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ABSTRACT

NEW APPROACHES FOR SPEECH ENHANCEMENT
WITH WAVELET TRANSFORM
Ozen, Elif
MSc, Electrical and Electronics Engineering
Advisor: Assist. Prof. Dr. Nalan OZKURT
January 2022

Today, in the light of technological developments, communication is gaining more and
more importance. Although there are various communication methods, one of the most
frequently used communication bases is speech. Today, communication takes place
between humans and between humans and machines in many crucial applications.
Therefore, speech signals must be clear and intelligible to ensure these
communications are carried out smoothly. The speech enhancement application
improves the quality and intelligibility of speech signals by removing the noise effect
as much as possible. With the increase in speech-based applications, research in this
field has gained momentum. Generally, speech enhancement methods are examined
under two main classes: single-channel and multi-channel methods. In this study, In
this study, we proposed a new approach for both types to increase the success of the
method used up to now with the help of the wavelet transform.

The first proposed method is a wavelet transform domain adaptive filter system. Since
speech signals and noise are non-stationary signals, adaptive filters are one of the most
preferred methods to denoise them. However, the application of adaptive filter in the
time domain has some deficiencies, such as lower convergence speed especially for
large datasets. Therefore, Transform Domain Adaptive Filters (TDAF) have been used
in some studies. With the proposed method, we aimed to eliminate deficiencies of
existing TDAF in terms of convergence speed, denoising rate, and computational
complexity with multiple sub-band adaptive filters fully applied in the wavelet
transform domain. The performance of the proposed system was tested on speech
signals under the effect of various noises such as white noise, pink noise, babble noise,
engine idling noise, aircraft cockpit noise. The commonly used objective measures
were used to evaluate results. However, as our primary focal point in the study is
enhancing speech signals, our aim is not only decreasing noise on the signal but also

increasing the quality and intelligibility of speech signals. Therefore, objective
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measures such as Perceptual Evaluation of Speech Quality (PESQ) and the Short-Time
Obijective Intelligibility score (STOI) were used to evaluate processed speech signals.
Finally, the results were compared with the studies in the literature.

The second method proposed in the thesis is a Convolutional Neural Network (CNN)
combined with wavelet transform. This is a single-channel speech enhancement
application, and the main challenge in this method is distinguishing speech signals
from unknown noise. Many deep learning-based methods have been used to ensure
this in recent years. CNN is one of the methods used for speech enhancement
applications. Commonly, it is used for image processing in many applications. We
trained CNN with scalograms obtained by the magnitude of Continuous Wavelet
Transform (CWT) in this method. In this way, as scalograms are two-dimensional data
like images, we aimed to utilize to best properties of CNNs. Also, wavelet transform
iIs one of the best methods to observe signals in the time-frequency plane. By
combining CNNs and wavelet transform, we investigated the contribution of wavelet
transform in terms of increasing the success of the existing methods and decreasing
computational complexity. Finally, we evaluated the results with standard speech

evaluation criterias and presented them with comparisons.

Keywords: Speech enhancement, single-channel, double-channel, adaptive filters,
transform domain adaptive filters (TDAF), discrete wavelet transform (DWT),
continuous wavelet transform (CWT), scalograms, convolutional neural networks
(CNN)

Vi



(074

DALGACIK DONUSUMU iLE KONUSMA TYILESTIRME iCIN
YENI YAKLASIMLAR

Ozen, Elif
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi

Danisman: Dr. Ogr. Uyesi Nalan Ozkurt
Ocak 2022

Gliniimiizde teknolojik gelismelerin 1s18inda iletisim giderek daha fazla Onem
kazanmaktadir. iletisim cesitli yontemlerle gerceklesse de en sik kullanilan iletisim
tabanlarindan biri konusmadir. Giiniimiizde iletisim sadece insanlar arasinda degil,
birgok Onemli uygulamada insanlarla makineler arasinda gerceklesmektedir. Bu
nedenlerden dolayi, iletisimin sorunsuz bir sekilde saglanabilmesi i¢in konusma
sinyalinin temiz ve anlasilir olmasi gerekir. Konusma iyilestirme uygulamalari,
giiriiltii etkisini miimkiin oldugunca ortadan kaldirarak konusma sinyallerinin
kalitesini ve anlagilirligini artirmak i¢in kullanilir. Konusma tabanli uygulamalarin
artmasiyla bu alandaki arastirmalar da hiz kazanmigtir. Bu amagla kullanilan
yontemler, tek kanalli ve ¢ok kanalli yontemler olmak iizere iki ana smif altinda
incelenir. Bu calismada, dalgacik donilisiimii yardimiyla simdiye kadar kullanilan
yontemin basarisini artirmak i¢in her yontem i¢in yeni bir yaklasim onerdik.

Onerilen ilk yontem, bir dalgacik doniisiimii alan uyarlamali filtre sistemidir.
Konugma sinyalleri ve giiriiltii, statik olarak duragan olmayan sinyaller oldugundan,
uyarlanabilir filtreler, giiriiltiiyli gidermek icin en ¢ok tercih edilen yontemlerden
biridir. Ancak, zaman alaninda uyarlanabilir filtre uygulamasinin, biiytik veri kiimeleri
i¢cin daha diislik yakinsama hizi ve orani gibi bazi eksiklikleri vardir. Bu nedenle bazi
caligmalarda Dontisim Alaninda Uyarlanabilir Filtreler (DAUF) kullanilmistir.
Onerilen yontemle, dalgacik doniisiimii alaninda tam olarak uygulanan ¢oklu alt bant
uyarlamali filtreler ile mevcut DAUF'in yakinsama hizi, yakinsama orani ve
hesaplama karmasiklign agisindan eksikliklerini gidermeyi amacladik. Onerilen
sistemin performansi, beyaz giiriiltii, pembe giiriiltii, gevezelik giiriiltiisii, motor rdlanti
giiriiltiisii, ucak kokpit giiriiltiisii gibi cesitli giiriiltiillerin etkisi altinda konugma
sinyalleri iizerinde test edilmistir. Sonuglar1 degerlendirmek i¢in yaygin olarak
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kullanilan objektif 6lgiimler kullanildi. Ancak, ¢alismadaki 6ncelikli odak noktamiz
konusma sinyallerini iyilestirmek oldugundan, amacimiz sadece sinyal iizerindeki
giriltiiyii azaltmak degil, ayni zamanda konusma sinyallerinin kalitesini ve
anlagilirhigini artirmaktir. Bu nedenle, islenmis konusma sinyallerini degerlendirmek
icin Konusma Kalitesinin Algisal Degerlendirmesi (PESQ) ve Kisa Siireli Amag
Anlagilabilirlik puanit (STOI) gibi nesnel 6lgiiler kullanildi. Son olarak sonuglar
literatiirdeki ¢alismalarla karsilastirildi.

Tezde Onerilen ikinci yontem, dalgacik dontisiimii ile birlestirilmis bir Evrisimsel Sinir
Agidir (ESA). Bu yontem, bir tek kanalli bir konugma gelistirme uygulamasidir ve bu
yontemdeki ana zorluk, konusma sinyallerini bilinmeyen giiriiltiiden ayirt etmektir.
Bunu saglamak icin son yillarda bircok derin O6grenme tabanli yOntem
kullanilmaktadir. ESA da son yillarda konusma iyilestirme i¢in kullanilan
yontemlerden birisidir. ESA, normalde bir¢ok uygulamada goriintii sinyallerini
islemek i¢in kullanilir. Bu yontemde, biz Siirekli Dalgacik Doniisiimiiniin (SDD)
biiytikligii ile elde edilen skalogramlarla ESA'y1 egittik. Bu sekilde, scalogramlar da
gorintii gibi iki boyutlu veriler oldugu i¢in ESA'nin en iyi 0zelliklerinden
yararlanmay1 amagladik. Ayrica dalgacik doniisiimii, sinyalleri zaman-frekans
diizleminde gozlemlemek icin en iyi yontemlerden biridir. Calismanin bu béliinde,
ESA’y1 dalgacik dontsiimiiyle birlestirerek, dalgacik doniisiimiinin  mevcut
yontemlerin bagarisin1 artirma ve hesaplama karmagsikligini azaltma agisindan
katkisini aragtirdik. Son olarak, sonuglari standart konugsma degerlendirme 6lgiitleriyle

degerlendirdik ve karsilagtirmalar ile sunduk.
Anahtar Kelimeler: Konusma gelistirme, tek kanal, ¢ift kanal, uyarlanabilir filtreler,

dontiisiim alan1 uyarlamali filtreler (DAUF), ayrik dalgacik doniisiimii (ADD)), siirekli
dalgacik dontigiimii (SDD), skalogramlar, evrisimli sinir aglari (ESA)
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CHAPTER 1
INTRODUCTION

1.1. Engineering Problem and Thesis Motivation

Speech enhancement can be defined as removing background noise from a speech by
protecting the quality and intelligibility of speech signals. It is frequently used for
voice communication applications. In the light of technological developments,
communication is gaining more and more importance. Although the communication
may be in text, audio, image or speech, speech signals are used more frequently in

communication.

Speech signals are exposed to various noises during the recording and transmission
stages. For instance, in cellular communication, especially in hand-free mode, the
microphone which records the speech signal is located at a certain distance from the
sound source. In this case, the speech signal recorded by the microphone also includes
background noise, that is, ambient noise (Qin Linmei et al., 2001). When voice
communication occurs in a high-noise environment, such as the aircraft cockpit,
interior of the construction equipment, a crowded place, the speech signal is highly
destroyed by this high noise effect, ambient noise. It is not easy to ensure successful
voice communication because this signal will be distorted by many effects (such as
channel noise) during communication. Considering the airplane cockpit example,
under these conditions, the listener on the ground may misunderstand the information
given by the pilot. Therefore, the value of smooth voice communication is emphasized
more if it is thought about the importance of the information sent at this stage. Overall,
background noise is one of the biggest obstacles to smooth voice communication.
Hence, speech enhancement applications are needed to eliminate this obstacle and

ensure smooth voice communication.

The field of application is not limited to communication only. Media/information

sharing based on speech signals such as podcasts, audiobooks, and interviews is one



of the most exciting topics for social media creators today. However, a quiet
environment without acoustic and ambiance noise is needed for the clearly
understandable content offering. Thanks to successful speech enhancement
applications, audiobooks, podcasts, and interview recordings can be recorded in any
environment without special equipment (Xing Luo, O., 2019). It is also used for the
smooth operation of robust speech recognition and voice command technologies.

Furthermore, in the biomedical field, it is frequently preferred in hearing aid design.

As a result of this increasing demand for applications, as detailed above, the research
about the speech enhancement application is motivated. Up to now, there have been

several studies in this area. These will be detailed in the next section.

1.2. Literature Review

Today, many studies are carried out in the field of speech enhancement. Although the
interest in each method used in these studies has changed over time, the approaches in
speech enhancement are incredibly comprehensive. If speech enhancement is
examined under the general heading of de-noising digital signals, the oldest source of
these studies is conventional filters to remove noise. However, the traditional Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR) filter with constant filter
coefficient will not be sufficient to de-noise speech signal because of speech and noise
signals' statistically non-stationary properties. Therefore, Adaptive Filters were
commonly preferred in former studies of speech enhancement application to remedy

this deficiency of conventional filters. (Haykin, Adaptive filter theory 1996).

Adaptive filters can be defined as the filters that adjust filter coefficients according to
input signals. Considering this feature, adaptive filters in filtering non-stationary
signals (such as speech) give more efficient results. Various learning algorithms are
used in the adaptive filters to perform adjustment of filter coefficients such as Least
Mean Square (LMS), Normalized Least Mean Square (NLMS), and Recursive Least
Squares (RLS) (Haykin, Adaptive filter theory 1996). The performance of different
algorithms for speech enhancement applications was compared by several studies
(Gupta et al., 2015 and Borisagar & Kulkarn, 2010). The results showed that LMS
algorithms outperformed other learning algorithms for speech enhancement

applications in terms of ease of application, computational complexity, and converge



speed. For this reason, we prefer this algorithm in the method proposed for the two-

channel speech enhancement application in this study.

Applying adaptive filters for large data sets in the time domain increases computational
complexity and decreases convergence speed. Because of this, many researchers have
worked on using adaptive filters in a transform domain (Shams Esfand Abadi et al.,
2017). The concept of applying the adaptive filters in the transform domain was
introduced by Dentino in an article published in 1978 (Dentino et al., 1978). After this
article, research on this topic has gained momentum (Donoho & Johnstone, 1994). In
the former studies, some orthogonal transform methods such as Fourier Transform
(FT), Discrete Cosine Transform (DCT), Walsh-Hadamard Transform (WHT) were
used more frequently (Jenkins et al., 2009 and Huang, 1999). The results showed that
applying adaptive filters in an orthogonal transform domain decreases computational
complexity and increases the convergence speed of the filter. Especially for the LMS
algorithm, the convergence speed of the filter is highly dependent on the eigenvalue
spread of the autocorrelation matrix of the input signal. With the help of orthogonal
transforms applied to the input signal, the eigenvalue spread is arranged thanks to the

de-correlation of the input signal.

With the widespread use of wavelet transform applications, Discrete Wavelet
Transform (DWT) and Continuous Wavelet Transform (CWT) have become one of the
main methods to enhance non-stationary signals such as speech. Furthermore, studies
on the application of adaptive filters in the wavelet transform domain have gained
momentum since the wavelet transform is orthogonal, helpful in observing the time-
frequency resolution, and the processing complexity is less than other orthogonal
transformations. For instance, the computational complexity is defined by "Nlog, N "
for FFT, while for WT this computational complexity is equal to "N", where N is the
length of the input signal. Thus, WT is much easier to apply in large data sets than FT
(Burrus et al., 1998).

Some inspiring work on the application of adaptive filters in the WT domain can be
listed as follows. In one of the most remarkable studies (Akhaee et al., 2005), a hybrid
method to reduce the noise of the speech signal was proposed. In this method, the LMS
algorithm is used for the signal's low-frequency components (approximation
coefficient), while thresholding and Wiener filter are used for high-frequency

components (Detail coefficients). In (Attallah, 2000 and Hosur & Tewfik, 1997), the



success of the WTD-LMS algorithm in removing noise from essential (sine, pulse,
binary sequence, etc.) signals were tested. In these studies, error signal calculation is
made in the time domain, and only one adaptive filter is applied. In this way, the
inverse transformation has to be done at every iteration of the algorithm. This method
increases computational complexity too much, especially for data with many samples.
Furthermore, unfortunately, it will not be possible to completely filter the noise with a
single adaptive filter since the same noise level does not affect all sub-bands of the

signal in each noise type.

In the light of information given up to now, in the first part of our study, we worked
on a two-channel speech enhancement method that uses Wavelet Transform Domain
(WTD)-LMS/NLMS algorithm. For Two-channel speech enhancement applications, a
speech recording system with two sensors or microphones is required. In other words,
noisy speech signals should be recorded from two different sources. In this system,
one microphone records the noisy speech signal, while the other is positioned closer
to the noise source and records the noise signal. These systems can be used when the
speaker and the noise source are almost stationary (such as aircraft cockpit,
construction equipment interior, etc.) and require extra costs and equipment to record
the noise (reference) signal. To avoid these additional requirements, researchers have
studied single-channel speech enhancement applications. In these applications, there
is no need for a second recording device that records the reference signal. However,
although much work has been done in this area so far, due to some reasons that will be
explained in the following sections, the success of two-channel speech enhancement
applications, especially in terms of voice intelligibility, has not been achieved by

single-channel systems.

