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Volatility Transmission Between the Japanese Stock Market and the Western 
Stock Market Indices: Time & Frequency Domain Connectedness Analysis with 
High-Frequency Data
Serpil Kahraman and Merve Keser

Department Of Economics, Yasar University, İzmir, Turkey

ABSTRACT
Stock markets are the main source of financial fragility and the spillover effect due to the high level 
of connectedness. This study focuses on the connectedness between the Japanese stock market 
and the major Western stock market indices by performing time and frequency-domain connect
edness analysis for the period between 4 January 2002, and 29 September 2020. The time-domain 
analysis shows that there is a high connectedness among stock market indices, and the net 
transmitter indices are SPX and AEX while net receiver indices are AORD and N225. The frequency- 
based analysis highlights that the connectedness between markets in the long term contains more 
information in contrast to short and medium terms. Similar to time-domain results, SPX is the net 
transmitter and N225 is the net receiver market indices in long term. Moreover, the dynamic 
analysis results illustrate the turbulent times of the volatility spillover in the long term with high 
and short-medium run with low spillover index. Dynamically, time-domain and long-term fre
quency-domain frameworks’ findings give similar time variation illustrations.
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I. Introduction

Major stock markets cover a large share of global 
market capitalization, connectedness between 
these markets is inevitable. The connectedness of 
stock markets has been the central of many studies. 
After the 1980s rapid increase in globalization dues 
to the financial liberalization, makes financial mar
kets more connected to each other. The stock mar
ket is the most volatile market among other 
financial markets. On the other hand, the effect of 
any unexpected financial or non-financial issues 
can be seen firstly on stock markets in an economy 
than spread to the other markets. Financial Crises 
experiences in emerging market economies, 2008 
Global Crisis, 2011 Eurozone Sovereign Debt Crisis 
and Coronavirus are such examples. So that, the 
connectedness analysis is the key concern for pol
icymakers as well as financial economists, investors 
and portfolio managers.

Diebold and Yilmaz (2009) with their novel 
approach estimate financial market connectedness 
by naming the ‘spillover index’ with the decomposi
tion of variance using a simple vector autoregression 

model. However, there is a possibility that variance 
decomposition may be dependent on the VAR order 
with the typical vector autoregression (VAR) method. 
To eliminate this possibility and to measure the spil
lover index without any dependence of variance 
decomposition according to an order of VAR 
model, the generalized VAR framework is developed 
by Diebold and Yilmaz (2012). Another generalized 
forecast error variance decomposition (GFEVD) 
based on the VAR framework, which provides 
a novel approach with the opportunity to examine 
the spillover index measurement based on the fre
quencies, by Barunik and Krehlik (2018). In the 
Asian context, Chow (2018) also applies Diebold 
and Yilmaz spillover index to investigate the volatility 
spillover among stock indexes of the United States, the 
United Kingdom and 10 ten Asian countries. They 
note that the degree of openness and financial crises 
influence spillover volatility. Moreover, Luo and 
Wang (2019) perform MHAR-DCC Model to test 
the high-frequency asymmetric volatility across 
stock markets. The results support the positive inter
action between the volatility and the level of spillover 
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index. As one of the recent studies, Bagher and 
Ebrahimi (2020) examine the connectedness among 
different financial markets and commodity markets. 
Authors expand Diebold and Yilmaz (2012, 2014) 
methodology by performing the Hierarchical Vector 
Autoregression (HVAR). They point out that the 
Asian stock markets are the net receiver of shocks, 
while Western stock markets are the net transmitter of 
shocks mainly during the 2008 Global Crisis. 
Moreover, commodity and currency markets are 
highly connected to each other. Another study 
which constructed on Diebold and Yilmaz (2014) 
index is a study by Fernandez-Rodriguez and Sosvilla- 
Rivero (2020). They focus on the volatility transmis
sion among stock markets and foreign exchange mar
kets in seven advanced economies. The results of both 
static and dynamic analysis indicate that the volatility 
connectedness varies over time. There are also studies 
like those of Antonakakis and Kizys (2015), 
Maghyereh, Awartani, and Bouri (2016), Gabauer 
and Gupta (2018), and Yoon et al. (2019) which 
investigate the connectedness among different finan
cial markets.

Thus, a large body of literature is conducted to 
explain the relationship between financial markets 
and the correlation between each other. However, 
limited number of studies that focus on the connect
edness between Japan stock market and the major 
Western stock markets with high-frequency data. 
To the best of our knowledge, this study is the first 
one that focuses on this issue by applying frequency- 
domain connectedness analysis with high-frequency 
data for Japan stock market and Western stock 
markets and comparing with two aspects, time- 
domain and frequency-domain. Additionally, this 
study presents the level of connectedness in stock 

markets with new evidence, the spill over effect of 
the recent Coronavirus crash is higher than the 
global financial crisis in 2008.

The rest of this paper is organized as follows: 
after the introduction section, the following sec
tions provide methodology and data while the 
empirical results are given in the fourth section. 
Finally, the last section concludes the analysis.

