278x3y4+

278x3y3 + 583x3y2 + 373x3y + 583x3 + 338x2y6 + 455x2y5+

545x2y4 + 583x2y3 + 326x2y2 + 332x2y + 354x2 + 428xy6+

352xy5 + 460xy4 + 373xy3 + 332xy2 + 57xy + 220x+ 501y6+

413y5 + 444y4 + 583y3 + 354y2 + 220y + 380

Φ7yy(x, y) = 575x7y5 + 139x7y4 + 382x7y3 + 392x7y2 + 361x7y + 590x7+

318x6y5 + 259x6y4 + 25x6y3 + 115x6y2 + 563x6y + 470x6+

432x5y5 + 346x5y4 + 212x5y3 + 537x5y2 + 218x5y + 92x5+

138x4y5 + 596x4y4 + 278x4y3 + 517x4y2 + 600x4y + 556x4 + 59x3y5

+ 347x3y4 + 521x3y3 + 583x3y2 + 423x3y + 522x3 + 50x2y5+

263x2y4 + 303x2y3 + 251x2y2 + 332x2y + 337x2 + 538xy5 + 214xy4

+ 542xy3 + 515xy2 + 91xy + 220x+ 56y6 + 443y5 + 500y4 + 37y3

+ 275y2 + 413y + 480,

and the evaluations of these derivatives at (391, 280) give

Φ7x(391, 280) = 506,

Φ7y(391, 280) = 238,

Φ7xx(391, 280) = 168,

Φ7xy(391, 280) = 441,

Φ7yy(391, 280) = 275.

Next, ȷ̃′ = −j
′Φ7x(391, 280)

ℓΦ7y(391, 280)
= −199 · 509

7 · 238
(mod 617) = 4 and for the isogenous

curve Ẽ : y2 = x3 + ã4x + ã6, coefficients ã4 ≡ −
42

48 · 280 · (280− 1728)
(mod

617) = 533, ã6 ≡ −
43

864 · 2802 · (280− 1728)
(mod 617) = 329 and Ẽ4 ≡ −48 ·

533 (mod 617) = 330, Ẽ6 ≡ 864 · 329 (mod 617) = 436. The sum of the roots in the
kernel of the isogeny, p1, can be computed by first computing

J ≡ −1992 · 168 + 2 · 7 · 199 · 4 · 441 + 72 · 42 · 275
199 · 506

(mod 617) = 249,
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and then

p1 ≡
7

2
· 249 + 7

4
·
(

32

262
− 7 · 3302

436

)
+

7

3
·
(
262

3
− 7 · 436

330

)
(mod 617) = 517.

Now, the coefficients of the Laurent series related to E and the isogenous curve Ê :

y2 = x3 + â4x+ â6 can be computed up to d = (7− 1)/2 = 3 as

c1 ≡ −
347

5
(mod 617) = 54,

c2 ≡ −
76

7
(mod 617) = 518,

c3 ≡
3

9
· 54 · 54 (mod 617) = 355,

and â4 ≡ 74 · 533 (mod 617) = 75, â6 ≡ 76 · 329 (mod 617) = 260 such that

ĉ1 ≡ −
75

5
(mod 617) = 602,

ĉ2 ≡ −
260

7
(mod 617) = 51,

ĉ3 ≡
3

9
· 602 · 602 (mod 617) = 75.

Setting w = z2 ∈ Z[[z]] results in:

C(w) = 54w + 518w2 + 355w3,

A(w) = exp

(
−517

2
w −

(
602− 7 · 54

3 · 4
w2 +

51− 7 · 518
5 · 6

w3 +
75− 7 · 355

7 · 8
w4

))
= 1 + 50w + 203w2 + 378w3 + 276w4 + . . . ,

a2 = 50−
((

3

1

)
· 0 +

(
3

0

))
· 1 = 50,

a1 = 203−
(((

2

1

)
· 0 +

(
2

0

))
· 50 +

((
3

2

)
· 0 +

(
3

1

)
· 54 +

(
3

0

))
· 1
)

= 41,

a0 = 378−
(((

1

1

)
· 0 +

(
1

0

))
· 41 +

((
2

2

)
· 0 +

(
2

1

)
· 54 +

(
2

0

))
· 50 +((

3

3

)
· 0 +

(
3

2

)
· 0 +

(
3

1

)
· 518

)
· 1
)

= 211.

