
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

A CONCEPTUAL DESIGN FOR

MANAGING INTERNET OF THINGS DEVICES

IN EMERGENCY SITUATIONS

BURAK KAYMAZ

THESIS ADVISOR: ASSOC. PROF. AHMET TUNCAY ERCAN

COMPUTER ENGINEERING

PRESENTATION DATE: 08.08.2019

BORNOVA / İZMİR
AUGUST 2019

ii

We certify that, as the jury, we have read this thesis and that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

iii

iv

v

ABSTRACT

A CONCEPTUAL DESIGN FOR MANAGING INTERNET OF THINGS

DEVICES IN EMERGENCY SITUATIONS

Kaymaz, Burak

Msc, Computer Engineering

Advisor: Assoc. Prof. Ahmet Tuncay ERCAN

August 2019

Internet of Things (IoT) concept is used within low cost devices in various forms as a

result of technological developments. IoT enabled devices which are commonly used

in workspace we need, such as hospitals, buildings, logistics, have been developed

into systems, capable of data collection and transmission. In terms of quantity,

around 8 billion of sensors are connected to IoT systems as of 2017. IoT devices are

integrated into infrastructure systems in large residential areas, making human life

easier and becoming a need that is used at every moment of daily life. In addition to

the Internet of Things devices operating in ordinary situations, devices that operate in

emergencies and provide situational awareness are needed. Climate disasters, fire,

flood, earthquake, tsunami, war or terrorism-related nuclear, biological or chemical

attacks or conventional attacks, damage infrastructure services either directly or

indirectly causing interruption of service which is needed by everyone. This thesis

proposes a conceptual design with a functioning prototype which is capable of

providing an auxiliary Internet connection for Internet of Things devices in the area

of disaster as well as sensing IoT devices with Wi-Fi, Bluetooth/BLE and sub-GHz

communication technologies.

Key Words: Internet of Things, Emergency response, network management.

vi

vii

ÖZ

NESNELERİN İNTERNETİNDE ACİL DURUM YÖNETİMİ SAĞLAYAN

MOBİL CİHAZ İÇİN KONSEPT TASARIM

Kaymaz, Burak

Yüksek Lisans Tezi, Bilgisayar Mühendisliği

Danışman: Doç.Dr. Ahmet Tuncay ERCAN

Ağustos 2019

Teknolojinin ilerlemesi ve ucuzlaması ile beraber Nesnelerin İnterneti (IoT) gündelik

hayatta farklı tiplerde, küçük ve işlem kapasitesi sınırlı sayılabilecek cihazlarda

kullanılmakta. Söz konusu cihazlar ihtiyaç duyduğumuz alanlarda - hastaneler,

fabrikalar, binalar, lojistikte - veri toplayabilen ve bu veriyi aktarabilen sistemlere

evrildi. Sayı bazında incelenecek olursa, 2017 itibariyle yaklaşık olarak 8 milyar

sensör Nesnelerin İnterneti'ne bağlandı. IoT cihazları, büyük ölçekteki yerleşim

bölgelerindeki altyapı sistemlerine dahil olarak, insan hayatını kolaylaştırıp gündelik

hayatın her anında kullanılan bir ihtiyaç haline geliyor. Olağan durumlarda faaliyet

gösteren Nesnelerin İnterneti cihazlarına ek olarak, acil durumlarda da faaliyet

gösteren ve durumsal farkındalık sağlayan cihazlar ihtiyaç dahilindedir. İklimsel

felaketler, yangın, sel, deprem, tsunami, savaş veya terörizm kaynaklı nükleer,

biyolojik, kimyasal veya konvansiyonel saldırılar, altyapı sistemlerine doğrudan veya

dolaylı yoldan zarar vererek, herkesin ihtiyaç duyduğu hizmetlerde kesintiye yol

açar. Bu yüksek lisans tezinde, herhangi bir acil durumda afet bölgesinde bulunan

Wi-fi, Bluetooth/BLE teknolojilerine ek olarak 1 GHz altında radyo frekansıyla

haberleşen IoT cihazlarını algılayarak tanımlayan, aynı zamanda altyapının hasar

görmesiyle internet erişimi kısıtlanmış olan IoT cihazlarına alternatif internet erişim

kanalı sunan mobil cihazın konsept dizaynı ve fonksiyonlarını gösteren bir prototip

sunulacaktır.

Anahtar Kelimeler: Nesnelerin Interneti, Afet ve acil durum yönetimi, Ag yonetimi.

viii

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Assoc. Prof. Ahmet Tuncay ERCAN

for his guidance and patience during this study.

Thinking outside of the box contributed many details during research and

development process of this work, thanks to my mentor and beloved friend Graeme

Mitchell Hanssen.

I would like to express my enduring love to my parents, who are always supportive,

loving and caring to me in every possible way in my life.

Burak Kaymaz

İzmir, 2019

x

xi

TEXT OF OATH

I declare and honestly confirm that my study, titled “A Conceptual Design for

Managing Internet of Things Devices in Emergency Situations” and presented as a

Master’s Thesis, has been written without applying to any assistance inconsistent

with scientific ethics and traditions. I declare, to the best of my knowledge and

belief, that all content and ideas drawn directly or indirectly from external sources

are indicated in the text and listed in the list of references.

xii

TABLE OF CONTENTS

ABSTRACT..v

ÖZ...vii

ACKNOWLEDGMENTS..ix

TEXT OF OATH...xi

TABLE OF CONTENTS..xii

LIST OF FIGURES...xiv

LIST OF TABLES...xvi

SYMBOLS AND ABBREVIATIONS...xvii

 CHAPTER 1 INTRODUCTION..1

1.1. IoT...1

1.2. Emergency Situations..2

1.3. Problem Definition..3

1.4. Roadmap..5

 CHAPTER 2 BACKGROUND..6

2.1. A Brief History of Internet before IoT...6

2.2. Open Systems Interconnection Model...7

2.3. IoT Implementation...9

2.4. Literature Work...10

2.5. Recovery Sites...12

2.6. IoT Protocols...13

2.6.1. IoT Data Protocols...14

2.6.2. IoT Discovery Protocols..15

 CHAPTER 3 IMPLEMENTATION..17

3.1. LANCED...17

3.2. Hardware Components..27

3.2.1. Raspberry Pi..27

3.2.2. Network Interface Card...28

3.2.3. Software Defined Radio..29

xiii

3.2.4. Global Positioning System...31

3.2.5. General Packet Radio Service..32

3.2.5. Built-in Wireless Network Interface Card...34

3.3. How to Find IoT Devices...34

3.4. Scenario...35

3.5. Features...37

 3.5.1. Case...37

 CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH...43

4.1. Limitations...44

4.2. Future Work...45

REFERENCES..46

APPENDIX 1 – Coding..49

xiv

LIST OF FIGURES

Figure 1.1. Lanced data collection on emergency...4

Figure 1.2. Lanced as an auxiliary WAN connection..4

Figure 2.1. OSI and IoT protocols mapping...14

Figure 3.1. LANCED GUI initialized...18

Figure 3.2. GUI state I..19

Figure 3.3. GUI state II..19

Figure 3.4. GUI state III...20

Figure 3.5. GUI state IV...20

Figure 3.6 Terminal output with smartphone...21

Figure 3.7 GUI state V...22

Figure 3.8 LANCED GUI user use case diagram...23

Figure 3.9 LANCED activity diagram..25

Figure 3.10 G.I.T.S. GUI..26

Figure 3.11 L.A.N.C.E.D MKI front view close up..28

Figure 3.12 Raspberry Pi..29

Figure 3.13 TP-Link TL722WN NIC...30

Figure 3.14 RTL-SDR RTL2832U...31

Figure 3.15 G-STAR IV GPS module..32

Figure 3.16 Sixfab Raspberry Pi GPRS SHIELD...34

Figure 3.17 L.A.N.C.E.D MKI with GPS/SDR/NIC/GPRS modules...................................35

Figure 3.18 Scenario I..36

Figure 3.19 Scenario II...37

Figure 3.20 Overall layout of hardware modules of LANCED system................................38

Figure 3.21 L.A.N.C.E.D MK I case before assembly...39

Figure 3.22 L.A.N.C.E.D MK I assembled..40

xv

Figure 3.23 L.A.N.C.E.D MKI Interfacing...41

Figure 4.1 SDR scanning data..42

Figure 4.2 Bluetooth scanning data..44

Figure 4.3 Kismet scanning data..44

xvi

LIST OF TABLES

Table 3.1. Lanced Functions Example..24

Table 4.1. LANCED production cost...43

xvii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

BASH Bourne Again Shell

BLE Bluetooth Low Energy

CoAP Constrained Application Protocol

DARPA Defense Advanced Research Projects Agency

GPIO General Purpose Input/Output

GPRS General Packet Radio Service

GPS Global Positioning System

GUI Graphical User Interface

IP Internet Protocol

IPCP Internet Protocol Control Protocol

ISM Industrial, Scientific and Medical (radio spectrum)

IoT Internet of Things

MAC Media Access Control

NIC Network Interface Card

OS Operating System

OSI Open Systems Interconnection

PPP Point to Point Protocol

RAM Random Access Memory

RPI Raspberry Pi

SDN Software Defined Network

SDR Software Defined Radio

SSH Secure Shell

SSID Service Set Identifier

xviii

TCP Transmission Control Protocol

USB Universal Serial Bus

WAN Wide Area Network

WAP Wireless Access Point

WIFI Wireless Fidelity

WLAN Wireless Local Area Network

xix

CHAPTER 1

INTRODUCTION

As Moore stated that while processing power increases and the cost of power

decreases, technology becomes more abundant and cheap by the passage of time, in

Electronics Magazine issued in 1965. This law can be observed today and leads us to

a degree of freedom where any device could be connected to the internet. Internet of

things can be considered as a new way of revolution just before the industry 4.0. As

the automation replaces labor, internet of things makes us able to connect to the

cloud by even our refrigerators. This shift in paradigm provides us with more

flexibility in connectivity with our wireless computer networks.

Deployed sensors produce data such as thermal, visual, sonic based and even

electromagnetic. Refineries, dams and factories for instance, utilizes these sensors to

gain information about critical systems, also decision making systems are dependent

on these sensors (Xu et al., 2014).

1.1. IoT

The exact definition of the IoT is a bit blurred just because there are many details

which explain this concept. In its core, it can be clarified as connecting the virtual

things such as information and data with physical things that we interact with every

day. As one can comprehend, there are technologies that include IoT concept within

their logic. Eventually these technologies, smart dust, wireless sensor networks,

smart grids, smart cities are considered to be in the scope of IoT as well (Uckelmann

et al., 2011). It could be better to understand that all these technologies have sensors

and internet connection is delivered via secondary modules such as gateways or

additional helper nodes depending on the severity of the system. So there are many

clues which define the Internet of Things.

The name "IoT" first used by Kevin Aston in 1999, Kevin states that Internet of

Things devices provide data which can be useful to maintain and control any system,

1

consequently such systems could be more efficient and reliable. If we assume there is

a critical system which provides a continuous public service, a prediction of a

maintenance time derived from the data collected by IoT devices of the system. The

Internet of Things integrates the digital world of information technology to our

physical world with the help of sensors and actuators (Ashton, 2009).

Rob van Kranenburg states that IoT delivers a global connection of dynamic entities

via the help of the standard computer network protocols, using sensory interfaces

effectively thus, an improvement to data collection is achieved (Kranenburg, 2008).

IoT devices can be utilized in many ways, such as a cluster or a single device for

home use. While the quantity increases, communication between these little

sensors/actuators must be handled. IoT gateways come into the stage when data

needs be sorted or supervised. IoT gateways are in charge of multiple roles, security

administration between sensors or actuators, regulation of network communication

can be achieved via an IoT gateway. Moreover IoT gateways transfer the data to a

designated database for further analysis. In terms of processing power, IoT sensor

networks contain a variety of devices. By deploying a simple sensor on the field is

more effective in terms of processing power cost. IoT gateways conduct processing

and hand over the data to an another IoT gateway or a cloud service. In addition to

this, sensors in the IoT network can transfer their data, conducted by an IoT gateway

to an end point.

1.2. Emergency Situations

As a conclusion, IoT devices will be around us in the near future, shaping our daily

routines and helping our lives in any field. It is essential to note that effective

utilization of these devices will be providing the data for both commercial and public

use.

Every year, natural disasters occur at random, on different locations. It is a fact that

early response in an emergency situation could save lives, while preventing mass

panic and disorder. Natural disasters may be significantly colossal in magnitude,

resulting aftermath may be perpetuated by the infrastructure which is rendered

useless or reduced in utilization. Moreover, infrastructure has limitations even in

daily use, and prone to overload while an ongoing aftermath, as a consequence the

service quality and reliability may fail in the time of need.

2

There are many applications of management in emergency situations, differentiated

by approach, emergency IoT protocols, auxiliary communication gateways,

unmanned drone disaster discovery, emergency data collected by mobile phones,

smart detection systems that provide data analysis on the computer network traffic

and more.

1.3. Problem Definition

Recovering from a disaster involves diverse elements, for instance search and rescue

teams, civilians, devices or systems are immediately incorporated for the purpose.

Unfortunately, these elements are usually depend on infrastructure systems or

practice. To elaborate, Software Defined Networks grant communication protocols to

achieve network optimization, fixing computer network congestion issues,

unfortunately SDN oriented solution operates on the infrastructure in order to

perform disaster data collection. On the other hand, hardware based solutions such as

a wearable hardware, maintaining live data on the vicinity may not be adaptable for

frequent modification, supposing it is designed to serve a specific data, as a

consequence required to be compliant with an another system. Even though diverse

methods for disaster recovery exist, novel approaches would bring diversity for

different circumstances. Among alternatives, our approach brings a novel system,

designed to provide mobility, ease of use and situational awareness for search and

rescue teams while provides a an alternative for communication in case of WAN

access is out of service. In this study, a prototype device is proposed to serve during

an emergency. In order to grant situational awareness, IoT devices in the vicinity are

scanned and enumerated, also a mobile internet connection is established considering

the need for an alternative method. In addition to device discovery, an Access Point is

served for the IoT devices to maintain data transmission if provided with the settings

by an authorized operator.

3

Figure 1.1 : Lanced data collection on emergency

This Master thesis aims to design and implement a device, providing certain

functions for disaster recovery and management via help of IoT devices operational

on the disaster area. Hardware and software based disaster recovery systems are

available since IoT application grows larger by time. Our approach includes both

hardware and software components since our goal is to achieve adaptability for any

situation also providing mobility, interconnection and ease of use. Creating a

scenario for our device is the first step for the design. Our scenario is based on a

specific disaster area which is affected by any disaster type, since it is critical to

remember that there is no infrastructure available.

Figure 1.2 : Lanced as an auxiliary WAN connection

4

1.4. Roadmap

This thesis contain several chapters including this chapter. Organization of the thesis

is presented here :

 Chapter 2 - Background provides the required content for

comprehension of the thesis, history of the Internet before introduction

of IoT, Open Systems Interconnection Model and OSI layers

compared with IoT layers. Concerns of IoT devices and its uses.

Latest research on implementation of IoT in emergency. IoT

protocols, with communication and discovery protocols detailed.

