

BORNOVA / İZMİR

JULY 2021

YAŞAR UNIVERSITY

GRADUATE SCHOOL

MASTER THESIS

A MACHINE LEARNING APPLICATION FOR

TRANSACTION PICKING IN A TIER-TO-TIER SBS/RS

BARTU ARSLAN

THESIS ADVISOR: ASSOC. PROF. (PHD) BANU YETKİN EKREN

M.SC. IN INDUSTRIAL ENGINEERING PROGRAM

PRESENTATION DATE: 17.06.2021

v

ABSTRACT

A MACHINE LEARNING APPLICATION FOR TRANSACTION PICKING

IN A TIER-TO-TIER SBS/RS

Arslan, Bartu

MSc, Industrial Engineering

Advisor: Assoc. Prof. Banu Y. EKREN

July 2021

With the recent growth of e-commerce, the order profiles have shifted towards smaller

quantities with faster delivery time requests of customers. This change has led to

companies seek for fast transaction processing automation technologies in operations

of warehouses. Shuttle-based storage and retrieval system (SBS/RS) is an automated

warehousing technology mostly utilized in large distribution centers because of its

capability of processing high transaction rate. While the advantage of this system is its

capability of processing high transaction rate by the excess numbers of shuttles in the

system, a disadvantage is that the average utilization of shuttles is very low, compared

to the lifting mechanisms in the system. Since a dedicated shuttle is assigned at each

tier of an aisle, this system is also referred as tier-captive SBS/RS in literature. In an

effort to balance the utilization levels of shuttles and lifts, a novel design referred as

tier-to-tier SBS/RS is introduced. In that design, there is decreased number of shuttles

in the system so that they are allowed to travel between tiers by using a separate lifting

mechanism specifically dedicated for travel of them. This novel design not only

balances the service lifts and shuttles, but also decreases the initial investment cost for

the system by the decreased number of shuttles. However, those advantages cause a

disadvantage, that is increased average cycle time per transaction performance metric

in the system. In this thesis, in an effort to contribute on decreasing average cycle time

per transaction performance metric, we apply a machine learning methodology for

smart transaction processing in the system. Specifically, we apply Reinforcement

Learning and Deep Reinforcement Learning methods for transaction selection of

shuttles. The proposed approaches are compared with well-known First-in-First-out

vi

(FIFO) and Shortest Process Time (SPT) selection rules. The results show that the

proposed approaches outperform both FIFO and SPT rules, significantly.

Keywords: Tier-to-tier SBS/RS, Reinforcement Learning, Deep Q-learning,

Simulation modelling, Automated Warehousing

vii

ÖZ

KATTAN KATA YOLCULUK EDEN SBS/RS’TE İŞLEM SEÇİMİ İÇİN

BİR MAKİNE ÖĞRENMESİ UYGULAMASI

Arslan, Bartu

Yüksek Lisans Tezi, Endüstri Mühendisliği

Danışman: Doç. Dr. Banu Y. EKREN

Temmuz 2021

E-ticaretin son zamanlarda büyümesiyle, sipariş profilleri daha küçük miktarlarda ve

daha hızlı teslimat süreleri olacak şekilde değişti. Bu değişiklik, şirketlerin depo

operasyonlarında hızlı işlem işleme otomasyon teknolojileri aramasına sebep oldu.

Mekik tabanlı depolama ve çekme sistemi (SBS/RS), yüksek işlem miktarlarını işleme

yeteneği nedeniyle çoğunlukla büyük dağıtım merkezlerinde kullanılan otomatik bir

depo teknolojisidir. Bu sistemin avantajı, sistemdeki fazla sayıda mekik ile yüksek

işlem miktarlarını işleme kabiliyeti iken, dezavantajı mekiklerin ortalama

kullanımının, sistemdeki asansör mekanizmalarına göre çok düşük olmasıdır. Bir

koridorun her katına özel bir mekik atandığından, bu sistem aynı zamanda literatürde

sabit katlı SBS/RS olarak da anılır. Mekiklerin ve asansörlerin kullanım seviyelerini

dengelemek amacıyla, kattan kata yolculuk eden SBS/RS olarak adlandırılan yeni bir

tasarım tanıtıldı. Bu tasarımda, sistemde mekiklerin sayısı azalmıştır. Özellikle

taşınmaları için ayrılmış ayrı bir asansör mekanizması kullanılarak katlar arasında

hareket etmelerine izin verilir. Bu yeni tasarım yalnızca asansörleri ve mekikleri

dengelemekle kalmaz, aynı zamanda servis araçlarının sayısının azalmasıyla sistemin

ilk yatırım maliyetini de düşürür. Bununla birlikte, bu avantajlar bir dezavantaja

dönüşür. Sistemdeki performans ölçütü olan işlem başına ortalama döngü süresinin

artmasına neden olur. Bu tezde, işlem başına ortalama döngü süresini azaltmaya

katkıda bulunmak amacıyla, sistemde akıllı işlem işleme için bir makine öğrenimi

metodolojisi uyguluyoruz. Spesifik olarak, servis araçlarının işlem seçimi için

Pekiştirmeli Öğrenme ve Derin Pekiştirmeli Öğrenme yöntemlerini uyguluyoruz.

Önerilen yaklaşım, iyi bilinen İlk-Giren-İlk-Çıkar (FIFO) ve En Kısa İşlem Süresi

(SPT) seçim kuralları ile karşılaştırılır. Sonuçlar, önerilen metotların her iki kuralı da

önemli ölçüde aştığını göstermektedir.

viii

Anahtar Kelimeler: Kattan kata yolculuk eden SBS/RS, Pekiştirmeli Öğrenme, Derin

Q-öğrenimi, Benzetim modeli, Depolama sistemi

ix

ACKNOWLEDGEMENTS

I would like to thank my supervisor Banu Y. Ekren for guiding me in this subject and

being very helpful along the way.

I would also like to thank my mother, my sisters, and my fiancée for always believing

in me and being very supportive.

Bartu ARSLAN

İzmir, 2021

xi

TEXT OF OATH

I declare and honestly confirm that my study, titled “A MACHINE LEARNING

APPLICATION FOR TRANSACTION PICKING IN A TIER-TO-TIER SBS/RS”

and presented as a Master’s Thesis, has been written without applying to any assistance

inconsistent with scientific ethics and traditions. I declare, to the best of my knowledge

and belief, that all content and ideas drawn directly or indirectly from external sources

are indicated in the text and listed in the list of references.

Bartu ARSLAN

Signature

………………………………….

July 13, 2021

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TEXT OF OATH .. xi

TABLE OF CONTENTS ... xiii

LIST OF FIGURES ... xv

LIST OF TABLES .. xvi

SYMBOLS AND ABBREVIATIONS .. xvii

CHAPTER 1 INTRODUCTION ... 1

1.1. AVS/RS Studies ... 5

1.2. Tier-captive SBS/RS Studies ... 6

1.3. Tier-to-Tier SBS/RS Studies .. 7

1.4. Machine Learning Studies for AGVs ... 7

1.5. Deep Q-Learning Studies ... 7

 CHAPTER 2 Q-LEARNING APPROACH ... 9

2.1. Reinforcement Learning and Q-Learning Methods ... 9

2.2. Simulation Model ... 11

2.3. Implementation of Q-Learning ... 14

2.4. Results .. 17

 CHAPTER 3 DEEP Q-LEARNING APPROACH .. 21

3.1. Deep Q-Learning Method .. 21

3.2. Implementation of the Method ... 23

3.3. Results .. 26

 CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH .. 29

REFERENCES... 30

APPENDIX 1 – Link to the models and application... 36

xv

LIST OF FIGURES

Figure 1.1. AS/RS market share by type ... 2

Figure 1.2. Tier-captive SBS/RS design ... 3

Figure 1.3. Tier-to-tier SBS/RS design ... 4

Figure 2.1. Interaction of agent and environment ... 9

Figure 2.2. Tier-to-tier SBS/RS simulation flow chart ... 13

Figure 2.3. Average cycle time per transaction during the training period 16

Figure 2.4. Average cycle time per transaction after learning period 17

Figure 3.1. Deep Q-network process (source: Mao et al., 2016) .. 21

Figure 3.2. Utilizing two networks method (source: Choudhary, 2019)............................... 22