II. Methodology

This paper extensively investigates static and 
dynamic connectedness on the Japanese Stock 
Market and the Western Economies’ stock markets. 
Our analysis employs time-domain connectedness 
introduced by Diebold and Yilmaz (2012) and the 
frequency-domain connectedness framework of 
Barunik and Krehlik (2018). Measurement of con
nectedness between stock markets requires the var
iance decomposition, based on the VAR model1

Table 1 shows the representation of the spillover 
table which introduced and later developed with 
‘directional spillover’ by Diebold and Yilmaz (2009, 
2012). Besides the time domain connectedness ana
lysis, drawing attention to the characteristics of con
nectedness at different frequencies, Barunik & 
Krehlik's (2018) generalized forecast error variance 
decomposition method provides an examination of 
connectedness with spectral analysis in the short, 
medium and long periods.

III. Data

This study considers 12 different stock indices to 
examine the stock market connectedness covering 
the years between the years 2002 and 2020. The 

Table 1. Representation of spillover table.
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1For detailed description of variance decomposition based on generalized VAR model see Appendix 1.
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indices included in the time and frequency domain 
connectedness analysis are as follows: stock market 
indices of Netherlands (AEX), Belgium (BFX), 
France (FCHI), Germany (GDAXI), Spain 
(IBEX), Switzerland (SSMI) and Eurozone 
(STOXX50E), representing the Western-European 
region; England (FTSE), S&P 500 index (SPX) for 
the USA; Australia’s stock market index All 
Ordinaries (AORD), Norway’s stock market index 
Oslo Stock Exchange All Share Index (OSEAX) and 
leading index Nikkei 225 (N225) for Japanese stock 
exchange. High-frequency data improves the pre
dictive accuracy of the data and it is important in 
prediction for future volatility by presenting the 
market dynamics in volatility more deducible 
(Hansen and Lunde 2011). In this analysis, we use 
high-frequency data as computed using 5 min 
returns daily realized variance for stock market 
connectedness analysis which is obtained from 
Oxford-Man Institute Realized Library version 0.3 
(Heber et al. 2009). The Oxford-Man Institute’s 
realized variance estimation method follows 
Shephard and Sheppard (2010) description with 
background based on the studies of Andersen 
et al. (2010) and Barndorff-Nielsen and Shephard 
(2007). In this analysis, the realized data covering 
period is 4 January 2002 and 29 September 2020 
with 4142 trading days and the missing observa
tions are eliminated, public holidays of countries 
and first trade days of each year. Volatility data is 
calculated by taking the square root of the daily 
realized variance.

Table 2 lists descriptive statistics of realized vola
tility data with ticker symbols of countries’ stock 
market indices. All indices show positive skewness 

and high kurtosis statistics. Variables have leptokur
tic distribution with extremely high kurtosis values. 
OSEAX index kurtosis statistic is considerably 
higher than other indices. Therefore, they have non- 
normal distribution with positive skewness and high 
kurtosis values. ADF statistics of twelve variables 
indicate that all variables are stationary in their 
levels.

According to Figure 1, volatility data variables 
show moderate and strong positive relationships. 
While European country stock market indices have 
a high correlation coefficient with each other and 
with the United States, the stock market indices of 
Japan and Australia have relatively lower correlation 
coefficients with each other and with the stock mar
ket indices of other countries in the analysis. The 
strongest positive relationship is observed between 
AEX and FCHI indices with 0.96 correlation coeffi
cient, while the second strongest interaction between 
FCHI and Euro STOXX50E indices with 0.95 corre
lation coefficient. The lowest positive relationship is 
between IBEX and N225 with 0.52 correlation coef
ficient. All variables’ histogram is right-skewed; thus, 
the mean of variables is greater than their median 
with positive skewness statistic.

IV. Empirical Results

Time-domain connectedness analysis

Firstly, twelve stock market index volatility data 
is estimated with four order VAR which is 
determined according to Schwarz information 
criteria, following the approach described in 
section 2. In addition to the static time-domain 

Table 2. Descriptive Statistics of Volatility Data.
Represents Min Max Median Mean Std. Dev. Skewness Kurtosis ADF

AEX Amsterdam Exchange 0.0021 0.0648 0.0074 0.0091 0.0059 2.8629 16.2533 −13.341*
AORD All Ordinaries 0.0013 0.0691 0.0050 0.0061 0.0042 4.2897 38.9273 −17.032*
BFX Belgium 20 0.0022 0.0607 0.0070 0.0083 0.0049 2.9831 19.2414 −14.058*
FCHI CAC 40 (Paris) 0.0022 0.0716 0.0084 0.0100 0.0061 2.9025 18.1792 −13.708*
FTSE London Stock Exchange 0.0012 0.1030 0.0074 0.0092 0.0063 3.9477 33.0045 −16.634*
GDAXI DAX 30 0.0020 0.0767 0.0086 0.0106 0.0067 2.7319 15.1950 −13.356*
IBEX Madrid Stock Exchange 0.0028 0.0742 0.0093 0.0105 0.0058 2.6150 17.2635 −15.750*
N225 Nikkei 225 0.0020 0.0620 0.0075 0.0086 0.0050 3.2378 21.6783 −18.272*
OSEAX Oslo Stock Exchange 0.0026 0.1403 0.0079 0.0098 0.0066 4.7736 54.7795 −18.154*
SPX Standard & Poor’s 500 0.0011 0.0880 0.0066 0.0084 0.0065 3.4338 22.2191 −13.686*
SSMI Swiss Market 0.0025 0.0745 0.0065 0.0080 0.0052 3.9929 30.3279 −14.582*
STOXX 