 Chapter 3 - Implementation section provides details of LANCED

prototype including hardware components and required software.

System Design comprises the main functionalities, including the

physical casing, main and secondary software modules, main and

secondary hardware modules, restrictions, operational requirements.

Circumstances for our device to operate, IoT devices in the scenario

site and other environmental details which also critical for the system

design.

 Chapter 4 - Conclusion and Further Developments this section

provides an overall display of achieved goals and collected data, also

future expansions of the device will be presented.

5

CHAPTER 2

BACKGROUND

Since this thesis aims to propose a device design in this chapter some background

information will be presented to have better understanding with the Internet of

Things, network protocols and IoT based network protocols, First of all, the term

Internet of Things is described, the origin of the Internet of Things concept and

applied fields will be presented.

IoT relies on conventional network architecture so briefly the network protocols will

be commented here and the OSI model will be reviewed as well. The emergence of

the internet as ARPANET, using the first two computers to switching packets are the

important milestones of the development of the internet and consequently the

Internet of Things (Leiner et al., 2009). IoT concept has new protocols designed to

ease the connection and data transfer which is interest of this thesis also. In detail,

these protocols will be presented. The IEEE and IETF formatted protocols are the

main focus of this chapter, will be covered in detail. It is essential to give some

details for the OSI model before detailing the IoT protocols.

2.1. A Brief History of Internet before IoT

Initial form of the internet was a structure aimed to help the researchers to

communicate via using electrical lines. This idea indeed goes far back in history,

Leonard Kleinrock was the first paper publisher about the modern internet dated in

1961. His approach on the topic was using the packets through line instead of

conventional circuitry. Together with Thomas Merill, they created the first computer

sending packets over the line and the communicating the two computers was their

second goal. Thanks to their research, first tiny model of the internet was established

(Kleinrock, 1961). After the first communication between two computers, ARPANET

network was proposed by Roberts working for the DARPA, in his paper Multiple

Computer Networks and Inter computer Communication in 1967. ARPANET, was

6

the first building stone of the internet era, after the Kleinrock's packet switching

model (Roberts, 1967).

Developing technologies like internet itself have a time period for to have some

standards. This usually triggered by the public interest and use. During the process,

public interest had some uses for the internet and consequently demanded products

that have standard connection methods. The vendors that has products using the

internet technology eventually needed standard for the products they have developed.

This demands have lead the producers to have a uniform range of information, a

consensus. First community of information trade formed back in 1988 by DARPA

researchers (Leiner et al., 2009).

An important milestone of today's internet initiated by the International Standards

Organization (ISO) in 1978 (Zimmermann, 1980).A committee on classifying the

protocols and connection types decided that Open Systems Interconnection (OSI)

abstract model is the official name for required classification for covering all the

connections between different devices and systems. Open word in Open Systems

Interconnection indicates that any device that has a connection regardless of it's type,

is able to communicate through internet using the same standards. OSI model

consisted seven layer of abstract fields with each level holds protocols designed with

behavioral differences.

2.2. Open Systems Interconnection Model

Eventhough Internet of Things have a different type of approach to communication

protocols, base model is the foundation of the newly arisen IoT protocols. Traditional

OSI model has the ability to integrate these new additions for protocols, in next

section of this thesis, there will be relation presented between OSI and the new

protocols.

1. Physical Layer : Foundation of the OSI layers. This layer is the transfer

medium for all data stream. A physical link is established between sender and

receiver and the data is transferred on this link in signalized form. Connection

form is delivered via physical link such as full duplex connection, half duplex

or simplex. In addition this layer is able to sever or establish the connection.

Network cards, hubs and even simple ethernet cables are elements of physical

layer. IoT protocols in this layer contains physical access and network access

7

functionalities, IEEE 802.15.4 and WiFi, GSM, CDMA and LTE are in this

layer.

2. Data-Link Layer : Creates data bundles called frames and ensures

reliability while transferring data by providing source and destination MAC.

The data passed from the network layer formatted into frames in such a way

that in case there is a data loss or modification during the transfer, packet is

dropped. This attribute is ensured by the FCS(Frame Check Sequence) part of

the frame(IEEE 802.3). Compared with the IoT protocols, this layer is the

same as the first layer.

3. Network Layer: This layer provides a wider range related to previous

layers. Logical addressing is handled by this layer, destination and source

address is encoded into the packet in a fashion which provides navigation

between distant sender and receiver nodes. Logical addressing is

determined by the Internet Protocol (IP) *RFC HERE* and encoded into

frame with four octets of bits for both destination and source. IoT

architecture has the same properties of Internet layer in TCP/IP reference

model, IPv6 and 6LoWPAN technologies are included.

4. Transport Layer : This layer provides if the data is securely transferred

over the physical medium, either reliable transfer TCP or unreliable

transfer UDP is chosen. Establishes the reliable connection between the

sender and receiver using TCP/IP protocol. Transmitted data may divided

into segments, multiple parts also the synchronization of segments'

transfer order are handled. IoT Transport Layer is consisted of TCP and

UDP.

5. Session Layer : Between multiple nodes, session management and

connection is handled by this layer. Starting and ending the session is the

main purpose of this layer. This layer is included in the IoT as

Application layer, which contains technologies such as MQTT, CoAP,

HTTPS, XMPP, AMQP.

6. Presentation Layer : Data format is handled by this layer by translating

it, for providing a common format between other nodes on the network.

Formats JPG, GIF, MPEG, SSL, TLS are in scope of presentation layer.

This layer is included in the IoT as Application layer, which contains

technologies such as MQTT, CoAP, HTTPS, XMPP, AMQP.

8

7. Application Layer : The most outer layer of the OSI layers. Handles the

connection based authentication checks, for instance a database

connection is handled by this layer. A web browser is a nice example

since it is sitting in the application layer. This layer is included in the IoT

as Application layer, which contains technologies such as MQTT, CoAP,

HTTPS, XMPP, AMQP.

OSI layers are working like top down approach when a request is made from the

user, data is created and encapsulated from the above to the lower layers. Protocol

Data Unit (PDU) is injected by order with each layer when data reaches the physical

layer it is then transformed into a digital signal ready to be transferred through the

physical layer transfer medium (Ravali, 2013).

2.3. IoT Implementation

IoT has many uses. Large management systems utilizes IoT, such as logistic firms,

factories. Industrial Internet of Things (IIoT) is the term for classifying large actuator

systems connected to the internet or control systems. To be more precise Cyber

Manufacturing Systems can be utilized with IIoT. The system needs to be handled

by centralized data nexus such as a gateway. Household IoT devices are also

numerous and by the progression of time they became more common. Additionally,

security and surveillance, transportation, healthcare, consumer and home, smart

infrastructures are in scope of IoT.

Household or companies could have IoT systems deployed to control temperature,

humidity, also smart infrastructure systems such as ventilation, interior lightning,

security. Unlike WSNs (Wireless Sensor Networks) IoT systems are consisted of

many sensors and some of these sensors are not able to provide internet connection

therefore these sensors consume less energy and they are are relatively cheaper.

When a tech company needs precise temperature in a system room, sensors are

required to push data with a constant rate to a control system. While a household may

not be affected by network traffic but a company may suffer congestion issues

returns as cost for our company. A system consisted of many sensors and a central

node called IoT gateway would ease the traffic and energy consumption. Moreover

IoT gateway could handle the data before transmitted in WAN and then to cloud.

9

Main idea is while a gateway sits behind all these sensors, some aspects are not to be

forgotten. While a sensor is continuously transmitting data, certain network traffic is

produced.

2.4. Literature Work

Internet of Things based emergency management systems provide a wide scope of

benefits. The data derived by devices in various systems then can be analyzed with

algorithms, grants leverage for such situations that even a bit of information matters,

saving more civilian lives. Since IoT can be applied on different systems, such as

healthcare or smart cities, type of the collected data can have differences. These

variations grant access on the topic with many angles.

In terms of computer network, congestion is an issue, in case of emergencies.

Congestion can be a point of failure for systems which require real time data

transmission. Overcoming congestion issue can be arranged via protocol based SDN

method. An SDN oriented solution is proposed, ERGID: An efficient routing

protocol for emergency response Internet of Things is aimed for real time data

transmission control which yields reduced packet loss and energy consumption, the

research provides two main techniques which are Delay Iterative Method (DIM) and

Residual Energy Probability Choice (REPC). DIM calculates the delays between

responses for the nodes then re-configures the neighbors providing a solution for

ignored valid paths. REPC is a novel method presented by this research, exchanges

data while overseeing the energy of the node compared with other nodes, following

with the decision of next forwarding node (Qiu et al., 2016).

Minimal design of IoT devices deliver mobility and accessibility, also serves as

wearable technologies. Wearable IoT devices are tailored for the purpose, such as

firefighting or healthcare applications. The data collected through sensors placed on

the service personnel, maintains a live data feed on the subject of matter. In this

scope, researchers proposed a wearable technology named, Wearable IoT sensor

based healthcare system for identifying and controlling chikungunya virus. The

proposed system provides real time data, collected by the IoT sensor layer then

passed through fog layer where classification and alert generation are handled. The

final step is cloud layer, which is consisted of storage and indexes for government

agencies and hospitals. Since the virus is spread via female mosquitoes, the solution

10

is fast, reliable and provides accuracy since live feed is provided on the site of

operation (Sood & Mahajan, 2017).

Another research named Enhanced IoT-based end-to-end emergency and disaster

relief system, proposing a wearable technology, named CROW (Critical and Rescue

Operations using Wearable Wireless sensors networks). Rescue personnel on the

disaster site is connected to the internet, network communication is handled by

Optimized Routing Approach for Critical and Emergency Networks routing protocol.

CROW system allow users to generate and record live data feed, utilizing different

types of hardware which are Raspberry Pi, sensors and smart phones. Decision

making is administrated by the command center, concluded after data analysis (Ben

et al., 2017).

Hybrid IoT networks are capable of communicating with vast number of devices

with various types of sensors mounted. These hybrid systems are able to collect

different types of data and derive an approach on the problem with multiple angles.

Whistland: An Augmented Reality Crowd-Mapping System for Civil Protection and

Emergency Management, proposing a hybrid system to provide emergency

management in case of a natural disaster. The scenario is based on a river in danger

of flood, the rescue team is mobilized after using the data collected from a server

called GeoData Collector which prepares social network data. Augmented reality

(AR) is aiding the team via displaying related information about the site such as

sensor data in close approximation, while disaster is scaled by mapping which is

implemented by Analytics Dashboard (Luchetti et al., 2017).

Smart cities are employing a wide range of IoT devices in infrastructure systems, in a

form of sensors and data collection as well. These IoT devices are also can be

employed for disaster recovery, the data collected via sensors and actuators would be

adjusted for the goal. Algorithms, programs or hardware based systems would help to

maintain order when there is a disaster, eventually situational awareness is granted,

preventing lack of management and human error. A specific solution for highway

tunnels is proposed in the article, named Managing Emergency Situations in the

Smart City: The Smart Signal. The proposed system is able to provide automated

sensing in times of hazard, following a warning signal pattern for the civilians in the

vicinity. The system is fed by multiple data sources such are temperature, pressure,

11

wind, humidity, light sensors which are then processed by a micro-controller. Energy

consumption is also balanced via controller (Asensio et al., 2015).

Communication mediums have assorted types, incorporating different devices and

methods. Various type of communication mediums provide reliability as well as

usage options. It is necessary to note that, during the time of recovery from a disaster,

different communication methods would yield better results, considering probable

infrastructure system failure in any of these mediums. In this matter, a research

named Implementation of Relay-Based Emergency Communication System on

Software Defined Radio, proposing a backup for communication in case of a failure

induced by infrastructure. Primary feature of the system delivers situational

awareness. In addition to this, the system is capable of relaying communication,

eventually recovery from severed data communication. The system is monitoring the

deployment area with help of sensors for emergency, triggering the backup

communication medium if the base station is out of service or overloaded. Integrated

relay node is able to boost the signal of the base station, also take over the base

station in order to restore data transmission (Lee et al., 2015).

2.5. Recovery Sites

The main goal of the proposed system is to gather data from disaster site by

deploying the unit in a safe distance. To have a clear picture, we can generalize uses

of IoT devices in various fields.

I. Healthcare facilities have various usage of IoT. Critical hardware

availability check, tracking public elements such as patient, healthcare

personnel or inventory availability, remote monitoring for health status of

patients are the most common examples of utilization of IoT in healthcare.

II. Factories also have wide scale of use with IoT. Providing a base for industry

4.0, almost entirely automated factories run via help of IoT sensors,

management, flow control of actual production, inventory management,

security of assets and personnel, product control to ensure quality,

optimization of packaging and storing, logistic management of supply chains

are general examples.

III. Educational institutions are in need of security at all times. Ensuring a safe

learning space for students is possible with IoT, using monitoring system for

12

transportation and attendance, emergency warning systems for management.

IV. Power plants which use the IoT devices are aimed to sustain for longer. Data

collected with IoT nodes provide predictability, adaptability. Safety of

employees and environment is also achieved.

V. Public apartments are numbered heavily in populated cities which also

require IoT devices to provide functioning residences. Most common

apartments use heating systems, lightning, safety ensuring sensors such as

alarms for gas, fire hazard detection. Security is also ensured with using IoT

nodes.

VI. Smart cities have wide range of sensors to gather data which can be later

utilized after an analysis resulting in less traffic congestion, accurate

prediction of time critical services like public transportation, energy efficient

buildings, public safety.

2.6. IoT Protocols

After the introduction of concept of Internet of Things, new methods of data

transferring need pioneered the new protocols and connection types for the IoT.

There are now many of this protocols and communication methods exist some have

standards controlled by the IEEE, IETF and more. Before implementing the gateway

and the sensor nodes, it is essential to have general knowledge about these new

protocols.

13

Figure 2.1. OSI and IoT protocols mapping

2.6.1. IoT Data Protocols

I. CoAP (Constrained Application Protocol - RFC 7252) : The most

known protocol for the Internet of Things. CoAP is designed for

constrained with energy and CPU power. Multicast is supported also

machine to machine communication based nodes are in scope of

CoAP (Shelby et al., 2014).

II. MQTT (Message Queing Telemetry Transport) : Lightweight message

transferring protocol designed for low overhead message like simple

binary data, a lightweight and uses TCP/IP connection also is

opensource (Andrew et al., 2019).

III. XMPP (Extensible Messaging and Presence Protocol - RFC 3921) :

A real time message sender protocol that uses XML and provides TLS

(Transport Layer Security). Client and server communication is

utilized with XMPP (Saint-Andre, 2004).

IV. AMQP (Advance Message Queuing Protocol) : AMQP allows

multiple services to connect each other, organizations or different

clients that uses AMQP can work interoperable also an open source

14

protocol available for different platforms (Steve Vinoski, 2006).

V. REST (Representational State Transfer) : REST shows resources

between client and server like the conventional internet, using the next

possible states. Google search is the best example of REST for

instance a simple search results in many options to user to select

(Leonard Richardson and Sam Ruby, 2007).