DWT is one of the most preferred methods for single-channel speech enhancement
applications. It is mainly used in speech enhancement applications with thresholding,
spectral subtraction, Wiener filtering methods because it provides an excellent
resolution to examine different frequency values of non-stationary speech signals. In
former thresholding methods, threshold values are manually adjusted, which is hard to
implement, especially for unknown noise. In the latter application, the noise estimated
after estimating the noisy frames (Active Voice Detection (AVD)) in sub-bands of
signal with various decision-making algorithms is used to perform spectral subtraction

or thresholding (Ozaydin & Alak, 2018 and Abd El-Fattah et al., 2013). Even though



this method is acceptably successful in increasing the Signal to Noise Ratio (SNR)
value, they are mostly unsuccessful in enhancing speech intelligibility due to the loss
of speeches' frequency component where the frequency value of speeches and noises

overlapped.

In the last few years, due to the acceleration of artificial learning and deep learning
applications, the use of Deep Neural Networks (DNN) in speech enhancement
applications has become popular. Among the deep learning methods, the most
commonly used speech enhancement methods are Deep Auto Encoders (DAE) (Feng
et al., 2014), Recurrent Neural Network (RNN) (Maas et al., 2012), Long Short-Term
Memory (LSTM) (Gao et al., 2018), Speech Enhancement based on Generative
Adversarial Network (SEGAN) (Pascual et al., 2017), and Convolutional Neural
Network (CNN) (Park & Lee, 2017 and Yuliani et al., 2021). In this study, we worked

on a CNN-based network for a single-channel speech enhancement system.

CNN is a model inspired by the vision mechanism of animals and obtained by
combining this mechanism with mathematical theory. It can extract the spatial
relationship between image pixels with the help of sliding filters in each layer. In
addition, it has been reported that it is more efficient than RNN-based speech
enhancement applications and provides more successful results with fewer parameters
(approximately ten times smaller network) than RNN (Park & Lee, 2017). Thanks to
the CNN's ability to capture the pattern in two-dimensional data, it is predicted that the
system will efficiently distinguish between speech and noise when the time-frequency
distribution of speech signals is used as an input signal of CNNs. In light of this thought,
many studies so far have used spectrograms of speech signals as the input signal of
CNN (Shi et al., 2018). The spectrogram contains the time-frequency distribution
information of the speech signal obtained by the Short Term Fourier Transform (STFT)
of the speech signals. One of the most effective methods of observing the time-
frequency distribution of signals is the scalograms obtained by the CWT of the signal.
Thanks to the multi-resolution provided by WT, scalograms allow more efficient
observation of all frequency components. Based on this information, a speech
enhancement application with a CNN using scalograms of speech signals as input is
proposed in this study. In the study, it is thought that increasing resolution in the time-
frequency distribution, which is the input signal, will increase the network’s success

in capturing the required pattern.



1.3. Aim of Study

There are three main purposes of presenting this thesis. The first and most important
aim is to propose speech improvement methods with increased efficiency (in terms of
error reduction, intelligibility increase, and quality improvement) by using the features
offered by wavelet transform in signal analysis. The other two aims are to evaluate the
success of the proposed methods with the evaluation criterias accepted for speech
improvement applications and to present the results comprehensively and

comparatively.

In the thesis, two different sound enhancement applications were proposed for two
different recording systems. The study's contributions aimed to be achieved for each

application are as follows.

o Two-channel enhancement application: speech enhancement with WTD-

LMS/NLMS algorithms

The proposed method aims to increase the success of the applications done so far and
eliminate the previously stated deficiencies of two-channel speech enhancement
applications, especially for voice communication with hands-free mode. For this
purpose, in the proposed method, after separating the signal into sub-bands with DWT,
a separate adaptive filter is applied to each sub-band. This way aims to avoid speech's
noise effect as much as possible, even for the noise with changing spectral properties.
Also, in the proposed method, adaptive filtering is done entirely in transformation
domain. Thus, avoiding inverse transformation at every step reduces the complexity
of the process. The final aim of this application is to optimize the proposed method's
parameters and obtain a closed-box two-channel speech enhancement system that

provides de-noising of speech signals under variable noise effect.

o Single-channel enhancement application: Speech Enhancement by CNN using

Scalograms

The key objective of this method is to investigate the success of the proposed CNN
method in terms of speech enhancement ability. In the proposed method, scalograms
were used as input of CNN to utilize the multi-resolution properties of CWT. To
achieve the stated goal, obtaining scalograms of speech signals with optimal

parameters, designing the CNN that will best process these features for speech



enhancement, comparing the results with previous studies, and measuring the system's

success was carried out one by one.

1.4. Thesis Organization

The contents of the chapters of the thesis are as follows:

» Chapter 1 - Presents the motivation of the thesis and the engineering problem,
provides brief information about the studies in the literature in the field of speech
enhancement by discussing their advantages and disadvantages. Finally, it indicates

the aim of the study for each application done in the study.

« Chapter 2 — Explains the theoretical background of the study briefly. Firstly, it gives
short information about the scope of speech enhancement applications, nature of
speech, commonly effective noises, and frequently used evaluation criterias. Then, it
presents theoretical knowledge about the methods used in speech enhancement
applications: Wavelet Transform, Adaptive filters, and Convolutional Neural
Networks (CNN) in this study.

* Chapter 3 - Includes new approaches for speech enhancement application with
obtained results after simulation of methods implemented on MATLAB. There were
two new approaches to utilize the wavelet transformation's well performance in speech
signal examination in the study. Firstly, it describes an adaptive filter system in the
wavelet transform domain as a double-channel speech enhancement application. Then,
it explains a single-channel speech enhancement application with CNN fed by wavelet
scalograms. Moreover, it presents the data used in the implementation, methodology
of the proposed methods or approaches, results, and discussions with comparisons for

each new approach.

» Chapter 4 - Summarizes all results obtained in the thesis and discusses the study's

contribution to state of art. Finally, it presents envisioned further studies and

developments.



CHAPTER 2
THEORETICAL BACKGROUND

2.1. Speech Enhancement

Speech enhancement applications aim to improve both the quality and intelligibility of
speech signals impaired by additive noise. From this point of view, it is possible to say
that this field of study is a specialized sub-application of audio denoising applications

and is sometimes known as the noise removal method (Loizou, 2017).

In many cases, speech enhancement is necessary, and it can be used as a pre or post-
processor to ensure smooth application functionality. In most scenarios, the speech
signal is corrupted by the noise from the ambiance, recording devices, or transmission
channels. For example, in voice communication, ambient noise has a highly disruptive
effect on the speech recorded in a boisterous environment at the transmitting end.
Therefore, it is beneficial to apply speech enhancement at the receiver end to increase
speech quality or before transmission to ensure smooth voice communication (Loizou,
2017). In a speech recognition or voice command system, with the help of speech
enhancement applications, the recognition accuracy of the system can be increased. In
hearing aid design, the background noise can be removed from speech before the
amplification process by a speech enhancer to provide the best understanding of
conversations to patients. These examples emphasize the importance of speech

enhancement applications (Chaudhari & Dhonde, 2015).

Speech enhancement methods can be classified based on the number of recording
sensors used in the system (Xu et al., 2015). There are single-channel or multi-channel
recording methods. Two or more microphones are used to record speech signals in a
multi-channel system. The most commonly used method among multi-channel
recording is a two-channel system that includes separate microphones for reference
noise and noisy speech signal recording. The microphone used to record the reference
signal is closely located at the noise source. There is only one microphone in a single-
channel system, and this records noisy speech signals. These systems' main challenge

is distinguishing unknown noise from speech signals. In this case, characteristics of



the noise source, the relationship of noise with clean speech (interference, correlation)

are gaining importance.

Furthermore, the number of sensors used in the system can affect the success of speech
enhancement. In general, multi-channel systems with more sensor are more successful
than single-channel systems. In other words, the increasing number of sensors in
speech enhancement applications provides a rise in success (Zhang & Zhao, 2013 and
Loizou, 2017). However, single-channel speech enhancement application is still one
of the significant research areas because of ease of application, lower implementation

cost, and convenience (Chaudhari & Dhonde, 2015).

This study proposes an advanced application of single-channel and double-channel
speech enhancement with the help of wavelet transform. Thus, we aim to observe the

contribution of wavelet transform for both methods.

2.1.1. Speech Signals and Noises

This section will present brief information about speech signals and noises primer

subjects of speech enhancement applications.

Speech is a type of sound produced by humans. Sound waves are defined as waves
transmitted by the compression and rarefaction of particles that cause pressure changes
in the atmosphere. These waves that we cannot observe with the naked eye are likened
to those that appear when a stone is thrown into a still pond. The primary source of
sound waves is vibrations emanating from an entity. This entity can be an instrument
string, the diaphragm of a speaker, or the vocal cords of a human being (Borisagar et

al., 2019).

In general, speech is pressure waves created by reshaping the air from the human lungs
by the vocal cords, mouth, tongue, teeth, and lips (Rabiner and Schafer, 2007). Speech
signals, which form the basis of auditory communication, are an acoustic waveform of
an analog message. The microphone converts this acoustic waveform into an electrical
waveform for later analog or digital processing. However, the recorded signal by the
microphone is still an analog or a continuous signal. Therefore, it is crucial to convert
this signal to the digital form to store, transmit, or process in digital environments such

as computers.



As an essential part of digital to analog converters, sampling rate affect the
intelligibility, amount of information, and perceptual quality of speech. For digital
speech processing, after several studies about the nature of speech signal, its
production, and characteristics of speech(phonemes), it was observed that the optimum
sampling frequency for speech signal is 44.1 kHz (CD quality) as the electromagnetic
spectrum of the speech signal in between 20-20 kHz (Rabiner and Schafer, 2007). With
this sampling rate, all speech features in terms of intelligibility are saved by the digital
version, and the digital version of the speech is nearly the same as the original version.
However, according to application demand, lower sampling frequencies can be
selected in speech processing applications. For instance, for telephone communication,
the sampling frequency of the speech signal is 8 kHz. Since, intelligibility reduces in
lower rates, sampling frequencies less than 8 kHz is not appropriate for speech
processing applications. In this study, we worked with 8 kHz as we focused on the

case of mobile communication in a high noise environment with hands-free mode.

The time-amplitude representation of speech signals is called waveform representation.
Because of the nature of speech, the speech signal's time and amplitudes are dynamic,
continuously changing over time. Therefore, it is hard to distinguish most of the critical
properties of speech only by observing the waveform of speech. In this case, the
frequency domain examinations or frequency spectrums are a helpful tool. Although
speech signals have changing frequency content over time, when the Fourier spectrum
of the signal is examined, it is observed that 80% of the energy of speech signal lies
below 1 kHz, and a negligible amount of energy exists above 8 kHz (Borisagar et al.,
2019). Therefore, it can be said that a speech signal is a low-band signal with most of
the energy is located in lower frequencies. However, in terms of intelligibility, all
frequency components, including higher frequencies, have critical importance

(Monson et al., 2014).

From the signal processing view, noise can be defined as unwanted additive signals
that affect the desired signal and reduce its quality or processing capacity (Haykin,
1996). From the first moment that a speech signal comes out of the human mouth, it is
exposed to various noises coming from the entire environment. For example, speech
signals propagating from wireless medium come across various noises emitted or
produced by different noise sources such as ambient acoustic noise, thermal noise of

recording devices, channel noise, electromagnetic noise (Borisagar et al., 2019). The
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source of noises can change, but they affect the quality and intelligibility of speech
signals. In general, the success of speech processing in terms of noise reduction is
highly dependent on knowledge about noise features (Vaseghi, 2008). Moreover, the
spectral characteristics of the noises determine the noise reduction method to be used.
For instance, while the noise reduction process with conventional filters gives
successful results when the frequency components of the speech signal do not overlap
with the noise, noise reduction methods such as adaptive filters, which require further
investigation, are needed in case the frequency components overlap. Figure 1.1 shows
the possible noise effect coming from different sources, affecting speech signals
throughout any speech applications. According to Borisagar, the definitions of the

noises emitted from different sources are as follows (Borisagar et al., 2019):
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Figure 2.1. A schematic shows possible noises from different sources affecting the
speech signals throughout any speech application.

e Ambient noise or Acoustic noise: Noises originating from the environment.
These noises can be created by rotating, moving, or vibrating objects such as
engines, cars, work machines, electrical devices such as air conditioners, fans,

natural events such as wind, storms, or by people.
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o Thermal noise: 1t is produced by electronic devices because of heat. The
components of electronic devices move or vibrate because of heat caused by
electric current and produce thermal noises. It is unavoidable for all electronic
environments. Generally, additive white noise is used to simulate this noise in

digital processing.

o Electrostatic noise: 1t is the noise caused by the presence of voltage or, in other
words, caused by the flow of electric current. A well-known example is a noise

produced by fluorescent lamps.

o Electromagnetic noise: The noise affects all frequency bands during the
transmission or reception of speech or other data with radio frequencies.

Therefore, all devices working with radio frequency are exposed to this noise.

e Channel Distortion, fading and echo: Channel distortion can be defined as the
losses caused by the transmission medium while sending a signal from the
transmitter to the receiver. Fading occurs when the receiver and transmitter are
mobile during communication. The transmitted signal may be weakened or
distorted due to fading. In addition, the reflection of the speech signals from
the objects in the environment and returning to the recording device is defined

as echo and has a disruptive effect on the intelligibility of the speech.

e Processing noise: It is the type of noise caused by the errors that occur during
speech signal processing. It can be caused by quantization, especially in
converting the analog speech signal to digital and converting it back to analog.
One of the reasons for this error is data loss due to error-prone channels. It can
also occur during encoding/compressing or decoding/decompressing stages for

the same reason.

In addition, noises are examined according to their spectral properties under various
classifications such as white noise, colored noise, narrow-band noise, band-limited
noise (Borisagar et al., 2019). These classifications have been made based on the

frequency band where the noise is effective.

It is critically important to have basic knowledge of speech signals and noise signals
for successful speech enhancement application. In this study, we aimed to propose

speech enhancement applications that can reduce all types of noise effects on speech

12



signals. For this purpose, we select a variety of noise that can simulate the majority of

these noise effects on speech and tried to reduce this effect as much as possible.

2.1.2. Evaluation of Speech Enhancement Applications

Another critical issue for speech enhancement applications is the evaluation of speech
quality or intelligibility, which is the most important criterion for measuring method
success. In this section, we introduced some of the globally accepted evaluation
metrics used in the study to measure and compare the study's success with similar

studies in the literature

Speech evaluation studies are generally divided into two categories as subjective and
objective assessment methods. In subjective methods, it is expected that a group of
pre-trained listener rate the quality or intelligibility of speech signal under pre-
determined limits after the real-listening process. These methods provide the most
convenient, reliable, and robust assessment of speech quality and intelligibility.
However, these methods are time and effort-consuming because of listeners' real-
listening process and training (Yi Hu & Loizou, 2006). Therefore, objective methods

are mostly preferred for the evaluation of speech processing applications.