Therefore, the kernel polynomial is x3+50x2+41x+211 and the quotient ring to be
worked in can be created as Q7 = Fp[x, y]/(y

2−x3−a4x−a6, x3+50x2+41x+211)

instead of Q7 = Fp[x, y]/(y
2 − x3 − a4x− a6, ψ7). Under this ring, equality between

(x617, y617) and [λ](x, y) should be checked. After performing point additions, one can
see that (x617, y617) = [2](x, y) = (445y4+329y2+120, 585y5+244y3+562y) in Q7,
so λ = 2 and t7 ≡ 2 + 617/2 (mod 7) = 6. The trace and prime are stored as (6, 7).
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After completing Atkin and Elkies parts, all the information gathered can be combined
with Match and Sort algorithm. First, the information collected from Atkin parts can
be handled. Since the Atkin procedure was only performed at ℓ = 5 and the candidate
traces were [1, 4], the distribution of S into S1 and S2 can be done as S1 = {([1, 4], 5)}
and S2 = {} in order not to separate traces in the same modulo prime. So, m1 = 5 and
m2 = 1. Here m2 is set to 1 to avoid errors in the calculations. Then, m3 = 2 ·3 ·7 = 42

and m1 · m2 · m3 = 5 · 1 · 42 = 210 > 4
√
617 = 99.35 holds. The CRT for t3 ≡

0 (mod 2), t3 ≡ 0 (mod 3), t3 ≡ 6 (mod 7) gives t3 = 6. After that, the values for r1
and r2 that satisfy the conditions in Lemma 4.2.1 and Equation (4.48) are determined as
R1 = {−5,−1, 0, 4} and R2 = {−1, 0}, respectively. Let P = (392, 348) be a random
affine point on E/Fp. Then, [p+ 1− t3]P = [612](392, 348) = (467, 192). Next, for
every element R1i of R1, [p+ 1− t3]P − [R1im2m3]P is calculated as

(467, 192)− [−5 · 1 · 42](392, 348) = (467, 192)− (23, 411) = (102, 533),

(467, 192)− [−1 · 1 · 42](392, 348) = (467, 192)− (467, 192) = (0, 1),

(467, 192)− [0 · 1 · 42](392, 348) = (467, 192)− (0, 1) = (467, 192),

(467, 192)− [4 · 1 · 42](392, 348) = (467, 192)− (102, 533) = (23, 411).

These points are sorted according to their x-coordinates and stored in a table to find a
match later. Furthermore, for every element R2i of R2, [R2im1m3]P is calculated as

[−1 · 5 · 42](392, 348) = (23, 411),

[0 · 5 · 42](392, 348) = (0, 1).

It is easy to see that point (23, 411) exists at both tables. So, necessary r1 and r2

values in order to calculate (23, 411) are r1 = 4 and r2 = −1. At the end, the
trace t = t3 + m3(m2r1 + m1r2) = 6 + 42 · (1 · 4 + 5 · −1) = −36. Therefore,
#E = p+ 1− t = 617 + 1− (−36) = 654.

4.3. EARLY ABORT METHOD

The meaning of being isogenous for two elliptic curves was explained in Definition
2.3.1. Besides being able to establish an isogeny in between, these curves have another
important property that is closely related to point counting. This property is given in
the following well-known theorem, which is due to (Tate, 1966).
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Theorem 4.3.1 (Sato-Tate’s Isogeny Theorem (1966)). Let E1 and E2 be two elliptic

curves defined over a field K. E1 and E2 are isogenous if and only if

#E1(K) = #E2(K). (4.50)

Theorem 4.3.1 states that the isogenous property of elliptic curves can be decided by
checking the number of points on elliptic curves. The number of points on an elliptic
curve can be found with the SEA algorithm efficiently. Therefore, the straightforward
method to detect whether two elliptic curves are isogenous or not is, finding the number
of points on both elliptic curves and comparing the numbers.