50E
Euro Stoxx 50 0.0021 0.1041 0.0090 0.0108 0.0069 3.3164 23.9318 −15.168*

*Represents rejection with a 1% significance level the null hypothesis that a unit root. ADF unit root test lag is 1.
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analysis results, also connectedness analysis is 
examined dynamically based on the rolling 
window approach.2

The overall spillover index is 82.06%.
Table 3 shows the static analysis of the variables 

estimated generalized variance decomposition 
according to the forecast horizon for 10 days. 
The total spillover index of stock indices are 82% 
which indicate that 82.06% of the forecast error 

variance due to this spillover effect across indices. 
The bold numbers in Table 3 show the highest five 
spillovers among the stock indices in the time 
domain analysis, excluding the contribution of 
stock indices to each other. Four of these are the 
volatility spillover from AEX stock index to other 
stocks, respectively, to FCHI at 13.15%, to GDAXI 
at 13.08%, to BFX at 12.86% and to SSMI at 
12.10%. Consequently, the highest directional 

Figure 1. Histogram and Correlation. Scatter plot with a fitted line which shows the strength of the relationship, histogram with kernel 
density estimation and correlation coefficients.

Table 3. Time-Domain Analysis Spillover Table.
AEX AORD BFX FCHI FTSE GDAXI IBEX N225 OSEAX SPX SSMI STOXX 

50E
FROM

AEX 15.55 1.57 11.10 12.00 6.84 10.39 8.18 1.11 4.93 8.90 10.03 9.40 7.04
AORD 7.36 22.54 7.25 6.35 8.58 4.07 5.24 3.48 9.76 10.58 8.64 6.15 6.45
BFX 12.86 2.17 15.45 11.35 7.12 9.12 8.93 1.10 5.13 8.52 9.35 8.90 7.05
FCHI 13.15 1.60 10.56 13.37 7.13 10.62 9.34 1.04 4.86 8.91 9.32 10.10 7.22
FTSE 10.31 2.55 8.64 9.54 14.09 8.29 6.82 1.72 8.06 10.34 9.06 10.57 7.16
GDAXI 13.08 0.87 9.86 12.13 6.70 15.60 7.99 1.18 3.96 8.33 9.45 10.84 7.03
IBEX 11.12 1.68 10.50 11.70 6.58 8.88 17.77 1.16 4.58 7.81 8.01 10.22 6.85
N225 6.94 4.18 4.61 5.69 7.20 5.53 4.75 29.26 6.59 10.69 7.03 7.54 5.89
OSEAX 8.67 3.70 7.09 7.65 10.34 6.11 5.32 1.57 20.80 11.53 8.68 8.55 6.60
SPX 10.23 2.17 7.77 9.47 8.33 8.01 6.38 1.72 7.08 21.74 8.70 8.38 6.52
SSMI 12.10 1.94 9.19 10.31 7.76 9.47 6.89 1.41 5.87 9.47 16.62 8.96 6.95
STOXX 

50E
11.96 1.46 9.58 11.56 8.38 11.14 9.08 1.35 5.39 8.60 8.97 12.52 7.29

TO 9.81 1.99 8.01 8.98 7.08 7.64 6.58 1.40 5.52 8.64 8.10 8.30 82.06

Table 4. Time-Domain Connectedness Net Spillovers.
To From Net To From Net

AEX 9.8134 7.0373 2.7762 IBEX 6.5758 6.8526 −0.2768
AORD 1.9913 6.4548 −4.4635 N225 1.4037 5.8949 −4.4912
BFX 8.0135 7.0462 0.9673 OSEAX 5.5194 6.6004 −1.0810
FCHI 8.9802 7.2189 1.7614 SPX 8.6396 6.5217 2.1180
FTSE 7.0794 7.1591 −0.0797 SSMI 8.1042 6.9483 1.1559
GDAXI 7.6359 7.0329 0.6030 STOXX50E 8.3007 7.2902 1.0105

2Robustness check for rolling window according to lag and forecast horizons see Appendix 2.
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spillover to others which is also a composite of the 
total spillover index and demonstrating 9.81% of 
the forecast error variance is explained by AEX. 
When its contribution to AEX from other market 
indices is also subtracted, AEX is the highest net 
transmitter (2.77%) among all indices (see Table 
4). SPX follows AEX as a second-most transmitter 
among indices.

The N225, as the index of the Tokyo Stock 
Market, contributes the most to itself with 29.26% 
in all indices and the least to other markets. 
Naturally, the N225 is the net receiver from other 
indices with the lowest net spillover. The highest 
contribution to this receiving position of N225 
coming shock from SPX with 16.69%. The second 
net receiver index is AORD, similarly also AORD 
most volatility transmission shock coming from 
SPX with 10.58%. According to static time- 
domain connectedness results, N225 most 
responded to shocks with 10.69% from SPX, 
7.54% from STOXX50E and 7.20% from FTSE. 
Consequently, AEX & SPX are the most net trans
mitter stock indices to other markets while AORD 

and N225 are the most net receivers from other 
markets with relatively smaller shock transmissions 
to other markets as reported in Table 4.

