
 

BORNOVA / İZMİR 

AUGUST 2020 

 

YAŞAR UNIVERSITY 

GRADUATE SCHOOL  

MASTER’S THESIS 

 

A DEEP REINFORCEMENT LEARNING MODELLING  

APPROACH FOR s, S INVENTORY CONTROL  

PROBLEM 

 

GÜRAY KILINÇ 

THESIS ADVISOR: ASSOC. PROF. DR. BANU YETKIN EKREN 

 

 

INDUSTRIAL ENGINEERING 

PRESENTATION DATE: 24.08.2020 

 

 







 
v 

ABSTRACT 

A DEEP REINFORCEMENT LEARNING MODELLING APPROACH FOR 

(s, S) INVENTORY CONTROL PROBLEM 

Kılınç, Güray 

MSc, Industrial Engineering 

Advisor: Assist. Prof. Dr. Banu Yetkin Ekren 

August 2020 

In this thesis, deep reinforcement learning (DRL) is applied to an inventory control 

optimization problem in a single-echelon supply chain network. In the DRL approach, 

intelligent agents determining how much to order in each time step to maximize the 

total profit of the network is determined. Also, a static model is developed in which 

the optimal reorder points (s) and the optimal order-up-to levels (S) are calculated by 

a mathematical model. Later, an agent with deep Q-Networks (DQN) by a DRL 

algorithm is trained to decide those levels in a learning environment. The two 

approaches are compared under different scenarios and the results show that the DQN 

agent outperforms the static (s, S) policy under a stochastic environment. 

Key Words: reinforcement learning, single-echelon inventory, deep reinforcement 

learning, inventory optimization, machine learning 





 
vii 

ÖZ 

ENVANTER YÖNETİMİ İÇİN DERİN TAKVİYELİ ÖĞRENME 

YAKLAŞIMI 

Güray, KILINÇ 

Yüksek Lisans, Endüstri Mühendisliği 

Danışman: Doç. Dr. Banu Yetkin EKREN 

Ağustos 2020 

Bu tezde, tek kademeli tedarik zinciri ağında envanter optimizasyonunu yöneten derin 

takviyeli öğrenme (DRL) ajanlarının performansı incelenmiştir. DRL'de, akıllı ajan, 

bu ağın toplam kârını en üst düzeye çıkarmak için her bir zaman adımında ne kadar 

sipariş verileceğini belirlenir. Ayrıca, yeniden sipariş noktası (s) ve en yüksek envanter 

düzeyi (S) bir algoritma yardımı ile bulunarak statik bir model geliştirilmiştir. 

Ardından, bir öğrenme ortamında bu seviyelere karar vermek için bir DRL algoritması 

olan derin Q-Networks (DQN) kullanan bir ajan eğitilmiştir. İki yaklaşım, farklı 

senaryolar altında karşılaştırılmış ve sonuçlar DRL yaklaşımının statik (s, S) 

politikasından daha iyi performans gösterdiği gözlemlenmiştir. 

 

Anahtar Kelimeler: takviyeli öğrenme, tek kademeli, derin takviyeli öğrenme, 

envanter optimizasyonu, makine öğrenmesi 

 





 
ix 

ACKNOWLEDGEMENTS 

First of all, I would like to thank my supervisor Banu Y. EKREN for his guidance and 

patience during this study. 

I would like to express my enduring love to my parents, who are always supportive, 

loving and caring to me in every possible way in my life. 

 

Güray KILINÇ 

İzmir, 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
xi 

TEXT OF OATH 

I declare and honestly confirm that my study, titled “A Deep Reinforcement Learning 

Approach for Inventory Management” and presented as a Master’s Thesis, has been 

written without applying to any assistance inconsistent with scientific ethics and 

traditions. I declare, to the best of my knowledge and belief, that all content and ideas 

drawn directly or indirectly from external sources are indicated in the text and listed 

in the list of references. 

Güray KILINÇ 

Signature 

……………………………….. 

August 23, 2020 

 





 
xiii 

 

TABLE OF CONTENTS 

ABSTRACT............................................................................................................................. v 

ÖZ .......................................................................................................................................... vii 

ACKNOWLEDGEMENTS .................................................................................................... ix 

TEXT OF OATH .................................................................................................................... xi 

TABLE OF CONTENTS ...................................................................................................... xiii 

LIST OF FIGURES ............................................................................................................... xv 

LIST OF TABLES ............................................................................................................... xvii 

SYMBOLS AND ABBREVIATIONS ................................................................................. xix 

CHAPTER 1 INTRODUCTION ............................................................................................. 1 

1.1 Problem Definition and Assumptions ............................................................................ 2 

CHAPTER 2 LITERATURE REVIEW .................................................................................. 1 

2.1 Reinforcement Learning ................................................................................................ 1 

2.1.1 Value Function ..................................................................................................................... 2 

2.1.2 Q – Learning ......................................................................................................................... 3 

2.2 Deep Neural Networks .................................................................................................. 4 