There is a function in Magma Computer Algebra System (Bosma et al., 1997)
called IsIsogenous. This function works with different types of input. However,
depending on the scope of this thesis, the version working with elliptic curves will be
considered. It takes two elliptic curves defined over a field and returns a Boolean output
according to whether the given elliptic curves are isogenous. As written on the Magma
handbook on the website (Bosma, Cannon, & Playoust, 2010):

IsIsogenous(E, F) : CrvEll[FldFin], CrvEll[FldFin] -> BoolElt

Given two elliptic curves E and F defined over the rationals or a finite field,

this function returns true if the curves E and F are isogenous over this

field and false otherwise. In the rational case, if the curves are isogenous

then the isogeny will be returned as the second value. For finite fields the

isogeny computation operates via point counting and thus no isogeny is

returned.

The last statement can be checked using the following Magma code.
1 F := GF(2^255-19);
2 A4_1 := F!17;
3 A6_1 := F!861;
4 A4_2 := F!654157;
5 A6_2 := F!98791;
6 E1 := EllipticCurve([A4_1,A6_1]);
7 E2 := EllipticCurve([A4_2,A6_2]);
8
9 time #E1 + #E2;

10
11 clear;
12 F := GF(2^255-19);
13 A4_1 := F!17;
14 A6_1 := F!861;
15 A4_2 := F!654157;
16 A6_2 := F!98791;
17 E1 := EllipticCurve([A4_1,A6_1]);
18 E2 := EllipticCurve([A4_2,A6_2]);
19
20 time IsIsogenous(E1,E2);

Code 4.1. IsIsogenous Check Code

A finite field with prime p = 2255 − 19 is chosen in the code. Then, the coefficients
of the elliptic curves E1 : y2 = x3 + a41x + a61 and E2 : y2 = x3 + a42x + a62 are
selected in this field and the elliptic curves are created. The number of points on E1 and
E2 are added while printing the total time spent for the computation of this operation.
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Here, the addition is done to trigger the computation of the number of points with the
SEA algorithm for both elliptic curves. The clear command was used, and the same
procedure was applied again to prevent Magma from caching the result. In the end, the
IsIsogenous function is called with both curves, and the total time spent is printed.
The code was run on the Online Magma Calculator (Bosma, Cannon, & Playoust, n.d.).
The output is given below.

Figure 4.1. The Output of the IsIsogenous Check Code

As seen in the output, the times taken for the operations are almost equal. So, Magma
does compute the number of points for each curve.

The traces collected under the modulo of different primes from Atkin and Elkies
procedures are combined with a CRT-based method called Match and Sort. As given in
(Shoup, 2009, p. 24), by the nature of the CRT, there is a one-to-one and onto mapping
between the trace of Frobenius t and each trace tℓ (mod ℓ). Therefore, the traces of
Frobenius computed from two elliptic curves can be equal if and only if every trace
tℓ values are equal under the same modulo ℓ. In other words, at least one trace tℓ
calculated under the same modulo must be different between two curves if and only if
the curves are not isogenous. This property allows early aborting in the calculation phase
possible when detecting (non-)isogenous curves. Hence, it leads to faster detection
of cases where the curves are not isogenous. The early abort mechanism is only used
in Elkies parts of the algorithm because multiple candidate traces come from Atkin
procedures, and there is no way to find the correct trace here. Elkies procedure produces
a single trace value modulo prime ℓ. Therefore the traces that appeared after performing
Elkies procedures can be compared. Performing all Elkies procedures before Atkin
procedures increases the chance of encountering an inequality between traces. The
Atkin primes can be collected in every encounter, and the remaining Atkin procedures
can be performed after Elkies procedures, using the collected Atkin primes. If the
curves are isogenous, then every trace calculated should be equal to each other, and no
termination can be done, resulting in the execution of the whole SEA algorithm for both
curves and reaching the case in the IsIsogenous function of Magma. The algorithm
of the described operation from a high-level perspective is given in Algorithm 9.
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Algorithm 9: CheckIfIsogenous
Input :Two elliptic curves E1 : y2 = x3 + a41x+ a61 and E2 : y2 = x3 + a42x+ a62 over a

prime field Fp.
Output :A Boolean that shows whether E1 and E2 are isogenous.