VI. 6LoWPANs (Low Power Personal Area Networks - IETF - RFC 6282

) : Used in personal area network nodes which need low energy

consumption, also the IPv6 based nodes have a future of large mesh

networks that will be implemented for the future. Uses data-link

frames for end to end transfer. Mesh network nodes can be extended

when needed provided by the protocol, nodes acts as a router (Zach

Shelby and Carsten Bormann, 2010).

VII. LLAP (Lightweight Local Automation Protocol) : Short message is

used to communicate between devices, this protocol sends the

message directly instead of encoding it to a format. Platform

independent protocol is easy to understand since it does not encodes

the message (Aly Farahat and Ali Ebnenasir, 2012).

2.6.2 IoT discovery protocols

In the previous topic, data transfer protocols are briefly covered. In this section

discovery protocols for the nodes will be shown. Some nodes on the IoT systems are

easily managed and recognized by other nodes or IoT gateways using these discovery

protocols. Traditional discovery methods are used while advertising the nodes.

I. mDNS (multicast Domain Name Service - RFC 6762) : The need of small

scaled networks and many nodes on this small networks have raised the need

of the discovery of these nodes when there is no classical Domain Name

System exist. When there is no presence of Domain Name Service server set

up in a network, mDNS can be utilized to resolve the host names (Cheshire,

S. and M. Krochmal, 2013).

II. UPnP (Universal Plug and Play) : Manages local sensors and device data and

15

controls the share of the data when or whom to share with in addition to these

provides security for the network. UPnP also establishes a discovery between

the nodes on the network, supports TCP/IP. Regulated by Open Connectivity

Foundation (V. Pehkonen and J. Koivisto, 2010).

III. HyperCaT : Provides a JSON formatted discovery method. Discovery is

possible over the internet using the URI (Uniform Resource Information

Identifier) based catalogues. Uses HTTPs REST and JSON also provides

security also a simple method for the developers (Michalis et al., 2019).

16

CHAPTER 3

IMPLEMENTATION

The world revolving as we humans develop new technologies and methods for

survival. Compared with previous ages, mortality rates are decreasing since

developments in healthcare, early warning and recovery systems for disasters

resulting in growing population density in cities. In order to maintain a functional

society, infrastructure systems are formed to satisfy the needs of populated cities,

governments and countries. There are several concerns for managing a healthy

population such as men made or natural disasters. As technology have uses of aiding

mankind, it also has destructive capabilities also created by men. Such harmful

intentions can destroy entire cities even nations. Natural disasters also cause mass

panic like war and terrorism, happening any year by anytime regardless of location

and population count. Scenario for this thesis is aiming to include not all but most of

situations may occur anytime, instead of creating a specific scenario for any of these

disasters, a generalized approach is better to avoid situational details.

3.1. L.A.N.C.E.D

L.A.N.C.E.D. (Lightweight Automated Network Component Enumeration Device)

will be organizing several modules simultaneously to achieve data collection of IoT

devices with Wi-Fi, Bluetooth/BLE and sub-GHz capabilities while providing WAN

access as an auxiliary connection for maintaining data access. LANCED device will

be using a BASH program for automated installation (lanced_installer) and another

one (lanced) for GUI and operation.

The system will be utilizing several open-source programs as well as essential

hardware devices for operation. Lanced device will be providing multiple interfaces

for the user to operate the device covering monitored and without monitored usage

options. BASH language will be used to implement almost all of the program, to

complement the capabilities of BASH, Python language may be needed, provides

wide range of libraries also easy to implement and use with other programs. Main

17

operations will be handled by BASH, interfacing with hardware and software, storing

data in respective folders, also installation will be done by another part of the main

program.

Figure 3.1. LANCED GUI initialized

To achieve the goal of creating a stand-alone device that performs wireless spectrum

analysis, passive data collecting and logging, ease of use and mobility shall be

provided for the user. GUI must provide status of the device included hardware and

software modules, also minimal menu keys to reduce response time of the user.

Monitoring and interfacing with the device is available via a keyboard and screen or

SSH connection with the terminal. Our prototype is capable of using external

batteries or alternative power sources such as cars, mobile stations. Connection with

an extension cable to keep hardware modules apart or elevated depending on

environment and situation is possible as well.

LANCED is designed to handle automation with aim of reducing user interaction

resulting in reduced response times that is critical for managing emergency

situations. Operation of the device lets the user to have an elevated view of disaster

site that contains IoT devices with Wi-Fi, Bluetooth and sub-GHz variations.

18

Figure 3.2. GUI state I Figure 3.3. GUI state II

LANCED menu offers minimal design for the user while allowing operation and

diagnostics for the hardware and software modules for troubleshoot.

Operation of the proposed system is starts after powering up the device. There are

three modes of operation are available for the user for operation. First method allow

user for quick deployment, after the OS boot process, LANCED is able to start the

monitoring process.

Second method allow the user to interact with the proposed system via multiple

ways. HDMI display port on RPI board is accessible for the user to connect any type

of monitor to provide graphical feedback. The user also is able to connect any

keyboard and mouse via any of unused USB ports on the proposed system. Desktop

variation of the Raspbian OS offers conventional user interaction that is sufficient for

any desired modification on the OS. Terminal variation on the other hand is more

compact but efficient, allowing user to interact with CLI screen.

19

 Figure 3.4. GUI state III Figure 3.5. GUI state IV

Older versions of terminals were implemented on hardware setup unlike recent

versions, instead of hardware like TeleTYpe writer called TTY, software based

terminals called terminal emulators are in use for modern computers (Powers et al.,

2003). Simulated terminals for instance xterm, is available on a graphical display.

Popular Unix based OSes have a variety of terminal types, xterm, gnome,

LXterminal, xfce4 are the most general types. Design of the GUI of LANCED is

handled by main module called LANCED.sh. Compatibility for certain ANSI

characters have constraints in different terminal types, to overcome compatibility

issues, Linux TTY terminal supported ANSI characters preferred for user display.

Linux tty encoded characters allow LANCED to be displayed with any other

terminal consequently GUI is supported by any platform with different types of

terminals.

Third method of use is possible with connection via SSH through any mobile phone

with installed terminal application (see Figure 3.6), or a laptop with UNIX based OS

installed. RPi internal Wi-Fi NIC is used as an AP to provide Wi-Fi connection for

one or more users, after connection is established with the LANCED AP, terminal

access grants user to run required programs for operation. AP ip is previously defined

while setting up Hostapd and is displayed under MENU section (see Figure 3.1).

Capability of AP of the proposed system is achieved with program called Hostapd,

with parameters set by LANCED installer. Setting of the AP can be modified as

desired

20

Figure 3.6. Terminal output with smartphone

after installation of the software modules. Hostapd is a user space daemon for access

point and authentication servers, under the terms of BSD license. It implements IEEE

802.11 access point management, IEEE 802.1X/WPA/WPA2/EAP Authenticators,

RADIUS client, EAP server, and RADIUS authentication server. The current version

supports Linux (Host AP, madwifi, mac80211-based drivers) and FreeBSD

(net80211). LANCED device will be providing WiFi connection for managing the

device via Hostapd program (HOSTAPD, 2002).

21

 Figure 3.7. GUI state V

Organization of the hardware modules and software programs are handled with

LANCED.sh (see Figure 3.7). GUI is consisted of sections with minimal design.

Ease of use based on minimal user selection with five keys at most displayed in

MENU section on GUI (see Figure 3.8). After boot process is completed, user is able

to probe the connected devices with pressing key 1. LANCED program then initiates

an integrity check for connected interfaces for physical connection followed with

software interface capability. Device probe process checks for Wi-Fi NICs while

providing support for one or two Wi-Fi NICs. The LANCED system achieves Wi-Fi

AP tracking capability with using program called kismet and one or two Wi-Fi NICs.

Kismet is an 802.11 wireless network detector, sniffer, and intrusion detection

system, under the terms of GPL-2.0 license. Kismet will work with any wireless

card which supports raw monitoring mode, and can sniff 802.11b, 802.11a, 802.11g,

and 802.11n traffic (devices and drivers permitting). Kismet also sports a plugin

22

architecture allowing for additional non-802.11 protocols to be decoded. Kismet

identifies networks by passively collecting packets and detecting networks, which

allows it to detect (and given time, expose the names of) hidden networks and the

presence of non-beaconing networks via data traffic (KISMET, 2002).

Figure 3.8. LANCED GUI user use case diagram

GPS module if connected via USB interface, following with GPS acquisition. GPS

acquisition also provides Raspbian OS time correction since RPi board does not

contain a RTC module on the board. GPSD is a service daemon that monitors one or

more GPSes or AIS receivers attached to a host computer through serial or USB

ports, making all data on the location/course/velocity of the sensors available to be

queried on TCP port 2947 of the host computer. Application that presently use gpsd

include Kismet, GpsDrive, gpeGPS, roadmap, roadnav, navit, viking, tangogps,

foxtrot, odbgpslogger, geohist, LiveGPS, geoclue, qlandkartegt, gpredict, OpenCPN,

gpsd-navigator, gpsd-ais-viewer and firefox/mozilla. In addition the Android

smartphone operating system (from version 4.0 and later) uses GPSD to monitor the

phone's on-board GPS, so every location-aware Android AP is indirectly a GPSD

client (GPSD, 1995). GPS data is interfacing with other programs via GPSD program

which is able run as a daemon on the Raspbian OS. GPSD program has many

abilities such as formatting of GPS data, while is able to establish GPS acquisition

with any mobile phone set as GPSD server. LANCED program is able to detect if

there is a mobile phone acting as a GPSD server, in case of absence of GPS hardware

23

module, the user is not constrained to use a GPS hardware module connected via

USB port. After connection of the module is detected, interface connection bar is

displayed in green text is refreshed from red (see Figure 3.2)(see Figure 3.3).

Function name Tasks/Description
components_chk() hardware and software module

diagnostics is performed for
user GUI report

start_ks() if overall status of the device is
ready, start device discovery

stop_ks() End processes of discovery
programs

ln_quit() End Point-to-Point protocol
daemon then power off GPRS
module

Table 3.1. : LANCED functions example

SDR module install on the proposed system is probed for connection interface

followed by status check, if succeeded with probing then LANCED program

indicates the progress on the GUI(see Figure 3.4)(see Figure 3.5). Sub-Ghz devices

those are subjected for monitoring on the disaster site are scanned via SDR module

that is RTL-SDR v3 for this thesis. Devices on the site broadcasting radio messages

with frequency of below 1 GHz are have standards which are not entirely mapped for

detection, in some cases some devices are in requirement of RF signal to be mapped.

The scope of this thesis therefore must be extended, thus the proposed system is

designed to provide RF detection for previously mapped devices with below 1 GHz.

Open-source program named rtl_433 under GPL-2.0 license, supplied with required

capabilities is able to scan for designated devices. Rtl_433 is a generic data receiver

mainly for the 433.92 MHz, 868 MHz, 315 MHz and 915 MHz ISM bands

(RTL_433, 2012).

24

Figure 3.9. LANCED activity diagram

GPRS module installed on the RPI board is interfaced with GPIO pins, and mounted

on top of the board. LANCED program initializes the GPRS shield after checking the

power status of the GPRS shield. GPIO pins are suitable for this, power status is

checked with probing via GPIO 15 with BCM pin specification. Program called gpio

supplied within Raspbian OS is able read voltage value of the desired pin, thus if the

GPRS shield is not powered, LANCED program initiates a secondary python

module for powering the shield. GPIO pin 25 (under BCM) is used for powering the

shield if supplied with power with at least two seconds. LANCED program then uses

gpio program to read the value of GPIO 15 to sense power status of the GPRS shield.

GPRS module on the proposed system interfacing with the SIM module with desired

GSM carrier, establish internet connection via program called pppd, which is based

on PPP. The Point-to-Point Protocol (PPP) provides a method for transmitting

datagrams over serial point-to-point links. PPP is composed of three parts: a method

for encapsulating datagrams over serial links, an extensible Link Control Protocol

(LCP), and a family of Network Control Protocols (NCP) for establishing and

configuring different network-layer protocols. The encapsulation scheme is provided

by driver code in the kernel. Pppd provides the basic LCP, authentication support,

25

and an NCP for establishing and configuring the Internet Protocol (IP) (called the IP

Control Protocol, IPCP), with under the terms of licenses BSD and GPL-2.0 (PPPD,

2014). Internet connection then is shared with devices connected via AP. Raspbian

OS then is able to deliver WAN access via Iptables program which forwards request

through ppp0 interface. Internet connection status is displayed under AP IP, with a

green ONLINE text for WAN access and red OFFLINE text if connection is not

supplied.

Detection of Bluetooth and BLE supported IoT devices are supplied with onboard

Bluetooth. LANCED program probes for Bluetooth device status for status indication

via GUI. Discovery of Bluetooth and BLE devices depending on the program named

BlueHydra, built on bluez library (BLUEHYDRA, 2015), copyrighted by Rapid

Focus Security Inc d/b/a Pwnie Express.

GUI indication of overall status indicated in triangular display with green READY

message after system integrity is verified. LANCED system is then ready for

operation, the user can trigger the monitoring process by pressing 3 (see Figure 3.7).

Monitoring is in process until receiving a halt signal from the user by pressing 4,

resulting in start of DISARM process. Both ARM and DISARM process regulates

run and halt signals to respective programs, stopping or starting them in a proper

way.

LANCED program regulates collected IoT device data after each operation process,

processed data is saved into respective folder which are created and named by

LANCED, also timestamps are used to sign data for duplicated data. LANCED

program is also keeping track of unique devices to avoid data duplication. Number

of collected devices are indicated after each operation informing the user (see Figure

3.7).

26

Figure 3.10. G.I.T.S. GUI

Some functions, used by LANCED are provided via an utility tool called G.I.T.S.,

stands for Ghost In The Shell. GITS is consisted of collection of various UNIX

programs, delivering ease of use to the user with many functions with shortcuts

structured via BASH scripts. Internet connection status for instance is checked by a

function included in GITS. The user is allowed to use tools included in GITS as a

separate program with a GUI with shortcut keys such as SSH program, instead of

passing parameters in order, GITS ask the user for parameters then executes the

program. Compressing files, internet connection status, file integrity check via MD5

sum, VPN connection if provided with subscription are some of the tools those GITS

is offering to the user (see Figure 3.10).

3.1.1. Operating System

IoT devices have many options for OS to be implemented on. In terms of community

support and frequency of use, Raspbian OS is great platform, an open-source

software with required flexibility for any application to be developed. RPI based

hardware is supported by Raspbian OS as well as many IoT modules on the market.

Raspbian OS is recommended for beginners and skilled user both, GUI for beginners

and lightweight terminal version for skilled for experts.

Raspbian is in the family of Unix-like operating systems. Raspbian OS offers huge

advantage compared to other OSes, in terms of flexibility open-source based kernel

is possible for any type of configuration. Tailored for the specific needs of the user,

documentation for almost any modification is available on the internet supplied in a

27

regular basis from open-source community (Bovet & Cesati, 2005). Based on Debian

OS, Raspbian offer more than 35,000 packages, also pre-compiled software.