Figure 3.3. Deep Q-Learning with experience replay algorithm .. 23

Figure 3.4. DQN results under three different learning rate scenarios 25

Figure 3.5. Average cycle time comparison for DQN and SPT .. 26

Figure 3.6. Comparison of SPT and DQN rules ... 28

xvi

LIST OF TABLES

Table 2.2.1. Notations used for the model ... 11

Table 2.2. Conducted experiments .. 17

Table 2.3. Experimental results for single transaction arrivals .. 18

Table 2.4. Experimental results for batch transaction arrival .. 18

Table 2.5. Experimental results for batch transaction arrival .. 19

Table 3.1. Conducted experiments .. 27

Table 3.2. Results of the experiments .. 27

xvii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

AS/RS Automated Storage and Retrieval System

AVS/RS Autonomous Vehicle Storage and Retrieval System

SBS/RS Shuttle-based Storage and Retrieval System

AGV Automated Guided Vehicles

GA Genetic Algorithm

FIFO First-in-First-Out

SPT Shortest Process Time

ML Machine Learning

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DQN Deep Q-Network

OQN Open Queueing Network

SYMBOLS:

T Number of tiers in the system.

B Number of bays in a tier.

S Total number of shuttles in the system.

W Distance between two adjacent bays.

H Distance between two adjacent tiers.

t Transaction mean inter-arrival time.

Cavg Average cycle time per transaction.

Favg Average flow time per transaction.

Wavg Average waiting time per transaction.

WT Average number of transactions waiting in the queue.

xviii

Vs Maximum velocity of shuttles.

Vl Maximum velocity of lift 1.

Vsl Maximum velocity of lift 2.

As Acceleration of shuttles.

Al Acceleration of lift 1.

Asl Acceleration of lift 2.

Ds Deceleration of shuttles.

Dl Deceleration of lift 1.

Dsl Deceleration of lift 2.

USavg Average utilization of shuttles.

ULavg Average utilization of lift 1.

USLavg Average utilization of lift 2.

1

CHAPTER 1

INTRODUCTION

Industry 4.0 developments, outbreak of Covid-19 and following e-commerce increase

have led to increased investment on automated technologies within the facilities. The

advancement on technologies such as RFID tags to deploy the goods, IoT

implementations such as sensors have facilitated implementation of robotic

technologies in warehouses to increase efficiency, reduce accidents within the facilities

and increase the traceability of the products.

A report of Mordor Intelligence (2020) shows that in 2020, Global Automated Material

Handling (AMH) Market was valued at $55.907,4 million and expected to reach

$112.083 million by 2026. According to another report of Mordor Intelligence (2020b),

the Automated Storage and Retrieval (AS/RS) market is valued at $16.576,2 million

in 2020 and is projected to reach $29.244,73 million by 2026. These reports show that

AS/RS market has a big share in AMH market and expected to grow even more in the

near future.

AS/RS is an automated warehouse technology and it is designed to buffer, store and

retrieve products (Romaine, 2020). This design is mostly utilized in inventory

management systems, warehouses, and distribution centers. One of the biggest benefits

of this system is that it does not require a large floor space, which is an important issue

in warehouse operations. In Figure 1.1, Allied Market Research (2020) shows the

market shares by type for 2019 and 2027. It is observed that all types of AS/RS market

tend to increase in the future.

2

Figure 1.1. AS/RS market share by type

Shuttle-based storage and retrieval system (SBS/RS) is an AS/RS system that is

composed of automated vehicles (i.e. shuttles), storage racks and lifts. This system is

commonly utilized in mini-load warehouses. A materials-handling systems supplier

company named Dematic Group describes this system as “providing fast, increased

storage density, increased accuracy and high throughput rates, used in warehouses,

factories and distribution centres” (Dematic, n.d.). In this thesis, we refer this system

as tier-captive SBS/RS, since the system has a dedicated shuttle in each tier of an aisle.

The physical configuration of the tier-captive SBS/RS is shown in Figure 1.2. In a

traditional tier-captive SBS/RS, a lifting mechanism is installed at each cross-aisle for

travel of loads (i.e. totes) from/to input/output (I/O) points that are located at the

ground level of each aisle. We refer this lifting mechanism as Lift 1 as shown in Figure

1.2. A single lifting table is installed at left and right side of this mechanism helping to

double the working capacity. Shuttles provide horizontal movement for totes between

buffer and destination bays of the totes. One of the handicaps of this design is due to

the excess numbers of shuttles in the system, the average utilizations of them are very

low compared to the lifting mechanisms which are mostly bottlenecks.

3

Figure 1.2. Tier-captive SBS/RS design

In this thesis, we study a novel SBS/RS design where the number of shuttles is

decreased in the system so that those shuttles are allowed to travel between tiers. We

refer this new design as tier-to-tier SBS/RS whose figure is shown in Figure 1.3. Note

that instead of having a dedicated shuttle in each tier, the number of shuttles is

decreased in the system so that we allow shuttles travel between tiers. This lifting

mechanism dedicated for travel of shuttles between tiers is referred as Lift 2 in Figure

1.3. With this design change, our aim is to balance the resource utilizations, lift and

shuttles. In addition, since there is less number of shuttles, initial investment cost might

be decreased (Küçükyaşar et al., 2020).

Lift 1

Shuttle Side view of the system

Top view of the system Buffer

4

Figure 1.3. Tier-to-tier SBS/RS design

Although the proposed system design balances the utilizations of lifts and shuttles and

tends to decrease the initial investment costs, since the shuttles are able to travel

between tiers, the average travel time of shuttles may tend to increase. This might

cause increase of average cycle time of a transaction in the system. Here, cycle time is

the time between when a transaction request is created in the system until it is disposed.

Hence, cycle time performance metric includes waiting time of transactions in the

system. In this work, we consider not only average cycle time per transaction

performance metric but also average flow time per transaction performance metric

which considers time between when a transaction is selected by a shuttle until it is

disposed. In an effort to reduce average cycle time per transaction performance metric

in the system, we apply a smart transaction selection policy, RL, in the system.

The popularity of machine learning algorithms has increased recently due to increase

of computing power of processors and graphics cards. Since developing analytical

models for most real-world problems is hard and when an assumption changes in the

system, that model may become invalid, more adaptive and learning algorithms might

be proper for today’s dynamic industry environments. In this case, we study a Q-

Lift 1

Shuttle

Side view of the system

Top view of the system Buffer

Lift 2

I/O point

5

learning algorithm because it is easy to implement, and might provide good results

even for complex system designs. Hence, in this thesis, we search two main research

questions:

• Q1: Can a machine learning algorithm applicable for a tier-to-tier SBS/RS?

• Q2: If so, does it produce better results compared to the traditional algorithms?

For Q1, we propose a RL solution approach by using Q-learning. We compare the

results with traditional algorithms such as First-in-First-out (FIFO) and Shortest

Process Time (SPT). For Q2, we also develop a Deep Reinforcement Learning (DRL)

model using Deep Q-learning (DQL) and compare the results with FIFO and SPT.

1.1. AVS/RS Studies

One of the earliest studies is completed by Ekren et al. (2010). They apply design of

experiment to identify factors that affects the performance of an autonomous vehicle

storage and retrieval (AVS/RS). They consider the average cycle time, average vehicle

utilization and average lift utilization. Ekren & Heragu (2011) present a simulation-

based performance analysis of an AVS/RS. They aim to find the optimal values for

number of autonomous vehicles and lifts in the system. Marchet et al. (2011) study a

tier-captive AVS/RS and estimate the performance of the system through analytical

model based on open queueing network. The model is validated through simulation.