1 Set M = 1, ℓ = 2, Et = {}, At1 = {}, At2 = {}, Aℓ = {}.
2 Compute j-invariants j1 and j2 of E1 and E2, respectively.
3 Set e1 = gcd(xp − x, x3 + a41x+ a61).
4 Set e2 = gcd(xp − x, x3 + a42x+ a62).
5 if e1 = 1 and e2 ̸= 1 or e1 ̸= 1 and e2 = 1 then
6 return false.
7 else if e1 = 1 then
8 Set Et = {(1, 2)}.
9 else

10 Set Et = {(0, 2)}.
11 end if
12 while M ≤ 4

√
p do

13 Set ℓ = NextPrime(ℓ).
14 Compute M =M · ℓ.
15 Compute d1 = deg(gcd(xp − x,Φℓ(x, j1))).
16 Compute d2 = deg(gcd(xp − x,Φℓ(x, j2))).
17 if d1 = 0 and d2 ̸= 0 or d1 ̸= 0 and d2 = 0 then
18 return false.
19 end if
20 if d1 ̸= 0 then
21 Compute Etℓ1

= ElkiesAlgorithm(ℓ, E1/Fp).
22 Compute Etℓ2

= ElkiesAlgorithm(ℓ, E2/Fp).
23 if Etℓ1

̸= Etℓ2
then

24 return false.
25 else
26 Set Et = Et ∪ (Etℓ1

, ℓ).
27 end if
28 else
29 Set Aℓ = Aℓ ∪ ℓ.
30 end if
31 end while
32 for every prime ℓ ∈ Aℓ do
33 Compute Atℓ1

= AtkinAlgorithm(ℓ,Φℓ(x, j1)).
34 Set At1 = At1 ∪ (Atℓ1

, ℓ).
35 Compute Atℓ2

= AtkinAlgorithm(ℓ,Φℓ(x, j2)).
36 Set At2 = At2 ∪ (Atℓ2

, ℓ).
37 end for
38 Compute t1 = MatchSort(At1 , Et, E1/Fp).
39 Compute t2 = MatchSort(At2 , Et, E2/Fp).
40 if t1 ̸= t2 then
41 return false.
42 else
43 return true.
44 end if
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4.4. IMPLEMENTATION

There are several elliptic curve point counting implementations as the outputs of this
thesis. All these implementations are done using a local Magma Computer Algebra
System V2.21-5. The Magma implementations are publicly available at the following
URL.

https://github.com/yassimert/Schoof-SEA

Firstly, Schoof’s algorithm was implemented to make the implementation of the
SEA algorithm easier. The necessary functions used in Schoof’s and SEA algorithms,
such as AddAffinePointsGeneric and x-only division polynomial generation
function divpols were implemented in this phase. Then, Algorithm 2 was coded with
the help of auxiliary Magma library functions like Modexp, LegendreSymbol,

Modsqrt, et cetera. The function that contains the main loop of the implementation
of Schoof’s algorithm is given in Appendix B Code B.1. This function respectively
takes the coefficients a4, a6 of the elliptic curve E/Fq, a bivariate polynomial ring P
with variables x, y, variable _x of a univariate polynomial ring R and the prime power
q = pn where n ≥ 1. After the computations, the function returns the total number of
points q + 1− t on the elliptic curve E/Fq. The algorithm is firstly implemented using
classical modular polynomials to demonstrate the basic version of the SEA algorithm
described in Section 4.2. This version can be found in the file SEA-Classical.mag.
The main code structure of the SEA algorithm resembles Schoof’s algorithm. After
a proper random selection of an elliptic curve, the case for ℓ = 2 is handled, and the
main computation loop starts. Each prime is determined whether it is an Atkin or Elkies
prime with the use of the ℓ-th classical modular polynomial. In SEA-Classical.mag, the
main loop operates until the product of each prime ℓ exceeds 4

√
p, as in the usual case.