Table 5 lists net pairwise spillovers of N225 as 
a difference between transmitted shocks from 
Western stock market indices to N225 and trans
mitted shocks to Western stock market indices 
from N225. In net terms, the highest volatility spil
lover from SPX to N225 is 8.97% and the lowest 
volatility spillover from AORD to N225 is 0.70%. 
In light of the evidence, N225 is a net shock recei
ver from all western stock market indices.

Static analysis results show the average spillover 
index, while the variations of the index with respect 
to time can be achieved by dynamic analysis. 
Therefore, rolling window estimation gives infor
mation on spillover index day by day. To dynami
cally examine the spillover index for the years 
between 2002 and 2020, it is estimated with 200 
rolling windows and a 10-day forecast horizon, 
again with generalized forecast error variance 
decomposition framework. Similarly, the VAR 
order is chosen as 4 according to the Schwarz 
information criteria.

Figure 2 demonstrates the total spillover index 
variations between the years 2002 and 2020, and 
the highest spillover indexes are seen in the years 
2008–2009, 2011, 2015, 2016 and 2020.

As can be seen in Table 6 the stock markets have 
faced several major financial events which led to an 
increase in the spillover effects due to the connect
edness among the markets. The connectedness 

Table 5. Net Pairwise Spillovers of N225 Index.
N225 ←

AEX 5.83 IBEX 3.59
AORD 0.70 OSEAX 5.02
BFX 3.51 SPX 8.97
FCHI 4.65 SSMI 5.62
FTSE 5.48 STOXX50E 6.19
GDAXI 4.35

Figure 2. Dynamic Time-Domain Total Volatility Spillovers.
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between stock indices exceeded 90% in the period 
covered by the analysis at the end of February 2020 
and the beginning of March 2020, and the highest 
spillover index is 91.61% on 9 March 2020, while 
the fifth highest index is 88.06% on 
10 October 2008.

Figure 3 illustrates the dynamic net spillover 
index of stock market indices. Generally, the 
U.S. stock market index SPX and European 
stock indices, AEX, BFX, FCHI, GDAXI, SSMI 
and Stoxx50 are net transmitters. Thus, their 
shocks affect other stock market indices among 
the sample. S&P’s 500 index’s net spillover is the 
highest spillover index with almost 17% in 

February 2018. SSMI net spillover is 16.76% on 
15 January 2015, which is the second-highest 
observed net spillover among market indices in 
this dynamic analysis.

On 15 January 2015, net spillover of the 
Swiss Market Index is the second highest 
observed net spillover among market indices 
with 16.76%. At that time, the Swiss Central 
Bank intervenes that the Swiss Franc drop the 
cap against the Euro, is led to observe one of 
lowest net spillover index of N225 with −4.14% 
according to the previous day.

Figure 4 shows dynamically to, from and net 
spillovers of the N225 in the sample period. 
Dynamically, the interconnectedness of N225 
with other stock indices reaction is similar to 
the reaction of other indices against global 
events. But the net receiver position of N225 
is mostly affected by a major earthquake in 
2011 which led to change its position. N225 
index is a net receiver with negative net spil
lover except for three periods. N225 is 

Table 6. Major Events which affect the spillover index (2008– 
2020).

Date Spillover Index Event

10/10/2008 88.06% Lehman-Brothers Collapse
09/08/2011 89.27% Lowering the U.S. credit rating & 

debt crisis in Europe
24/08/2015 89.78% Chinese stock market turbulence
24/06/2016 88.72% Brexit vote
09/03/2020 91.61% Coronavirus crash

Figure 3. Dynamic Time-Domain Connectedness Analysis Net Spillovers of Stock Indices.
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a transmitter with 4.40% net spillover index on 
28 October 2008, 13.99% net spillover index on 
15 March 2011 and a 4.61% net spillover index 
on 3 March 2020.

Frequency-Domain analysis
In our frequency domain generalized VAR 
model estimation, we use the Lasso (Least abso
lute shrinkage and selection operator) penalty for 

Figure 3. Continued

APPLIED ECONOMICS 7



analysis of realized volatility data with logarith
mic form. Lasso technique developed by 
Tibshirani (1996), minimized the forecast errors, 
and equals the zero some coefficients, and 
shrinking the other coefficients, thus gives 
more accuracy to the estimation results. 
Following the method described in section 2, 
stock indices are estimated3 using Lasso penalty 
with generalized VAR framework, and Table 7 
shows spillover index values as 1–5 days (short 
term), 5–21 days (medium term), and after 
21 days (long term) as a result of spectral repre
sentation of variance decomposition. Dynamic 
frequency domain connectedness analysis is 
conducted with 150 rolling windows and 100- 
day forecast horizon.