In their later work, Marchet et al. (2013) study trade-offs between tier-captive and tier-

to-tier AVS/RS by using simulation and propose a design framework. Ekren et al.

(2013) present an analytical model for an AVS/RS by using semi-open queueing

network (SOQN) modelling. They use an approximate method to solve the SOQN to

obtain the performance measures. Ekren et al. (2014) model the AVS/RS by using an

SOQN approach. They solve the network by applying matrix-geometric method.

D’Antonio et al. (2019) propose an analytical model for an AVS/RS to evaluate the

energy consumption. They validate their models by their simulation results. Ekren

(2020b) studies a hierarchical solution approach for an AVS/RS design. The model

aims to minimize two performance measures, average cycle time and average energy

consumption per transaction performance metrics. Pareto-optimal solutions are

provided in that work. A recent work is completed by Lerher et al. (2021). In their

study, they propose a novel AVS/RS design with multiple-tier shuttle vehicles. They

present an analytical model to estimate the performance of the system. Another recent

6

study was made by Jerman et al. (2021). They propose a novel AVS/RS design

including lifts that carry a shuttle that move along the aisle. They utilize simulation

modelling approach to analyze the throughput rate performance of the system.

1.2. Tier-captive SBS/RS Studies

Tier-captive SBS/RS designs have been studied well in the current literature. A novel

SBS/RS study is proposed by Carlo & Vis (2012). Their design includes two non-

passing lifts and they compare this design’s performance with a single lifting system

design. That paper studies a look-ahead strategy heuristic and treats the system as a

scheduling problem. Lerher (2015) presents an analytical model for analyzing the

performance of a double-deep SBS/RS design. Lerher et al. (2015a) presents a

performance evaluation method for an SBS/RS and compare the system performance

with a crane-based AS/RS design through simulation. They analyze the mean cycle

time and throughput capacity as performance metrics. Lerher et al. (2015b) present an

analytical model to evaluate performance metrics of an SBS/RS. Ekren et al. (2015)

apply a class-based storage policy methodology where they also optimize the rack

design of SBS/RS. They use simulation for the modelling purpose. Wang et al. (2015)

propose an analytical model to solve task scheduling problem for an SBS/RS. They

also implement sorting genetic algorithm to solve multi-objective optimization

function. Lerher et al. (2016) present a method to calculate the throughput performance

of an SBS/RS. Tappia et al. (2016) present an analytical model by using a novel

queueing model to estimate the performance of an SBS/RS. Zou et al. (2016) present

a fork-join queueing network approach for estimating the performance metrics for an

SBS/RS. Ekren (2017) provides a graph-based solution for an SBS/RS to evaluate the

performance of the system using simulation modelling. She analyzes the average

utilization of lifts and average cycle times of transactions. Eder, (2019) presents an

analytical model using continuous time open queueing network with limited capacity

approach for an SBS/RS. He aims to evaluate the performance of the system. The

model is validated through simulation. Ekren (2020a) performs an experimental design

for an SBS/RS. She aims to identify the significant factors that affect the performance

of the system by using simulation modelling. Ekren & Akpunar (2021) propose a tool

that computes performance metrics for SBS/RS. They apply an open queueing network

modelling approach.

7

1.3. Tier-to-Tier SBS/RS Studies

Ha & Chae (2018a) study an SBS/RS design with a single lifting mechanism that can

transfer both shuttles and loads. They compare the system performance with a

traditional tier-captive design by using simulation modelling. The results show that the

targeted throughput rate can be obtained by using less number of shuttles in the system.

Later, Ha & Chae (2018b) develop a decision model based on the travel time model.

They aim to determine the number of shuttles using this model. Zhao et al. (2019)

develop an integer-programming model to decrease the idle time of lifts and shuttles.

They aim to minimize the total task time. Küçükyaşar et al. (2020) compares the

traditional tier-captive SBS/RS with tier-to-tier. They consider initial investment costs,

throughput rates and average energy consumption per transaction performance metrics.

They utilize simulation modelling.

1.4. Machine Learning Studies for AGVs

In the current literature, there are no existing studies that implement a machine learning

approach on an AVS/RS. Hence, we review machine learning studies that are mostly

implemented for autonomous guided vehicles (AGVs). Watanabe et al. (2001) study

Q-learning approach for collision avoiding and navigation problems for AGVs. Dou

et al. (2015) combine genetic algorithm and RL to solve task scheduling problem for

mobile robots in a warehouse. Xue et al. (2018) propose RL method for multiple AGVs

to solve flow-shop scheduling problem. They aim to minimize the average job delay.

Their study shows that the RL method works better than multi-agent scheduling

method. Malus et al. (2020) propose a multi-agent RL for order dispatching of

autonomous mobile robots in a dynamic production environment.

1.5. Deep Q-Learning Studies

Mao et al. (2016) present an initial work of a deep reinforcement learning

implementation for a resource management problem. Their results show that the

method performs very similar to state-of-the-art heuristics and is adaptable for

changing conditions. Gazori et al. (2020) propose a Double Deep Q-learning (DDQL)

approach to minimize computation costs and long-term service delays. They use target

network and experience replay techniques. Tong et al. (2020) implement Deep Q-

learning method for dynamic task scheduling in a cloud computing environment. They

8

utilize simulation modelling approach. Takahashi & Tomah (2020) implement Deep

Q-learning for controlling of multiple AGVs. They utilize simulation modelling, and

the results show that the proposed method provides near-optimal solutions.

9

CHAPTER 2

Q-LEARNING APPROACH

In this chapter, we present a Q-learning approach for transaction selection in a tier-to-

tier SBS/RS. First, we explain the RL and Q-learning methods. Then, we give the

simulation model details, and implementation of the algorithm. Finally, we discuss the

results.

2.1. Reinforcement Learning and Q-Learning Methods

RL is a machine learning approach that utilizes agents to choose actions in an

environment to maximize the cumulative rewards (Ou et al., 2019). In this method, an

agent collects the information from the environment and selects the most appropriate

actions, regarding to that information. In Figure 2.1, the interaction between

environment and agent is shown.

Figure 2.1. Interaction of agent and environment

The agent observes the environment and hence, the state information. By considering

the current state of the environment, agent performs an action. Upon completing the

action, the action is either rewarded or penalized. Aim of the agent is to maximize the

cumulative rewards. Since this interaction continues until the agent is trained well in

an environment, this iterative learning method is called reinforcement learning. Sutton

& Barto (2015) defines four key elements in a RL problem as policy, reward function,

value function and the model of the environment.

A RL model consists of:

• Agent: An entity performing actions to gain rewards in an environment.

• Environment: The world agent interacts with.

10

• State (s): Current situation of the environment.

• Action (a): All possible actions an agent can make.

• Reward (r): A feedback given from the environment to evaluate the action.

• Value function: Expected reward within a state.

In this study, we implement a model-free RL algorithm, Q-learning. In Q-learning,

agent selects the actions based on Q-table. Q-table stores the Q-values of state-action

pairs. In order to calculate Q-values of the pairs, we use Bellman’s Equation as the

value function, shown in Eq. (1).

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼) 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎)] (1)

In the equation, st represents the state at time t, at represents the taken action at time

t, 𝑄(𝑠𝑡, 𝑎𝑡) represents the Q-value of the state-action pair, α is the learning rate, 𝑟𝑡 is

the reward and 𝛾 is the discount rate. 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) is the updated Q-value. The old

value is weighted by (1-α). [𝑟𝑡 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎)] is the target value,

𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎) being the maximum reward that can be obtained for the next state.

Commonly, Q-table is initialized as a zero matrix, meaning that the agent is not

informed about how to behave. Initially, epsilon-greedy approach is used for selecting

actions. In this approach, an epsilon value ϵ is initialized as 1 to increase exploration

of the system and decreased over time. A random number between 0 and 1 is generated

and if the number is smaller than the epsilon value, a random action is taken. Otherwise,

the action with highest Q-value is selected (Wei et al., 2017).