Additionally, a bound called ClassicalMax, equal to 47 is used to check the largeness
of ℓ at every iteration because the 47-th classical modular polynomial is the largest
modular polynomial in the default Magma database. This check was added so that the
code can be run effortlessly in any local Magma or Online Magma.

According to the type of prime ℓ, Atkin or Elkies’ procedure is applied. In the
timeline of implementing the SEA algorithm in the context of this thesis, Atkin’s
method was implemented at first. Before entering the procedure, a check is performed
to avoid gathering too much information from Atkin’s part. Because if the number of
collected candidate traces is large, it would be difficult to detect the trace of Frobenius t.
Therefore, if the multiplication of the number of candidate traces collected from every
Atkin procedure exceeds log2 p, then the prime ℓ is discarded, and the iteration continues
with the next prime. Details of the auxiliary functions FindOrderFrobenius and
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getNonSquare can be found in SEA-Classical.mag. The procedure is given in
Appendix B Code B.2

In SEA-Classical.mag, Elkies’ procedure strictly follows the method given in Sec-
tion 4.2.2.1. Several assertions are added to the code to verify the equations in Sec-
tion 4.2.2.1. The code is given in Appendix B Code B.3

The information combination part of the SEA algorithm is done with the Match
and Sort algorithm. This part’s code is straightforward and can be found in all SEA
implementations this thesis provides.

The method described in Section 4.2.2.1 is the naive method to find the kernel
polynomial, and it is an inefficient method to utilize in the SEA algorithm. It can be
improved with the use of Atkin modular polynomials. This improvement takes the
efficiency of the code a step further. Also, it enables the usage of the Atkin modular
polynomial database in Magma. The 397-th Atkin modular polynomial is the largest
modular polynomial used in Magma without involving additional libraries. So, the usage
of Atkin modular polynomials paves the way for working with much larger numbers.
The SEA implementation that employs Atkin modular polynomials can be found in
SEA-Atkin-v1.mag. The acceleration gained by using Atkin modular polynomials can
be further increased by changing the kernel polynomial computation method. Using the
procedure given in (Galbraith, 2012) and (Stankovic, 2017), which Andrew Sutherland
provides, decreases the running time complexity of the kernel polynomial finding
procedure from O(ℓ3) to O(ℓ2). The SEA implementation that uses this method can be
found in SEA-Atkin-v2.mag.

The implementation of the CheckIfIsogenous function can be found in CheckI-

fIsogenous.mag. In this function, Atkin and Elkies’ procedures of SEA-Atkin-v2.mag

are used to detect isogenous curves more efficiently. The function is compared with
the IsIsogenous function of Magma. If two non-isogenous curves are selected, the
CheckIfIsogenous function terminates much faster than the IsIsogenous func-
tion because of the early aborts. When a difference between small traces from Elkies
procedures is detected, CheckIfIsogenous directly ends computations and outputs
that the curves are non-isogenous. If two isogenous curves are selected, this is the worst
case for the CheckIfIsogenous algorithm. As Magma does, the algorithm fully computes
the number of points on both curves. However, Magma’s SEA implementation is much
faster than the implementation given in this thesis. That is why the IsIsogenous
function of Magma works faster when two curves are chosen as isogenous. Since this
situation is less common in general, it can be observed that the CheckIfIsogenous
function will terminate more quickly in the vast majority of runs. The output of five
runs for non-isogenous curves is given in Appendix A Figure A.1. Note that the runs
are performed on an Intel® Core™ i5-7200U CPU while random prime p is between
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200 and 250 bits long, and all the curves are randomly generated on the field Fp. The
first time shows the total time taken for CheckIfIsogenous, and the second time
shows the total time taken for IfIsogenous to run.
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CHAPTER 5