Figure 3.11. L.A.N.C.E.D MKI front view close up

3.2. Hardware Components

3.2.1. Raspberry Pi

Raspberry pi a well known tiny computer, providing a sufficient processing power

while keeping a low price. Main market audience of the RPI boards are inventors,

hobbyists, students, developers. The board is able deliver any function including web

browsing, video playing and such. The Raspberry Pi 3 Model B+ provides 64-bit

quad core 1.4 GHz of CPU power, dual-band 2.4 GHz and 5 GHz wireless LAN,

Bluetooth 4.2/BLE, 1 Ethernet port and PoE feature, 1 HDMI port, 4 USB ports, 1

audio I/O port.

28

Figure 3.12. Raspberry Pi

Storage unit is not built-in so any 16 GB SD card is available to be used with micro

SD card slot. Operating system options are wide since RPI is a preferred device for

prototyping and development. Windows 10 IoT core, Ubuntu Mate, Raspbian are the

most popular OS options for the RPI, consequently development languages are not

constrained by OS.

Eventhough the price of the device is considered cheap, Wi-Fi and Bluetooth

technologies are provided. There are many projects available on the internet since

Raspberry boards are popular among Do-It-Yourself community consequently a vast

number of applications are available to everyone to tinker. These aspects of the

device also provides a simple design, makes it suitable for designing mobile or

immobile devices.

Raspberry Pi 3 Model B+ is the base board that is used for the design. External NIC,

GPS module, SDR modules which are secondary modules are planned to connected

via USB ports for interfacing, total of 3 USB ports on the Rpi board is dedicated for

hardware modules. RPI GPIO pins are in use as well, providing the interface for

GPRS module which is able to nest on the RPi board via connecting the headers (see

Figure 3.12).

29

3.2.2. Network Interface Card

TP-Link TL722WN v1 is a WiFi NIC that uses AR9271 single chip with 802.11b/g/n

support. This product operates on 2.4 GHz frequency band with 802.11b/g/n network

standards and is able to provide AES, TKIP, WEP hardware encryption. Supported

data rates are 11b/g/n which is supplied with USB 2.0 as communications interface.

This product is not considered expensive and durable with large antenna, providing

required features for developers and tinkers, students, also wireless penetration

testers with monitor mode support.

Figure 3.13. TP-Link TL722WN NIC

The Atheros AR9271 single-chip USB is able to provide reliable Wi-Fi connection

for any device, gaming consoles, personal computers, home gateways, laptops. This

model also supports Ad-Hoc feature. The drivers for the AR971 chip is also easy to

use with built-in Linux kernel support (see Figure 3.13).

The system recommends two WiFi NICs, which provides wider range of scanning

with different channels and frequencies. These NICs are probed before starting the

Kismet server and are not allowed to function other than to be used by kismet server.

NICs are interfacing with the system via USB ports. MKI model is mounted with a

AR9271 NIC which is sufficient for implementation purpose, if desired an additional

NIC can be supplied with extension module casing. The design of the case for

external NIC is allowing two modules to be attached on the MKI model. MKI model

is bearing an external NIC with gray colored NIC module casing, printed with PLA

material (see Figure 3.17).

30

3.2.3. Software Defined Radio

Radios are consisted of modulators, demodulators and tuners. Implementation of

these hardware is possible with the software based applications with the modern

computing. Software defined radios are the result of modern computing, is available

to everyone providing functionality of a wide band radio scanner. Received signals

are filtered with band selection filters with a processor resulting in desired sampled

data output (Jondral, 2005). SDRs have many functions, radio scanning, tracking or

receiving messages from weather balloons, communicating with amateur radios,

watching TV broadcasts, receiving GSM signals, listening to satellites, listening to

FM radio, providing a high quality entropy source for random number generation are

just the tip of vast number of functionalities.

RTL-SDR RTL2832U v3 is a computer based radio scanner with low price and USB

connection support. Based on TV tuner, this product is able to receive radio signals

within range of 24MHz to 1.8 GHz. If purchased as a kit, small and large antenna is

provided with SMA connector. Magnetic mount with thin cable, two telescopic

antennas (larger one) are able to extend 1.5 meters from 20 centimeters.

Figure 3.14. RTL-SDR RTL2832U

Providing compatibility to be used with other SMA supported radio gear, SMA

connector standard makes it possible to use the device with handheld trans-receivers.

Frequency changes caused from heating of the device called drift, is also handled by

the v3. The outer aluminum shell of the v3 is also helping radiating heat. Device is

31

designed to provide robustness, environmental factors such electrostatic discharge

caused by air is not a problem for the v3. Compared with similar models, v3 handles

the required functions for it's price. Outdoor usage with the mount produce better

results. RTL2832U v3 is a great choice for educators, penetration testers, students

and tinkers, providing usability for any skill level with many software options for

Windows and Linux based devices. This model is a great choice for the LANCED

system with features of robustness, portability, low price and reliability (see Figure

3.14).

Discovery of Sub-Ghz devices is possible with the capabilities of the RTL-SDR

module described in Chapter 2. Interfacing of the module is handled with USB port

connected directly to upper section of the MKI case (see Figure 3.17). Usage of SDR

module may vary for user to user, fortunately MKI is also allowing a casing module

for SDR board as well as an extension cable for the SDR in case of the module is

placed apart from the MKI case.

3.2.4. Global Positioning System

Humans needed navigational assistance since history of mankind, this need is based

on discovery of new frontiers. Through the years of development brought us many

ways of navigational methods and techniques such as ancient Polynesians, they used

measurements of starts to navigate. Utilization of radios in modern world today

brought new methods of navigational devices, which are used in complex machines

for operation such as planes. In 1973 a group of people started a revolution for the

navigation with using the satellites as a radio range measurement node to achieve

accurate positioning. First models of the GPS system is designed for military usage,

called NNSS (Navy Navigational Satellite System) developed at John Hopkins

Applied Physics Laboratory (APL). Broadcast messages from GPS satellites

containing one-way range data of the GPS satellite locations are correlated with three

or more GPS satellites with the replica signal that is created by the user. Provided

four GPS satellites, latitude, longitude, altitude and the correction to the user's clock

are determined (Bradford & James, 1996).

GlobalSat G-STAR IV BU-353S4 is a GPS receiver that uses SiRF Star IV GSD4e

chipset, running with frequency of 1575.42 MHZ. Supports NMEA0183 and SiRF

32

binary data protocols, also provides IPX6 water resistance. GPS transfer rate is set to

4800 as baud rate with the default setting (see Figure 3.15).

Figure 3.15. G-STAR IV GPS module

BU-353S4 has the support for Windows, Mac and Linux OSes with drivers available.

The casing provides a magnet for attaching the module on magnetic surfaces with the

cable length of 152 centimeters which is sufficient for placing it outside of the

buildings or vehicles. After the connection is provided with the computer, BU-353S4

is usually locked from a cold start in less than a minute. Environmental obstructions

must be avoided since signals are absorbed by concrete and surrounding trees. This

model is considered cheap with providing multi platform support for students and

developers also is used by nautical navigation. Well received as a reliable module

with more than one field applications such as mapping, rescue, astronomy and

nautical purposes, BU-353S4 is a good choice for IoT applications.

Main functions of this subsystem is coordinate tracking and local time correction.

Since Raspberry does not have an RTC module, after rebooting the OS date is

inaccurate resulting in incorrect timestamps. GPS module is responsible for

geographical location tracking and time correction for the OS that is running on RPI

board. GPS are interfacing with the system via USB port (see Figure 3.17).

3.2.5. General Packet Radio Service

GPRS system initiated in 1994, as the standards published in 1997. The European

Telecommunications Standards Institute released the drafts for specifications on the

subject. GPRS technology is aimed to provide efficiency on the data sources utilized

33

by GSM license holders, ensuring physical resource sharing between GSM services.

GPRS is able to use GSM frequency bands while bearing the capability of TDMA for

using the GSM time slot structure. GPRS system architecture have the function of

creating an end-to-end packet transfer with two different elements compared to

GSM. The new logical network node called GPRS support node (GSN),

encapsulating the packets within the desired service area, then decapsulation process

is completed at the destination GSN, whole process is called tunneling in GPRS (Cai

& Goodman, 1997).

Figure 3.16. Sixfab Raspberry Pi GPRS SHIELD

SIXFAB Raspberry Pi GSM/GPRS Shield is designed for RPI GPIO layout with

short and long header options, enabling internet connection via Quectel M66 module

on the add-on. SMS and data transmission with audio call is provided GSM/GPRS

module based on 2G chipset M66 chip. The add-on is able to connect the RPi with

both GPIO or USB connection. Built-in PCB antenna is included for using it without

an external antenna, also an external antenna port is available with the design for

better results. Supported protocols are TCP/ UDP / PPP / FTP / HTTP / SMTP /

CMUX / SSL. The shield is has micro SIM card socket. There are notable

applications with the shield for various IoT devices, farming sensors, smart home

sensors, environmental monitoring, smart door locks and smart smart lightning are

possible with it. Price is about 35 Euros on the Sixfab official site. There are

instructions for the shield as well tutorials and setups for various applications on the

34

internet, the official site of Sixfab company is also helpful with providing support for

the developers with any skill level (see Figure 3.16).

GRPS module is connected directly to RPI board via GPIO pins. MKI design

unfortunately is not allowing a GPRS module, a later design is planned for GPRS

extension with a new design allowing space for the module. GPRS module is also

able to interface with RPI board via USB ports, an external casing for residing GPRS

module is possible for implementation (see Figure 3.17).

Figure 3.17. L.A.N.C.E.D MKI with GPS/SDR/NIC/GPRS modules

3.2.6. Built-in Wireless Network Interface Card

Raspberry pi 3 models provide built-in wireless NIC. The user is able to

communicate with the system via two ways; first is using a external screen and a

wireless keyboard. Second method provide WiFi AP via Hostapd software, after

connecting the AP of the system, user logins the device using a ssh connection

35

provided with IP and PORT. While tracking process is active, other two Wi-Fi NICs

are not able to provide the user a connection (see Figure 3.12).

3.3. How to find IoT Devices in the Disaster Area

Wide range of IoT devices are available for the implementation however this thesis'

scope is to achieve a conceptual design. Almost any IoT module is compatible for

sensing and data extraction, these devices use different protocols and communication

mediums. Common communication technologies such as Wi-Fi, Bluetooth and sub-

GHz are used in implementation.

I. Wi-Fi connected devices are the most common examples of IoT devices,

connectivity to internet is achieved through gateways which may or may not

be an coordinator node. TP-Link TL722WN v1 is a Wi-Fi NIC that uses

AR9271 (Atheros) chip, compatible with Kismet software. Recent versions

(v2 and v3) are Using Realtek RTL8188 chip, unfortunately not supported by

Kismet.

II. Bluetooth can be found everywhere, easy to use and requires low power.

This properties allow Bluetooth to be easy to adapt and use. There are wide

range of IoT devices with Bluetooth connection capability. Raspberry Pi

provides an embedded Bluetooth module, can be supplied with Bluehydra

program to scan Bluetooth devices.

III. Sub-Ghz modules are usually sensor modules which are the "Things" part of

the IoT. These nodes are scattered around via broadcasting in sub-Ghz,

providing availability and low power consumption as well. RTL2832U v3 is a

computer based radio scanner with low price and USB connection support.

Based on a TV tuner, this product is able to receive radio signals within range

of 24MHz to 1.8 GHz.

3.4. Scenario

Initial scenario is based on some situational factors. Disaster site is not allowing

physical access to the building, structure or construct. Disaster site is not powered

by infrastructure so power loss is expected or just happened, resulting in shut down

on devices without power supply or auxiliary generator. Disaster site WAN access is

36

severed by any hazardous circumstances. Loss of infrastructure is occurred or will be

occurred.

Figure 3.18. Scenario I

The disaster area is assumed to be restricted to access, caused by fire or flood.

Infrastructure services are not available. In this scenario LANCED is not authorized

previously to serve as an alternative AP. LANCED device is set for scanning for any

active IoT device in the area to report general information (see Figure 3.18).

Figure 3.19. Scenario II

37

This scenario is based on device recovery via fallback logic. The user is already

deployed the LANCED system with required parameters to achieve Internet access to

the IoT devices in the area. LANCED is run on close proximity, allowing IoT devices

on the site to reroute Internet connection via GPRS connection, therefore WAN

access is restored for data transmission. This scenario assumes an authorized

personnel is already provided credentials for AP (see Figure 3.19).

Figure 3.20. Overall layout of hardware modules of LANCED system

3.5. Features

Our prototype detects Wi-Fi devices in close proximity with data collected by

analyzing broadcast messages, manufacturer data, signal strength. Bluetooth devices

are also in scope of targeted devices so any devices in the subject of matter disaster

site shall be recovered via analysis of collected data during our session. The last

requirement is sub-Ghz modules which are collection nodes reporting data to other

IoT devices in the vicinity. If administrated with AP SSID and password, provide the

WAN access using GSM module for auxiliary connection for IoT gateway

connections. Provided with MAC address of the previous AP, devices on the site will

be connected to the auxiliary AP of the device (see Figure 3.20).

3.5.1. Case

LANCED system casing design is aimed to provide certain capabilities, allowing

user to change or replace desired modules or even mix and match with various

combination. Simple design for external modules allow the user to integrate desired

38

modules with it's current casing. Mobility is a critical factor for the design, allowing

operation while in mobile and immobile states.

Outer casing for the LANCED system is produced with 3D printing. Printing is made

by Prusa i3 MK3 by Prusa Printers. MK3 model of Prusa i3 is the latest model of i3

series with reasonable price. Operation of the i3 is not complex, moreover Prusa

Printers provide support for both software and hardware. Compared with models

within same price range, i3 MK3 surpasses them, offering considerable quality of

high price range printers on the market. Software for creating g-code files is supplied

by Prusa Printers customized for the model. Slic3rPE software handles material and

print options for different materials.

Figure 3.21. L.A.N.C.E.D MK I case before assembly

Design is made with Autodesk Fusion 360. The software is easy to use with a

reasonable learning curve, desired functions are provided just as any other design

software. Design files are allowed to be stored on Fusion 360 cloud with versions for

each iteration on the design. Support for the software is also exist on the official site

with interaction of other users as well, a dynamic question and answer flow is

ensured which is great for beginners. Materials for 3D printing is also contained

within the program.

Earlier versions of LANCED MKI design is printed with using PLA (Poly Lactic

Acid) (see Figure 3.22). PLA is a commercialized material with wide range of

39

regional availability. PLA is one the most popular material with bio degradable

property. Petrochemical based polymers are widely used and pollution caused by

traditional polymers is a critical issue for environment. PLA can be a substitute as a

novel type of polymer. Main advantages that PLA includes Ecologic compatibility,

bio-compatibility, easy processability and energy efficient in terms of production

(Farah et al., 2016).

Final version of the MKI casing is produced with PLA+, consequently a better result

is achieved. PLA+ is more robust compared to PLA, rattle between parts are

eliminated consequently. Connection of parts are improved with PLA+ as well,

desired gap between parts is met while keeping the distance for easy detachment.

The LANCED system MK I is comprised of 6 pieces of interconnecting parts (see

Figure 3.21). USB ports are extended via provided extension cables with male and

female USB connectors on each side, allowing access for the user to connect.

Rerouting of the USB connection ports allow the external modules to connect

adjacently (see Figure 3.23). Main casing fits the RPI board perfectly while total

sizing is not greater than a standard human hand ensuring easy handling if desired

(see Figure 3.22).