This Q-table becomes stable after the learning period and epsilon value is decreased

to a very small number, meaning that almost all the time the agent selects the action

with the highest Q-value.

The weakness of this method is that since no approximation is made and Q-table

requires all state-action pairs to be realized in order to update the values, the learning

period takes very long time for large number of states and actions.

11

2.2. Simulation Model

Due to complexity of tier-to-tier SBS/RS, we utilize simulation modelling approach.

The system is simulated by using the Arena Simulation 16.0 commercial software. The

notations used for the model are summarized in Table 2.1.

Table 2.2.1. Notations used for the model

Notation Unit Description

Cavg sec. Average cycle time per transaction

Favg sec. Average flow time per transaction

Wavg sec. Average waiting time per transaction

t sec. Transaction mean inter-arrival time

Vs m/s Maximum velocity of shuttles

Vl m/s Maximum velocity of lift 1

Vsl m/s Maximum velocity of lift 2

As m/s2 Acceleration of shuttle

Al m/s2 Acceleration of lift 1

Asl m/s2 Acceleration of lift 2

Ds m/s2 Deceleration of shuttle

Dl m/s2 Deceleration of lift 1

Dsl m/s2 Deceleration of lift 2

USavg % Average utilization of shuttle

ULavg % Average utilization of lift 1

USLavg % Average utilization of lift 2

W m Distance between two adjacent bays

H m Distance between two adjacent tiers

T Number of tiers in the system

B Number of bays in a tier

S Total number of shuttles

For a storage transaction, the process can be summarized as:

1. Shuttle chooses a storage transaction.

2. If the transaction’s destination tier is different than the shuttle’s tier, shuttle

moves to Lift 2, and Lift 2 carries the shuttle to the destination tier. Meanwhile,

Lift 1 moves to the I/O point and picks up the shuttle.

3. Lift 1 moves to the destination tier and drops off the tote at the buffer location.

12

4. Shuttle moves to the buffer location and picks up the tote.

5. Shuttle moves to the storage bay address of the transaction and drops off the tote.

For a retrieval transaction, the process can be summarized as:

1. Shuttle chooses a retrieval transaction.

2. If the transaction’s destination tier is different than the shuttle’s tier, shuttle

moves to Lift 2, and Lift 2 carries the shuttle to the destination tier. Meanwhile,

Lift 1 moves to destination tier.

3. Shuttle travels to the retrieval bay address and picks up the tote.

4. Shuttle moves to the buffer location.

5. Lift 1 picks up the tote from the buffer location.

6. Lift 1 moves to the I/O point and drops off the tote.

The flow chart of this simulation model is provided in Figure 2.2.

13

Create S number of
shuttle entities

Hold until a
transaction

arrives

Create transaction
arrival

Check if the
transaction is

available for that
shuttle

No

Pick that transaction

Yes

No

Pick a proper
transaction

Is the selected
transaction s tier address

is 1

Yes

Call Lift 2, the
shuttle travels to the

transaction s tier
address in Lift 2

Check transaction type

Move the shuttle to
the buffer location

Storage
Move the shuttle to
the transaction s bay

location

Retrieval

Pick up the tote

Move the shuttle at the
destination bay address

and drop off the tote

Release the shuttle

Pick up the tote

Move the shuttle to
the buffer location and

drop-off the tote

Check transaction typeNo

Entitiy is duplicated to enter
the Lift 1 queue, Lift 1
travels to the I/O point

Storage

Entity is duplicated to
enter the Lift 1 queue,

Lift 1 travels to the
transaction s tier

address

Retrieval

Drop-off the tote at
the buffer location,

Lift 1 is released.

Yes

Release the shuttle

Check if there is a
waiting transaction in

transaction queue

Hold until a
shuttle picks a

trasaction

Is the shuttle s tier at
the same tier with the
transaction s address? Lift 1 picks up the tote and

moves to the destination
tier

No

Yes

Pick up the tote after
shuttle drops off at

the buffer

Move to the I/O point
and drop off the tote

Release Lift 1

Figure 2.2. Tier-to-tier SBS/RS simulation flow chart

The verification of the model is done by debugging the codes and animating the system.

Also, creating controlled transactions and tracing those transactions helped us

verifying the simulation model. The RL algorithm is integrated in the simulation model

by using the Visual Basic (VBA) interface in the Arena 16.0 software. The assumptions

for the studied simulation model are provided below:

• Transactions arrive at I/O points and enter a single queue.

14

• Storage and retrieval transaction mean interarrival rates are equal and follow

Poisson distribution.

• When a shuttle becomes available, it selects a transaction from that common

queue.

• To avoid collisions of shuttles, the available shuttle agent does not select a

transaction if another shuttle is located or heading towards that possible

transaction’s destination tier.

• After selecting a transaction, the entity is duplicated and sent to Lift 1 queue. If

necessary, Lift 2 is called as well.

• Lift 1 and Lift 2 operates with First-in-First-out (FIFO) rules.

• If the transaction address is at the first tier, Lift 1 is not utilized.

• Lift 2 is dedicated only for shuttle travels.

• Lift 1 has two lifting tables that can travel two totes independently.

• Lift 2 can only carry one shuttle at a time.

• Shuttles and lifts stay at their last process points as dwell point policy.

For system design inputs such as height of tiers and length of bays, we use parameters

from Lerher et al. (2015), Lerher et al. (2015), Ekren et al. (2018), Ekren (2020a). The

input parameters for the warehouse are given below.

• W = 0.5 m., H = 0.35 m.

• Vs = Vl = Vsl = 2 m/s.

• As = Al = Asl = Ds = Dl = Dsl = 2 m/s2

2.3. Implementation of Q-Learning

For our problem, we define shuttles as agents. Each time a shuttle picks a transaction

from a common queue, state information is obtained from the environment. We define

the states as S(k) = (i, j):

S(k) = (Current tier of Lift 1, Current tier of the agent shuttle k)

Here, k represents the shuttle that is selecting a transaction from the queue, i represents

the current tier of Lift 1 and j represents the current tier of shuttle k. From the Q-table,

15

agent checks the current positions of both Lift 1s and chooses the Lift 1 side with the

higher Q-value. In this case, the state information takes integer values between 1 and

T, the number of tiers in the system.

The actions are defined as the attributes of the waiting transactions.

A(k) = (Tier address of the transaction, transaction type)

For agent shuttle k, tier addresses of transactions are integers between 1 and T,

transaction type is either 0 (for storage) or 1 (for retrieval).

In case two shuttles are available at the same time, the first released shuttle selects an

action (i.e., transaction) first. However, since the experiments are designed in a way

that average shuttle utilizations are very high, this case rarely occurs. Since the state

space consists of tiers of the lift and shuttle, and the action space consists of tier

addresses and transaction types, the Q-matrix size is equal to multiplication of states

and actions, T2 × 2T.

The immediate reward function is defined by (2):

𝑅(𝑠, 𝑎) =
1

𝑓𝑙𝑜𝑤 𝑡𝑖𝑚𝑒(𝑎)

(2)

The queue information is not included in states, therefore including waiting times in

reward function would not correlate with states. Also, to reward the agent for having

smaller flow time, inverse of the flow time is utilized as reward function. The details

of the Q-learning algorithm are explained below.

1. Initialize Q-values for all Q(s, a) where s ∈ S, a ∈ A

2. Observe the state S(k) = (i, j)

3. With probability ϵ, select and execute random action a, otherwise select a = max

Q(s, a)

4. Observe the reward and update Q(s, a) using Eq. (1)

5. If terminal, end the simulation, otherwise update ϵ and go to step 2.

In our problem, we initialized the parameters ϵ = 0.8, α = 0.1, γ = 0.2. Every 10 days,

we decreased ϵ by 0.2 and α is decreased by 0.02. Q-values are not initialized as 0 to

reduce the learning period of the model. The analytical calculations are made by

considering the travel time of shuttles and lifts, without considering the waiting times.