CONCLUSION

In this thesis, a fast 4-way vectorized Montgomery ladder for the complete set of
Montgomery curves was proposed at first. The efficient, competitive SIMD 4-way
AVX2 and speed record holder SIMD 8-way AVX-512 implementations of this ladder
were publicly presented. Then, various ℓ-adic and p-adic point counting algorithms and
studies related to these algorithms were reviewed. Afterwards, Schoof’s algorithm and
its improvement SEA algorithm, one of the most efficient and convenient ℓ-adic point
counting algorithms on elliptic curves over large prime fields Fp, were discussed in
detail. The preliminaries necessary for clarifying these algorithms were given concisely
and descriptively. After gaining enough knowledge about Schoof’s and SEA algorithms,
the implementations of these algorithms were done using Magma Computer Algebra
System. These include the first publicly available Magma implementations of the SEA
algorithm using classical modular polynomials and Atkin modular polynomials. Also, a
new early abort method was provided for detecting (non-)isogenous curves. A Magma
implementation of this method was also provided, and the results are compared with
the Magma function IsIsogenous. It was seen that the algorithm presented in this
thesis gave faster results in the non-isogenous case. Nevertheless, the Magma function
IsIsogenous terminated faster when two curves are isogenous because of the faster
SEA implementation and optimizations. Consequently, working on the developments of
the SEA algorithm, presenting a more efficient SEA implementation and investigating
an algorithm that gives faster results both in the isogenous and non-isogenous cases are
left as future works.
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APPENDIX A

SUPPLEMENTARY FIGURES

Figure A.1. The Output of CheckIfIsogenous.mag
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APPENDIX B

SUPPLEMENTARY CODES

1 schoof := function(a4, a6, P, x, y, _x, q)
2 S := []; rm := []; i := 1; N := 1; k := 1; t := 1;
3 repeat
4 t := NextPrime(t);
5 S[i] := t; i +:= 1;
6 N *:= t;
7 until N gt 4*Sqrt(q);
8
9 // l = 2

10 if GCD(Modexp(_x,q,_x^3+a4*_x+a6)-_x,_x^3+a4*_x+a6) ne 1 then
11 rm[k] := 0;
12 else
13 rm[k] := 1;
14 end if;
15 k +:= 1;
16
17 // l = 3,5,...
18 for i := 2 to #S do
19 l := S[i]; fl := false;
20 phil := divpol(l,_x,a4,a6);
21 ql := q mod l;
22 Q := quo<P | y^2-x^3-a4*x-a6, divpol(l,x,a4,a6)>;
23 Qx := Q!x; Qy := Q!y; Qxq := Q!x^q; Qyq := Q!y^q; Qxqs := Q!x^(q*q); Qyqs := Q!y^(q*q);
24
25 xql := 0*Qx; yql := 0*Qy; xqli := true;
26 for j := 1 to ql do
27 xql, yql, xqli := AddAffinePointsGeneric(xql, yql, xqli, Qx, Qy, false, a4);
28 end for;
29
30 xqt := 0*Qx; yqt := 0*Qy; xqi := true;
31 if Qxqs ne xql then
32 xd, yd, _ := AddAffinePointsGeneric(Qxqs, Qyqs, false, xql, yql, false, a4);
33 for td := 1 to (l-1) div 2 do
34 xqt, yqt, xqi := AddAffinePointsGeneric(xqt, yqt, xqi, Qxq, Qyq, false, a4);
35 if xd eq xqt then
36 if yd eq yqt then
37 rm[k] := td;
38 else
39 rm[k] := -td;
40 end if;
41 k +:= 1; fl := true;
42 break;
43 end if;
44 end for;
45 end if;
46 if fl ne true then
47 if LegendreSymbol(ql,l) eq 1 then
48 w := Modsqrt(ql,l);
49 xw := 0*Qx; yw := 0*Qy; xwi := true;
50 for j := 1 to w do
51 xw, yw, xwi := AddAffinePointsGeneric(xw, yw, xwi, Qx, Qy, false, a4);
52 end for;
53 if GCD(UnivariatePolynomial(Qxq-xw),phil) ne 1 then
54 if GCD(UnivariatePolynomial((Qyq-yw)/yw),phil) ne 1 then
55 rm[k] := (2*w) mod l;
56 else
57 rm[k] := (-2*w) mod l;
58 end if;
59 else
60 rm[k] := 0;
61 end if;
62 else
63 rm[k] := 0;
64 end if;
65 k +:= 1;
66 end if;
67 end for;
68
69 t := CRT(rm,S);
70
71 if Abs(t) gt 2*Sqrt(q) then // |t| <= 2*sqrt(q)
72 t := t - N;
73 end if;
74
75 return q+1-t;
76 end function;