In the objective methods, the quality or intelligibility of speech is measured by
mathematical comparison of clean and processed speech signals. The main goal of this
method is to evaluate speech quality by using the numerical distance between related
signals. In this study, we used six different objective evaluation metrics to measure the

success of the approaches offered.

The Mean Square Error (MSE) is the first method used in the study to measure the
success of the speech enhancement process. It refers to the average energy of error on
the speech signals. This error can be thought of as the amount of distortion on the
signal. In this case, decreasing value of MSE refers to minimum distortion on speech
signals. The formula used to calculate the MSE value is presented in (1) (Haykins,

1996) as;

MSE=%Z =O(s(n) — y(n))2 (1)

where N is the number of samples, s(n) is the n™ observation of the clean speech and

y (n) is the de-noised signal. Since the magnitudes of signals are various in different
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algorithms, the range of MSE will vary from one study to another. This metric is

frequently used in learning algorithms to observe converges to optimum results.

Signal to Distortion Ratio (SDR) or Signal to Noise Ratio (SNR) is the other method
used to measure the success of the speech enhancement method. It can be interpreted
as the ratio of the energy of processed signal to the energy of distortion in decibel (dB).
In this method, distortion or error signal is calculated by taking the difference between

clean and processed signals. The equation used to calculate SDR is given in equation

(2) (Park & Lee, 2017).

N 2
SDR = 101log;, AL ;
Y. (stm-ym)

)

Where y(n) is the clean signal, s(n) is the enhanced speech signal, N is the number of
samples. A high SDR value indicates that we are getting closer to the value we desire,
clean speech. This ratio is a measure that is frequently used as an evaluation criterion
in noise reduction application for speech signals.

SNR is helpful to observe the ratio of the energy of error on the signal, but for further
examination, for speech signal, a particular type of SNR is used called Segmental SNR
(Seg-SNR). This metric can be calculated both in the time and frequency domain, but
the calculation of Seg-SNR in the time domain is commonly preferred (Loizou, 2017,
p.635-636). In this method, SNR values are calculated for short-time segments of
speech, and by taking the average of these values Seg-SNR is obtained. The formula

of Seg-SNR calculation is given in (3).

Nm+N-1 S(Tl)z

10 - Zn=Nm
SNRseg = ﬁ2%=% l0g10 zglnl\;f/,\{ivl(s(n)—y(n))z

(3)

where s(n) is the original (clean) signal, y(n) is the enhanced signal, N is the frame
length (32 milliseconds (ms) for this study), and M is the number of frames in the
signal (Loizou, 2017, p.635).

Although MSE and SNR values are sufficient to measure the convergence of the
processed speech signals to clean speeches by observing the energy of the error signal,
they do not contain any information about the quality and intelligibility of the speech
signal. For this purpose, the Perceptual Evaluation of Speech Quality (PESQ) and the
Short-Time Objective Intelligibility score (STOI) measurement criteria were used in

the study.
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PESQ is a family of standards that includes a test method for automatic objective
evaluation of speech quality (Al-Akhras et al., 2010). It is standardized as ITU-T
Recommendation P.862 (02/01) (Hu & Loizou, 2008) and the code taken directly from
the standards was used in this paper. In this standard, audio signals are scored between
0.5-4.5; 0.5 indicates that the sound quality is very poor, and 4.5 indicates that the
sound quality is very high. STOI is a method used for the subjective intelligibility
estimation of the audio signal. It is often used to prevent loss of time and workforce
caused by real listening and evaluation practices. In this method, the intelligibility of
audio signals was scored with correlation values ranging from 0-1. Therefore, it is
possible to say that the intelligibility of the audio signal with a high STOI value is
higher (Taal et al., 2011). The algorithm used at this thesis is taken from (Taal et al.,
2011).

2.2. Wavelet Transform

Analyzing signals in the time domain does not always provide enough information for
signal processing. Therefore, many transformation methods have been used to analyze
and process signals, such as Fourier Transform (FT), Laplace Transform (LT), Fast
Fourier Transform (FFT), Short Time Fourier Transform (STFT), and Wavelet
Transform (WT).

Fourier transform is one of the former methods used to analyze signals. This method
is used to transform time-domain signals into the frequency domain. So, we can
observe the frequency content of a signal, but there is no information about the time
that includes this frequency content (Huang, 1999). Therefore, FT is not appropriate
for analyzing a non-stationary signal with changing properties both in the time and
frequency domain, such as speech signals. Then, STFT, a type of Fourier transform
calculated over the short signal time, was introduced for the frequency-time analysis
of the signals. In this method, a windowing operation is applied to signal to divide
signal into small segment then FT of this small segments calculated to ensure time and
frequency information at the same time. The window size is vital for this method
because it is directly related to the time-frequency resolution. Therefore, it should be
nearly equal to stationary segments on the signal, and it is hard to determine for
unknown non-stationary signals. Moreover, the size of the windows for STFT is the

same for all frequency bands. Thus this method does not provide good resolution for

15



high frequencies of the signal. Therefore, WT with multi-resolution properties,
detailed in the section, was proposed to overcome the drawbacks of other transform

methods, especially for non-stationary signal processing.

Up to now, WT has been used for many signal processing applications such as heart
monitoring, analyzing financial indices, video image compressing, denoising (Addison,
2002). Furthermore, because of its pretty good performance in signal analysis and
feature extraction, WT contributes to the success of methods combined with it, such
as various artificial learning applications and speech enhancement applications. In this

section, we will briefly present wavelet transform methods used in this study.

2.2.1. Continuous Wavelet Transform

The wavelet transformation is an orthogonal time-frequency transformation and is
generally used to separate the signal into high and low-frequency components. The
WT represents the signal in terms of wavelets which are scaled and translated mother
wavelets, like FT, which represents signal by superposition of sine and cosine. To
calculate WT, we need a wavelet that is the function satisfying specific mathematical
criterias. This wavelet (also called mother-wavelets) is used to localize the time and
frequency properties of the signal by being manipulated through the process of
translation (i.e., shifting over the time axis) and scaling (i.e., stretching or compressing
the wavelet) (Addison, 2002). Therefore, selecting the mother-wavelets function has
great importance on proper feature extraction by this method. There are several mother

wavelet functions used to calculate WT and Figure 2.2 illustrates some of them.
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Figure 2.2. The graph of six different mother-wavelet functions used commonly.
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The wavelet coefficient obtained after WT represents the measure of similarity or
correlation in the time-frequency content between a signal and a selected mother-
wavelet function and these coefficients are calculated by the convolution of the signal
and the scaled mother-wavelet function (Ergen, 2012). The formula used to calculate

continuous wavelet transform (CWT) is presented in (4) (Addison, 2002);
T(a,b) = \/_.l- x(H)¥ ( )dt 4)

t—b
Where x(t) is the signal in time domain, T(a, b) is the CWT of the signal, ¥ (T)
is translated and scaled mother-wavelet function, a is scale parameter, b is translation

parameter and the asterisk indicated the complex conjugation operator.

In the study we use CWT to obtain scalograms of speech signal in feature extraction
phase of speech enhancement application with CNN. Scalograms is a method used to
observe time-frequency energy density of a signal. The formula used to calculate

scalograms is given in (5) (Addison, 2002);
SC(a,b) = |T(a, b)|? (5)

Where SC(a, b) is known as two-dimensional energy density function of signal at a
scale and b location. A plot of SC gives the scalogram. The resolution of the time-
frequency distributions obtained with the scalogram and spectrogram were compared
with the visuals shown in Figure 2.3.

CWT - Scalograms STFT - Spectrograms
| LJ :
i

oy o,

] [ ]

I ) !
e (L
hrp (L) s

ST PRI il

VAN UU : J\]\P PPV e

2
|hen () |

|0 (6) |7 it
A AL AL

b, Lo ba t by b bs t

Figure 2.3. Time-frequency resolution comparison between spectrogram and
scalograms (Addison, 2002).
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As seen in the figure, the scalograms provide better time-frequency resolution for
higher frequencies. However, with spectrograms, it is hard to observe rapid changes in
higher frequency. Therefore, we can miss some speech features in the feature
extraction phase, especially for over noisy speech, which might decrease the ability to
learn in the neural network. Starting from this point, in our study, we expected that the
learning of the neural network, that is, the success of speech enhancement, would
increase as a result of using the scalogram instead of the spectrogram, which is
frequently used in the literature during the feature extraction stage, and we developed

our single-channel speech improvement approach accordingly.

Finally, the time-domain representation of the signal is obtained using Inverse CWT

(ICWT). The formula used in the reconstruction phase is given in (6) and (7);

0= [ [ T@b) Wop(0) ©
Yo () = =¥(5) (7

Cy in (6) 1s called as admissibility constant. This formula allows to obtaining original

signal by integrating over all scales and locations (Addison, 2002).

2.2.2. Discrete Wavelet Transform

In CWT, the scale parameter a and translation parameter b have infinitely many
values to represent the signal in the wavelet domain, and it is sometimes called a
redundant transform. Discrete wavelet transform (DWT) is the discretized version of
the CWT, and it is introduced to eliminate this redundancy and reduce computational

complexity.

DWT is calculated as a result of discretizing scale a and translation b parameters in
wavelet function. The equation representing the discrete version of the wavelet

function is shown in (8).

t—-nbyal®
)

P (£) = =¥ ®)

m
)

Where m and n are the integers that control scale and translation, respectively, a, is
fixed scale step-size, by is fixed translation parameter, and ¥y, ,(t) is the discretized

version of the wavelet function.
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By replacing discrete wavelet function wavelet transform formula given in (4) the

equation of DWT can be obtained. The formula of DWT is;
T = [ (O ¥ n(6) dt ©)

Where T, ,, are discrete wavelet transform coefficients on the scale-location grid of

index m, n (Addison, 2002).

The wavelet coefficient should satisfy the condition given in (10) to ensure the validity

of inverse transform for DWT.

2
AE < ¥ oY o|Tmn| < BE (10)

Where A and B are upper and lower frame bounds and E is the energy of signal in time

domain.

To obtain discrete wavelet function, one of the common choices for parameters a,
and b, are 2 and 1, respectively. This scale-location frame is called a dyadic grid, and
it is the simplest and most efficient way of discretization for many applications.
Furthermore, the wavelet functions obtained as a result of this selection are
orthonormal. Thanks to this property, after wavelet decomposition of the signal, we

can observe and process subbands of the signal separately without any loss.

The basic idea of the DWT is to decompose the signal into sub-signals corresponding
to different frequency band contents. In the decomposition step, a signal is expressed
as a series of orthonormal wavelet functions that constitute a wavelet basis (Misiti,
2006). Starting from the formula given (9), it can be said that DWT is a filtering
operation with a discrete wavelet function representing filters in varied scales (Huang,
1999). Therefore, DWT can be implemented using the filter bank to decompose the
signal into different subbands. The decomposition of the signal into different subbands
with different resolutions ensures multi-resolution ideas can be realized using
successive low pass and high pass filtering. The schematic given in Figure 2.4 explains

the two-level decomposition and reconstruction of a signal in DWT.
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Figure 2.4. (a) 2-Level decomposition of the signal, (b) Reconstruction of the signal
using detail and approximation coefficients.

In the decomposition phase given in Figure 2.4 (a) So, is called as O level
approximation coefficient and it is equal to x(t) which is the original signal, in general
Sm.n is the mt" level approximation coefficient for m=0,1,2.. and Ty, ,, represents the
m*" detail coeficents m=1,2... The signal can be represented using this approximation
and detail coefficient obtained as a result of DWT. In general, approximation
coefficients include information about the signal's lower frequency content, and the
detail coefficients give information about the higher frequency content. The increasing
number of decomposition levels allows observing higher frequencies of signal with
increasing frequency resolution. However, after each decomposition level, the time
resolution decreases because of the subsampling operation. Therefore, it is crucial to
determine the correct decomposition levels to observe the signal's subbands with good
resolution. The procedure shown in the figure can be repeated for further

decomposition by adding successive low and high pass filters.

Figure 2.4 (b) describes the reconstruction of the original signal using this detail and

approximation coefficients.

In general, the original signal in the time domain can be obtained by the formula given

in (11) or (12) which is called Inverse DWT.
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x(t) = Zm=—ooZ:=_oo Tm,nqjm,n(t) (11)

[ee]

x(t) = 2?=—oosm’,n¢m’,n(t) + ZOO Zn=—oo Tm'nqjm'n(t) (12)

m=—oo

In (12) @, ,(t) is called as scaling function and 1t is represented as high-pass filter
in figure 2.4. This formula summarizes the information that the original signal can be
obtained by summing the approximation and detail coefficients at decomposition

levels.

2.3. Adaptive Filters

Filters can be examined under two main headings: adaptive filters and non-adaptive
filters (Gupta et al., 2015). Conventional filters, which are non-adaptive, are filters
with constant filter coefficients. Because of this property, it is not possible to process
statically non-stationary signals with these filters. Besides, to denoise signals with this
type of filter, some characteristic information about noise signals such as the influential
frequency band of noise should be known precisely. However, the signals used in real-
life applications such as speech is generally non-stationary, and the characteristic of
the noise signal that causes distortion may not be known in every case. Moreover, even
the characteristic of noise is known, the frequency components of signal and noise can
be overlapped. For example, the frequency content of a speech signal under the effect
of low SNR broad-band noise mostly overlaps with the noise's frequency content.
Therefore, if we try to denoise this speech signal with conventional filters, it is very
probable to lose overlapping frequencies' that affect the speech's intelligibility. In such
cases as in the example, adaptive filters are preferred. The diagram showing the

overall functioning of the adaptive filters is shown in Figure 2.5.

Vs ldm

*
X(n) Digital FIR filter y(n) 46 e(n)
w(n) -
Adaptive
Algorithm *

Figure 2.5. Block diagram of adaptive filtering
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Adaptive filters can adjust the filter coefficients based on the current value of the input
signal without having any prior knowledge of the characteristics of noise affecting the
signal (Haykins, 1996). In these filters, the output signal y(n) is obtained by
convolution of the input signal with x(n) and digital filter coefficients w(n). Then, the
error signal is obtained by taking the difference of the desired signal d(n) and the output
signal y(n). Finally, adaptive learning algorithms update the digital filter coefficients
using the resulting error signal e(n) in every iteration of the filtering operation. This
process continues until the desired performance criteria are met (Kumar & Rajan,
2012).

The main working principle of the adaptive filter is the minimizing squared error value.
Wiener-Hopf equations are used to achieve optimum adaptive filter weight in general.
These equations are accepted as the basis of adaptive filters and algorithms, and the

representation of these equations in matrix format is as follows (Haykin, 1996):

R-w,=p (13)
w,=Rlp (14)

The R symbol shown in the equations describes the auto-correlation matrix of the input
sequence, the p symbol indicates the cross-correlation vector of the input signal and
the desired signal. Finally, w, include optimum filter coefficients. Thanks to these
equations, we can achieve the adaptive filter's optimum filter coefficients (weights).
However, it is not easy to achieve the optimum solutions analytically with these
equations because of the computational complexity caused by statistical examinations
and matrix inversion. Therefore, some adaptive learning algorithms that aim to achieve
these optimum weights iteratively are preferred to eliminate these extra computational

costs.