16

Since the system is highly stochastic, we choose small number for learning rate. Also,

since the next available actions cannot be known, discount rate is small.

The Q-learning algorithm is coded by utilizing VBA interface in the Arena software.

We complete some experiments to verify and validate the model. In Figure 2.3, the

average cycle time per transaction output is shown during the learning period. It can

be observed from the figure that the average cycle time is initially very high and

decreases over time. Note that initializing Q-values decrease the learning period

significantly.

Figure 2.3. Average cycle time per transaction during the training period

The training period for this model is assumed to be around 3,000,000 seconds. In

Figure 2.4, it can be observed that after shuttle agents are trained well, average cycle

time is stabilized.

17

Figure 2.4. Average cycle time per transaction after learning period

2.4. Results

Remember that as the number of tiers increase in the system, the Q-matrix size

increases exponentially. Due to limitation of Q-learning, we conduct experiments

having up to 15 number of tiers. The experiments are summarized in Table 2.2. In total,

we conduct 4 different warehouse designs for FIFO, SPT and RL rules. In addition,

two different arrival scenarios are examined. In single type, the transactions arrive the

system one by one. In batch scenario, the transactions arrive in batches.

Table 2.2. Conducted experiments

 Warehouse Design # T - Ns Scheduling rule Arrival scenario

 1 15 - 5 FIFO Single type

 2 15 - 3 SPT Batch

 3 12 - 4 RL

 4 10 - 3

In FIFO rule, the shuttles pick the earliest arriving transactions from the queue. In SPT

rule, the shuttles pick the transaction whose tier address is the closest one to its current

tier. For these rules, 10 independent replications are made. The transaction types and

18

addresses are assigned randomly, assuming equal probability. The results are given

considering 95% confidence intervals.

The arrival rates are adjusted so that the resources run at a high utilization, considering

the FIFO rule since it produces the highest results for our performance metrics. We

first conduct the experiment on the FIFO rule and fix the arrival rate for other rules. In

Table 2.3, experiments considering single arrival scenario are summarized.

Table 2.3. Experimental results for single transaction arrivals

Rule WH Design # ULavg USLavg USavg Cavg Favg Wavg t

FIFO 1 87% 93% 90% 55.49 ± 0.46 18.51 36.98 ± 0.45 3.8

RL 1 83% 82% 81% 24.8 16.87 7.93 3.8

SPT 1 83% 81% 81% 24.28 ± 0.21 16.8 7.48 ± 0.09 3.8

FIFO 2 67% 79% 91% 61.59 ± 1.07 17.39 44.2 ± 1.06 6

RL 2 64% 70% 85% 28.21 16.35 11.86 6

SPT 2 64% 69% 85% 27.74 ± 0.06 16.31 11.43 ± 0.18 6

FIFO 3 78% 88% 93% 101.85 ± 3.5 17.05 84.8 ± 3.5 4.3

RL 3 74% 74% 84% 24.85 15.45 9.4 4.3

SPT 3 74% 74% 83% 24.37 ± 0.03 15.38 9.01 ± 0.15 4.3

FIFO 4 76% 87% 92% 102.86 ± 2.94 16.48 86.38 ± 2.93 4.2

RL 4 71% 69% 81% 22.9 14.53 8.37 4.2

SPT 4 71% 69% 81% 22.67 ± 0.02 14.5 8.17 ± 0.09 4.2

Frim Table 2.3, it is observed that RL and SPT produces very close results and they

both outperform FIFO rule. The reason of that might be due to the definition of the

reward function. Since we consider flow times of transactions as reward function, it

resembles to the SPT rule. Note that due to state definition, which only considers

information about the tiers status, the agent does not sense enough information to

produce better results than SPT.

With the idea of having more transaction options in selecting a transaction from a

queue may produce better results, we also conduct experiments by considering batch

arrivals. In Table 2.4, the results for batch arrivals are given. In this table, t represents

the number of transactions arrive at the system every 10 minutes.

Table 2.4. Experimental results for batch transaction arrival

Rule WH Design # ULavg USLavg USavg Cavg Favg Wavg WT t

FIFO 1 87% 93% 91% 306.16 ± 5.12 18.66 287.5 76 158

RL 1 58% 13% 57% 178.98 12.81 166.17 44 158

SPT 1 58% 13% 58% 188.96 ± 2.56 12.95 176.01 47 158

FIFO 2 67% 79% 91% 299.14 ± 4.78 17.44 281.7 47 100

RL 2 45% 15% 56% 173.05 11.35 161.7 27 100

SPT 2 45% 14% 56% 177.31 ± 2.69 11.41 165.9 28 100

19

FIFO 3 79% 90% 93% 384.83 ± 4.86 17.08 367.75 86 140

RL 3 52% 10% 57% 179.06 11.02 168.04 39 140

SPT 3 52% 10% 57% 183.93 ± 2.07 11.14 172.79 40 140

FIFO 4 77% 88% 92% 399.74 ± 5.08 16.51 383.23 94 143

RL 4 52% 8% 56% 175.98 10.44 165.54 40 143

SPT 4 51% 8% 56% 180.18 ± 2.47 10.58 169.6 41 143

In this experimental design, it is observed that RL produces better results compared to

SPT rule as well. As explained before, this is caused by the fact that agent has more

actions available and can select more intelligently.

Although the average utilization for resources is high for FIFO rule, the other rules

work with low utilizations. In this case, we ignore the FIFO rule and conduct the

experiments for SPT and RL with higher utilizations. In Table 2.5, the results for the

experiments are given. In this table, t represents the number of transactions arrive at

the system each stated minutes in that table.

Table 2.5. Experimental results for batch transaction arrival

Rule

WH

Design

ULavg USLavg USavg Cavg Favg Wavg WT t

RL 1 87% 21% 86% 175.75 12.99 162.76 64 150/6.4 min.

SPT 1 86% 20% 87% 181.82 ± 1.56 13.12 168.7 66 150/6.4 min.

RL 2 73% 17% 86% 249.87 11.05 238.82 63 150/9.5 min.

SPT 2 69% 15% 85% 252.56 ± 2.36 11.06 241.5 64 150/9.5 min.

RL 3 81% 19% 86% 160.81 11.23 149.58 52 120/5.8 min.

SPT 3 78% 18% 86% 161.52 ± 0.94 11.22 150.3 52 120/5.8 min.

RL 4 74% 12% 87% 126.62 10.55 116.07 41 100/4.7 min.

SPT 4 77% 17% 85% 132.97 ± 1.12 10.97 122 43 100/4.7 min.

The results show that even in higher utilization for resources, the RL rule produces

slightly better results.

21

CHAPTER 3

DEEP Q-LEARNING APPROACH

After noticing the handicaps of simple Q-learning application in Chapter 2, ignoring

more detailed information from environment, in this chapter, we study a Deep Q-

learning approach for transaction selection in a tier-to-tier SBS/RS. First, we explain

the Deep Q-learning method. Then, implementation of the algorithm for the simulation

model are provided. Finally, the results are given.

3.1. Deep Q-Learning Method

Deep Q-learning (DQL) or Deep Q-network (DQN) is a combination of RL and deep

neural network methods. In this method, deep neural networks are utilized to

approximate the Q-values. The agent feeds the state information of environment to the

neural network as an input and the network estimates the Q-values for each action

available for that state. This process is shown in Figure 3.1 below.

Figure 3.1. Deep Q-network process (source: Mao et al., 2016)

The Deep Neural Network (DNN) takes the state information as input and the

information is fed through the hidden layer, to the output layer. Each state information

is a node of the input layer, meaning that the state size is equal to the input size.

Compared to the other deep learning methods, the target value always changes. This

causes the network to be unstable. In order to have more stable training, two neural

networks that have the same architecture are utilized. One network represents the target,

22

and one network represents the prediction. After every C iteration, which is a hyper-

parameter, the prediction network parameters are cloned to the target network

(Choudhary, 2019). This method is shown in Figure 3.2.