Code B.1. Schoof’s Algorithm Magma Implementation
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1 if atkins gt Log(2,p) then // avoid gathering too much Atkin info
2 M := M/ell;
3 else
4 r := FindOrderFrobenius(poly, ell, _x, p);
5
6 d := getNonSquare(ell);
7
8 FF := GF(ell);
9 FFF<i> := ExtensionField<FF, x|x^2-d>;

10 g := RootOfUnity(r, FFF);
11
12 S := []; kk := 1;
13 for i := 1 to r-1 do
14 if GCD(i,r) eq 1 then
15 S[kk] := g^i; kk +:= 1;
16 end if;
17 end for;
18
19 Atl := []; tct := 1;
20 if #S eq 1 then
21 Snum := 1;
22 else
23 Snum := #S div 2;
24 end if;
25 for i := 1 to Snum do
26 g1 := ElementToSequence(S[i])[1];
27 z := (FF!p*(g1+1)/2);
28 if LegendreSymbol(Integers()!z, ell) ne -1 then
29 sz := Sqrt(z);
30 Atl[tct] := Integers()!( 2*sz); tct +:= 1;
31 Atl[tct] := Integers()!(-2*sz); tct +:= 1;
32 end if;
33 end for;
34 Atl := Sort(Atl);
35 atkins *:= #Atl;
36 Ap[ai] := Atl; ai +:= 1;
37 Ap[ai] := [Integers()!ell]; ai +:= 1;
38 end if;

Code B.2. Atkin’s Procedure Magma Implementation

1 jt := Roots(poly)[1][1];
2
3 PHI_ell := P!ClassicalModularPolynomial(ell);
4 assert Evaluate(PHI_ell,[j,jt]) eq 0;
5
6 dxPHI_ell := Derivative(PHI_ell,x);
7 dyPHI_ell := Derivative(PHI_ell,y);
8
9 eval_dxPHI_ell := Evaluate(dxPHI_ell,[j,jt]);

10 eval_dyPHI_ell := Evaluate(dyPHI_ell,[j,jt]);
11
12 dxdxPHI_ell := Derivative(dxPHI_ell,x);
13 eval_dxdxPHI_ell := Evaluate(dxdxPHI_ell,[j,jt]);
14
15 dydyPHI_ell := Derivative(dyPHI_ell,y);
16 eval_dydyPHI_ell := Evaluate(dydyPHI_ell,[j,jt]);
17
18 dxdyPHI_ell := Derivative(dyPHI_ell,x);
19 eval_dxdyPHI_ell := Evaluate(dxdyPHI_ell,[j,jt]);
20
21 E4 := -48*a4;
22 E6 := 864*a6;
23 jd := -j*E6/E4;
24
25 jtd := -jd*eval_dxPHI_ell/(ell*eval_dyPHI_ell);
26
27 a4t := -jtd^2/(48*jt*(jt-1728));
28 a6t := -jtd^3/(864*jt^2*(jt-1728));
29
30 E4t := -48*a4t;
31 E6t := 864*a6t;
32
33 assert jtd eq -jt*E6t/E4t;
34 assert jtd eq (-18*a6*eval_dxPHI_ell*j)/(ell*a4*eval_dyPHI_ell);
35
36 assert jd*eval_dxPHI_ell eq -ell*jtd*eval_dyPHI_ell;
37
38 J := -(jd^2*eval_dxdxPHI_ell + 2*ell*jd*jtd*eval_dxdyPHI_ell + ell^2*jtd^2*eval_dydyPHI_ell)/(jd