The Least Mean Squares (LMS) algorithm is an improved Steepest Descent algorithm,
one of the most commonly preferred learning algorithms for adaptive filters. The main
reason for choosing this algorithm for the proposed adaptive speech enhancement
approach is that it provides ease of calculation, good converge speed, robust solutions
in terms of stability. The equations used in the LMS algorithm can be listed as follows
(Haykin, 1996);

y(m) = wm)™.x(n) (15)
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e(n) =d(mn) —y(n) (16)
wn+1) =wn) + ux(n)e*(n) @an

Where y(n) is the output signal, w(n) is the initial value for filter coefficient, x(n) is
the input signal, d(n) is the desired signal, p is the step-Size, w(n+1) represents updated
filter coefficients, the superscript H denotes Hermitian transposition, and * denotes the
complex conjugation. As frequently used for adaptive noise cancellation applications,
a type of double-channel sound enhancement application, the noisy speech signal is
used as the input signal x(n), and the noise signal is used as the reference or desired
signal d(n). So, the error signal e(n) was estimated by running the adaptive algorithm

giving out the noise-free speech signal.

The adjustment of step-size p is of critical importance in stability of LMS algorithm.
For the algorithm to function smoothly, the step-size value must satisfy the following
condition (Haykin, 1996);

0<,u<1//1 (18)

max

where 4,4, 1S the maximum eigenvalue of the autocorrelation matrix of the input
signal.

NLMS algorithm, another algorithm used in the study, is obtained by the normalization
of the LMS algorithm. The set of equations used to implement the NLMS algorithm
can be defined as follows (Haykin, 1996);

e(n) =dn) —wmn)".x(n) (19)
whn+1) =w) + mx(n)e*(n) (20)

where e(n) is represented as the error signal, d(n) is the desired signal, w(n) is the
initial value for filter coefficient, x(n) is the input, i is adaptation constant
and w(n + 1) is represented as updated filter coefficient. The operation of the LMS
and NLMS algorithms is very similar. The main difference between these two
algorithms is that step-size is normalized with the energy of input signal.

LMS algorithms are mostly preferred adaptive learning algorithms, and these filters
can be used for many applications, especially speech enhancement, thanks to their ease
of application and robustness. However, these filters in the time domain have some

critical drawbacks for processing large data sets or signals with many samples. For
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example, the computational complexity and the converge time, the time required to
meet desired performance criteria or filter weight, increase when a signal with an
increasing sample number is processed with a time-domain adaptive filter. Therefore,
the concept of Transform Domain Adaptive Filter (TDAF) was introduced to

overcome these deficiencies.

The TDAF can be defined as a parallel application of an adaptive filter to the pre-
processed input signal with an orthogonal transform and normalization (Beaufays,
1995). Many orthogonal transformation methods are used in TDAF, such as Fourier
transform, Discrete Cosine Transform, Walsh-Hadamard transforms, and Wavelet
Transform. Among these methods, WT steps forward because of less computational

complexity and better time-frequency examination properties.

The general scheme of TDAF is illustrated in Figure 2.6.

W,
x(n) .
pA— v
NxN "
x(n-1) Linear
Transform
X(n-N+1}) Yot

Figure 2.6. General diagram of adaptive filtering in transform domain (Jenkins &
Marshall, 1999).

In transform domain adaptive filters, the input signal is first divided into parallel
branches called sub-band signals using orthogonal transformations. Then, the
application of adaptive algorithms to the obtained parallel branches is performed in the
transformation domain. However, as seen from the figure, the error signal calculation
is performed in the time domain in general. For this, firstly, the signal in the time
domain is obtained using inverse transformation. After calculating the error signal in

this domain, transform domain filter weights are updated using this error value.

The main disadvantage of the LMS adaptive filter in the time domain is the
dependency of converge speed of the adaptive filter on the eigenvalue spread of the
autocorrelation matrix of the input signal. The eigenvalue spread can be defined as the

ratio of maximum eigenvalue to minimum eigenvalue (Haykin, 1996), and the
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optimum converge speed for this algorithm can be achieved when the eigenvalue
spread of the autocorrelation matrix is equal to one (Beaufays, 1995). Thanks to the
orthogonal transformation applied to the input signal, the signal is de-correlated as
much as possible, i.e., the eigenvalue distribution of the autocorrelation matrix of sub-
signals approaches unity (Jenkins & Marshall, 1999 and Akhaee et al., 2005). Thus,
the maximum convergence speed of the algorithm can be achieved. Furthermore, in
this phase, power normalization contributes to obtaining unity eigenvalue spread and
regulating error surface that increase convergence speed and stability of the algorithm.
In our study, we aim to achieve power normalization only using the NLMS algorithm
without extra normalization, and we observed an increase in success with the help of

normalization integrated in the algorithm.

Moreover, decomposition of the signal into subband signals with orthogonal transform
provides the opportunity to process subband signals separately because orthogonal
transformations minimize cross-correlation of subband signals. Thereby, with the
parallel application of the adaptive filter, the adaptive filter length and the time
required for convergence can be reduced because of fewer samples included by the

subband signal.

In this study, we proposed a double-channel speech enhancement method using
wavelet transform domain adaptive filters, a type of TDAF. To create this method, we
utilize the background information presented up to now. The detail about the proposed

method and results will be given in the next chapter.

2.4. Speech Enhancement with CNN

Convolutional Neural Networks (CCN or Conv-Net) is a type of deep learning network
frequently used in visual estimation (Park & Lee, 2017). Due to the success of the
method in image processing, it has been used in recent years to improve speech signals.
In speech enhancement methods with CNN, firstly, one-dimensional speech signals
are pre-proceed with time-frequency transformation, called feature exaction phase, to
convert it into two-dimensional signals. Then, the data obtained after pre-process is
used in CNN as an input to utilize the pretty good performance of CNN's in two-
dimensional data (signal) processing. CNN is a model inspired by the vision

mechanism of animals and obtained by combining this mechanism with mathematical

theory (Ttfek¢i & Karpat, 2019). Generally, it aims to use the spatial relationship
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between image pixels. It is based on the discrete convolution of the image pixels with
the filter sliding over the image to detect relationships among the pixels. The discrete
convolution process in CNN is frequently used to determine the features of the image

and classify the images according to these features (Shahriyar et al., 2019).

2.4.1. Learning Methods used in CNN

CNN has a multi-layered architecture with an input, an output layer, and hidden layers.
There are generally three types of learning models classified as supervised,
unsupervised, and semi-supervised learning (Koushik, 2016). Supervised learning can
also be called mapping in general (Koushik, 2016). In this type of training, inputs and
desired outputs are given to the system during the training phase. The system is
expected to create a function explaining these examples' relationships. In short, it maps

inputs to output.
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Figure 2.7. Diagram of supervised-learning based speech de-nosing with CNN.

In Figure 2.7. the X and Y are the input and desired output sample pairs to be used to
train the network as shown in equations (21) and (22) in general (Shahriyar et al.,
2019). In this type of learning, neural networks create a mapping function that sets the

relation between input and desired output values.

T, = { (xs'ys) 1<s< N} (21)
Js = F(xs) (22)

For Equation (1), T, shows the training data set in xg and y, are the input and desired

output sample pairs in this data set, and N is the number of samples. For Equation (22),

¥, 1s the actual output value calculated by the system with the learned parameters. The

26



F function can be called a mapping function depending on system parameters.
Training CNN aims to minimize the difference between actual output values and
desired output values. For this purpose, the mean square error (MSE) as a loss function
is calculated in each training iteration. Then, some optimization algorithms are used to
minimize this loss function. The loss function MSE equation is the same as the
Equation presented in (1). Moreover, several functions calculate loss during training
according to the application to be used. The RMSE function calculated by taking the
square root of the MSE is one of the frequently used functions for speech enhancement
applications. There are different training models or protocols for calculating the error
or loss during training. These methods can be listed as follows (Stutz, 2014);

e Stochastic training; in this model, a random input is selected from the input
set and the network parameters are updated using the error or loss function of
this input.

e Batch training; In this model, the system parameters are updated by using the
error function or loss function obtained as a result of processing the entire
input set.

e Mini-batch training; In this training model, the error value obtained from
processing the sub-input set containing a certain number of input values
selected within the input set is used to update the system parameters.

There are many optimization algorithms used in minimizing the error function. The
most preferred optimization algorithm is the Gradient-Descent algorithm. The
algorithm generally allows updating the system parameters by using the gradient
function of the loss function depending on the system parameters. This method is
called the first-order optimization method. Because while obtaining the Equation used
to update the system parameters, the first derivative of the error signal depending on
the system parameters is calculated. The Equation of the Gradient-Descent algorithm
is given in Equation (4) (Stutz, 2014);

OMSEy,

AMSEw = —y P

(23)

Where v is the learning rate constant in [0, 1] interval, w is the connection weights or

general system parameters. As seen in the Equation (23), in the Gradient-Descent
algorithm, the same learning rate constant is used to update all system connection

weights or system parameters.
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Today, an advanced Gradient-Descent algorithm, Adaptive Moment Estimator
(ADAM) optimization algorithm, is used to optimize many deep learning processes
(Kingma & Ba, 2015). This algorithm was used for optimization within the scope of
the study. In ADAM optimization, unlike the Gradient-descent algorithm, a different
learning rate obtained by using the first and second-order moments of the gradient is
used to update each system parameter (Kingma & Ba, 2015). In other words, it is based
on the logic that the learning rate per parameter is regulated and this learning rate is

used to update system parameters as connection weights.

2.4.2. Network Architecture and Layers of CNN

As mentioned earlier, CNN has a multi-layer architecture. It also consists of several
layers with different functions and contributions for the CNN architecture. Various
CNN network architectures can be obtained with combinations of these layers. Some
known and frequently used CNN architectures can be listed as LeNet, AlexNet, VGG
Net, GooglLeNet, ResNet from simple to complex. As the complexity of the
architecture increases, the number of parameters to be learned will increase, so the size
of the data set and the number of learning steps (epochs) to be used for training the
system should be increased. In this study, we create our network architecture, a type
of CNN with the skipped connection for speech enhancement applications. The details
about the architecture of the proposed network will be given in the next section. In the
continuation of this section, brief information about some layers and the operations
performed by layers in traditional CNN architecture and related hyper-parameters will
be given.

e Convolutional Layer: This layer is the essential layer for CNN. The extraction
of the visual features is provided by the operations performed on this layer.
Generally, 3D filters are used in this layer with a size of N x M x K. Here N
symbolizes the height of the filter matrix, M represents the width of the matrix,
and K refers to the depth of the matrix. The output image is obtained by sliding
these filters starting from the top corner of the image and summing the product
of the overlapping pixels (O'Shea & Nash, 2015). This shift, multiplication,
and addition process are mathematically defined as the two-dimensional
discrete convolution operation, and the name of this layer comes from precisely
here. A diagram showing how to obtain the output, in other words, the feature

map, using the filter and the input image, is given in Figure 2.8. As shown in
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figure, the matrix obtained by convolving the input matrix or image and filter
or kernel is called the feature map. At the points where the filter and the image
are similar, the feature map gets higher values, so it is detected where the
feature represented by the filter is in the image. By sliding the filter over the

image, desired features are described by the filter.

Filter

Repeated sliding and
overlapping process...

Input 1

Feature Map |
(Output)

Figure 2.8. Diagram of filter applied to a two-dimensional input to create
output in convolutional layer (Brownlege, 2020).

As shown in the figure, the size of the feature map may not be same as the
input. The dimensions of the output matrix are calculated depending on the
size of the input and filter matrices. For example, if the size of the input matrix
for each layer is m x n and the kernel (filter) size is k x I, the size of the output
matrix is determined as (m-k + 1) x (n-1 + 1). If the system has M layer, this
process is repeated M times. Depending on the properties of the application,
the dimensions of the output can be kept the same or reduced. In this case,
two hyper-parameters are effectively used in this layer to regulate the
dimensions of the output matrix (O'Shea & Nash, 2015).

o Padding: The output of a 5-layer convolutional network with an input
matrix of 250x250 and a filter matrix of 10x10 is found as 205x205.
Considering that the system will have more layers, a large part of the
input matrix is slid off due to these operations. One of the procedures
to get rid of this situation is padding. In the padding method, extra
pixels with a value of O are added around the input matrix, as shown

in Figure 2.9. The size of the output matrix to be obtained after padding
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with size s x t becomes (m-k-s + 1) x (n-I-t + 1) (Wang et al., 2020).
In this process, when s = k-1 (k: filter height), t = I-1 (l: filter width) is

selected, input and output sizes are equal to each other.

]

ojo|o 0 |0f(0ojOfO|D :
o|jo|o0 0O |0f(OojOofO|OD
o0 00
00 0|0
00 lnput 00
ofo R ofo
00 martrix 0] 0
00 00
0|0 0|0
0|0 o0
ojojojofofo 0|0 o0
ofojojof0D|0 0|0 00

Figure 2.9. Padding example with s x t padding size

o Stride: We know that the convolutional layer's output matrix is
obtained from the convolution process, which is calculated by shifting
the filter over the image at each step starting from the upper left corner
of the image. In the section so far, this scrolling action has been
considered 1 pixel per step. The method used to determine how many
pixels this filter will shift down or sideways in each step is called stride.
As the filter will scan the image with certain pixel ranges due to the
stride process, the dimensions and properties of the output matrix also
change. If the stride size is determined as a x b, the size of the output
matrix to be obtained using the m x n input matrix and k x | filter will
be [(m-k +a) / a] x [(n-1 + b) / b] (Wang et al., 2020).

Non-Linearity Layer: In CNN architecture, a nonlinear layer is generally used
after all layers (Ergin, 2020). If the nonlinear layer is not used in multi-layer
CNN, the output values of the neural network cannot go beyond being a linear
combination of input values. This layer is essential because not all learning
processes performed with neural networks are linear. This layer is also called
the activation layer because it is the layer where nonlinear activation functions
are applied (O'Shea & Nash, 2015). Some nonlinear activation functions
commonly used in neural networks are sigmoid, tanh, and rectifier. In the CNN
field, the Rectifier (ReLu) function is generally preferred because it gives the
best results in terms of training speed (Wang et al., 2020). The Equation of the
ReLu function is as shown in (24).
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f(x) =max(0,x), x=0 (24)

This function equals 0 for all input values less than zero.

Pooling Layer: In CNN, this layer is generally used after the activation layer
(Tufekei & Karpat, 2019). The primary purpose of using the layer is to reduce
the number of samples in the output matrix while keeping the image features
detected by the filter in the output matrix (O'Shea & Nash, 2015). The process
performed on this layer is a nonlinear sample reduction process. There is no
learned parameter in this layer. It is a layer that is often used to reduce
computational complexity. However, it does not give successful results,
especially in applications where the feature desired to be detected on the visual
Is essential. Therefore, it is not preferred to be used in speech enhancement
applications. Various methods can be used in this pooling process. The most
common of these are max-pooling and average-pooling.

Flattening Layer: This layer is generally used to transform the matrix-shaped
input into a one-dimensional array. It is the layer in which the connection
between fully-connected layers to convolutional layers in applications such as
image recognition and image captioning is made (Wang et al., 2020). Since
there is no image recognition or captioning process in the study, this layer was
not used.