Frequency decomposition connectedness of 
stock indices, as reported in Table 7, shows low 
spillover indexes in short (9%) and medium 
terms (8.75%) but fairly high in the long term 
(64.90%). Firstly, SPX is the biggest contributor 
index for shock transmission in long term. 
Respectively, the highest directional shocks 
come from SPX to OSEAX (10.66%), to N225 
(10.58%), to FTSE index (9.52%) and to SSMI 

(9.19%). Next, one of the highest directional spil
lover is observed in FCHI index to the IBEX 
index (9.15%). In the frequency-based connect
edness framework, it is observed that the N225 
receives the most shocks from the SSMI (7.24%) 
after SPX, in the long term. Hence, N225 shock 
transmission among European stock markets 
comes highest from SSMI in the long term. This 
finding supports the evidence that the net shock 
receiver position of N225 as a result of the inter
vention of the Swiss Central Bank on 
15 January 2015 is obtained in the time-domain 
analysis framework.

Table 8 shows AEX and FCHI stock indices are 
the biggest net transmitter to other stock indices, 
both in the short term and mid-term. However, the 
SPX index is the biggest net transmitter and N225 
is the biggest net receiver stock market index, in the 
long term. The long-term result is nearly parallel to 
the static time-domain connectedness analysis 
findings.

Figure 7 shows dynamic frequency-based con
nectedness analysis spillover index between 2002 
and 2020, estimation with 150 days rolling window 
and 100 days forecast horizon. In the short term, 

Figure 4. N225 Dynamic To, From, Net Spillover.

3Estimation is conducted with frequency Connectedness (Krehlik, 2020) and BigVar (Nicholson et al., 2019) packages under R Program.
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graph trend is like a cycle with fluctuations and the 
total spillover index exceeds 40% with certain 
cycles. Before sudden decrease, short term fluctua
tions accumulate impact on the long-term effect. 
For example, in 2008 and 2020, in short and mid- 
terms, the spillover index closest to zero, but we 
can see the uncertainty impact in the long-term 
with the highest spillover index. The effects of 

unexpected financial and non-financial events 
appear in the long term as a high connectedness 
between markets on specific event dates.

In addition to the time domain dynamic results 
of N225, Figure 8 shows in the long period there is 
mutual shock transmission between Nikkei 225 
and other stock market indices at beginning of 
2020, and net spillover is remarkably close the 

Table 7. Frequency-Domain Analysis Spillover Table.
a) One to five day

AEX AORD BFX FCHI FTSE GDAXI IBEX N225 OSE AX SPX SSMI STOX X50E FROM ABS FROM WTH

AEX 2.52 0.07 1.49 1.95 0.70 1.47 1.26 0.10 0.33 0.57 1.24 1.50 0.89 6.71
AORD 0.29 8.83 0.30 0.31 0.58 0.25 0.26 0.41 0.59 0.41 0.30 0.41 0.34 2.58
BFX 1.69 0.10 2.90 1.74 0.70 1.34 1.29 0.09 0.34 0.49 1.11 1.36 0.85 6.44
FCHI 2.03 0.08 1.60 2.64 0.79 1.64 1.47 0.10 0.36 0.59 1.25 1.80 0.98 7.36
FTSE 1.03 0.26 0.91 1.12 4.10 1.05 0.69 0.17 1.10 0.73 0.90 1.84 0.82 6.16
GDAXI 1.64 0.06 1.31 1.76 0.79 2.82 1.22 0.10 0.35 0.56 1.27 1.86 0.91 6.88
IBEX 1.56 0.08 1.43 1.78 0.59 1.37 3.14 0.08 0.28 0.48 1.09 1.53 0.86 6.45
N225 0.29 0.39 0.23 0.28 0.34 0.26 0.19 7.93 0.23 0.31 0.33 0.38 0.27 2.03
OSEAX 0.76 0.44 0.69 0.78 1.61 0.72 0.52 0.18 6.28 0.58 0.65 1.26 0.68 5.16
SPX 0.98 0.07 0.74 0.98 0.82 0.87 0.66 0.14 0.40 4.18 0.75 0.93 0.61 4.61
SSMI 1.38 0.10 1.08 1.34 0.67 1.26 0.96 0.12 0.32 0.48 2.80 1.14 0.74 5.56
STOXX50E 1.72 0.14 1.37 1.98 1.45 1.91 1.40 0.16 0.66 0.63 1.18 2.97 1.05 7.92
TOABS 1.12 0.15 0.93 1.17 0.75 1.01 0.83 0.14 0.41 0.49 0.84 1.17 9.00
TOWTH 8.41 1.13 7.01 8.80 5.68 7.62 6.24 1.04 3.12 3.68 6.33 8.81 67.86