Figure 3.2. Utilizing two networks method (source: Choudhary, 2019)

We also use a method called experience replay for our study. Upon completion of an

action, state, action, reward, next state information is stored in memory as tuples. As

opposed to Q-learning, the network is not updated after each iteration. Instead, a pre-

defined number of tuples are sampled from the memory and fed into the network when

the number of tuples reach a certain point. This increases the normality of the

information, meaning that a better learning result is obtained. This method is studied

by Mnih et al. (2015). The algorithm is explained in detail in Figure 3.3. The agent

observes the state and executes an action according to epsilon-greedy method. Then,

state, action, reward, next state tuple is stored. The stored tuples are sampled after

reaching a certain point and fed into the network. Gradient descent on target network

is applied and epsilon is decreased. Every C step, prediction network is copied into the

target network.

23

Figure 3.3. Deep Q-Learning with experience replay algorithm

3.2. Implementation of the Method

For the DQN application, the simulation model is coded in Python programming, by

using SimPy library. For the implementation of DQN, we utilize TensorFlow and

Keras libraries. The flow of the simulation model is explained in Section 2.2. In this

approach, we perform a non-episodic task. The model runs until the agent is trained.

As in the Q-learning, we treat shuttles as agents. The main goal of these agents is to

select transactions in such a way that they maximize the cumulative rewards in long

run. The state space is the input that is fed into the network to obtain the approximate

Q-values for the actions. In this part, we define the state space as:

S(k) = (Current tier of shuttle k, current bay of shuttle k, current tier of first lifting table

of Lift 1, availability of the first lifting table of Lift 1, current tier of the second lifting

table of Lift 1, availability of the second lifting table of Lift 1, current tier of Lift 2)

Here, k represents the shuttle that is ready to pick a transaction from the queue. The

tier values are integers between 1 and number of tiers in the system T, the bay values

are integers between 1 and number of bays in a tier B, the availability is either 0 or 1

where 0 represents no availability at that moment and 1 represents that the resource is

24

available. The actions defined in the neural network is the transaction attributes and

the selected Lift 1 table. The action space can be summarized as:

A(k) = (the tier address of the transaction, the bay address of the transaction, transaction

type, selected Lift 1 table)

Here, the actions only represent available actions for shuttle k, excluding the

transactions that can cause a collision, as explained in Section 2.2. Unlike Q-learning,

here we implement the lifting table into our actions, to utilize Lift 1 more efficiently.

As an example, if there is a retrieval transaction waiting in the queue assigned to the

10th tier, 8th bay, then the action index for this transaction would be (10, 8, 1, 1) and

(10, 8, 1, 2) where 1 is assigned for transaction and 0 is assigned for storage items as

the third index, 1 represents the left side of the Lift 1 and 2 represents the right side of

the Lift 1 as the last index.

As the reward function, similar to the RL approach, we utilize flow time of the

transaction. Using cycle time as our reward parameter may result in lower cycle times,

however, it may require additional information to the state space to correlate with the

reward. Otherwise, waiting times would change the reward and the waiting time

information is not provided as an input. Nevertheless, minimizing flow time would

result in decreased cycle times. Unlike RL, the reward function is normalized as

explained in Eq. (2)-(4).

MINFt =
1

max (𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒)
 (2)

MAXFt =
1

min (𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒)
 (3)

rt =

1

𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒(𝑎)
 − 𝑀𝐼𝑁𝐹𝑡

𝑀𝐴𝑋𝐹𝑡− 𝑀𝐼𝑁𝐹𝑡
∗ 100

(4)

Here, flowtime stores all the flow time values of all actions. In Eq. (2), the inverse of

the maximum of these stored values is taken. In Eq. (3), the inverse of the minimum

of these values is taken. We use generalized formulation of normalization, 𝑋𝑛𝑜𝑟𝑚 =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 for our case and it is shown in Eq. (4). flowtime(a) represents the flow time

of action a. This method is inspired by study of Gazori et al. (2020) and shows good

results. The normalized value is very small, hence the value is multiplied by 100 to

track the improvement of the algorithm.

As mentioned earlier, TensorFlow and Keras libraries are utilized to apply the DQN to

the simulation model. The DQN consists of three dense layers; an input layer, a hidden

25

layer and an output layer. For input and hidden layers, Rectified Linear Unit (ReLU)

activation function is selected. The activation function is utilized to transfer the

weighted sum of input values to the output node. ReLU is a proper activation function

since we deal with positive input values. As optimizer, we utilize “Adam” optimizer

with parameters α = 0.001, γ = 0.2, ϵ = 1, ϵdec = 0.9999, ϵmin = 0.01, n = 64. Mean

Squared Error (MSE) is used as loss function.

We conduct an experiment to decide the learning rate for our problem with parameters

T = 5, B = 25, S = 2. In Figure 3.4, it can be seen that α = 0.001 is the most suitable for

our problem since the parameter learns quicker than α = 0.0001 and provides a better

result compared to α = 0.01.

Figure 3.4. DQN results under three different learning rate scenarios

Initially, due to epsilon-greedy approach, the system chooses random actions. This

increases exploration to be made and prevents convergence to a local optimum. For

this reason, the DQN causes a cost. The static FIFO and SPT rules are assumed to have

no computational costs. The cost occurs during learning and may produce worse

results compared to static rules. Figure 3.5. shows the computational cost of DQN with

the parameters for the warehouse design T = 5, B = 25, S = 2 and DQN parameters of

α = 0.001, γ = 0.2, ϵ = 1, ϵdec = 0.9999, ϵmin = 0.01. DQN is compared to SPT in this

experiment.

26

Figure 3.5. Average cycle time comparison for DQN and SPT

As observed in the figure, the DQN starts to outperform SPT in a single day, which is

equal to 13,091 transactions on average. Since the applied method is non-episodic, we

treat each day as an episode and reset the average cycle times every day, until the

epsilon reaches the minimum value. Even though this experiment was made with a

relatively low warehouse capacity, the increased number of shuttles also increase the

number of agents, meaning that experiencing more states and actions may result in

decreased training times.

3.3. Results

As we mentioned before, DQN algorithm is compared with FIFO and SPT rules. In

FIFO rule, the shuttles pick the first transaction that entered the system. In SPT rule,

the shuttles pick the transaction regarding to shortest travel time considering the

address information of the transaction.

We consider eight different warehouse designs, shown in Table 3.1. The tiers, bays and

number of shuttles are changed for different experiments. The average cycle times,

average flow times, average waiting times, average lift and shuttle utilizations are

provided in Table 3.2. The inter-arrival times are adjusted so that one of the resource

utilizations is higher than 90%. Within the same experiment, the inter-arrivals are fixed

so that we can compare the performance of the rules. The results for FIFO and SPT

A
v

er
ag

e
C

y
cl

e
T

im
e

(s
ec

.)

Epsilon 0.96 0.31 0.09 0.03 0.01 0.01 0.01 0.01 0.01 0.01

27

rules are given at 95% confidence intervals. The number of replications is calculated

considering the half-width values. Minimum of three independent replications are

made. “N/A” means that the algorithm cannot produce a result. This is because the

transaction arrival rates are high so that the system cannot process the transactions.