*eval_dxPHI_ell);
39 p1 := (ell/2)*J + (ell/4)*(E4^2/E6-ell*E4t^2/E6t) + (ell/3)*(E6/E4-ell*E6t/E4t);
40
41 a4h := ell^4*a4t;
42 a6h := ell^6*a6t;
43 assert IsIsomorphic(EllipticCurve([0,0,0,a4t,a6t]),EllipticCurve([0,0,0,a4h,a6h])) eq true;
44
45 d := (ell-1) div 2;
46
47 c := [];
48 c[1] := -a4/5; c[2] := -a6/7;
49 for k := 3 to d do
50 sum := 0;
51 for j := 1 to k-2 do
52 sum +:= c[j]*c[k-1-j];
53 end for;
54 c[k] := (3/((k-2)*(2*k+3)))*sum;
55 end for;
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56
57 ch := [];
58 ch[1] := -a4h/5; ch[2] := -a6h/7;
59 for k := 3 to d do
60 sum := 0;
61 for j := 1 to k-2 do
62 sum +:= ch[j]*ch[k-1-j];
63 end for;
64 ch[k] := (3/((k-2)*(2*k+3)))*sum;
65 end for;
66
67 L<w> := LaurentSeriesRing(Parent(a4));
68
69 sum := 0;
70 for k := 1 to d do
71 sum +:= ((ch[k]-ell*c[k])/((2*k+1)*(2*k+2)))*w^(k+1);
72 end for;
73 Aw := Exp((-p1/2)*w-sum);
74
75 Cw := 0;
76 for k := 1 to d do
77 Cw +:= c[k]*w^k;
78 end for;
79
80 Fl := []; Fl[d+1] := 1;
81 for i := 1 to d do
82 sum2 := 0;
83 for k := 1 to i do
84 sum1 := 0;
85 for j := 0 to k do
86 num := d-i+k;
87 den := k-j;
88 comb := Factorial(num)/(Factorial(den)*Factorial(num-den));
89 if k-j eq 0 then
90 if j eq 0 then
91 sum1 +:= comb;
92 end if;
93 else
94 sum1 +:= comb*Coefficient(Cw^(k-j), j);
95 end if;
96 end for;
97 sum2 +:= sum1*Fl[d-i+k+1];
98 end for;
99 Fl[d-i+1] := Coefficients(Aw)[i+1]-sum2;

100 end for;
101
102 kpol := 0;
103 for i := #Fl to 1 by -1 do
104 kpol +:= Fl[i]*x^(i-1);
105 end for;
106
107 Q := quo<P | y^2-x^3-a4*x-a6, kpol>;
108 Qx := Q!x; Qy := Q!y; xk := 0*Qx; yk := 0*Qy;
109 Qxp := Q!x^p; Qyp := Q!y^p; xki := true;
110 for k := 1 to d do
111 xk, yk, xki := AddAffinePointsGeneric(xk, yk, xki, Qx, Qy, false, a4);
112 if xk eq Qxp then
113 if yk eq Qyp then
114 lmd := k;
115 else
116 lmd := -k;
117 end if;
118 FF := GF(ell);
119 t := FF!lmd + FF!p/FF!lmd;
120 Ep[ei] := [Integers()!t,Integers()!ell]; ei +:= 1;
121 break;
122 end if;
123 end for;

Code B.3. Elkies’ Procedure Magma Implementation
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