b) Five to twenty-one day

AEX AORD BFX FCHI FTSE GDAXI IBEX N225 OSE 
AX

SPX SSMI STOX 
X50E

FROM 
ABS

FROM 
WTH

AEX 1.88 0.07 1.26 1.57 0.66 1.31 1.04 0.10 0.32 0.83 1.15 1.28 0.80 6.95
AORD 0.58 4.50 0.56 0.61 0.86 0.47 0.51 0.34 0.70 0.81 0.56 0.72 0.56 4.88
BFX 1.40 0.11 2.07 1.43 0.64 1.12 1.11 0.09 0.32 0.75 1.00 1.16 0.76 6.61
FCHI 1.56 0.09 1.27 1.79 0.69 1.36 1.22 0.10 0.32 0.81 1.07 1.39 0.82 7.16
FTSE 1.13 0.24 1.05 1.14 1.82 1.01 0.79 0.15 0.61 1.08 1.02 1.32 0.79 6.90
GDAXI 1.50 0.06 1.14 1.52 0.70 2.14 1.04 0.09 0.31 0.75 1.09 1.52 0.81 7.05
IBEX 1.31 0.10 1.18 1.48 0.54 1.15 2.50 0.08 0.26 0.59 0.91 1.29 0.74 6.45
N225 0.56 0.32 0.43 0.54 0.51 0.50 0.37 5.86 0.30 0.92 0.61 0.62 0.47 4.12
OSEAX 0.93 0.36 0.75 0.90 1.24 0.80 0.58 0.17 3.15 1.24 0.77 1.14 0.74 6.44
SPX 1.06 0.10 0.79 1.03 0.82 0.93 0.71 0.17 0.46 3.24 0.89 0.98 0.66 5.75
SSMI 1.28 0.10 1.01 1.23 0.67 1.13 0.87 0.13 0.32 0.79 2.18 1.06 0.72 6.22
STOXX50E 1.51 0.08 1.19 1.60 0.89 1.58 1.25 0.11 0.40 0.85 1.05 1.80 0.88 7.61
TOABS 1.07 0.14 0.89 1.09 0.68 0.95 0.79 0.13 0.36 0.78 0.84 1.04 8.75
TOWTH 9.28 1.19 7.71 9.46 5.95 8.23 6.87 1.11 3.13 6.82 7.33 9.05 76.13

c) Longer than twenty-one-day

AEX AORD BFX FCHI FTSE GDAXI IBEX N225 OSE 
AX

SPX SSMI STOX 
X50E

FROM 
ABS

FROM 
WTH

AEX 9.82 0.90 7.42 9.03 5.10 8.21 6.27 1.02 2.86 8.66 7.97 8.08 5.46 7.26
AORD 6.52 11.72 5.79 6.56 6.25 5.26 5.50 1.56 4.66 8.95 6.33 6.72 5.34 7.10
BFX 8.89 1.18 9.37 8.90 5.09 7.52 7.06 1.00 2.91 8.35 7.53 7.86 5.52 1.34
FCHI 8.94 1.01 7.29 9.26 4.96 8.02 7.12 0.96 2.76 8.09 7.39 8.16 5.39 1.17
FTSE 8.12 1.67 7.00 8.02 7.04 7.11 5.86 1.18 3.61 9.52 7.66 7.97 5.64 7.50
GDAXI 9.04 0.72 6.98 8.86 5.00 9.99 6.13 0.93 2.69 8.01 7.49 8.52 5.36 7.13
IBEX 8.55 1.19 7.39 9.15 4.46 7.44 12.05 0.84 2.49 6.65 6.72 8.25 5.26 6.99
N225 7.05 1.59 5.46 6.80 5.18 6.25 4.70 12.53 3.11 10.58 7.24 6.80 5.40 7.17
OSEAX 7.34 1.92 5.81 7.01 6.52 6.42 4.36 1.29 7.94 10.66 6.86 7.35 5.46 7.26
SPX 8.22 1.11 6.37 7.95 5.81 7.27 5.48 1.38 3.60 14.95 7.64 7.55 5.20 6.91
SSMI 8.94 1.10 7.15 8.63 5.45 7.87 6.13 1.26 3.06 9.19 10.96 7.85 5.55 7.38
STOXX50E 8.58 0.86 6.82 8.63 5.08 8.24 6.82 0.94 2.77 7.84 7.02 8.52 5.30 7.04
TOABS 7.52 1.11 6.12 7.46 4.91 6.64 5.45 1.03 2.88 8.04 6.65 7.09 64.90
TOWTH 9.99 1.47 8.14 9.91 6.52 8.82 7.24 1.37 3.82 10.69 8.84 9.43 86.25
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Table 8. Frequency Domain Connectedness Net Spillovers.
1–5 Days 5–21 Days 21-Days

To From Net To From Net To From Net
AEX 1.11517 0.89015 0.22502 AEX 1.06715 0.79870 0.26845 AEX 7.51507 5.46001 2.05506
AORD 0.14942 0.34188 −0.19246 AORD 0.13675 0.56084 −0.42408 AORD 1.10562 5.34317 −4.23754
BFX 0.92952 0.85344 0.07609 BFX 0.88623 0.76020 0.12603 BFX 6.12315 5.52480 0.59836
FCHI 1.16730 0.97588 0.19142 FCHI 1.08762 0.82367 0.26395 FCHI 7.46017 5.39245 2.06772
FTSE 0.75289 0.81644 −0.06356 FTSE 0.68469 0.79348 −0.10879 FTSE 4.90855 5.64298 −0.73442
GDAXI 1.01004 0.91177 0.09828 GDAXI 0.94628 0.81086 0.13542 GDAXI 6.63521 5.36452 1.27069
IBEX 0.82700 0.85567 −0.02866 IBEX 0.79049 0.74127 0.04922 IBEX 5.45124 5.26193 0.18931
N225 0.13834 0.26977 −0.13143 N225 0.12810 0.47359 −0.34550 N225 1.03046 5.39624 −4.36579
OSEAX 0.41320 0.68347 −0.27027 OSEAX 0.36036 0.74061 −0.38025 OSEAX 2.87780 5.46198 −2.58417
SPX 0.48747 0.61131 −0.12384 SPX 0.78404 0.66067 0.12337 SPX 8.04215 5.19707 2.84508
SSMI 0.83912 0.73749 0.10162 SSMI 0.84292 0.71542 0.12750 SSMI 6.65374 5.55276 1.10099
STOXX 