Table 3.1. Conducted experiments

 Warehouse Design # T B S

 1 5 25 2

 2 8 25 3

 3 10 25 4

 4 13 25 5

 5 5 50 2

 6 8 50 3

 7 10 50 4

 8 13 0 5

Table 3.2. Results of the experiments

WH

Design #
Rule t ULavg USLavg USavg Cavg Favg Wavg

1 FIFO 6.6 N/A N/A N/A N/A N/A N/A

1 SPT 6.6 47% 51% 94% 98.5 ± 6.59 12.94 ± 0.01 85.56

1 DQN 6.6 37% 44% 85% 41.67 11.53 30.14

2 FIFO 5.2 N/A N/A N/A N/A N/A N/A

2 SPT 5.2 69% 74% 90% 61.54 ± 4.2 14.69 ± 0.02 46.86

2 DQN 5.2 55% 66% 81% 36.52 12.96 23.56

3 FIFO 4.2 N/A N/A N/A N/A N/A N/A

3 SPT 4.2 86% 86% 90% 89.34 ± 7.32 15.51 ± 0.06 73.83

3 DQN 4.2 67% 80% 80% 46.06 13.47 32.59

4 FIFO 4.4 N/A N/A N/A N/A N/A N/A

4 SPT 4.4 90% 92% 83% 57.93 ± 2.97 18.64 ± 0.05 39.29

4 DQN 4.4 72% 90% 74% 44.13 16.07 28.07

5 FIFO 12 42% 57% 97% 567.39 ± 187.65 23.72 ± 2.24 543.66

5 SPT 12 41% 52% 94% 138.18 ± 11.73 22.97 ± 0.08 115.21

5 DQN 12 34% 46% 86% 69.81 20.83 48.98

6 FIFO 9.2 64% 79% 94% 257.14 ± 38.13 26.64 ± 0.05 230.5

6 SPT 9.2 62% 74% 92% 114.32 ± 8.87 25.93 ± 0.06 88.39

6 DQN 9.2 51% 69% 85% 66.12 23.7 42.42

7 FIFO 7.6 N/A N/A N/A N/A N/A N/A

7 SPT 7.6 77% 87% 91% 147.44 ± 11.51 28.11 ± 0.08 119.34

7 DQN 7.6 63% 83% 84% 79.44 25.57 53.88

8 FIFO 7.4 N/A N/A N/A N/A N/A N/A

28

8 SPT 7.4 86% 93% 88% 155 ± 8.96 32.73 ± 0.15 122.27

8 DQN 7.4 72% 93% 83% 104.35 30.33 74.02

As seen from the table, FIFO rule generally cannot produce a feasible result because

that there is no steady-state condition. For experiment with 5 tiers and 50 bays, DQN

outperforms FIFO rule by 88% and for experiment with 8 tiers and 50 bays, DQN

produces 74% better results.

Remember that in RL, the algorithm produced very similar results to SPT. Here, DQN

outperforms SPT significantly. These two algorithms are compared in Figure 3.6.

Figure 3.6. Comparison of SPT and DQN rules

On average, DQN algorithm decreases average cycle time by 42.6% and decreases

flow time by 10.5%.

Experiment

Algorithm

87654321

D
Q
N

SPT
D
Q
N

SP
T

D
Q
N

SP
T

D
Q
N

SP
T

D
Q
N

SP
T

D
Q
N

SPT
D
Q
N

SP
T

D
Q
N

SPT

160

140

120

100

80

60

40

20

0

A
v

e
ra

g
e
 C

y
c
le

 T
im

e
 (

s
e
c
.)

29

CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

This thesis studies simulation-based machine learning algorithms (i.e., Q-learning and

Deep Q-learning) for intelligently scheduling of transactions in a tier-to-tier shuttle-

based storage and retrieval system. The aim of this study is to implement a machine-

learning algorithm for a complex SBS/RS design to decrease average cycle times, flow

times and utilizations.

First, we simulate the system using Arena 16 simulation software and apply Q-learning

method by using the VBA interface. After, we compare the results of the algorithm

with FIFO and SPT rule under different warehouse designs. The results show that RL

outperforms FIFO rule, but generates very similar results to SPT rule. The study shows

a promising result for the further study of implementing Deep Q-learning algorithm.

In the Chapter 3, we implement a Deep Q-learning method for the same problem. We

utilize Python SimPy for simulation modelling. TensorFlow and Keras libraries are

used for implementation of the algorithm. The results are compared with well-known

FIFO and SPT algorithms. The results show that Deep Q-learning outperforms the

other algorithm significantly, which is promising for the future of smart industry

applications.

 In the future, this thesis can be extended by considering state space expand by

including attributes of waiting transactions in queue as well as reward function of cycle

time. In addition, more experiments can be conducted by including different velocity

profiles of the shuttles and lifts in the system. Finally, multiple objectives can be

integrated to the reward function such as energy consumptions of transactions as well.

30

REFERENCES

Allied Market Research. (2020). Automated Storage and Retrieval System Market.

https://www.alliedmarketresearch.com/automated-storage-and-retrieval-system-

market-A06282

Carlo, H., & Vis, I. (2012). Sequencing dynamic storage systems with multiple lifts

and shuttles. International Journal of Production Economics, 140, 844–853.

https://doi.org/10.1016/j.ijpe.2012.06.035

Choudhary, A. (2019). A Hands-On Introduction to Deep Q-Learning using OpenAI

Gym in Python. https://www.analyticsvidhya.com/blog/2019/04/introduction-

deep-q-learning-python/

D’Antonio, G., Bruno, G., Traini, E., & Lombardi, F. (2019). An analytical model to

estimate AVS/RS energy consumption. IFAC-PapersOnLine, 52(13), 24–29.

https://doi.org/10.1016/j.ifacol.2019.11.086

Dematic. (n.d.). Dematic Multishuttle. Retrieved April 20, 2021, from

https://www.dematic.com/en/products/products-overview/storage-

systems/dematic-multishuttle/

Dou, J., Chen, C., & Yang, P. (2015). Genetic Scheduling and Reinforcement

Learning in Multirobot Systems for Intelligent Warehouses. Mathematical

Problems in Engineering, 2015, 597956. https://doi.org/10.1155/2015/597956

Eder, M. (2019). An analytical approach for a performance calculation of shuttle-

based storage and retrieval systems. Production and Manufacturing Research,

7(1), 255–270. https://doi.org/10.1080/21693277.2019.1619102

Ekren, B., & Heragu, S. (2011). Simulation based performance analysis of an

autonomous vehicle storage and retrieval system. Simulation Modelling

Practice and Theory, 19, 1640–1650.

https://doi.org/10.1016/j.simpat.2011.02.008

Ekren, B. Y. (2017). Graph-based solution for performance evaluation of shuttle-

based storage and retrieval system. International Journal of Production

Research, 55(21), 6516–6526. https://doi.org/10.1080/00207543.2016.1203076

Ekren, B. Y. (2020a). A simulation-based experimental design for SBS/RS

31

warehouse design by considering energy related performance metrics.

Simulation Modelling Practice and Theory, 98(August 2019), 101991.

https://doi.org/10.1016/j.simpat.2019.101991

Ekren, B. Y. (2020b). A multi-objective optimisation study for the design of an

AVS/RS warehouse. International Journal of Production Research, 1–20.

https://doi.org/10.1080/00207543.2020.1720927

Ekren, B. Y., & Akpunar, A. (2021). An open queuing network-based tool for

performance estimations in a shuttle-based storage and retrieval system. Applied

Mathematical Modelling, 89, 1678–1695.

https://doi.org/10.1016/j.apm.2020.07.055

Ekren, B. Y., Akpunar, A., Sari, Z., & Lerher, T. (2018). A tool for time, variance

and energy related performance estimations in a shuttle-based storage and

retrieval system. Applied Mathematical Modelling, 63, 109–127.

https://doi.org/10.1016/j.apm.2018.06.037

Ekren, B. Y., Heragu, S., Krishnamurthy, A., & Malmborg, C. (2013). An

Approximate Solution for Semi-Open Queueing Network Model of an

Autonomous Vehicle Storage and Retrieval System. Automation Science and

Engineering, IEEE Transactions On, 10, 205–215.

https://doi.org/10.1109/TASE.2012.2200676

Ekren, B. Y., Heragu, S. S., Krishnamurthy, A., & Malmborg, C. J. (2010).