Fully-Connected Layer: This layer is generally used to transform the matrix-
shaped input into a one-dimensional array. It is the layer in which the
connection between fully-connected layers to convolutional layers in
applications such as image recognition and image captioning is made (Wang
et al., 2020). Since there is no image recognition or captioning process in the

study, this layer was not used.
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CHAPTER 3
EXPERIMENTAL STUDIES AND RESULTS

As explained in the first two chapters of the thesis, two new approaches for speech
enhancement applications were presented in this study. One of them is a double-
channel speech enhancement application named wavelet transform domain adaptive
filters. The other is a single-channel speech enhancement application that combines
CNN and wavelet transform. The main aim of both studies was to benefit from the
wavelet transform's outperforming features in terms of signal examination for speech
enhancement. This chapter will present the methods offered for achieving the study's

main goal with illustrations, obtained results, tables, and comparisons.

3.1. A Two-Channel Speech Enhancement Application: Speech
enhancement with Wavelet Domain LMS-NLMS algorithms

This study used the WTD-LMS algorithms to improve the speech signals with the
proposed adaptive noise canceling method. The proposed method aims to increase the
success of the applications done so far and eliminate the previously stated deficiencies.
For this purpose, in the proposed method, after separating the signal into sub-bands
with DWT, a separate adaptive filter is applied to each sub-band. This method was
inspired by one of the architectures based on the different use of the WTD-LMS
algorithm presented in a review study (Huang, 1999). It is aimed to avoid the noise
effect on speech as much as possible by using multiple sub-band adaptive filters in
parallel. Also, in the proposed method, adaptive filtering is done entirely in
transformation domain. Thus, avoiding inverse transformation at every step reduces
the complexity of the process. Finally, decomposing speech signal into de-correlated
sub-band offers the opportunity to process fewer samples in parallel filters. So,
processing time and filter order can be reduced. As a result, it is aimed to increase the
convergence rate and success of the adaptive algorithm with the proposed method.
Although experiments and tests were only applied in speech enhancement in this study,

it is predicted that the obtained filter will give successful results in all systems where
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two-channel or sensor recording are available thanks to its high convergence speed

and low computational complexity.

Two experiments were made in this study to investigate the success of the proposed
method. In the first experiment, the speech signal recorded in a high noise environment
was improved using WTD-NLMS and WTD-LMS algorithms. As given in Section 2.3,
normalization is crucial for TDAF to arrange error surface and increase converge speed.
Therefore, we foresaw that normalization in the NLMS algorithm would ensure this
effect without extra computational cost. To test the contribution of normalization on
convergence speed of the proposed method, highly disruptive aircraft engine noise
with different SNR values was added to the speech signals. Thus, we aimed to simulate
a scenario of a speech taking place in an aircraft cockpit. Besides, the speech with a
short duration was selected at this stage to create a challenging condition for the
adaptive filter's convergence speed. Overall, the success of the proposed method has
been observed in challenging conditions for adaptive noise canceling applications, and

the contribution of normalization has been proven.

In the second experiment, the proposed method's success in improving speech signals
under the effect of different noise signals was investigated. For this purpose, distorted
speech signals were obtained by adding noise signals with different characteristics
such as white noise, pink noise, engine idling sound, siren sound, cafe ambiance noise
to have a low SNR value (high noise level). The proposed WTD-NLMS filter system
with optimized parameters has improved these noisy speech signals. At this stage, the
selected speech signal's duration is longer, and the SNR value of the loud speech was
arranged to be 0 dB. This SNR value is one of the most challenging conditions for
sound enhancement or noise-canceling applications. Finally, the success of the fixed
system was measured only by changing the input signals, and results were compared
with the studies in the literature. All applications in the study were carried out using

the MATLAB program.

3.1.1. Information About the Data

Two different audio signals were used in this study to visualize the results. These audio
signals are speech signals of different lengths recorded in a quiet environment. Also,
noise signals recorded in the natural environment distort these speech signals for

different scenarios. The noise signals used are aircraft engine noise, white noise, pink
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noise, siren noise, cafe ambiance noise, and engine idling noise. These noises are
preferred because; white noise represents the thermal noise (electro-magnetic noise)
that recorders have; Pink noise is often preferred for testing audio applications
(processing noise); Siren, cafe ambiance and engine idle noise are background noise
that can often interfere with the speech signal in voice communication in hands-free
mode. AIll audio signals wused in the study were obtained through
"www.freesound.com.” This site offers audio signals recorded in natural
environments, especially for application development and scientific research, without
copyright issues (Kumar & Rajan, 2012).

In the first experiment, a scenario of improving the speech signal recorded in the
aircraft cockpit was tried to be realized. The aircraft cockpit is an environment with
high levels of aircraft engine noise. For voice communication to occur smoothly in this
environment, the sound signal recorded must be enhanced before communication.
Since speech signals are non-stationary signals and the aircraft engine noise has a
spectral characteristic that covers the entire frequency band in which the human voice
is present, conventional filtering is not expected to succeed in this area. The magnitude
spectrum of the speech signal and aircraft engine noise used in this part of the study is

as shown in Figure 3.1.
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Figure 3.1. One-sided magnitude spectrum of noiseless speech and the aircraft

engine noise.

As can be seen from the graph, a human voice is generally in the 0-4 kHz frequency
band, while aircraft engine noise has a characteristic that completely covers this
frequency band. Therefore, adaptive filtering to filter such noise from the speech signal

gives more successful results. A short speech signal and aircraft engine noise were
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used in the first experiment. The SNR value of the noisy speech signals was adjusted
as 0, 5, 15, 30 dB using random noise segments taken from the noise signal. These
refer to very high, high, medium, and low noise levels for speech signals, respectively.
The time-amplitude graphics of the noiseless speech signal and the noisy speech

signals obtained after the arrangements are shown in Figure 3.2.
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Figure 3.2. Time-amplitude graph of the clear speech signal and low, medium, high

and very high noise versions of this signal, respectively.

The noisy speech signals are used as input signals for the proposed adaptive filter. As
can be seen from the graph, the input signals obtained are approximately 2.8 seconds
long. The signal's sampling frequency is 8 kHz, and the signal contains 22376 samples
in total. The reference noise signal used in the filter is a delayed version from the
randomly selected noise segment to realize acoustic delay in the virtual environment

since all applications are carried out on the MATLAB program.

In the second experiment, the success of the WTD-NLMS algorithm in filtering noise
signals with a very high level of noise and different characteristics was examined. For
this purpose, white noise, pink noise, siren noise, engine idle noise, cafe ambiance
noise was added to the speech signal with an SNR value of 0 dB. The time-amplitude

graphics of the obtained noisy audio signals are presented in Figure 3.3.
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Figure 3.3. The time-amplitude graph of clean and noisy speech signals used in the

second phase of the study.

Figure 3.3 shows how different noises affect the speech signal. When the graphs were

examined, it was clearly observed that the sound was exposed to different distortions

at different time intervals depending on the type of noise. However, it is difficult to

clean such a rapidly changing noise signal with the adaptive filter applied in the time

domain due to the problems arising from the convergence time of the adaptive filter.

Thus, we aimed to eliminate this type of noise with the help of WT's sub-band

decomposition properties. The input signals used at this stage are about 7 seconds long.

The sampling frequency is arranged as 8 kHz and contains 56563 samples in total. The

frequency characteristics of these noise signals are shown in Figure 3.4,
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Figure 3.4. One-sided magnitude spectrum of noiseless speech and the noise signal
which are white noise, pink noise, engine idling noise, siren noise, and café ambience

noise, respectively.

As can be seen from the spectrums, all the noise signals used at this stage completely
cover the frequency band in which the human voice is present and have a high
distortion effect on the human voice. After filtering the noisy input signals with the
WTD-NLMS algorithm, it is aimed to obtain a signal as close as possible to the speech

signal is shown as clear speech.

3.1.2. Proposed Method and Implementation

In this part of the study, adaptive filtering in the transformation domain has been
worked. As mentioned in Section 2.3, the general name of this type of application is
TDAF, and these are commonly used as double-channel speech enhancement
applications. After several studies and research on TDAF, the results obtained showed
that the application of adaptive filters in the transform domain decreases the process
complexity and increases the convergence speed of the filters. The main reason for this
is that the applied orthogonal transform increases the decorrelation of the input signal,

thus increasing the adaptive algorithm's convergence speed and rate.

In literature there are several orthogonal transform method has been used for TDAF.
One of them is WT which is our focus point. WT has been preferred because of its
good time-frequency resolution and less computational complexity. However, after
examining the method used up to now, we realized that there are some deficiencies of
the method because of methodologies used to utilize WT. These drawbacks are detailed
in Section 1.2, with examples of studies in the literature. The block diagram of the

method proposed WT-LMS algorithm in this paper is shown in Figure 3.5.

37



app
Wavelet dgy

d(n) Decomposition
with N Sub-
Band das
/ -
Digital FIR filter e 5
win)
Yapp Capp

x(n) ! | LMS e: = Wavelet
| Wavelet 2 composition

e | - / P SaNsh —

wi ub- . . .

Band ] Digital FIR filter Yan 5 e Band v(a)
w(n)

LMS

Digital FIR filter #@
w(n) —‘

LMS |«

Figure 3.5. Blok diagram of proposed WTD-LMS algorithm.

As shown in the diagram, the input signal x(n) and the desired or reference signal d(n)
are first divided into N sub-bands using DWT filter-bank where x(n) is noisy speech
signal, d(n) is the delayed noise segment (reference noise signal). An output signal is
obtained for each sub-band by applying the formulas given in (8) to (20). Then, error
signals (e(n)) provided the enhanced sub-band signal. As a result of iterations in the
learning algorithm, each sub-band is denoised individually. Finally, a noise-free signal
is reconstructed from the filtered sub-band signals by IDWT. This application is a

multi-sub-band application of adaptive filter in the wavelet transform domain.

So far, many studies have been done on the application of adaptive filters in the
transformation domain. In general, error signal calculation for TDAF is made in the
time domain to eliminate the transformation of the reference signal, as shown in figure
2.6, especially in filters used for noise removal or reduction operations. In this case,
an inverse transform and transform of the input signal must be calculated for each
iteration of the adaptive learning algorithm. This approach increases the computational
complexity of the method for cases where digital signals with high sample numbers
are processed. Unlike the architecture of the filters using the WTD-LMS algorithms
previously used, the proposed method offers to calculate the error signal in the WT
domain for each sub-band signal. In other words, the multi-subband adaptive filters
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are applied entirely in the transformation domain. Therefore, it is anticipated that the
number of operations and computational complexity will be reduced since inverse
transformation operations will be applied only once. In addition, the idea of
simultaneous application of separate adaptive filters to each sub-signal was advocated
in the proposed method to remove the noise on the relevant sub-signal as much as
possible. Although many noise signals cover a wide frequency band, they also have a
complex frequency-time distribution. Thus, the noise affecting different sub-bands of
noisy signals does not have the same disruptive effect. With the help of DWT, we
desired to observe different subbands of signal separately and reduce these changing
effects as much as possible with the multi-subband adaptive filters. In summary, an
adaptive filter design with high convergence speed and success has been obtained by

maximizing the use of the high frequency-time resolution that WT will provide.

Thanks to its good converge properties, the proposed method can be used for all noise
reduction applications if a two-channel recording system is available. However, the
proposed method is optimized and specialized for speech enhancement application in
this study. First, the Symlets and Meyer mother wavelet functions are selected for
DWT application to obtain the best system. As it is known, the mother wavelet
function selection is essential to extract correct features. Previous studies and our trials
showed that a type of Symlet and Meyer mother wavelet function gives the best output
for this application, sym5, and dmey (Ozaydin & Alak, 2018 and Yan Long et al.,
2004). Another critical factor in the DWT phase is deciding the decomposition level
of the signal. The increasing number of levels will provide better observation for
higher frequencies, but it will cause an increase in the computational complexity of the
system as the number of adaptive filters is increased. After observations were done for
various decomposition levels, it was decided that the best decomposition level is 5
(N=5). However, the decomposition above this level did not sufficiently contribute to
the system's success rate. Then, step size and order of subband filters were selected to
optimize the system after several observations and trials. After that, the system
parameter was fixed, and black box filter systems using WTD-LMS/NLMS were
obtained. The experiments used these systems to measure the method's success in

reducing various noise effects.
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3.1.3. Results and Discussions About the Experiments
3.1.3.1. Experiment 1: Cockpit Noise Removal with WTD-LMS/NLMS

The proposed WTD-Adaptive filtering algorithm's success in clearing aircraft engine
noise at different noise levels from the speech signal was tested in the first experiment
of the implementation. For this purpose, noisy speech signals with different noise
levels were used, but the visualized results were presented for the 0 dB SNR value,
which can be considered a very high noise level. Furthermore, this experiment
enhanced the signals using the WTD-LMS and WTD-NLMS algorithms to observe
the normalization process's contribution to the transform domain adaptive algorithm's
convergence speed. Finally, results were obtained for each noise level and evaluated

with previously explained criterias.

The Symlets (sym5) were used as the mother-wavelet function since it is usually
preferred for speech enhancement applications and outperformed many other wavelets
in this application. Therefore, all visual results were achieved by using sym5. However,
measures were obtained using both dmey and sym5 since dmey is offered as the best
mother-wavelet signal for speech signals in English in the study (Yan Long et al.,
2004). We also heuristically observed that 5-level DWT was sufficient for
decomposition signals in this study. Then, six sub-signals were obtained, including
one approximate and five detail coefficients for each signal. At this stage, depending
on the frequency-time distribution of the noise used, each sub-band is exposed to noise
at different distortion rates. The graphics of the sub-signals (subband signals) obtained
as a result of the decomposition of the input signal with 0 dB SNR value are presented

in Figure 3.6.
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Figure 3.6. The graph of sub-signals for the noisy signal with 0 dB of SNR value

The horizontal axis of the graphs shows the number of samples contained in each sub-
signal, and the number of samples is halved for each increasing number of
decomposition levels according to the previous level. Therefore, the length of adaptive
filters can be reduced for each sub-band application. Also, the number of transactions
made during filtering is reduced. For this application, the sub-signals most affected by
noise are detail-1 and detail-2 sub-signals which refer to lower speech frequencies.
After separating the signals into sub-signals, adaptive filters using given algorithms
are applied in parallel branches for all noisy sub-signals, and it is aimed to obtain the
output signal as close as possible to the clear speech signal shown in red on the graph.
The LMS algorithm's convergence speed is highly dependent on the eigenvalue
distribution of the input signal, so it is also envisioned to increase the convergence
speed and rate of the adaptive filter by enabling the sub-signals to be de-correlated in
this way thanks to the orthogonality of the WT. Furthermore, this decorrelation
provides the opportunity of processing each sub-band of signal separately.