Figure 3.22. L.A.N.C.E.D MK I assembled

Hexagonal connection rods are in use for attaching the upper casing to main casing

where RPI board resides. Extension modules are also connected to the upper case via

40

an hexagonal connection rod which can be dismantled for new module attachments,

delivering easy customization for the user (see Figure 3.21).

Interlocking parts are locked with using connection pins stored internally, pins are

locking RPi board while locking USB extensions, male and female counterparts.

Female USB extensions are residing within the upper casing (external module

housing) while male counterpart is residing next to Ethernet port of the RPI board

(see Figure 3.21). The external Wi-Fi NIC card nesting is designed fit into USB ports

with stabilizing rods to ensure stability (see Figure 3.17).

Figure 3.23. L.A.N.C.E.D MKI Interfacing

41

CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

Our prototype LANCED is a multi-purpose smart control box. Its main body is based

on Raspberry Pi 3 microcomputer. It includes some additional components required

by different functionalities like G-STAR IV GPS module with USB connection,

Software Defined Radio module with USB connection, RTL-SDR, Raspberry Pi

GSM/GPRS Shield from Sixfab, Wi-Fi Network Interface Card, TP-LINK TL-

WN722N. They bring together a functioning prototype which has operational

capabilities for different emergency scenarios. They enable auxiliary network

connectivity, can detect the IoT devices in use, and collect their data to discover the

ownership of different devices in the disaster area.

LANCED has a user-friendly GUI and helps user interaction for managing

alternative controls in emergency situations. LANCED operation helps users to have

an elevated view of the disaster site from the point of IoT and smart devices. The

system utilizes open-source programs as well as essential hardware devices for

operation by its generic and integrated design. Even though it is designed to detect

Wi-Fi, Bluetooth and Sub-GHz devices, ZigBee and other smart devices working in

different Industrial Communications protocols can be covered depending on the

interfaces embedded into the system.

Figure 4.1. SDR scanning data

42

LANCED is designed to handle automation for detecting IoT or smart devices and

collecting their ownership/usage information in emergency situations. It reduces user

interaction and utilizes critical response times in disaster scenarios. The LANCED

menu offers minimal design for the user while allowing operation and diagnostics for

the hardware and software modules for troubleshooting. LANCED supports the

users, rescue teams in order to have a monitoring capability for IoT devices of Wi-Fi,

Bluetooth, and sub-GHz variations (see Figure 4.1)(see Figure 4.2)(see Figure 4.3).

The prototype is easy to build with a total price of 260 United States Dollars (see

Table 4.1).

Table 4.1. LANCED production cost

Product Type Unit Total Price

Raspberry Pi 3 B+ Microcomputer 1 45 $

Globalsat BU-353 S4 GPS Receiver 1 35 $

TP-LINK TL-WN722N WiFi NIC 2 86 $

RTL-SDR RTL2832U SDR 1 30 $

Sixfab GSM/GPRS Shield GPRS 1 43 $

SanDisk 16GB micro SD Memory Card 1 6 $

GSM Subscription SIM Card 1 5 $

USB Female Type-A USB Connector 4 2 $

USB Male Type-A USB Connector 4 2 $

GSM Antenna uFL Antenna 1 5 $

ESUN 3D Printer Filament PLA 65 grams 1.3 $

LANCED system is designed to achieve a fast response time while ensuring a low

cost. Mobility is also delivered via minimal case design, also the system is modular

as well, allowing the operator to mix and match between desired hardware modules.

Total cost of a rescue operation in an emergency also includes training of the rescue

personnel. LANCED system can be operated by anyone regardless of technical

experience.

Latest versions Kismet program is able to store WiFi device data in a database,

however stable version of Kismet (Kismet-2016-07-R1) does not support a standard

data storage. This problem is handled by LANCED program, after each operation

WiFi device data is sorted into Comma Seperated Value (CSV) form. Total disk size

43

of a WiFi Network device generated by Kismet is around 1 kilobyte, eventually is

reduced to 384 bytes after parsed into CSV form.

 Figure 4.2. Bluetooth scanning data

4.1. Limitations

Lanced system is capable of scanning WiFi, Bluetooth and Sub-Ghz devices,

unfortunately the system is based on a Raspberry Pi microcomputer, therefore RAM

and CPU are limited. Primary programs of scanning are not CPU exhaustive, on the

contrary RAM usage is intensive. The total operation time is limited with maximum

of 20 minutes assuming the system is set to monitor with all programs otherwise OS

limits the user if the cache memory is overloaded, killing essential processes to

prevent them from turning to a zombie process, consequently a system halt occurs.

Avoiding an unexpected termination of essential programs, sessions are

automatically stopped for data storage.

Figure 4.3. Kismet scanning data

44

Provided with power to LANCED device, the prototype is operational under 60

seconds, however a GPS acquisition may cause a bottleneck. Nearby structures like

buildings or trees may be avoided to achieve a faster activation.

LANCED system is delivering Internet connection via 2G cellular connection with

114 Kbits per second for download and 20 Kbits per second for upload. As a result,

LANCED system is limited by 2G cellular technology if the prototype is used as a

backup AP. Considering a basic Internet connection is switched with LANCED AP, a

dramatic data transfer is inevitable.

4.2. Future Work

LANCED system has drawbacks of Internet connection speed. This problem can be

tackled via implementing latest cellular connection technologies. Cellular

technologies like 4G is capable of delivering 100 Mbits per second communication

rate. Unfortunately latest cellular technologies are expensive in hardware costs.

LANCED system is also affected via limited RAM. Successor of Raspberry Pi 3,

Raspberry pi 4 model is now delivering 4 GB RAM with 1.5 GHz CPU. LANCED

system also is possible to be deployed on any Linux based board with improved

hardware specifications.

In addition to device discovery, exact geographical locations of the devices could be

reported via signal triangulation if provided with at least three LANCED units with

adequate calculation algorithm. Triangulation of any RF signal source is then

possible via using any commercial SDR.

45

REFERENCES

Aly Farahat and Ali Ebnenasir. 2012. A Lightweight Method for Automated Design
of Convergence in Network Protocols. ACM Trans. Auton. Adapt. Syst. 7, 4,
Article 38 (December 2012), 36 pages.
DOI=http://dx.doi.org/10.1145/2382570.2382574

Asensio, Á., Blanco, T., Blasco, R., Marco, Á., & Casas, R. (2015). Managing
emergency situations in the smart city: The smart signal. Sensors, 15(6), 14370-
14396.

Ashton, Kevin. (2009). That ’Internet of Things’ Thing. RFiD Journal. 22. 97-114.

Ben Arbia, D., Alam, M. M., Kadri, A., Ben Hamida, E., & Attia, R. (2017).
Enhanced IoT-Based End-To-End Emergency and Disaster Relief System.
Journal of Sensor and Actuator Networks, 6(3), 19.

Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel: from I/O ports
to process management. " O'Reilly Media, Inc.".

Cai, J., & Goodman, D. J. (1997). General packet radio service in GSM. IEEE
Communications Magazine, 35(10), 122-131.

C. A. Mack, "Fifty Years of Moore's Law," in IEEE Transactions on Semiconductor
Manufacturing, vol. 24, no. 2, pp. 202-207, May 2011.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762, DOI
10.17487/RFC6762, February 2013, <https://www.rfc-editor.org/info/rfc6762>.

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties
of PLA, and their functions in widespread applications—A comprehensive
review. Advanced drug delivery reviews, 107, 367-392.

GPSD (1995). from source: http://catb.org/gpsd/

HOSTAPD (2002). from source: https://w1.fi/hostapd/

Jondral, F. K. (2005). Software-defined radio: basics and evolution to cognitive
radio. EURASIP journal on wireless communications and networking, 2005(3),
275-283.

KISMET (2002). from source : https://www.kismetwireless.net/

46

https://www.kismetwireless.net/
https://www.rfc-editor.org/info/rfc6762
https://w1.fi/hostapd/
http://catb.org/gpsd/

Kleinrock, L. (1961). Information Flow in Large Communication Nets, Ph.D. Thesis
Proposal. Unpublished doctoral dissertation , Massachusetts Institute of
Technology.

Kranenburg, R. V. (2008). The Internet of Things: A critique of ambient technology
and the all-seeing network of RFID.

Lee, C. H., Orikumhi, I., Leow, C. Y., Malek, M. A. B., & Rahman, T. A. (2015,
December). Implementation of relay-based emergency communication system
on software defined radio. In Parallel and Distributed Systems (ICPADS), 2015
IEEE 21st International Conference on (pp. 787-791). IEEE.

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., ...
& Wolff, S. (2009). A brief history of the Internet. ACM SIGCOMM Computer
Communication Review, 39(5), 22-31.

Leonard Richardson and Sam Ruby. 2007. Restful Web Services (First ed.). O'Reilly.

Luchetti, G., Mancini, A., Sturari, M., Frontoni, E., & Zingaretti, P. (2017).
Whistland: An augmented reality crowd-mapping system for civil protection and
emergency management. ISPRS International Journal of Geo-Information, 6(2),
41.

Michalis Georgiou, Ilias Tachmazidis, and Grigoris Antoniou. 2019. Hypercat
JSON-LD: A Semantically Enriched Catalogue Format for IoT. In Proceedings
of the 9th International Conference on Web Intelligence, Mining and Semantics
(WIMS2019). ACM, New York, NY, USA, Article 13, 12 pages. DOI:
https://doi.org/10.1145/3326467.3326477

MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul
Gupta. 07 March 2019. OASIS Standard. https://docs.oasis-open.org/mqtt/mqtt/
v5.0/os/mqtt-v5.0-os.html.

Qiu, Tie & Lv, Yuan & Xia, Feng & Chen, Ning & Wan, Jiafu & Tolba, Amr.
(2016). ERGID: An Efficient Routing Protocol for Emergency Response
Internet of Things. Journal of Network and Computer Applications. 72. 104-
112. 10.1016/j.jnca.2016.06.009.

Parkinson, B. W., Enge, P., Axelrad, P., & Spilker Jr, J. J. (Eds.). (1996). Global
positioning system: Theory and applications, Volume II. American Institute of
Aeronautics and Astronautics.

Powers, S., Peek, J., O'reilly, T., Loukides, M., & Loukides, M. K. (2003). UNIX
power tools. " O'Reilly Media, Inc.".

47

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

PPPD (2014).from source:https://www.freebsd.org/cgi/man.cgi?
query=pppd&sektion=8&manpath=FreeBSD+4.7-RELEASE

Ravali, P. (2013). A comparative evaluation of OSI and TCP/IP models.
International Journal of Science and Research, 4(7), 514-521.

Roberts, L.G. (1967). Multiple computer networks and intercomputer
communication.

RTL_433 (2012). from source : https://github.com/merbanan/rtl_433

Saint-Andre, P., "Extensible Messaging and Presence Protocol (XMPP): Core", RFC
3920, October 2004.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol
(CoAP)", RFC 7252, DOI 10.17487/RFC7252, June 2014, <https://www.rfc-
editor.org/info/rfc7252>.

Steve Vinoski. 2006. Advanced Message Queuing Protocol. IEEE Internet
Computing 10, 6 (November 2006), 87-89.
DOI=http://dx.doi.org/10.1109/MIC.2006.116

Sood, S. K., & Mahajan, I. (2017). Wearable IoT sensor based healthcare system for
identifying and controlling chikungunya virus. Computers in Industry, 91, 33-
44.

Uckelmann, D., Harrison, M., & Michahelles, F. (2011). An Architectural Approach
Towards the Future Internet of Things. Architecting the Internet of Things.

V. Pehkonen and J. Koivisto, "Secure Universal Plug and Play network," 2010 Sixth
International Conference on Information Assurance and Security, Atlanta, GA,
2010, pp. 11-14.
doi: 10.1109/ISIAS.2010.5604189

Zach Shelby and Carsten Bormann. 2010. 6LoWPAN: The Wireless Embedded
Internet. Wiley Publishing.

Zimmermann, H. (1980). OSI reference model--The ISO model of architecture for
open systems interconnection. IEEE Transactions on communications, 28(4),
425-432.

Xu, L., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey. IEEE
Transactions on Industrial Informatics, 10, 2233-2243.

48

https://github.com/merbanan/rtl_433
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252

APPENDIX 1 – LANCED

INSTALLER
APPENDIX

INSTALLER
==
==================================
==
==================================
==
==================================

#!/bin/bash
 #title :installersuidrootLANCED.sh
 #description :installer tool for LANCED
 #author :rektosauruz
 #date :20181127
 #version :v0.1
 #usage :./installersuidrootLANCED.sh
 #notes :lanced version update for thesis
 #bash_version :4.4-5
 #==

#File Declarations
#/home/pi/lanced_logs/ [raw data files are saved
here from kismet_server.]
#/home/pi/lanced_arch/ [files are transferred
after each run to this location to be processed.]
#/home/pi/lanced_arch/{date}/ [a dated folder is created
for that day.]
#/home/pi/lanced_arch/BSSID.list [unique MACs are held here
for counting and comparison for uniqueness.]
#/home/pi/lanced_arch/datapool.txt [datapool.txt holds the
unique data, populated after each run, a simple database file holds
raw data.]
#/home/pi/lanced_arch/temp.list [for each run MACs in the
respective .nettxt file are passed to temp.list for comparison with
BSSID.list]
#/home/pi/lanced_arch_processed/ [processed files are saved
here under the same respective dates.]
#/home/pi/lanced_arch_processed/{date}/ [dated folders are
directly transferred under processed section after the sequence.]
#/etc/kismet/timechk [timechk file is created after the
first date correction, at the end of each run, this file is
removed.]

##For both GUI and CLI, automation script
##will automatically install and configure lanced system to latest
version.
##For debugging, an echo can be return if a specific process is
failed.