Simulation based experimental design to identify factors affecting performance

of AVS/RS. Computers and Industrial Engineering, 58(1), 175–185.

https://doi.org/10.1016/j.cie.2009.10.004

Ekren, B. Y., Heragu, S. S., Krishnamurthy, A., & Malmborg, C. J. (2014). Matrix-

geometric solution for semi-open queuing network model of autonomous

vehicle storage and retrieval system. Computers and Industrial Engineering,

68(1), 78–86. https://doi.org/10.1016/j.cie.2013.12.002

Ekren, B. Y., Sari, Z., & Lerher, T. (2015). Warehouse design under class-based

storage policy of shuttle-based storage and retrieval system. IFAC-

PapersOnLine, 28(3), 1152–1154. https://doi.org/10.1016/j.ifacol.2015.06.239

Gazori, P., Rahbari, D., & Nickray, M. (2020). Saving time and cost on the

32

scheduling of fog-based IoT applications using deep reinforcement learning

approach. Future Generation Computer Systems, 110(xxxx), 1098–1115.

https://doi.org/10.1016/j.future.2019.09.060

Ha, Y., & Chae, J. (2018a). Free balancing for a shuttle-based storage and retrieval

system. Simulation Modelling Practice and Theory, 82, 12–31.

https://doi.org/10.1016/j.simpat.2017.12.006

Ha, Y., & Chae, J. (2018b). A decision model to determine the number of shuttles in

a tier-to-tier SBS/RS. International Journal of Production Research, 57, 1–22.

https://doi.org/10.1080/00207543.2018.1476787

Jerman, B., Ekren, B. Y., Küçükyaşar, M., & Lerher, T. (2021). Simulation‐based

performance analysis for a novel avs/rs technology with movable lifts. Applied

Sciences (Switzerland), 11(5), 1–16. https://doi.org/10.3390/app11052283

Küçükyaşar, M., Ekren, B., & Lerher, T. (2020). Cost and performance comparison

for tier‐captive and tier‐to‐tier SBS/RS warehouse configurations. International

Transactions in Operational Research. https://doi.org/10.1111/itor.12864

Lerher, T. (2015). Travel time model for double-deep shuttle-based storage and

retrieval systems. International Journal of Production Research, 54, 1–22.

https://doi.org/10.1080/00207543.2015.1061717

Lerher, T., Ekren, B. Y., Sari, Z., & Rosi, B. (2015a). Simulation analysis of shuttle

based storage and retrieval systems. International Journal of Simulation

Modelling, 14(1), 48–59. https://doi.org/10.2507/IJSIMM14(1)5.281

Lerher, T., Ekren, B., Dukic, G., & Rosi, B. (2015b). Travel time model for shuttle-

based storage and retrieval systems. The International Journal of Advanced

Manufacturing Technology, 78. https://doi.org/10.1007/s00170-014-6726-2

Lerher, T., Ekren, B. Y., Sari, Z., & Rosi, B. (2016). Method for evaluating the

throughput performance of shuttle based storage and retrieval systems. Tehnicki

Vjesnik - Technical Gazette, 23, 715–723. https://doi.org/10.17559/TV-

20141022121007

Lerher, T., Ficko, M., & Palčič, I. (2021). Throughput performance analysis of

Automated Vehicle Storage and Retrieval Systems with multiple-tier shuttle

vehicles. Applied Mathematical Modelling, 91, 1004–1022.

33

https://doi.org/10.1016/j.apm.2020.10.032

Malus, A., Kozjek, D., & Vrabič, R. (2020). Real-time order dispatching for a fleet

of autonomous mobile robots using multi-agent reinforcement learning. CIRP

Annals, 69(1), 397–400. https://doi.org/10.1016/j.cirp.2020.04.001

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource management

with deep reinforcement learning. HotNets 2016 - Proceedings of the 15th ACM

Workshop on Hot Topics in Networks, 50–56.

https://doi.org/10.1145/3005745.3005750

Marchet, G., Melacini, M., Perotti, S., & Tappia, E. (2011). Analytical model to

estimate performances of autonomous vehicle storage and retrieval systems for

product totes. International Journal of Production Research, 2011.

https://doi.org/10.1080/00207543.2011.639815

Marchet, G., Melacini, M., Perotti, S., & Tappia, E. (2013). Development of a

framework for the design of autonomous vehicle storage and retrieval systems.

International Journal of Production Research, 51.

https://doi.org/10.1080/00207543.2013.778430

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,

Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,

Legg, S., & Hassabis, D. (2015). Human-level control through deep

reinforcement learning. Nature, 518(7540), 529–533.

https://doi.org/10.1038/nature14236

Mordor Intelligence. (2020a). Automated Material Handling (AMH) Market -

Growth, Trends, COVID-19 Impact, and Forecasts (2021-2026).

https://www.mordorintelligence.com/industry-reports/global-automated-

material-handling-market-industry

Mordor Intelligence. (2020b). Automated Storage and Retrieval System (ASRS)

Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021-2026).

https://www.mordorintelligence.com/industry-reports/automated-storage-and-

retrieval-systems-market-industry

Ou, X., Chang, Q., & Chakraborty, N. (2019). Simulation study on reward function

34

of reinforcement learning in gantry work cell scheduling. Journal of

Manufacturing Systems, 50(October 2018), 1–8.

https://doi.org/10.1016/j.jmsy.2018.11.005

Romaine, E. (2020). Automated Storage & Retrieval System (AS/RS) Types & Uses.

https://www.conveyco.com/automated-storage-and-retrieval-types/

Sutton, R. S., & Barto, A. G. (2015). An introduction to reinforcement learning. In A

Bradford Book The. https://doi.org/10.4018/978-1-60960-165-2.ch004

Takahashi, K., & Tomah, S. (2020). Online optimization of AGV transport systems

using deep reinforcement learning. Bulletin of Networking, Computing, Systems,

and Software, 9(1), 53–57.

Tappia, E., Roy, D., de Koster, R., & Melacini, M. (2016). Modeling, Analysis, and

Design Insights for Shuttle-Based Compact Storage Systems. Transportation

Science, 51(1), 269–295. https://doi.org/10.1287/trsc.2016.0699

Tong, Z., Chen, H., Deng, X., Li, K., & Li, K. (2020). A scheduling scheme in the

cloud computing environment using deep Q-learning. Information Sciences,

512, 1170–1191. https://doi.org/10.1016/j.ins.2019.10.035

Wang, Y., Mou, S., & Wu, Y. (2015). Task scheduling for multi-tier shuttle

warehousing systems. International Journal of Production Research, 53(19),

5884–5895. https://doi.org/10.1080/00207543.2015.1012604

Watanabe, M., Furukawa, M., & Kakazu, Y. (2001). Intelligent AGV driving toward

an autonomous decentralized manufacturing system. Robotics and Computer-

Integrated Manufacturing, 17(1–2), 57–64. https://doi.org/10.1016/S0736-

5845(00)00037-5

Wei, Z., Zhang, Y., Xu, X., Shi, L., & Feng, L. (2017). A task scheduling algorithm

based on Q-learning and shared value function for WSNs. Computer Networks,

126, 141–149. https://doi.org/10.1016/j.comnet.2017.06.005

Xue, T., Zeng, P., & Yu, H. (2018). A reinforcement learning method for multi-AGV

scheduling in manufacturing. 2018 IEEE International Conference on Industrial

Technology (ICIT), 1557–1561. https://doi.org/10.1109/ICIT.2018.8352413

Zhao, X., Wang, Y., Wang, Y., & Huang, K. (2019). Integer programming

scheduling model for tier-to-tier shuttle-based storage and retrieval systems.

35

Processes, 7(4). https://doi.org/10.3390/pr7040223

Zou, B., Xu, X., Gong, Y., & De Koster, R. (2016). Modeling parallel movement of

lifts and vehicles in tier-captive vehicle-based warehousing systems. European

Journal of Operational Research, 254(1), 51–67.

https://doi.org/10.1016/j.ejor.2016.03.039

36

APPENDIX 1 – Link to the models and application

The models and applications made on Arena simulation software and Python for this

work is submitted on the link below.

 https://github.com/bartuarslan/thesiswork