50E
1.16759 1.04980 0.11780 STOXX 

50E
1.04032 0.87563 0.16468 STOXX 

50E
7.09454 5.29982 1.79472

Figure 7. Dynamic Frequency-Domain Total Volatility Spillovers.
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zero. Similarly, N225 is a net shock receiver for 
long period, and in 2008, 2011, 2014 and 2020 
highly affectable shocks are observed from N225 
towards Western stock market indices. While the 
events with global impacts caused mutual shock 
transfer between N225 and other stock indices, 
the earthquake occurred in Japan which causes 
shock transmission to other markets from N225 
in 2011. The European debt crisis, changes of US 
credit rating in 2011, and Swiss Central bank’s 
intervention in 2015 that caused the shock receiver 
index position of N225 without shock transmission 
from N225 to other markets.

Frequency-domain connectedness analysis 
demonstrates low spillover effects in the stock mar
kets of all countries in the short term and medium 
term. The analysis that reflects the long-term 
results includes more information for the spillover 

effect between stock market indices. However, in 
the long term, the shocks that occurred in the SPX 
indexes as the net transmitter affecting the stock 
markets of other countries. Most shock transmis
sion occurs from the net transmitter index to 
OSEAX and the Japanese stock index (N225).

V. Conclusion

The connectedness of the stock markets of Japan 
and eleven Western stock market indexes are 
examined with high-frequency data in time- 
domain and frequency-domain connectedness fra
meworks. In the analysis performed with a large 
sample range and high-frequency data, taken into 
account the high dimension in VAR, and we use 
Lasso penalty for frequency-domain analysis. Thus, 
in addition to examining the short-, medium- and 

Figure 8. Dynamic Frequency-Domain of N225 To, From, and Net Spillover in Long Term.
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long-term effects of connectedness analysis, we dis
cuss more accurate results with Lasso penalty give 
zero coefficients in the VAR system.

The results from both frameworks indicate that 
connectedness among the stock market indices 
reaches the highest spillover index during Covid- 
19. Time-domain analysis indicates that after the 
highest connectedness index among stock market 
indices resulting from the collapse of Lehman- 
Brothers, there are four periods of high connected
ness index. These are according to the ascent order 
of connectedness index, respectively, the Brexit vote 
in 2016, the US’s credit rating down and the 
European Debt Crisis in 2011, the Chinese stock 
market turbulence in 2015, and the market crash 
due to Coronavirus pandemic in March 2020. All 
these results show that unexpected sudden events 
increase the connectedness between stock markets 
and similar results are obtained with the increasing 
connectedness in the crisis periods in the literature. 
AEX and SPX are the most net transmitter stock 
indices to other markets while AORD and N225 are 
the most net receivers from other markets with 
relatively smaller shock transmissions to other mar
kets. Moreover, the stock markets have faced several 
financial and non-financial issues such as the 2008 
collapse of Lehman Brothers, the 2011 Eurozone 
Sovereign debt crisis, the pandemic which led to 
the highest spillover index values. At the time of 
some of these events, the shocks of the N225 have 
a more spillover effect to Western indices than other 
shocks that come to N225. In both frames, the ana
lysis results show the N225’s shock transmissions 
from the SPX at the most among stock markets 
indices, while the static frequency-based frame result 
indicates that the highest shock transmission comes 
from the SSMI to the N225 after the SPX in the long- 
term.

Our analysis acknowledges Japan stock market 
stands to the shocks from Western countries with 
a net receiver position. Therefore, Western stock 
markets shocks impact on the Japanese stock market 
index highly. The findings of this study can poten
tially be used for forecasting the behaviour of stock 
markets. Especially, despite the N225’s stable shock 
receiver position, major events related to the Japanese 

stock market such as the earthquake that occurred in 
2011 cause highly shock transmission from Nikkei 
225 to Western stock markets.