#Color Declerations
ESC="#["

49

RESET=$ESC"39m"
RED=$ESC"31m"
GREEN=$ESC"32m"
LYELLOW=$ESC"36m"
YELLOW=$ESC"34m"
YELLOW=$ESC"33m"

RB=$ESC"48;5;160m"
RESET1=$ESC"0m"

##check for root
if [["${EUID}" -ne 0]]; then
 echo -e "${GREEN}run${RESET} ${RED}installer.sh${RESET} $
{GREEN}with${RESET} ${RED}root !${RESET}"
 exit 1
fi

##fix locale
#if ["`locale | tail -1`" == "LC_ALL="];then
export LC_ALL=C
sudo dpkg-reconfigure locales
#fi

####FIRST SECTION####
##initialization of required folders used by LANCED.sh
sudo mkdir /home/pi/lanced_logs
sudo mkdir /home/pi/lanced_arch
sudo mkdir /home/pi/lanced_arch/processed
sudo touch /home/pi/lanced_arch/BSSID.list
sudo touch /home/pi/lanced_arch/datapool.txt

#initialize v{1-20}
for i in `seq 1 23`;do
 c="`sed ""$i"q;d" /home/pi/LANCED/lanced_handler/dep.list`"
 eval "v${i}=${RED}[${c}]${RESET}"
done

###Loading bar indicates while download and initialization
progress###
ledger () {
clear
cat <<-ENDOFMESSAGE
${RB} ${RESET1}

${RB} ${RESET1}$v21 $v22 $v23${RB} ${RESET1}
${RB} ${RESET1}$v1 $v2 $v3${RB} ${RESET1}
${RB} ${RESET1}$v4 $v16${RB} ${RESET1}
${RB} ${RESET1}$v6 $v7 $v8${RB} ${RESET1}
${RB} ${RESET1}$v9 $v10 $v13${RB} ${RESET1}
${RB} ${RESET1}$v11$v12$v14 $v20${RB} ${RESET1}
${RB} ${RESET1}$v15 $v5${RB} ${RESET1}
${RB} ${RESET1}$v17 $v18 $v19${RB} ${RESET1}

${RB} ${RESET1}
ENDOFMESSAGE

}

ledger

###using the dep.list, this iteration handles the apt-get

50

update/upgrade/dist-upgrade
for i in `seq 21 23`; do

a="`sed ""$i"q;d" /home/pi/LANCED/lanced_handler/dep.list`"
sed ""$i"q;d" /home/pi/LANCED/lanced_handler/dep.list | xargs

apt-get -y > /dev/null 2>&1 && eval "v${i}=${GREEN}[${a}]${RESET}"
||

echo -e "$a" >> /home/pi/LANCED/lanced_handler/error.list
ledger

done

###using the dep.list this iteration hadnles the apt-get install
echo -e "update - upgrade - dist-upgrade DONE" >>
/home/pi/LANCED/lanced_handler/progress.list

for i in `seq 1 19`; do
 a="`sed ""$i"q;d" /home/pi/LANCED/lanced_handler/dep.list`"
 sed ""$i"q;d" /home/pi/LANCED/lanced_handler/dep.list | xargs
apt-get install -y > /dev/null 2>&1 && eval "v${i}=${GREEN}[${a}]$
{RESET}" ||
 echo -e "$a" >> /home/pi/LANCED/lanced_handler/error.list
 ledger
done

#echo -e "essential files DONE" >>
/home/pi/LANCED/lanced_handler/progress.list

#sudo apt-get install locate
#sudo apt-get install libpcre3 libpcre3-dev
sudo wget https://www.kismetwireless.net/code/kismet-2016-07-
R1.tar.xz > /dev/null 2>&1
sudo tar -xf kismet-2016-07-R1.tar.xz
cd kismet-2016-07-R1/

sudo ./configure > /dev/null 2>&1

sudo make dep > /dev/null 2>&1

sudo make > /dev/null 2>&1

sudo make suidinstall > /dev/null 2>&1

sudo usermod -a -G kismet pi

v20=${GREEN}[kismet]${RESET}
ledger

#echo -e "kismet DONE" >>
/home/pi/LANCED/lanced_handler/progress.list

####SECOND SECTION####

##git folder
#/home/pi/LANCED/lanced_handler/
#/etc/kismet/
#/etc/kismet/kismet.conf
#/etc/kismet/oui2.txt
#/etc/kismet/correct_date.py

51

##/etc/kismet/ folder contained file operations are handled here
#sudo mv /usr/local/etc/kismet_drone.conf
/usr/local/etc/kismet_drone.conf.orig
sudo rm /usr/local/etc/kismet.conf
sudo cp
/home/pi/LANCED/config_files/suidins/{kismet.conf,oui2.txt,correct_d
ate.py} /usr/local/etc/
#sudo chmod 777 /etc/kismet/kismet.conf
#sudo chmod 777 /etc/kismet/oui2.txt
sudo chmod 777 /usr/local/etc/correct_date.py

##get mac address of wlan0 then pass it for kismet.conf for
filtering the AP

##filter_tracker=BSSID(!--:--:--:--:--:--) is the defined format
holder="`sudo ip -o link | awk '{print $2,$(NF-2)}' | grep wlan0 |
cut -d' ' -f2`"
sed -i "198s/.*/filter_tracker=BSSID(!$holder)/"
/usr/local/etc/kismet.conf

#echo -e "/etc/kismet/ files done" >>
/home/pi/LANCED/lanced_handler/progress.list

##/etc/default/gpsd
##/etc/default/hostapd
##/etc/default/ folder file operations are handled in this part
sudo mv /etc/default/gpsd /etc/default/gpsd.origin
sudo mv /etc/default/hostapd /etc/default/hostapd.origin
sudo cp /home/pi/LANCED/config_files/{gpsd,hostapd} /etc/default/
#sudo chmod 777 /etc/default/gpsd
#sudo chmod 777 /etc/default/hostapd

#echo -e "gpsd - hostapd files done" >>
/home/pi/LANCED/lanced_handler/progress.list

#/etc/network/interfaces
sudo mv /etc/network/interfaces /etc/network/interfaces.origin
sudo cp /home/pi/LANCED/config_files/interfaces /etc/network/

#echo -e "interfaces done" >>
/home/pi/LANCED/lanced_handler/progress.list

####/etc/hostapd/###
#/etc/hostapd/hostapd.conf
if [-e /etc/hostapd/hostapd.conf]; then
 sudo mv /etc/hostapd/hostapd.conf /etc/hostapd/hostapd.conf.origin
fi
sudo cp /home/pi/LANCED/config_files/hostapd.conf /etc/hostapd/

#echo -e "hostapd.conf done" >>
/home/pi/LANCED/lanced_handler/progress.list

#allow ssh
#change the default port if needed
####/etc/ssh/###
#/etc/ssh/sshd_config

#allow ssh
#change timezone

52

#sudo raspi-config

#echo -e "raspi-config done" >>
/home/pi/LANCED/lanced_handler/progress.list

####/etc/####

#/etc/dnsmasq.conf file operations are handled in this part
sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.origin
sudo cp /home/pi/LANCED/config_files/dnsmasq.conf /etc/

#/etc/dhcpcd.conf file operations are handled in this part
sudo mv /etc/dhcpcd.conf /etc/dhcpcd.conf.origin
sudo cp /home/pi/LANCED/config_files/dhcpcd.conf /etc/

#/etc/sysctl.conf file operations are handled in this part
sudo mv /etc/sysctl.conf /etc/sysctl.conf.origin
sudo cp /home/pi/LANCED/config_files/sysctl.conf /etc/

#ipv4 port forward section
sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT
sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"

#/etc/rc.local
sudo mv /etc/rc.local /etc/rc.local.origin
sudo cp /home/pi/LANCED/config_files/rc.local /etc/

sudo systemctl disable dhcpcd.service > /dev/null 2>&1

##transfer the latest a.sh file to /home/pi by renaming the script
and set priviliges.
sudo mv /home/pi/LANCED/lanced_handler/asuidroot.sh
/home/pi/asuidroot.sh
sudo chmod 777 /home/pi/asuidroot.sh

sleep 5
echo "${RED}Shutting down!${RESET}"
sudo shutdown +0

#echo -e "/etc/ done" >>
/home/pi/LANCED/lanced_handler/progress.list

#echo -e "FINALIZED" >> /home/pi/LANCED/lanced_handler/progress.list

===

==
==================================
==
==================================
==
==================================

53

LANCED
==
==================================
==
==================================
==
==================================
#!/bin/bash
 #title :a.sh
 #description :Providing powerful yet simle UI for both cli an
desktop, this script handles automation via bash scripting.
 #author :rektosauruz
 #date :20181005
 #version :v2.5
 #usage :#pi./a.sh
 #notes :Single module usage is implemented for v2.0.
Cell phone gps usage is implemented in addition to pl2303 gps usage.
 #bash_version :4.4-5
 ===============================

#File Declarations
#/home/pi/lanced_logs/ [raw data files are
saved here from kismet_server.]

#/home/pi/lanced_arch/ [files are transferred
after each run to this location to be processed.]
#/home/pi/lanced_arch/{date}/ [a dated folder is created
for that day.]
#/home/pi/lanced_arch/BSSID.list [unique MACs are held here
for counting and comparison for uniqueness.]
#/home/pi/lanced_arch/datapool.txt [datapool.txt holds the
unique data, populated after each run, a simple database file holds
raw data.]
#/home/pi/lanced_arch/temp.list [for each run MACs in the
respective .nettxt file are passed to temp.list for comparison with
BSSID.list]
#/home/pi/lanced_arch_processed/ [processed files are saved
here under the same respective dates.]
#/home/pi/lanced_arch_processed/{date}/ [dated folders are
directly transferred under prcessed section after the sequence.]
#/home/pi/etc/kismet/timechk [timechk file is created
after the first date correction, at the end of each run, this file
is removed.]

colors
ESC="#["
RESET=$ESC"39m"
RED=$ESC"31m"
GREEN=$ESC"32m"
LYELLOW=$ESC"36m"
YELLOW=$ESC"34m"
YELLOW=$ESC"33m"
RB=$ESC"48;5;160m"
RESET1=$ESC"0m"
RESETU=$ESC"24m"
GB=$ESC"48;5;40m"

54

wst1="${RB} ${RESET1}"
wst2="${RB} ${RESET1}"
gpsm="${RB} ${RESET1}"
gpfx="${RB} ${RESET1}"
dat0="${RB} ${RESET1}"

wst11="${RED}=====${RESET}"
wst22="${RED}===========${RESET}"
gpsmm="${RED}=====${RESET}"
gpfxx="${RED}===========${RESET}"
dat00="${RED}=====${RESET}"

ledger () {

cat <<-ENDOFMESSAGE
 ${RED}_____ ______${RESET}
${RED}/${RESET}$wst1${RED}|${RESET}$wst11${RED}/ W1 __\ ${RESET}
${RED}_____\ ___| _____${RESET}
${RED}/${RESET}$wst2 ${RED}|${RESET}$wst22${RED}/ W2 /${RESET}
${RED}_____\ ________|${RESET}
${RED}/${RESET}$gpsm ${RED}|${RESET}$gpsmm${RED}/ GPS /${RESET}
${RED}_____\ ____| _____${RESET}
${RED}/${RESET}$gpfx ${RED}|${RESET}$gpfxx${RED}/Gfix/${RESET}
${RED}_____\ _________| ${RESET}
${RED}/${RESET}$dat0 ${RED}|${RESET}$dat00${RED}/ DATE/${RESET}

${RED}____/ ____/${RESET}
ENDOFMESSAGE

}

if [-n "`sudo pidof gpsd`"]; then
sudo pkill gpsd
fi

##use these later
#FOR THE GREEN BACKGORUND BLOCK
#echo -e "\e[48;5;40m \e[0m"
#above line prints a single block of green on tty

#init var(1-4)
for i in `seq 1 4`; do
 eval "var${i}=${RED}X${RESET}"
done

var5="${RED}NOT READY${RESET}"
var6="${RED}X${RESET}"
timeloc=/usr/local/etc/timechk
kiss_state="`sudo pidof kismet_server`"
chk1="${RED}[Wlan1]${RESET}"
chk2="${RED}[Wlan2]${RESET}"
chk3="${RED}[GPS]${RESET}"
chk4="${RED}[GPSfix]${RESET}"
chk5="${RED}[Date]${RESET}"
reset

##check for the kismet server if the a.sh is armed then closed,
after a rerun state is fixed to armed.

55

if [-n "$kiss_state"]; then
 var5="${RED}ARMED${RESET}"
fi

#refresh() {
#if [-n "`ls -A /home/pi/lanced_logs/`"]; then
tempcalc="`ls /home/pi/lanced_logs/ | grep .nettxt`"
kk="${GREEN}`cat /home/pi/lanced_logs/"$tempcalc" | grep Network
| uniq | wc -l`${RESET}"
#else
kk="${GREEN}0${RESET}"
#fi
#}

count() {
kk="${RED}`wc -l /home/pi/lanced_arch/BSSID.list | cut -d' ' -f1`$
{RESET}"
}

count

##check if hostapd is active or not, this option is for monitored
runs and while no hostapd is needed.
##also ip address is printed in the LANCED GUI for easy usage.
apdip() {

if [-z "`pidof hostapd`"]; then
 var7="${RED}X${RESET}"
 var8="${RED}IP${RESET} ${RED}>${RESET} ${RED}X${RESET}"
else
 var7="${GREEN}OK${RESET}"
 var8="${GREEN}`ifconfig wlan0 | grep "inet " | cut -d't' -f2 |
cut -d'n' -f1 | xargs`${RESET}"
fi

}

apdip

##this is data sorter function for the LANCED. After every use, data
is collected under lanced_logs is first transferred to lanced_arch
d_sorter() {

##declare
datum="`date +%Y%m%d`"
locA=/home/pi/lanced_logs/
locB=/home/pi/lanced_arch/
locC=/home/pi/lanced_arch/processed/

#check for dated folder /home/pi/lanced_arch/ . Multiple runs in the
same day are collected under the same folder such as 20180513
if [! -d "$locB""$datum"];then

56

 sudo mkdir "$locB""$datum"
 sudo chmod 777 "$locB""$datum"/
fi

#check for dated folder /home/pi/lanced_arch/processed/
if [! -d "$locC""$datum"];then
 sudo mkdir "$locC""$datum"
 sudo chmod 777 "$locC""$datum"/
fi

##create data count list for different dates
sudo touch "$locB"datac.list
sudo chmod 777 "$locB"datac.list

##check for different dated files then pass it to datac.list
echo "`ls "$locA" | grep "$datum"`" >> "$locB"datac.list

##pass the dated files from lanced_logs to respective dated folder
for i in $(cat /home/pi/lanced_arch/datac.list);do
 #copy option
 sudo cp "$locA"$i "$locB""$datum"
done
sudo rm -r "$locA"*

##clear the datac.list
sudo rm "$locB"datac.list

#check for datapool file, create at /home/pi/lanced_arch/ if
needed

if [! -f "$locB""$datum"/datapool.txt];then
 sudo touch "$locB"datapool.txt
 sudo chmod 777 "$locB"datapool.txt
fi

####check for temporary list, this list is used to compare with
BSSID.list to keep track of unique MACs for the run.
if [! -f "$locB""$datum"/templ.list];then
 sudo touch /home/pi/lanced_arch/templ.list
 sudo chmod 777 /home/pi/lanced_arch/templ.list
fi

##this line gets the exact name of the .nettxt file then picks the
MACs then pushed it to temprary list named templ.list
filenom="`ls "$locB""$datum" | grep ".nettxt"`"
echo -e "`grep "Network " "$locB""$datum"/"$filenom" | cut -d' ' -
f4`" >> "$locB"templ.list

##comparison is made in this for loop. For every MAC address located
in templ.list, BSSID.list is checked, if no match then the MAC is
unique.
##unique MACs then passed to datapool.txt file with certain
lines(line 125). Also BSSID list is populated with new unique MACs.
for i in $(cat /home/pi/lanced_arch/templ.list);do

if ["`grep "$i" "$locB"BSSID.list`" == ""];then
test1="`grep "Network " "$locB""$datum"/"$filenom" |

grep "$i"`"
 sed -n "/$test1/,/Network /{/$test1/{p};/Network
/{d};p}" "$locB""$datum"/"$filenom" >> "$locB"datapool.txt