The graphs of the sub-band signals obtained after applying adaptive filters using LMS
and NLMS algorithms in the DWT domain were shown in Figures 3.7 (a) and (b),

respectively.
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Figure 3.7. The graph of output subband signals (e(n),) obtained using (a) WTD-
LMS adaptive filter (b) WTD-NLMS adaptive filter

When the obtained results are examined, it is seen that the noise on sub-signals is
significantly reduced. However, it is impossible to say that the input signal is
completely noise-free. As the number of iterations of the algorithm increases, the
adaptive filter coefficients converge to the optimum filter coefficients. Therefore, the
enhanced sub-band signals converge to clean speech. In this stage, the convergence
speed of filters is critical because there is a need for time to adapt filter coefficients to
changes in the input signals. If a short speech is enhanced, the convergence speed of
the filter must be maximized to reduce the noise on the speech in this limited time.
When the results obtained with both algorithms are examined, it can be easily seen that
the convergence speed of the NLMS algorithm is much higher than the LMS algorithm.
Naturally, the NLMS algorithm is much more successful. As explained before, the
main reason for this situation is the energy normalization used in the NLMS algorithm.
As a result of this normalization, the algorithm's convergence speed is increased by
arranging the eigenvalue distribution and error surface. This case makes a significant
difference in improving short-duration speech signals exposed to high noise, such as
this example. In addition, this high convergence rate/speed adaptive filter will also
provide successful results for filtering all signals using a real-time two-channel

recording system. Overall, these results prove that normalization integrated into
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NLMS algorithms successfully increases convergence speed and rate without extra
transactions. The graphics of the output signals obtained by reconstruction of subband

signals shown in Figure 3.7 with IDWT were given in Figure 3.8.
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Figure 3.8. The graphs of output signals (y(n)) obtained using WTD-LMS and
WTD-NLMS in time domain

When the results presented in the graph are examined, as expected, the speech signals
obtained in the time domain are primarily free from noise signals. Therefore, improved
speech signals are presented in the figures compared to the noiseless speech signal.
Also, visually, it was seen that the results obtained with the NLMS algorithm were
more successful than those obtained with the LMS algorithm. These results were
obtained by selecting the step size of the filters and the filter order in both methods to
obtain optimum results. The filter order selected for the NLMS algorithm varies
between 4 and 5, and the filter order selected for the LMS algorithm varies between
10 and 15. Therefore, the better results of the NLMS algorithm with the smaller filter
order are another proof that the NLMS algorithm will be more successful in terms of

application.

The results presented so far have been obtained to improve the speech signal with a
very high noise effect (SNR = 0dB) with the proposed method. Then, the same
processes are applied to speech signals with SNR values of 5 dB, 15 dB, and 30 dB,
respectively. Finally, the MSE, SDR, PESQ, and STOI values calculated due to the
improvement of these audio signals are presented in Table 3.1.
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Table 3.1. Evaluation Results of the Process Applied to Noisy Speech with 0dB,
5dB, 15dB, 30dB Aircraft Engine Noise

Final VValues with WTD-

Final Values with WTD-

NLMS LMS

v“c;\:gfer{ type: “smy5” “dmey” “smy5” “dmey”
MSE 9.871x10%> 1.069x10™* 2.101x10™* 1.8268x10°*
PESQ 3.086 3.193 2.290 2.351 0dB
STOI 0.961 0.964 0.816 0.8362
SDR 27.370dB 26.788 dB 19.932 dB 21.335dB
MSE 7596 x107° 6.445x10°5 1.820x10~* 1517x10°%
PESQ 3.115 3.208 2.368 2.388 £ dB
STOI 0.9615 0.9745 0.8119 0.8267
SDR 30.109dB  31.7538dB  21.369dB 25.896 dB
MSE 4.994x107° 4.495x107° 1.029x10~* 1.022 x10~*
PESQ 3.173 3.306 2.390 2.440 15
STOI 0.9617 0.9749 0.8135 0.8215 dB
SDR 34.304 dB 35.135 dB 27.073 dB 27.080dB
MSE 3.860x10~°  3.741x10°°  5.132x107° 5.187 x107°
PESQ 3.251 3.398 2.588 2.486 30
STOI 0.9619 0.9751 0.8760 0.8608 dB
SDR 36.879 dB 37.192 dB 34.0302 dB 33.5451 dB

The objective measures indicated how our proposed method achieved our aims. For
speech enhancement, smaller values of MSE, increasing values of SDR, closer values
of PESQ to 4.5, and STOI values getting closer to 1 indicate that the application is
successful in terms of noise reduction, and enhancing speech quality and intelligibility.
When the evaluation criterias presented in the table are examined, it is seen that the
success of the NLMS algorithm is better than the LMS algorithm for all noise levels.
However, in terms of speech enhancement in both methods, it offers acceptable,
successful results in difficult conditions by selecting a short-term speech signal. With
the help of selecting different mother-wavelet functions in the DWT stage, it is
observed that the method's success can be increased for different language applications
by determining the best mother-wavelet function for a specified language. As can be
observed in the Table 3.1 both mother-wavelet functions offered satisfactory results in
all measures and the best results were obtained with dmey in some measures and for
symb5 for others. When looking at the PESQ and STOI values of the improved speech
signal obtained by the NLMS algorithm, it is possible to say that the obtained speech
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signal is very successful in terms of intelligibility and quality. Another point that draws
attention to the methods applied is that the application's success in improving the
speech signal decreases as the noise level affecting the speech signal decreases. This
situation shows that the method has an improvement limit. The primary and the most
important reason for this limit is the short duration of the audio signal used. Filtering
does not provide successful results until the filter coefficients obtained during the
algorithm'’s operation converge to the optimum filter coefficients. Thus, the noise level
in the first seconds of the audio signal is higher in both methods, limiting the method's
success. The results presented in the table are obtained using these algorithms at
optimum convergence speed. Therefore, it seems that the maximum success limit of
the LMS algorithm is lower than the NLMS algorithm. So, further examination of the
method's success would be continued on the NLMS algorithm and dmey mother-

wavelet function.
3.1.3.2. Experiment 2: Speech Denoising with WTD-NLMS for Various Noises

In the second experiment, the speech enhancement with noises that may frequently be
exposed, such as white noise, pink noise, engine idling noise, siren noise, cafe
ambiance noise, was performed. The main reason for choosing the NLMS algorithm
is the proven success of the algorithm with results obtained in the first experiment. A
longer speech signal than the first one was used at this stage. It is thought that the
success limit of the algorithm will increase due to the longer speech sound used. In
this application, all noise signals used as input signals have an SNR value of 0 dB,
which is one of the most challenging cases for speech enhancement applications. The
reference noise signal used in the application is a slightly delayed version of the
selected segment from the noise signal. The time-amplitude and magnitude spectrum

graphs of the input signals are presented in Figures 3.3 and 3.4.

Noisy speech signals were improved by using the WTD-NLMS algorithm used in the
first part of the study. System parameters such as decomposition level, step-size, and
filter-order are kept fixed in the test process. Thus, a black box filter system with the
proposed method was obtained. The output signal was obtained as a system response
to changing input and reference signals. In this way, the proposed filter's success in
improving speech signals affected by various noise signals has been observed in a

virtual environment. The noise signals used at this stage have different time-frequency
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characteristics. However, considering the SNR values, it is possible to say that the
distortion created by all noise signals on speech is high. Spectrograms of noisy signals

used as filter inputs and spectrograms of filtered speech are presented in Figure 3.9.
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Figure 3.9. The spectrograms of input signals with various noise effect and the

spectrogram of output signal obtain with proposed filter system

The spectra of the proposed WTD-LMS input and output signals are shown in Figure
3.9. When spectrograms of noisy speech signals, i.e., input signals, were examined, it
was observed that the frequency-time distribution of each noise signal is different from
each other, but all noise signals have a high distortion effect on speech. Furthermore,
the noise effect on speech signal is not steady for each sub-band of the speech signal.
Therefore, it can be said that the speech signal is entirely distorted, especially with the
effect of white and pink noise. However, the output signals obtained were almost
completely recovered from this disturbance. It is proof that the filter used adaptively
provides successful results in all noise types. Then, obtaining the amplitude-time
graphs before and after filtering was presented in Figure 3.10. The figure shows the
graphs of the noisy audio signals in the first column and the enhanced versions of the

signal in each row in the second column.
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Noisy Signal with Pink Noise Denoised Signal with WTD-NLMS Adaptive Filter
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Figure 3.10. The amplitude-time graph of noisy and de-noised signal as a result of

adaptive filtering

The visuals show that the filtering process is thriving despite the varying noise effect
over time. The main reason for this situation is the positive contribution of filtering
applied to each sub-band signal. If the filtering had been done in the time domain, the
sudden changes of the noise signal over time would be affected by the adaptation of
the filter coefficients, and therefore the filtering would have been less successful.
Finally, the tests are repeated for 100 noisy speech signals disturbed with different
noise segments selected randomly for each noise type. Then MSE, SDR, PESQ, and
STOI values of audio signals were calculated. Given results are average values of the
repeated test. The variance for the results presented in the table is not given because
the values are too small to affect only the thousands or ten-thousands digits. The
success of the method and its contribution to improving speech were observed by
evaluating the pre-filtering (initial) measurement values and post-filtering (final)

values of the noisy audio signal. The results obtained are as represented in Table 3.2.

Table 3.2. Evaluation Results of the Process Applied to Noisy Speech Signal with
Different Noises

MSE PESQ STOI  SDR
” —15_
{;‘;tl'ua; 8.26x10~* 1.0 0.64 ga5§x10
White Noise Final
-5
Vahe  328¥107 333 0.96 32,65 dB
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H™H —15_
{;‘:I'ua; 8.26x10~%  2.16 0.68 éalBS x10
Pink Noise Final
Valie 3.87x10~5 3.25 0.95 31.46 dB
Initial -4 3.10 x107 15~
Engine Idling  Value 8.26x10 2.48 0.79 0dB
Noise \F/'gli'e 3.22x10~5  3.35 0.96 32.50 dB
H™H _ —-15__
Café {?:I'ua; 8.26x10~* 258 0.76 0%';8 x10
Ambience Final
Noise Vabie 429x10°5  3.23 0.96 30.42 dB
Initial 2.22 x10715~
8.26x10~* 2.26 0.86
Siren Noise I\:/iil:le 0dB
Valie 274x10~5 335 0.97 33.03dB

When the data presented in the table are examined, the most damaged speech signals
regarding the intelligibility and quality of the speech signal (STOI and PESQ values,
respectively) are the speech signals under the influence of white noise and pink noise.
The audio signal's PESQ value under the influence of white noises increased from 1.90
to 3.33, while the STOI value was improved from 0.64 to 0.96. In general, the SDR
value was improved by more than 30 dB after the improvement processes. This
improvement in SDR value means that the audio signal has recovered from the high
noise effect. It is observed that some noise due to the convergence delay of the filter
still affects the audio signal. Also, the MSE value decreased approximately 25 times
compared to the initial value. This is another proof that the signal is highly convergent
to the desired signal. Consequently, the proposed adaptive filter system's success in
clearing various noise signals with a high interference effect from the speech signal is

admirably good.

The results obtained with the proposed method have been compared with the recent
speech denoising method. In (Chiluveru & Tripathy, 2020), the application of clearing
the speech signal from babble noise and factory noise was made by the WTD-
Thresholding method. The results obtained in this application are presented with both
PESQ and STOI criterias. The PESQ values obtained from improving the speech
signal disturbed by factory noise with 0 and 5 SNR values are presented as 1.3839 and
1.8481, and the STOI values for babble noise are presented as 0.41 and 0.8. In our
experiment, these results were compared with the results obtained with cafe-ambiance

noise and white noise, and in this application, PESQ values obtained with speech
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signals with the same SNR values were presented as 3.20 and 3.3 STOI values as 0.96.
When the values are given are compared, it is possible to say that the method proposed
in the article based on PESQ and STOI criterias has a superior success. The main
reason for this is that the thresholding process loses the overlapping frequency
component of the speech signal. In this case, the lost frequency content may affect the
intelligibility of the speech. For this reason, even if the error value is reduced with the
wavelet thresholding method, the intelligibility of the speech is not improved

according to the given evaluation criterias.

Table 3.3 compares our best results with previous adaptive two-channel speech
enhancement applications except (Ozaydin & Alak, 2018) which is a type of

thresholding application so it is a single-channel model.

Table 3.3. Comparison of Methods Used in Literature with Proposed Method

Method poise Data Outputs
Type

Initial SNRs Final SNRs
In wavelet domain LMS (dB) (dB)
for approximation
coefficient, Noisex-92 ‘Z‘i)gﬁgr 5 6.04
Thresholding for detail database (fs=16kH2) 0 734
coefficients in (Akhaee 5 786
et al., 2005).

Initial SNRs Final SNRs
In wavelet domain LMS (dB) (dB)
for approximation
coefficient, Noisex-92 Ss?gﬁgr 5 6.48
Wiener filter for detail database > :

.. . (fs=16kHz) 0 9.22
coefficients in (Akhaee 5 9.91
et al., 2005).

. Initial SNRs Final SNRs
l\/I_axmal Overlap AWGN (dB) (dB)
Discrete Wavelet Restaurant Speech
Transform (with types Noise signal
of thresholdings) in Car Noise  (fs=8kHz2) AWGNS5  10.19
(Ozaydin & Alak, 2018). Restaurant>5 7.51

Car>5 8.44
Initial SNRs Final SNRs
Speech (dB) (dB)
Proposed Method Aircraft signal 0 2133
(WTD-LMS) Engine Noise  (fs=8kHz) 5 25l89
in Cockpit 3 sl,gtrzlond 15 2708
g 30 34.03
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Initial SNRs Final SNRs

AWGN (dB) (dB)
; . Speech
Pink Noise signal AWGNSO 3265
Pvr\;)j?gsf\jmesth‘)d Eng'(”:if'g"”g (fs=8kHz)  Pink Noise >0 32.46
( B ) AMDi 7 second Engine >0 32
m' lence lon Ambience>0 32.42
Siren 9 ;
Siren>0 33.03

In Table 3.4, the contributions of deep learning-based methods, which are currently
gaining momentum on speech improvement, are compared with the proposed method
by considering PESQ and STOI metrics. When the data presented in the table is
examined, it is observed that the proposed method offers much more successful results
than deep learning-based methods, especially in improving speech intelligibility and
sound quality. However, the proposed method has some disadvantages as it requires a
two-channel audio recording system, and as it has known, an increasing number of
recording sensors increases the success of the method for speech enhancement
application. Still, it also has much less processing complexity and higher convergence
speed and significantly increases the speech's intelligibility and quality than deep
learning methods. To obtain a fair comparison these results are also compared with the

results obtained using CNN which will be presented in the next section.

Table 3.4. Performances of Proposed Method Against State-Of-Art Based on Deep
Learning Methods

Method STOI PESQ
DNN (Xu et al., 2015) 0.8120  2.450
TSN (Kim & Hahn, 2019) 0.8745  2.939
SEGAN (Pascual et al., 2017) 0.9300 2.160
DSEGAN (Phan et al., 2020) 0.9358 2420
ISEGAN (Phan et al., 2020) 0.9348 2.270

MMSE-GAN (Soni et al., 2018) 0.9300 2.530

CNN-GAN (Shah et al., 2018) 0.9300 2.340

PROPOSED METHOD

WTD-NLMS 0.9615  3.308
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3.2. A Single-Channel Speech Enhancement Application with DNN:
Speech Enhancement by CNN Using Scalograms

In the previous section, we proposed a double-channel speech enhancement
application that outperforms the success of the speech enhancement applications used
up to now, thanks to the contributions of WT. However, the biggest drawback of this
method is that it requires two-channel recording. As explained before, this causes an
extra cost and narrows down application areas. Therefore, we tried to utilize WT's
Impressing properties of signal examination to obtain a successful one-channel speech
enhancement application.