The results indicate that all of these issues men
tioned above to be empirically valid to explain the 
level of connectedness. Thus, the nature of the 
connectedness among stock market indices likely 
to be dependent on the characteristics of the parti
cular stock market as well as the global financial 
and non-financial issues.
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Appendices

Appendix 1. Variance Decomposition of 
Time-domain and Frequency-domain Analysis

Considering N variables structural VAR(p) model at 
t ¼ 1; . . . ;T 

xt ¼ δ1xt� 1 þ δ2xt� 2 þ . . .þ δpxt� p þ εt 

,
where x is the Nx1 vector of variables, δ is the NxNmatrices of 
coefficients and εt is white noise with the � covariance matrix. 
Rewriting the model with NxNmatrix lag-polynomial 
δ Lð Þ ¼ ½IN � δ1L � . . . � δpLp, the model becomes 
δ Lð Þxt ¼ εt . Next, δ Lð Þ ¼ Ω Lð Þ½ �

� 1 and it is assumed that 
the roots of δ zð Þj j are beyond the unit circle. Thus, demon
stration of moving average MA 1ð Þð Þ with VAR processing is 

xt ¼ Ω Lð Þεt 

.
Pesaran and Shin (1998) introduced generalized variance 
decomposition which eliminates the possibility of variance 
decomposition dependence on VAR ordering. The contribu
tion of variable l to the kth variable at h horizon, then general
ized forecast error variance decomposition is

ΘHð Þk;l ¼
σ� 1

ll

PH

h¼0
Ωh�ð Þk;lð Þ

2

PH

h¼0
ðΩh�Ω0hÞl;l

where σll is the standard deviation of the error term, Ωh is 
the moving average coefficients matrix (N � NÞ at lag h. Note 
that the summation of each row of ΘH is not equal to 1. Next, 
for the measure of connectedness and calculation of the 
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spillover index from l to k at horizon H, variance decomposi
tion is normalized ð~ΘHÞ with constructions 
PN

k¼1
ð~ΘHÞk;l ¼ 1 and 

PN

k¼1
ð~ΘHÞk;l ¼ N. For each variable, divid

ing with the summation of the row, ~ΘH is 

ð~ΘHÞk;l ¼
ΘHð Þk;l

PN
l¼1 ΘHð Þk;l

:

In a simple way, sharing of variances from one variable to 
another and measuring this contribution with errors to 
forecast constructs measurement of connectedness. Thus, 
the proportional relation of the summation of off-diagonal 
variables to the sum of the whole matrix, 

ςH ¼

P
k�1 ð

~ΘHÞk;l
P~ΘH 

measure overall connectedness.
Next, with moving average coefficients Ω and i ¼

ffiffiffiffiffiffiffi
� 1
p

, 
Fourier transform of coefficients is Ω e� iωð Þ ¼

P

h
e� iωhΩh .

The generalized spectrum at a frequency ω, and lth element 
shock to the kth variable gives 

f ωð Þð Þk;l ¼
σ� 1

ll Ω eiωð Þ�ð Þk;l

�
�
�

�
�
�

2

�Ω eþiωð ÞÞl;l
:

Definition of generalized variance decomposition on band d, 
with frequency band d ¼ a; bð Þ : a; b 2 � π; πð Þ and a< b is 

Θdð Þk;l ¼
1

2π
ò
d

ζk ωð Þ f ωð Þð Þk;ldω;

where ζk ωð Þ is the weighting function with frequency band 
d scaled to Θdð Þk;l gives 

ð~ΘdÞk;l ¼
ΘHð Þk;l

P
k Θ1ð Þk;l

;

where Θ1ð Þk;l represents 
P

ds2D
Θdsð Þk;l .

Within connectedness with frequency band d which provides 
exist connectedness influence within the frequency band and also 
solely weighted by the influence of series on defined frequency 
band is;  

ςw
d ¼ 1 �

Tr ð~ΘdÞ
� �

Pð ~ΘdÞ

 !

� 100:

Frequency connectedness on band d is; 

ςf
d ¼

Pð ~ΘdÞ
Pð ~Θ1Þ

�
Tr ð~ΘdÞ
� �

Pð ~ΘdÞ

 !

� 100;

where trfg is the trace operator.
Frequency connectedness divides the overall connectedness 
ðςHÞ and gives ς1 when these parts are summed. Thus, 

ς1 ¼
X

ds2D
ςf

ds 

.

Appendix 2. Robustness of Time-Domain 
Connectedness Analysis

To eliminate the possibility of dependence on VAR order in 
variance decomposition, estimation is conducted within the 
framework of generalized VAR such as Diebold and Yilmaz 
(2012). However, sensitivity analysis is also applied according 
to their method. The sensitivity of the estimate is measured 
according to both the VAR orders and the forecast horizons. 
Thus, we check the robustness according to two to six VAR 
orders and 5, 10 and 15 days forecast horizons.

Figure 5 illustrates the robustness of the analysis according to 
VAR orders. In some periods range of minimum and maximum 
values obtained from two to six VAR order estimation results are 
higher than other periods. Besides the higher range especially in 
2008–2009, the trend gives similar results.

Figure 6 shows the sensitivity of analysis with 5-day, 10-day, 
and 15-day forecast horizons. A robustness check for forecast 
horizon provides similar trend outcomes with all days.
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Figure 5. Sensitivity according to VAR orders. The light grey area represents min to max values total spillover range according to VAR 
order through two to six and the dark-grey line represents estimated (VAR order is 4) total spillover index in analysis, estimations are 
conducted with 200 rolling windows and 10-day forecast horizon.

Figure 6. Sensitivity according to the forecast horizon. 200 rolling windows and VAR order is four.
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