57

echo -e "$i" >> /home/pi/lanced_arch/BSSID.list

 fi
done

##temporary list is cleared.
sudo rm /home/pi/lanced_arch/templ.list

##moving the processed dated folder under lanced_arch to processed
folder under lanced_arch
sudo mv -v /home/pi/lanced_arch/"$datum"/*
/home/pi/lanced_arch/processed/"$datum"/ 1>/dev/null

count

}

##device probe function
components_chk() {
clear
ledger
if ["`iwconfig 2>&1 | sed -n -e 's/wlan1 //p'| cut --bytes=1`"
== "I"]; then
#if ["`iwconfig wlan1 | cut -d' ' -f1 | xargs`" == "wlan1"]; then
#if ["`iwconfig wlan1: | cut -d':' -f1 | cut -d' ' -f1 | xargs`" ==
"wlan1"]; then
chk1="${GREEN}[Wlan1]${RESET}"
echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
 wst11="${GREEN}=====${RESET}"
 clear
 ledger
 sleep 1
 wst1="${GB} ${RESET1}"

 clear
 ledger
 var1="${GREEN}OK${RESET}"

elif ["`iwconfig 2>&1 | sed -n -e 's/wlan1 //p'| cut --
bytes=1`" != "I"];then
echo -ne "$chk1$chk2$chk3$chk4$chk5\r"

var1="${RED}X${RESET}"

fi

if ["`iwconfig 2>&1 | sed -n -e 's/wlan2 //p' | cut --bytes=1`"
== "I"]; then
#if ["`iwconfig wlan2 | cut -d' ' -f1 | xargs`" == "wlan2"]; then
#if ["`iwconfig wlan2: | cut -d':' -f1 | cut -d' ' -f1 | xargs`" ==
"wlan2"]; then
chk2="${GREEN}[Wlan2]${RESET}"
echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
 clear
 ledger
 wst22="${GREEN}===========${RESET}"
 sleep 1
 wst2="${GB} ${RESET1}"
 clear
 ledger

var2="${GREEN}OK${RESET}"
elif ["`iwconfig 2>&1 | sed -n -e 's/wlan2 //p'| cut --
bytes=1`" != "I"];then

58

echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
var2="${RED}X${RESET}"

fi

if ["`dmesg | grep "pl2303 converter now attached to ttyUSB0" | cut
-d':' -f2 | xargs`" == "pl2303 converter now attached to ttyUSB0"];
then
chk3="${GREEN}[GPS]${RESET}"
echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
 clear
 ledger
 gpsmm="${GREEN}=====${RESET}"
 gpfxx="${GREEN}===========${RESET}"
 dat00="${GREEN}===========${RESET}"
 clear
 ledger
 sleep 1
 clear
 ledger
 gpsm="${GB} ${RESET1}"

var3="${GREEN}OK${RESET}"

else
echo -ne "$chk1$chk2$chk3$chk4$chk5\r"

var3="${RED}X${RESET}"
gpsd -b -n tcp://172.24.1.150:50000
return 1
fi

testv=`ping -c 1 -w 1 172.24.1.150 | grep ttl`
if [-n "$testv"];
 then
 clear
 ledger
 gpsmm="${GREEN}=====${RESET}"
 clear
 ledger
 sleep 1
 gpsm="${GB} ${RESET1}"
 clear
 ledger
 sleep 1

 gpfxx="${GREEN}===========${RESET}"
 clear
 ledger
 sleep 1
 dat00="${GREEN}=====${RESET}"
 clear
 ledger
 sleep 1
 gpsd -b -n tcp://172.24.1.150:50000
 var3="${GREEN}OK${RESET}"
else
 return 1
fi

if ["`timeout 6 gpspipe -w -n 5 | cut -d',' -f3 | grep mode | cut -
d':' -f2`" != "3"]; then
 return 1
fi

59

while true ; do
 if ["`gpspipe -w -n 5 | cut -d',' -f3 | grep mode | cut -d':' -
f2`" == "3"]; then
 # chk3="${GREEN}[GPS]${RESET}"
 # chk4="${GREEN}[GPSfix]${RESET}"
 # echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
gpsm="${GB} ${RESET1}"
 var3="${GREEN}OK${RESET}"
 var4="${GREEN}OK${RESET}"
 gpfx="${GB} ${RESET1}"
 clear
 ledger
 sleep 1

if [! -f "$timeloc"]; then
 #correcttime
 correcttime > /dev/null 2>&1

 # chk5="${GREEN}[Date]${RESET}"
 # echo -ne "$chk1$chk2$chk3$chk4$chk5\r"

 dat0="${GB} ${RESET1}"
 clear
 ledger
 sleep 1

 var5="${GREEN}READY${RESET}"
 sudo touch "$timeloc"

 else
 # chk5="${GREEN}[Date]${RESET}"

 # echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
 dat0="${GB} ${RESET1}"
 clear
 ledger
 sleep 1
 var5="${GREEN}READY${RESET}"
 fi
 break
 else
 chk4="${RED}[GPSfix]${RESET}"
 # echo -ne "$chk1$chk2$chk3$chk4$chk5\r"
 fi
done

##check WLAN1 WLAN2 GPS GPSfix
if ["$var1" == "${GREEN}OK${RESET}"] && ["$var2" == "${GREEN}OK$
{RESET}"] && ["$var3" == "${GREEN}OK${RESET}"] && ["$var4" == "$
{GREEN}OK${RESET}"]; then
 var5="${GREEN}READY${RESET}"
elif ["$var1" == "${GREEN}OK${RESET}"] && ["$var2" == "${RED}X$
{RESET}"] && ["$var3" == "${GREEN}OK${RESET}"] && ["$var4" == "$
{GREEN}OK${RESET}"]; then
 var5="${GREEN}READY${RESET}"

else
 var5="${RED}MISSING MODULE(s)${RESET}"
 echo -e "\n${RED}reprobe needed${RESET}"
 sleep 1
 return 1

fi
if [-z "`pidof hostapd`"]; then
 var7="${RED}X${RESET}"
 var8="${RED}IP${RESET} ${RED}>${RESET} ${RED}X${RESET}"

60

else
 var7="${GREEN}OK${RESET}"
 #ifconfig wlan0 | grep "inet " | cut -d't' -f2 | cut -d'n' -f1
| xargs
 var8="${GREEN}`ifconfig wlan0 | grep "inet " | cut -d't' -f2 |
cut -d'n' -f1 | xargs`${RESET}"
fi

}

#clock () {

#while [1];do ledger;printf "\33[A";sleep 1;done

#}
#var5="${RED}READY${RESET}"
##LANCED menu
while :
do
 #clear
 reset
 cat<<EOF
`echo -e "${RED} _ _ _ ____ _____ ____ $
{RESET}"`
`echo -e "${RED} | | /\ | \ | | / ___| |___ / | _ \ $
{RESET}"`
`echo -e "${RED} | | / \ | \| || | |_ \ | | | | $
{RESET}"`
`echo -e "${RED} | |___ _ / /\ \ _| |\ || |___ _ ___) || |_| |$
{RESET}"`
`echo -e "${RED} |_____(${RESET}${RB} ${RESET1}${RED})/______\($
{RESET}${RB} ${RESET1}${RED})_| _(${RESET}${RB} ${RESET1}$
{RED})____(${RESET}${RB} ${RESET1}${RED})____(${RESET}${RB} $
{RESET1}${RED})____(${RESET}${RB} ${RESET1}${RED})${RESET}"`
 ${RED} _____ _____ ${RESET} ${RED}__________________${RESET}
${RED}// \\${RESET}${RED}MENU${RESET}${RED}/ \\\\${RESET} $
{RED}\\${RESET}${RB} ${RESET1}${RED}/${RESET}
${RB} ${RESET1} ${RED}Device Probe${RESET} ${RED}[1]${RESET} ${RB} $
{RESET1} ${RED}\\${RESET}${RB} ${RESET1}${RED}/$
{RESET}
${RB} ${RESET1} ${RED}Quick Start${RESET} ${RED}[2]${RESET} ${RB} $
{RESET1} ${RED}\\${RESET} `printf "%-20s\n" "$var5"`${RED}/$
{RESET}
${RB} ${RESET1} ${RED}ARM${RESET} ${RED}[3]${RESET} ${RB} $
{RESET1} ${RED}\\${RESET}${RB} ${RESET1}${RED}/${RESET}
${RB} ${RESET1} ${RED}DISARM${RESET} ${RED}[4]${RESET} ${RB} $
{RESET1} ${RED}\\${RESET}${RB} ${RESET1}${RED}/${RESET}
${RB} ${RESET1} ${RED}Quit${RESET} ${RED}[Q]${RESET} ${RB} $
{RESET1} ${RED}\\${RESET}${RB} ${RESET1}${RED}/${RESET}
${RED}\\${RESET}${RED}\\${RESET}${RED}________________/${RESET}$
{RED}/${RESET} ${RED}\\${RESET}${RB} ${RESET1}${RED}/$
{RESET}

${RED}Total APs >${RESET} `printf "%-20s\n" "$kk"` $
{RED}\\${RESET}${RB} ${RESET1}${RED}/${RESET}

`printf "%-31s\n" "$var8"` ${RED}\\/${RESET}
`ledger`

61

EOF

##while [1];do date;printf "\33[A";sleep 1;done

##start function uses kismet_server
start_ks() {
#refresh
#create a file named by YearMonthDay
#sudo mkdir /home/pi/lanced_logs/"`date +%Y%m%d`"
if ["$var5" == "${GREEN}READY${RESET}"];then
/usr/local/bin/kismet_server --daemonize > /dev/null 2>&1
var5="${RED}ARMED${RESET}"
sleep 2
else

echo "${RED}!!!probe the devices!!!${RESET}"
return 1

fi

}

##stop function kills kismet_server then after 3 seconds sorts the
data using d_sorter function
stop_ks() {

sudo killall kismet_server
sleep 3
if [-z "$(ls -A /home/pi/lanced_logs)"]; then

return 1
else
 d_sorter
 sleep 5
fi
if [-n "`pidof gpsd`"]; then
 sudo pkill gpsd
fi
var5="${GREEN}UNARMED${RESET}"

}

##start function for selection 2. first the components are probed,
then the kismet_server is run
q_start() {
components_chk
start_ks
return 1
}

 read -n1 -s
 case "$REPLY" in
 "1") components_chk ;;
 "2") q_start ;;
 "3") start_ks ;;
 "4") stop_ks ;;
"r") refresh ;;
 "Q") sudo rm "$timeloc" 2>/dev/null

62

 reset
 exit
 ;;
 "q") sudo rm "$timeloc" 2>/dev/null

 reset
 exit

 ;;
 *) echo "invalid option" ;;
 esac
 sleep 1
done

==
==================================
==
==================================
==
==================================

###SETTING blue_hydra ###
==
==================================
==
==================================
==
==================================

sudo git clone https://github.com/pwnieexpress/blue_hydra
echo "ok!"

sudo apt-get install bluez -y
sudo apt-get install bluez-test-scripts -y
sudo apt-get install pyhton-bluez -y
sudo apt-get install python-dbus -y
sudo apt-get install sqlite3 -y
sudo apt-get install libsqlite3-dev -y
sudo apt-get install ruby-dev bundler -y

echo "ok!"

cd blue_hydra/
sudo bundler
sudo bundle install

==
==================================
==
==================================
==
==================================

63

##SETTING ppp0 AS BRIDGED CONNECTION###
==
==================================

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

#setting ipv4 forward option to 1 in here
sudo nano /etc/sysctl.conf

#iptables rulez
sudo iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
sudo iptables -A FORWARD -i ppp0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i wlan0 -o ppp0 -j ACCEPT

##to save iptables rules we set to run for each reboot
sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"

##change rc.local file
sudo nano /etc/rc.local
above 0 add this line
iptables-restore < /etc/iptables.ipv4.nat

sudo service hostapd start
sudo service dnsmasq start

==

###GQRX SETUP for RPi3###
==
==================================

 sudo wget
https://github.com/csete/gqrx/releases/download/v2.11.5/gqrx-sdr-
2.11.5-linux-rpi3.tar.xz
sudo tar -xf gqrx-sdr-2.11.5-linux-rpi3.tar.xz
sudo apt install gnuradio libvolk1-bin libusb-1.0-0 gr-iqbal
sudo apt install qt5-default libqt5svg5 libportaudio2
cd gqrx-sdr-2.11.5-linux-rpi3/
sudo cp udev/*.rules /etc/udev/rules.d/
##done here run gqrx for testing
./gqrx

==

64

#!/bin/bash
#author : rektosauruz
#version : v3.2
#definition : G.I.T.S. - Ghost In The Shell - A shell framework
##ssh manager included

| Declerations |
==#
Color Declerations
ESC="#["
RESET=$ESC"39m"
RED=$ESC"31m"
GREEN=$ESC"32m"
LBLUE=$ESC"36m"
BLUE=$ESC"34m"
BLACK=$ESC"30m"
YELLOW=$ESC"33m"

#[*] Status Indicator with different colors.
RLS=${RED}"[*]"${RESET}
BLS=${BLUE}"[*]"${RESET}
GLS=${GREEN}"[*]"${RESET}
RES=${RED}"[!]"${RESET}

##################! MENU !##################
while :
do
 clear
 cat<<EOF
 `echo -e "${BLUE}==========================${RESET}$
{RED}=========================${RESET}$
{YELLOW}======================${RESET}"`
 `echo -e " ${BLUE}_ _${RESET} ${RED}_
_ _ ${YELLOW}_ _ _${RESET} "`
 `echo -e " ${BLUE}__ | |__ ___ ___| |_${RESET} ${RED}(_)_
__ | |_| |__ ___ ${YELLOW}___| |__ ___| | |${RESET}"`
 `echo -e " ${BLUE}/ __| '_ \ / _ \/ __| __${RESET} ${RED}| | '_
\| __| '_ \ / _ \ ${YELLOW}/ __| '_ \ / _ \ | |${RESET}"`
 `echo -e "${BLUE}| (_| | | | | (_) __ \ |_${RESET} ${RED}| | |
| | |_| | | | __/ ${YELLOW}__ \ | | | __/ | |${RESET}"`
 `echo -e " ${BLUE}__, |_| |_|___/|___/__${RESET} ${RED}|_|_|
|_|__|_| |_|___|${YELLOW} |___/_| |_|___|_|_|${RESET}"`
 `echo -e " ${BLUE}|___/${RESET}

 "`
 `echo "${BLUE}==========================${RESET}$
{RED}=========================${RESET}$
{YELLOW}======================${RESET}"`
 $
{GREEN}===
============${RESET}
 `echo -e "${YELLOW}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<${RESET}$
{RED} ${BLUE}G.${RESET}${RED}I.T.${RESET}${YELLOW}S.${RESET}$
{YELLOW} >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>${RESET}"`
 `echo -e "${YELLOW}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<${RED} MAIN