A CNN-based speech improvement application was presented thanks to CNN's
artificial learning and WT's contributions within this study's scope. This method
provides a versatile and cost-effective solution to the problems arising from single-
channel recording in high noise environments. We designed a CNN obtained with the
skipped layers using supervised learning in the study. For this purpose, a data set
containing scalograms of noisy and noiseless speech signals were obtained and used
to train the neural network. In other words, one-dimensional speech data have been
transformed into two-dimensional images. Thus, the success of CNN in image
processing has been utilized. Similar methods using spectrogram to train CNN have
been proposed in previous studies. As shown in the comparison given in Figure 2.3,
scalograms obtained with CWT provide better observation for higher frequencies of
the signals than spectrograms. From our point of view, using scalograms instead of
spectrograms to train CNN will increase the learning ability of the system as better

feature extraction is applied.

In this part of the study, the data set was first rearranged to obtain clean and noisy
scalograms pairs to train the proposed network. The noise signal used to contaminate
clean speech signals was the same as the noises used in the previous section. The SNR
values of noisy speech signals were 0 dB to create a demanding condition in the
training phase. Then hyper-parameter optimization of system parameters was
accomplished. Finally, the trained network's success was tested using unseen noisy
speech signals with different noise effects. The results were evaluated using the given
measures to observe performance of proposed method and compared with the results

obtained in previous studies from the literature.
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3.2.1. Information about the Data Set

In this part of the study, firstly, the clean speech signals were polluted using white
noise, pink noise, cockpit noise, engine idling noise, siren noise, café ambiance noise
(containing babble noise), and all noise signals used in this study are long signals more
than 3 minutes long. The spectral properties of the noise signals were presented in
previous section. Noisy speech signals were obtained by adding randomly selected
noise segments with the same length as the clean speech from the noise signals to the

clean speech signals.

The clean speech signals needed for the test and the training phase were obtained from
The Device-Recorded Voice Bank Corpus (DR-VCTK) (Sarfjoo & Yamagishi, 2018).
This data set is a small sub-set of VVoice Bank Corpus that includes high-quality speech
signals are recorded in the quiet environment offered for particular speech processing
applications and published by the University of Edinburgh School of Informatics’

The Centre for Speech Technology Research (CSTR) (Sarfjoo & Yamagishi, 2018).
The reason for selecting this data is that it offers speech signals with high quality,
completely free from the noises caused by recording devices. The training set contains
400 different sentences from published scripts voiced by 28 different speakers with
English accents. For this set, the ratio of men and women speakers is the same, and a
total of 11200 speech signals with 16 kHz sampling frequency exists in the training
set. Also, the test set contains 824 clean speech signals with the same sampling
frequency. There is no intersection between training and test sets in terms of speakers

and sentences to perform the test process fairly.

We used these noise-free speech signals to obtain noisy and clean scalograms pairs to
train the proposed network. Also, the network test proceeded through the speech signal

taken from the test set.

3.2.2. Pre-Process Applied to the Dataset

In order to obtain the signals to be used for training and testing the proposed network
in the project, the following processes were applied respectively;

i.  The sampling frequency of the speech signals obtained from the DR-VCTK
data set is 16 kHz. In order to reduce the computational complexity in the
learning process, the sampling frequency of the speech signals has been
reduced to 8 kHz.
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A different segment of the noise signal with the speech signal's length was
taken for each noise signal. This segment of noise was chosen at random.
Then the noise signal was arranged to be SNR value of 0dB. Then, noisy
signals were obtained by summing up the edited noise signal with the
down-sampled speech signal. The graphs of the noisy and clean sample pair
obtained for a single speech signal after the first two processes are shown
in Figure 3.11.

Noisy Speech Signal

L L L . L L
o] 0.5 1 1.5 2 2.5 3
Time (s)
Clean Speech Signal
T T

L L \ \ \ L
(o] 0.5 1 ARS 2 2.5 3
Time (s)

Figure 3.11. Amplitude time graph of a noisy (input), a noiseless

(desired output) speech signals

After this process, scalograms containing the time-frequency distribution
of both noisy and noiseless audio signals were obtained by using CWT.
First, the complex Morlet wavelets, a type of complex-valued wavelet
helpful to observe signals with time-varying amplitude and frequencies,
were preferred to calculate wavelet coefficients. Then, scalograms were
obtained by taking the absolute value of the wavelet coefficient. In this way,
one-dimensional audio signals have been transformed into 2-dimensional
time-frequency visuals containing the essential feature of the signals. The

scalograms pairs obtained for given sample pair are shown in Figure 3.12.
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Scalogram of Noisy Speech

025
02
102 0.15
0.1
0.05
0 0.5 1 1.5 2 25 3

Time (s)

Frequency (Hz)

Figure 3.12. Scalograms of a noisy (input), a noiseless (desired

output) speech signals obtained with CWT

As seen from the visual scalograms offers good resolution for speech
signal. However, the CWTs infinite scaling and shifting process causes
redundant information, especially for lower frequency values marked
with red rectangulars. Therefore, scalograms are windowed by
clipping frequency values lower than 80 Hz to eliminate this redundant
information. This process does not remarkably affect speech signals'
intelligibility and quality, and it helps reduce noise effect, especially
for some low band noises. Furthermore, the size of data nearly halved
by this windowing operation reduces the computational complexity of

the system. The windowed scalograms are presented in figure 3.13.
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Figure 3.13. Windowed Scalograms of a noisy (input), a noiseless
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(desired output) speech signals obtained with clipping frequencies
below 80 Hz.
The scalograms of speech signals have the size of 55 x N for each speech
signal, where N is equal to the sample number of the speech signals. After
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segmentation was applied to scalograms, input and desired output pairs
were obtained for the training process. Desired output samples were equal
to each time segment of clean speech signal’s scalograms with the size of
55 x 1. Input samples were obtained taking 16 consecutive time delays of
each segment, so the input size is 55x16. A sample of scalograms
segments used to train network as input and desired output pairs are
shown in Figure 3.14. These small images contain features of the speech
signals. For every 16 consecutive segments of the noisy speech signal,
one segment of clean speech is given to the system. With the help of CNN,
it is tried to map these 16 noisy segments into one clean segment. Thus,
by combining cleaned segments, noise-free speech scalograms could be

obtained.
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Figure 3.14. The segment taken from noisy and clean spectrum to be
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used as target (desired output) and predictors (input) in training data
set.

iv.  Finally, all the scalograms values arranged as targets and predictors are
standardized with a mean of zero variance of 1 which called as normal
distribution scaling. This is a type of data scaling process, thanks to this
process, the parameters of the network to be trained will take more standard
values, which will increase the convergence speed of the system and ensure
that the system remains more stable during the learning phase (Shi et al.,
2018).

All these steps explained were repeated for all speech signals in the data set. As a result,
a sample set consisting of input- desired output pairs with the size of 55x1 desired
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output and 55x16 the size of the input to be used for training the network. The number
of training pairs obtained from each speech signal is equal to the number of samples
in the speech. Training of the proposed network model was performed using this set.
Nearly 250 different speech signals were selected randomly to obtain the training set
due to the computer's capabilities where the learning was performed. 1,867,558
training pairs were obtained and used using these speech signals. 5% of the input and
desired output pairs obtained from these speech signals are reserved for validation to
calculate the error during training and avoid overfitting (56,027 sample pairs). In the
test phase, speech signals unseen and untrained with the network selected from the test
set are used. The test process was repeated with 500 noisy speech signals, and the

results were evaluated with selected measures.

3.2.3. Proposed Network and Implementation

Within the scope of this study, it is aimed to remove noise from speech signals. For
this purpose, we tried to extract features of a clean speech signal from the noisy
speech's scalogram by the CNN. To accomplish it, a simplified CNN network model
obtained by skipping some layers of CNN was used, a network that has been tested
and accepted with success with previous studies such as (Park & Lee, 2017 and Shi et
al., 2018). The general diagram of this type of CNN network is visualized in Figure
3.15.

/ CNN with Skipped Layers \

. /

Noisy : x Enhanced : y

Mapping function: f:x = y

Figure 3.15. General schemes of speech enhancement application with skipped
layers CNNs (Park & Lee, 2017).

As seen in the figure, in this CNN architecture, the pooling, fully-connected, and

flattening layers, which are the classical CNN layers described in the previous section,
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are not used. The pooling layer is not used because the data as input and output in the
project is a visual that includes speech frequency-time contents. Furthermore, during
the pooling phase, any possible frequency-time component loss or positional
information deterioration while reducing the sample will cause deterioration in speech
signals. It has also been shown in previous studies. Also, the system's success in noise-
cleaning does not change due to removing these layers. Besides, since the system

parameters are reduced, the system's convergence speed increases.

The operations carried out during this study can be discussed under three main
headings. These topics can be listed as preparing and splitting the data set with pre-
processing, creating and training the neural network model, testing the trained neural
network and interpreting its performance. These stages of the study are presented in
figure 3.16.

Speech Enhancement
by using the trained
network

Training of Proposed Network and
Pre-Process applied to dataset (Feature extraction) Resnlf Epaluation
Initial Input or
Dataset Pre- Training Predictor
Containing ~ mmp ~ Processor mmp  sample 55x 16 Test
noiseless Feature airs CNN —)
speech signals Extraction P Processor
(DR-VCTK) \
" / Estimated
. : Output
Noise signals 55%256
White noise
Pink noise
Engine noise Desired Output

Siren noise

Ambience noise or Target

55x1
Figure 3.16. The main stages of the study of speech enhancement with CNN

All operations carried out in pre-process applied to dataset were presented in the
previous section with examples and visuals. The processes applied to test the
network's success were summarized by the “Test Processor” in the diagram. The

detail about the inside of this processor will be given in Figure 3.20.

Obtained training sample pairs after pre-process stage that contain the predictor and
the target scalograms were used to train the proposed CNN network. In the proposed

CNN model the network architecture consists entirely of combinations of
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convolutional and activation layers.

shown in Figure 3.17.

The layers of the network architecture used are as

5 5 5 5 5 5 8 g 2
=, & = k] g & k] k] & & 5 & k]
=
=5 g 5 8 5 8 5 5 § 5 B 5 8 5§ 5 8 5 § 58 E & §
Es§ £§ 5§ 5§ =§ 2§ 5§ E§ R§ 2§ 5§ 5%
235 38, 34 oFD 035 pE D opEh s s R opEhosE s opE Dy
<] 8 § 8 gy 2 8 £ B8 = 5 = 5 £ 85 2 8 g 5 = 58 8 g o]
S E: EEE ¢ = 2 % £ z .2 % .2 = 2 = £ % 2 =5 = .2 &
w2 2 4 §E 23 B2 243 38 48 2 4838 43588 4828 45 2 48 ¢ -3 8 45 38 4
8 Z 50 S 25 ELZnEEinEinEintintintisneinEint g
getfts g8 eEReEgeEEgeEEgetneEygetgetaetar iy
ES &2 S22 SE2SEEdSRIERESEERSELS REEERSEZAS & &
® ® ® ® ©o ® © ® © ® © ©® ® ® ® O ©® ® © ©® © © O ® © © O O O 00 © 0O O O
L )L )L )L J L )L )L )L )L )L L Ix )
T T T T I T T T T T T T
1. Hidden 2. Hidden 3. Hidden 11. Hidden 12. Hidden
Layer Layer Layer b Layer Layer

Figure 3.17. Architecture of proposed CNN model

o Regression output layer

{ @ Convolutional layer

13.
Hidden
Layer

As seen in figure 3.17, an input, an output layer, and 13 hidden convolutional layers

are used in the selected model. Each convolutional layer, except the last convolutional

layer, was combined with the batch normalization layer that performs normalization

for each mini-batch set. In this layer, the input values for each mini-batch set are

normalized to a mean of 0 and a variance of 1. Thus, it aims to reduce the network's

sensitivity to the initial values and keep the system stable during the training. Besides,

a non-linear activation process was carried out in the ReLU layers. The filters used in

these layers and the number of filters in each layer are shown in Figure 3.18.
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Figure 3.18. Outline of the CNN architecture
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In figure 3.18, the dimensions of the filters used in each convolutional layer and the
number of filters are given. For instance, 108 filters with the size of 5x8 were used in
the first hidden layer. The figure contains the related information about all hidden
layers, as explained in the example. Furthermore, information about padding and stride
factors for each layer is also provided in the figure. Padding has been applied to keep
the input and output sizes the same in the conventional layer, and the stride factor is
determined as 1. For this network, the total number of weights to be learned after
training is 255,656 This network structure was developed heuristically to obtain best

performance for the specific problem.

After this process, the initial values were determined for the start of the training. The
mini-batch training method was chosen for training, and the mini-batch size was
chosen as 64. As a result of the experiments made with different mini-batch sizes, this
size was chosen because the most successful results were obtained with this mini-batch
size. During the training, ADAM optimization was preferred as the optimization
algorithm. The initial learning rate was chosen as 0.003. Besides, it was planned to
reduce the learning rate by 0.6 after each mini-batch. Thus, the system was aimed to
remain stable. The automatic-early stopping was not used in the system. Instead, a
validation error was calculated for every 3500 iterations. While the system was being
trained, the validation error was monitored, and if it increased, it was planned to stop
the learning to prevent overfitting. However, due to the device's technical inadequacies
in which it was applied, the learning process was determined to make a maximum of
16 epochs. It was not observed that the system was overfitting within these 16 epochs.
The graph showing the change of the error function according to the number of

iterations obtained during the training of the network is shown in figure 3.19.
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Figure 3.19. The graph of RMSE change during training progress
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The first two stages of study, which are pre-process applied to the data set and training
of the proposed network, were explained in detail. After the training process, the
parameters of the network were estimated. This parameter determines the mapping
function, which maps noisy scalograms segments into clean scalograms segments.
Then, this network was used to remove noise from speech signals without knowing
any information about noise data. The diagram showing how the trained network was

used to enhance speech signal and tested is illustrated in figure 3.20.

. Evaluation
Magnitude .

Noisy g:;tu . P _, [Trained Enhanced Methods
Speech CWT processor CNN ICWT — Speech — MSE
Signal - — signal  — SDR
Noiseless Noisy PESQ
scalogram STOL

signsglesecflr]nm + CWI segnenls Seg-SNR

Test Set $xl6

+
Random
noise from
Noise Set
Test

‘ Results

Phase of

Noiseless speech signal sample

Figure 3.20. The diagram illustrates processes applied in the Test Processor, which

enhances noisy speech signals by proposed CNN and obtaining test results.