65

MENU${RESET} ${YELLOW}>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>${RESET}"`
 $
{GREEN}===
============${RESET}
 |${GREEN} [001] Line_Calculator${RESET} ||| ${GREEN}[007]
CryptoPaRseR${RESET} ||| ${GREEN}[00n] NSlookup${RESET} |
 |${GREEN} [002] IPtables_BLK${RESET} ||| ${GREEN}[008]
Scan_ipv4${RESET} ||| ${GREEN}[00v] Rec_V${RESET} |
 |${GREEN} [003] NetCaT${RESET} ||| ${GREEN}[009]
Conn_ChecK${RESET} ||| ${GREEN}[00a] Rec_A${RESET} |
 |${GREEN} [004] MD5${RESET} ||| ${GREEN}[00l]
Ipv4_ChecK${RESET} ||| ${GREEN}[00c] Rec_C${RESET} |
 |${GREEN} [005] SHA-256 ${RESET} ||| ${GREEN}[00w] Whois
${RESET} ||| ${GREEN}[00s] SSH${RESET} |
 |${GREEN} [006] TaR/UnTaR${RESET} ||| ${GREEN}[00d]
DNS_L_Test${RESET} ||| ${GREEN}[00p] Vpn${RESET} |
 ${RED}(q)uit${RESET}$
{GREEN}===
========${RESET}

EOF
##################! MENU !##################

md5() {

echo "please give the string to be converted to md5 format / Q to
quit"
read u_input

if ["$u_input" == "Q"];
then
return 1

else
echo "md5 of $u_input : `echo -n "$u_input" | md5sum`"
sleep 1
echo "md5 of $u_input : `echo -n "$u_input" | md5sum`"

>> "$default_out"md5.txt
 fi

}

sha256() {

echo "please give the string to be converted to md5 format / Q to
quit"
read u_input

if ["$u_input" == "Q"];
then
return 1

else
echo "sha256 of $u_input : `echo -n "$u_input" |

sha256sum`"
sleep 1
echo "sha256 of $u_input : `echo -n "$u_input" |

sha256sum`" >> "$default_out"sha256.txt

66

fi
}

nc_manager() {

echo "<SEND> 1"
echo "<RECEIVE> 2"
echo "<QUIT> Q"
read user_c

case "$user_c" in
 "1") echo "ip / port / file"
 read ipaddr
 read port
 read file
 nc -nv $ipaddr $port < $file
 ;;
 "2") echo "port / file"
 read port
 read file
 nc -nvlp $port > $file
 ;;
 "Q") return 1 #exit 0
 ;;
 "q") return 1 #exit 0
 ;;
 *) echo "use defined values, ending the program now."
 ;;
esac

}

line_calc() {

#get the first parameter if not exist then ask for the directory
if [-z "$1"]; then
 echo "please give the path to directory / Enter "Q" to abort"
 read user_input
 path=$user_input
else
 path=$1
fi

if ["$user_input" = "Q"]; then
 #exit 0
 return 1
fi

#create the temporary file for listing the sub folders and files
touch /root/filenames.txt
chmod 755 /root/filenames.txt
temp=/root/filenames.txt
find $path | cat >> $temp ##/root/filenames.txt

#define a counter for the line count
inc=0
sum=0

67

total=0

#loop for the wc -l command to read from the temporary file
for ccb in $(cat $temp); do
 fl_count=$(wc -l $ccb 2> /dev/null | cut -d ' ' -f1)
 sum=$fl_count
 total=$((sum + total + 1))
done

echo "total number of lines in $path = $total"
rm $temp
sleep 2

}

iptables_blk() {

#first line is to get the address to be blocked.
echo "please input the IP address to be blocked / Enter "Q" to
abort"
read blk_addr
if ["$blk_addr" = "Q"]; then
 #exit 0
 return 1
fi

iptables -I INPUT -s $blk_addr -j DROP
iptables -I OUTPUT -s $blk_addr -j DROP
iptables -I FORWARD -s $blk_addr -j DROP
iptables-save > /etc/iptables.conf

}

tar_archiever() {

echo "<PacK> 1"
echo "<UnPacK> 2"
echo "<QUIT> Q"
read user_c

case "$user_c" in
 "1") echo "name the packed file"
 read file_p1
 echo "path/file_name"
 read file_p2
 tar -czvf /root/Desktop/"$file_p1".tar.gz --directory
"$file_p2" .

 ;;
 "2") echo "path/filename"
 read file_p3
 tar -xzvf "$file_p3" -C /root/Desktop
 ;;
 "Q") return 1 #exit 0
 ;;
 *) echo "use defined values, ending the program now."
 ;;
esac

68

}

function scan_last_two() {

for ipv4_4 in $(seq 1 255); do
ping -c 1 192.168.1.$ipv4_4 | grep "ttl=" | cut -d" " -f4 &

done
sleep 4

}

test_connection() {

testv=`ping -c 1 -w 1 8.8.8.8 | grep ttl`
 if [-z "$testv"];
 then
 echo "Internet Connection is ${RED}DOWN${RESET}"
 sleep 1
 return 1
 else
 echo "Internet Connection is ${GREEN}UP${RESET}"
 sleep 1
 return 1
 fi

}

Ipv4_chk() {
echo "your IP is ${GREEN}`ifconfig wlan0 | grep "inet " | cut -d't'
-f2 | cut -d'n' -f1`${RESET}"
sleep 1
return 1
}

#nslookup function will be added laterz
lookup () {

echo -e "input the address / Q to exit"
read que

if ["$que" == "Q"];
then
return 1

else
nslookup "$que" >> "$default_out"nslookup.txt

fi

}

69

who_is() {

echo -e "IP addr lookup / Q to exit"
read iaddr

if ["$iaddr" == "Q"];
then
return 1

else
 whois "$iaddr" >> "$default_out"whois.txt
fi

}

ssh_connect () {

echo -e "[hostname/ip/port] / q to exit"
echo -e "hostname ?"
read uissh1

if ["$uissh1" == "q"];
then
 return 1

 fi
echo -e "ip ?"
read uissh2

if ["$uissh2" == "q"];
then
 return 1
fi

echo -e "port ?"
read uissh3

if ["$uissh3" == "q"];
then
 return 1
fi

ssh "$uissh1"@"$uissh2" -p "$uissh3"

}

 read -n1 -s
 case "$REPLY" in
"1") sh /Desktop/GITS/linecalculator_v05.sh ;;
 "1") line_calc ;;
"2") sh /Desktop/GITS/fw_entry.sh ;;
 "2") iptables_blk ;;

70

"3") sh /Desktop/GITS/nc_manager.sh ;;
 "3") nc_manager ;;
"4") sh /Desktop/GITS/md5c.sh ;;
 "4") md5 ;;
"5") sh /Desktop/GITS/sha256c.sh ;;
 "5") sha256 ;;
 "6") tar_archiever ;;
 "8") scan_last_two ;;
 "9") test_connection ;;
 "l") Ipv4_chk ;;
 "w") who_is ;;
 "s") ssh_connect ;;
 "n") lookup ;;
 "q") exit ;;
"q") echo "case sensitive!!" ;;
 *) echo "invalid option" ;;
 esac
 sleep 1
done

==

#!/bin/bash

#/home/pi/lncd_arch/datapool_db.txt

network_log() {

BSSID="`grep "Network" <<< "$1" | cut -d' ' -f4`"
manuf="`grep "Manuf" <<< "$1" | cut -d':' -f2 | xargs`"
first_seen="`grep -m 1 "First" <<< "$1" | cut -d':' -f2-4 | xargs`"
last_seen="`grep -m 1 "Last" <<< "$1" | cut -d':' -f2-4 | xargs`"
type="`grep -m 1 "Type" <<< "$1" | cut -d':' -f2 | xargs`"
SSID="`grep -m 1 "SSID :" <<< "$1" | cut -d':' -f2 | xargs`"
Beacon="`grep -m 1 "Beacon" <<< "$1" | cut -d':' -f2 | xargs`"
packets="`grep -m 1 "Packets" <<< "$1" | cut -d':' -f2 | xargs`"
WPS="`grep -m 1 "WPS" <<< "$1" | cut -d':' -f2 | xargs`"
encryption="`grep -m 1 "Encryption" <<< "$1" | cut -d':' -f2 |
xargs`"
WPA_ver="`grep -m 1 "WPA Version" <<< "$1" | cut -d':' -f2 | xargs`"
channel="`grep -m 1 "Channel" <<< "$1" | cut -d':' -f2 | xargs`"
frequency="`grep -m 1 "Frequency" <<< "$1" | cut -d' ' -f5,9 |
xargs`"
max_seen_packets="`grep -m 1 "Max Seen" <<< "$1" | cut -d':' -f2 |
xargs`"
LLC="`grep -m 1 "LLC" <<< "$1" | cut -d':' -f2 | xargs`"
data="`grep -m 1 "Data" <<< "$1" | cut -d':' -f2 | xargs`"
crypt="`grep -m 1 "Crypt" <<< "$1" | cut -d':' -f2 | xargs`"
fragments="`grep -m 1 "Fragments" <<< "$1" | cut -d':' -f2 | xargs`"
retries="`grep -m 1 "Retries" <<< "$1" | cut -d':' -f2 | xargs`"
total="`grep -m 1 "Total" <<< "$1" | cut -d':' -f2 | xargs`"
datasize="`grep -m 1 "Datasize" <<< "$1" | cut -d':' -f2 | xargs`"
min_position="`grep -m 1 "Min Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
max_position="`grep -m 1 "Max Pos" <<< "$1" | cut -d':' -f2 |
xargs`"

71

peak_position="`grep -m 1 "Peak Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
avg_position="`grep -m 1 "Avg Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
last_BSSTS="`grep -m 1 "Last BSSTS" <<< "$1" | cut -d':' -f2-4 |
xargs`"
seen_by="`grep -m 1 "Seen By" <<< "$1" | cut -d' ' -f8 | xargs`"

echo "$BSSID,$manuf,$first_seen,$last_seen,$type,$SSID,$Beacon,
$packets,$WPS,$encryption,$WPA_ver,$channel,$frequency,
$max_seen_packets,$LLC,$data,$crypt,$fragments,$retries,$total,
$datasize,$min_position,$max_position,$peak_position,$avg_position,
$last_BSSTS,$seen_by"

}

client_log() {

c_network_id="`head -1 <<< "$test1" | cut -d' ' -f4`"
c_mac="`grep "Client" <<< "$1" | cut -d' ' -f5`"
c_manuf="`grep "Manuf" <<< "$1" | cut -d':' -f2 | xargs`"
c_first_seen="`grep -m 1 "First" <<< "$1" | cut -d':' -f2-4 |
xargs`"
c_last_seen="`grep -m 1 "Last" <<< "$1" | cut -d':' -f2-4 | xargs`"
c_type="`grep -m 1 "Type" <<< "$1" | cut -d':' -f2 | xargs`"
c_channel="`grep -m 1 "Channel" <<< "$1" | cut -d':' -f2 | xargs`"
c_frequency="`grep -m 1 "Frequency" <<< "$1" | cut -d' ' -f6,10 |
xargs`"
c_max_seen="`grep -m 1 "Max Seen" <<< "$1" | cut -d':' -f2 | xargs`"
c_carrier="`grep -m 1 "Carrier" <<< "$1" | cut -d':' -f2 | xargs`"
c_encoding="`grep -m 1 "Encoding" <<< "$1" | cut -d':' -f2 | xargs`"
c_LLC="`grep -m 1 "LLC" <<< "$1" | cut -d':' -f2 | xargs`"
c_data="`grep -m 1 "Data" <<< "$1" | cut -d':' -f2 | xargs`"
c_crypt="`grep -m 1 "Crypt" <<< "$1" | cut -d':' -f2 | xargs`"
c_fragments="`grep -m 1 "Fragments" <<< "$1" | cut -d':' -f2 |
xargs`"
c_retries="`grep -m 1 "Retries" <<< "$1" | cut -d':' -f2 | xargs`"
c_total="`grep -m 1 "Total" <<< "$1" | cut -d':' -f2 | xargs`"
c_datasize="`grep -m 1 "Datasize" <<< "$1" | cut -d':' -f2 | xargs`"
c_min_position="`grep -m 1 "Min Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
c_max_position="`grep -m 1 "Max Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
c_peak_position="`grep -m 1 "Peak Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
c_avg_position="`grep -m 1 "Avg Pos" <<< "$1" | cut -d':' -f2 |
xargs`"
c_seen_by="`grep -m 1 "Seen By" <<< "$1" | cut -d' ' -f9 | xargs`"

echo "$c_network_id,$c_mac,$c_manuf,$c_first_seen,$c_last_seen,
$c_type,$c_channel,$c_frequency,$c_max_seen,$c_LLC,$c_carrier,
$c_encoding,$c_data,$c_crypt,$c_fragments,$c_retries,$c_total,
$c_datasize,$c_min_position,$c_max_position,$c_peak_position,
$c_avg_position,$c_seen_by"
}

72

clientparser() {

loop_count="`grep -n "Client" <<< $test1 | wc -l`"
segment_Client_line_index="`grep -n "Client" <<< $test1 | cut -d':'
-f1`"
l_index="`tail -1 <<< $segment_Client_line_index`"

if ["$loop_count" == "1"]; then

condition_client_p="`tail --
lines=+"$segment_Client_line_index" <<< $test1`"

client_log "$condition_client_p" >>
/home/pi/Desktop/clients.txt

else
loop_count=$((loop_count-1))

for i in `seq 1 $loop_count`; do

f_line="`sed "${i}q;d" <<<
$segment_Client_line_index`"

let i++
s_line="`sed "${i}q;d" <<<

$segment_Client_line_index`"
client_p="`awk -v s="$f_line" -v e="$s_line"

'NR>=s&&NR<e' <<< $test1`"
client_log "$client_p" >>

/home/pi/Desktop/clients.txt

done

client_p_last="`tail --lines=+"$l_index" <<< $test1`"
client_log "$client_p_last" >>

/home/pi/Desktop/clients.txt

fi

}

f_index_line="`cat /home/pi/lncd_arch/datapool_db.txt | grep
"Network " | cut -d':' -f1 | cut -d' ' -f2 | sed '1q;d'`"
l_index_line="`cat /home/pi/lncd_arch/datapool_db.txt | grep
"Network " | cut -d':' -f1 | cut -d' ' -f2 | wc -l`"
l_index_line=$((l_index_line-1))

for i in `seq 1 $l_index_line`; do

val1="`cat /home/pi/lncd_arch/datapool_db.txt | grep "Network " |
cut -d':' -f1 | sed "${i}q;d"`"
let "i++"
val2="`cat /home/pi/lncd_arch/datapool_db.txt | grep "Network " |
cut -d':' -f1 | sed "${i}q;d"`"
test1="`cat /home/pi/lncd_arch/datapool_db.txt | sed -n "/$
{val1}:/,/${val2}:/{/${val2}:/b;p}"`"
network_cid="`head -1 <<< "$test1" | cut -d' ' -f4`"
network_p="`sed -n "/Network /,/Client /{/Client /b;p}" <<<

73

"$test1"`"
network_log "$network_p" >> /home/pi/Desktop/networks.txt
clientparser

done

last_network_index="`cat /home/pi/lncd_arch/datapool_db.txt | grep -
n "Network " | tail -1 | cut -d':' -f1`"
network_p_last="`cat /home/pi/lncd_arch/datapool_db.txt | tail --
lines=+"$last_network_index"`"
last_network_p="`sed -n "/Network /,/Client /{/Client /b;p}" <<<
"$network_p_last"`"
network_log "$network_p_last" >> /home/pi/Desktop/networks.txt

test1=$network_p_last
clientparser

74