As is known, only the magnitude spectrogram of noise and noiseless signals was used
in training phase. The main reason for this is that the human ear is insensitive to phase
changes smaller than 45 degrees (Park & Lee, 2017), and the distortion in phase mainly
contains information about the speakers' position. In this study, our focus point is
commonly enhancing speech signals quality and intelligibility of speech signal. Based
on the notion that the phase scalograms has no discernible effect on speech
intelligibility, no process has been applied for phase spectrogram in order to simplify
the system. The first operation in testing the network is the noisy signal's pre-
processing. These operations are the same as in section 3.2.2. Here, the differences are
that the phase scalogram of the noisy signal was obtained after CWT and only
predictors were calculated. Then, this phase scalogram were used to calculate the
ICWT. The noisy magnitude scalogram was processed by the network, and finally, a
noise-free signal was obtained as a result of the ICWT calculation.
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3.2.4. Results and Discussion of the Study

In the test phase, the success of the proposed CNN model on speech enhancement was
investigated. For this purpose, speech signals were randomly selected from the test
data set. Then, these speech signals were corrupted by the random noise selected from
the noise data set, and the initial SNR value of noisy speech signals was arranged as 0
dB. After this stage, noisy speech signals under the unknown noise effect were
obtained. Finally, the processes shown in figure 3.20 were applied to noisy speech
signals, and enhanced speech signals were obtained. This section will present the

results obtained in the test phase.

Figure 3.21 shows the graphical results obtained for a sample noisy speech signal using

the trained network.
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When the sample results in the graphs are examined, it is easily seen that the network
gives acceptably successful results in term of speech enhancement. The noisy speech
signal under effect of engine idling noise was highly distorted by noise. However, with
the help of proposed network, it was mostly saved from the noise. This fact can be

easily observed on both spectrogram and amplitude-time graphs.

The visual results are not enough to prove the success of the method. Therefore, the
results evaluated using objective speech enhancement measures are given in Table 3.5.
These results were obtained to observe the network's success in enhancing noisy
speech signals under the effect of different noises. The enhancement process was
repeated 100 times to obtain the presented average results. For each case, speech
signals were dirted by different segments of selected noise. So, this result refers to the

average success of the network for each noise type.

Table 3.5. The Evaluation of the Trained CNN in Enhancing the Noisy Speech
Signals with 0 dB SNR Under the Effect of Different Noises

Noise Types MSE SDR STOI PESQ

Initial 5.2x1073 ~0dB 0.71 1.75

Siren Noise
Final 4.5x10~* 24.519 dB 0.83 2.36

. _ ~0dB 0.75

Engine Idllng Initial 5.2x10 3 1.95
Noise Final 3.8¢10~*  27.392 dB 0.87 2.56
Noise Final 2.7x10~*  29.326 dB 0.88 273
Initial 4.2x1073 ~0dB 0.66 1.45

White Noise
Final 5.4x10~% 23.690 dB 0.77 2.11
Initial 4.6x1073 ~0dB 0.7 1.54

Pink Noise
Final 5.9x10~* 24.151 dB 0.81 2.31

When the result given in Table 3.5 are examined, it can be said that acceptable
improvement was achieved for each noise type using the proposed network. For
example, the final MSE values are ten times lower than the initial values, and the SDR
values are improved by more than 23 dB. Furthermore, a good improvement in STOI

and PESQ was also provided. In terms of these measures, the best results were
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achieved for café ambiance noise, and the worst was obtained using white noise. Since
corruption given by white noise to speech signal was the highest, the ensured

improvement for both noise types is nearly the same.

Then, the general success of the network in improving noisy speech signals with
selected noises was measured using 500 randomly selected speech signals from the
test set. The number of noisy speech signals distorted with each noise type was equal
in this stage. The average results are presented in Table 3.6. The improvement
achieved in each evaluation measure is also given in the table. The variance of the

measurements was in the order of 103 and omitted in the table.

Table 3.6. Results Obtained by Testing the Network with 500 Noisy Speeches

(SNR= 0db)
MSE SDR(dB) STOI PESQ Seg- LSD
SNR(dB)
Initial  Final Initial Final Initial Final Initial Final Initial Final Initial  Final
>l 43 5 2600 071 084 161 245 -450 354 263 147
x1073 x107* ' ' ' ' ' ' ' ' '
Improvement Improvement Improvement Improvement Improvement Improvement
reduction
more than 10 +26 dB +0.13 +0.84 +8.13 dB +1.16
times

*LSD: Log-squared Distance

Finally, results are compared with results of some novel studies published recent

years. The comparative results are presented in Table 3.7.

Table 3.7 Performance Comparison of the Proposed CNN Model with The
Previously Presented Methods

Method Noise Type  Data Outputs
15 noise from PESQ sTOl Seg-SNR(dB)
NOISEX-92 . . - ; . -
DET + DNN (hite, pink. i Initial Final Initial  Final Initial  Final
(Xu et a|_, 2015) car, s-iren, 1.91 2.74 0.7 0.82 -4.59 -1.5
engine,
restaurant ...) +0.83 +0.12 +3.09 dB
15 noise from PESQ STOI Seg-SNR(dB)
FFT + TSN ?IOhI'ISEX'-ng Initial  Final Initial Final Initial  Final
. white, pink,
(Kim & Hahn, car,sien,  ™MT 192 263 07 081 -5.63 1';’3
2019) engine,
restaurant ...) +0.71 +0.11 +6.67 dB
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Raw speech + 10 Noise (2 Voice PESQ sTol Seg-SNR(dB)
SEGAN artificial and Bank Initial ~ Final Initial Final Initial  Final
(Pascual et al., Blomi  comus 197 216 - - 168 7.73
2017) database (VETK) +0.19 6.05
Gammatone | PESQ STOI Seg-SNR(dB)
spectrum + 1_0_n_0|se (2 Voice Initiall ~ Final Initial  Final Initial  Final
GAN (Soni et artificial and 8 Bank

from Demand corpus 191 253 091 093 = -
al., 2018) database) (VCTK)

+0.56 +0.02 -

T-F PESQ STOI Seg-SNR(dB)
Mask(Gammat 10 noise (2 Voice Initial Final Initial Final Initial  Final
one spectrum) artificial and 8 Bank 197 234 091 0.93 - -
+ CNN + from Demand corpus
GAN(Shah et database (VCTK) 1037 +0.02 )
al., 2018)

5 noise from PESQ STOI Seg-SNR(dB)
Wavelet www.freesc_)und. w Initial Final Initial Final Initial  Final
Scalogram + %(‘;”I?;f Bank 161 245 071 084 -459 3.54
CNN pbab,ble+7 corpus
(Proposed restaurant (OR-

VCTK
Method) (café), engine ) +0.84 +0.13 +8.13dB
idling,)

As can be seen from the table, the best results in given measures received by (Xu et

al., 2015) study and our results are slightly better than this study. However, since we

used a limited number of speech signals in the study because of technical deficiencies,

the results indicate that the proposed model is acceptably successful in speech

enhancement. It is anticipated that the success of the given method can be increased

with further studies, such as the increasing number of samples and epochs,

enhancement applied to the phase of scalograms.
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CHAPTER 4
CONCLUSIONS AND FUTURE RESEARCH

Speech enhancement applications are commonly used pre or post-process in many
areas where speech signals are used. The primary purpose of these applications is to
reduce noise on speech signals to increase the quality and intelligibility of the speech.
In this thesis, we tried to increase the success of speech enhancement applications done
so far by using the excellent performance of WT in terms of signal analysis. For this
purpose, we offered two new approaches for single and double-channel speech

enhancement.

The double channel speech enhancement application proposed in the thesis was an
application of adaptive filtering in the wavelet transform domain. Adaptive filters are
preferred for statistically changing signals and environments, in which the filter
coefficients are determined according to the statistical properties of the input signal.
The most preferred adaptive filters use the LMS algorithm. The main reason for this is
that the LMS algorithm is easy to apply and has good convergence features. However,
there are still difficulties in applying adaptive filters in the time domain for large data
sets. When applying adaptive filters for large data sets, computational complexity
increases and convergence speed decreases. Using the transfer domain increases the

convergence speed of the adaptive filter and reduce the processing complexity.

In our transform domain adaptive filter, the DWT is first applied to the input signal. In
this way, the signal is divided into orthogonal sub-signals, thus increasing the de-
correlation of the input signal. In other words, the eigenvalue distribution of the auto-
correlation matrix of the input signal is approximated by 1. This is the case where the
LMS algorithm has a maximum rate of convergence. Then, adaptive filters are applied
to all sub-signals in parallel branches. The output of the adaptive filter is obtained by
passing the obtained output signals to the time domain as a result of inverse
transformation. The main superiority of WT over other transforms its lower processing
complexity, easier applicability and offering a better time-frequency resolution than

FT.
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Two basic implementations were made in this project. In the first experiment, the
purpose of the application was to compare the success of NLMS and LMS algorithms
in the proposed method to show the contribution of normalization integrated into the
NLMS algorithm to the method's success. For this purpose, it was tried to recover the
speech signal from the ambient noise effect to ensure that voice communication can
be performed smoothly in the hands-free mode. The communication area is preferred
as the aircraft cockpit, a unique area of this application. Therefore, the audio signal
containing a high aircraft engine noise as the ambient noise recorded in the aircraft
cockpit was accepted as the input signal of the adaptive filter. The value of SNR is
arranged as 0 dB. At this stage, it is aimed to create a challenging condition for the
convergence speed of the filter using a short speech signal. Adaptive filters using
WTD-LMS and WTDN-NLMS algorithms improved this noisy signal. The variables
of this system, such as filter order, decomposition level in DWT, step size of the
adaptive algorithm, have been selected to give optimum results due to various
investigations and applications. Also, different mother wavelet functions are used to
detect the best mother wavelet function. It is observed that the NLMS algorithm is
more successful than the results of the filters applied for all sub-signals obtained with
DWT. Likewise, the evaluation criterias (MSE, SDR, PESQ, STOI) calculated with
the output signals also showed that the convergence speed and ratio of the NLMS
algorithm were better. So the NLMS algorithm is significantly more successful than
the LMS algorithm. The main reason for this situation is that the energy of each sub-
signal 1s not the same. The normalization process helps increase the filter's
convergence speed as it helps regulate the eigenvalue distribution of the
autocorrelation matrix of the input signal. Additionally, the speech signal used in the
study is in the English language, so dmey (discrete approximation of Meyer function)

offered the best results.

In the second experiment, the adaptive filter's success using the WTD-NLMS
algorithm and dmey mother wavelet function, which gave successful results in the first
experiment, in improving noisy speech signals with noises that have different
frequency-time characteristics were tested. For this purpose, longer speech signals
have been contaminated using noise signals such as white noise, pink noise, engine
relay noise, cafe ambiance noise, siren noise, which can be frequently affected by

speech signals in various applications. The filter parameters were kept the same as in
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the previous stage. When the results obtained are examined, it is seen that the
convergence speed and ratio of the proposed filter system are very high in filtering the
noises with different statistical characteristics. Much more successful results were
obtained at this stage than applying the adaptive algorithm in the time domain. It is
challenging to clean suddenly changing noise signals with adaptive filters applied in
the time domain, such as siren sound noise. The complete change of the noise signal
in the time required to adapt the filter coefficients reduces the convergence rate of the
filter. However, in this method, applying the filter separately to sub-band signals
contributes to reducing this sudden variability feature of the noise in the time domain,

thus increasing the convergence rate of the adaptive algorithm.

The performance limits of the adaptive filter proposed in the application were tested
through the speech improvement application. In addition to the enhancement achieved
for speech signals, the convergence speed and success of the adaptive filters increased.
Also, reducing the computational complexity has made it easier to apply the filter to
large data sets or signals with many samples. Especially in the second part of the study,
the proposed method provided successful results thanks to its rapid adaptation ability.
Based on these results, it is predicted that the proposed method will be successful in
digital signal processing and filtering applications where two-channel recording
systems are used, such as detecting the fetal ECG from ECG contaminated by the
mother's ECG.

Based on the results obtained in this study, it is possible to say that the WTD-NLMS
algorithm is a successful method in signal improvement. In addition, the most
significant advantages of the method are that the convergence rate is higher, and the
computational complexity is less than the applications in the time domain. However,
the method still has its shortcomings. Ambient noise as a reference signal must be
known or estimated precisely to improve the signal, and this is not possible in all
environments. The most significant disadvantage of double-channel speech
enhancement is that it requires a dual-channel system which may add an extra cost to
the system, and the application area is narrow. Many studies have been conducted on

single-channel speech enhancement applications to eliminate these deficiencies.

The single-channel speech enhancement method proposed in the thesis is a fully
convolutional neural network that uses scalograms as input. The CNNs are commonly

preferred in image processing applications because it is beneficial to detect a feature
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on the image with the 2-D convolution process. This study aimed to take advantage of
CNN’s outperforming properties in image processing by converting speech signals (1-
D signal) into scalograms (2-D signal) with the CWT. Many time-frequency(T-F)
transformation methods have been combined with CNN in the literature. However, we
prefer WT because of its better T-F resolution with the multi-resolution property. From
our point of view, this feature, which provides better monitoring of the signal, will
increase the learning capacity of the deep learning network used, as it will be more
successful in extracting the signal features. This will result in a more successful speech
improvement application. Also, the computational complexity of WT is less than other

transformation methods.

This study aims to purify the speech signal, which is exposed to various noises (white,
pink, chatter, restaurant, engine idle) with the help of CNN's learning feature, from the
related noise without noise information. In this method, noisy and noiseless speech
sound pairs must be used in the training phase. The noiseless speech sounds used in
the method were taken from the Voice Bank corpus (DR-VCKT) data set, which is
frequently preferred in speech improvement applications. The applications in this
study are carried out under three main parts, pre-processing applied to the data set,
training of the proposed network, and test of the network in speech enhancement

application.

In the pre-processing phase of the study, firstly, clean speech signals from the dataset
were corrupted by different noise signals. The SNR value of noisy speech signals was
0 dB, one of the most challenging conditions for speech enhancement application.
Then, the CWT of the speech signals was calculated. Scalograms can be defined as
magnitude information of CWT. After windowing and splitting obtained scalograms,
noisy and clean scalogram segments pairs referred to the target and predictor in the
training phase were obtained. In the second part, the proposed CNN network was
created and trained with obtained target and predictor pairs. The CNN network has 13
hidden layers with an input and an output layer. All hidden layers of the network were
convolutional layers combined with activation and normalization. This network was
trained with 1,867,558 training sample pairs, and 256,656 parameters tried to be
estimated. An increasing number of training sample pairs will increase the learning or
estimation ability in this stage. This sample pairs number is the highest number that

can be reached by the computer where the application was performed.
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Finally, the trained network was tested with the unseen noisy speech signals. As the
proposed network was trained using only magnitude information of the CWTs, the
magnitude of CWT is enhanced with CNN. The phase information of the noisy speech
signal is used to reconstruct the speech signal in the time domain. In this phase, the
noisy phase information does not affect the success of the enhancement process too
much. However, we know that it will limit success at a point. In the test phase, firstly,
the performance of the proposed method to reduce the effect of each noise type was
measured with evaluation criterias. It was observed that the maximum value achieved
for each noise type was not the same. Since the harmful effects (initial values) were
not the same for each noise type, it can be said that the improvement achieved was
equal. So, we can say that the proposed network has a stable improvement ability for
each noise type. Also, the network's general performance was measured and compared
with the studies based on the deep learning method. It was seen that the performance
of the proposed methods was better. So, it can be said that a successful single-channel

speech enhancement method was obtained with help of wavelet transform.

When single-channel application was compared with the double-channel, however, it
is observed that better improvements were obtained at the expense of increasing the
cost and reducing the convergence speed. In further studies, the success of the single-
channel system might be tried to improve by increasing pair samples, number epoch,

and enhancing phase information with additional learning methods.
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