2.2.1 Artificial Neuron................................................................................................................... 5 

2.2.2 Activation Function .............................................................................................................. 6 

2.2.3. Training the Network ........................................................................................................... 7 

2.2.4. Normalization ...................................................................................................................... 8 

2.2.5 Dropout and Early Stopping ................................................................................................. 9 

2.3 Deep Reinforcement Learning ..................................................................................... 10 

2.3.1 Deep Q-Network (DQN) .................................................................................................... 10 

2.4 Inventory Optimization ............................................................................................... 12 

2.4.1 (s, S) Inventory Policy ........................................................................................................ 12 

CHAPTER 3 INVENTORY OPTIMIZATION EXPERIMENT with DQN AGENT .......... 17 

3.1. Environment ............................................................................................................... 18 

3.1.1. The Profit Function ............................................................................................................ 19 

3.1.2. State and Action Space ...................................................................................................... 19 

3.1.3. The Reward Function ........................................................................................................ 20 

3.1.4. Determining the Reorder Point and Order up to Quantity for the Static Model ................ 20 

3.2. Training of the RL Agent ........................................................................................... 21 



 
xiv 

3.3. Comparison of RL Solution with the Static Approach................................................ 26 

CHAPTER 4 CONCLUSİONS AND FUTURE WORK  ...................................................... 41 

REFERENCES ....................................................................................................................... 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xv 

LIST OF FIGURES 

Figure 1.1. The Structure of the Supply Chain ....................................................................... 3 

Figure 2.1. Interaction of agent and environment in MDP ..................................................... 1 

Figure 2.2. The Q-learning Algorithm .................................................................................... 4 

Figure 2.3. The Artificial Neuron – Basic Concepts ............................................................... 6 

Figure 2.4. RELU Graph ......................................................................................................... 7 

Figure 2.5. Illustration of the Benefit of Normalization ......................................................... 9 

Figure 2.6. Deep Q-Network (DQN) .................................................................................... 12 

Figure 2.7. (s, S) Inventory Policy ........................................................................................ 13 

Figure 2.8. Finding Optimal (s, S) Policy Algorithm ............................................................ 14 

Figure 3.1. The Agent Trained Until the 20th Episode ......................................................... 24 

Figure 3.2. The Agent Trained Until the 100th Episode ....................................................... 25 

Figure 3.3. The Agent Trained Until the 250th Episode ....................................................... 26 

Figure 3.4. 2nd Experiment Chart of the First Scenario ....................................................... 28 

Figure 3.5. 1st Experiment Chart of the 1st Scenario ........................................................... 29 

Figure 3.6. Experiment Chart of the Second Scenario .......................................................... 31 

Figure 3.7. 1st Experiment Chart of the Third Scenario ....................................................... 33 

Figure 3.8. 2nd Experiment Chart of the Second Scenario ................................................... 35 

Figure 3.9. 1st Experiment Chart of the Fourth Scenario ..................................................... 37 

Figure 3.10. 2nd Experiment Chart of the Fourth Scenario .................................................. 39 

 

 





 
xvii 

LIST OF TABLES 

Table 2.1. Performance of Algorithm ................................................................................... 16 

Table 3.1. Supply Chain Variables ........................................................................................ 18 

Table 3.2. Supply Chain Constant Variables ........................................................................ 19 

Table 3.3. Hyperparameters of DQN .................................................................................... 21 

Table 3.4. Settings Hyperparameters of DQN ...................................................................... 23 

Table 3.5. Results of the First Scenario ................................................................................. 27 

Table 3.6. Results of the Second Scenario ............................................................................ 30 

Table 3.7. Results of the 1st Experiment of the Third Scenario ............................................ 32 

Table 3.8. Results of the 2nd Experiment of the Third Scenario .......................................... 34 

Table 3.9. Results of the 1st Experiment of the Fourth Scenario .......................................... 36 

Table 3.10. Results of the 2nd Experiment of the Fourth Scenario....................................... 38 

Table 3.11. The Result of All Experiments Running 5 Times .............................................. 40 

 





 
xix 

 

SYMBOLS AND ABBREVIATIONS 

ABBREVIATIONS: 

RL Reinforcement Learning 

DRL Deep Reinforcement Learning 

DQN  Deep Q Networks 

MDP  Markov Decision Process 

DNN  Deep Neural Network 

 

SYMBOLS: 

iI  Inventory level of the Actor i 

iO  Ordering Size of the Actor i 

tD  Demand 

iP  Profit of the Actor i 

r Reward 

S Order up to Quantity 

s Reorder Point 

µ Demand Mean 

a  Action 

h Holding Cost 

P Unit Price 

p Penalty Cost 

γ Discount rate  

Co      Fixed Ordering Cost 

µ        The Average of Poisson Distributed One-Period Demand 





 

 

 

 

 

1 

CHAPTER 1 

INTRODUCTION 

A supply chain involves all activities related to the production and information flow 

from raw materials to the final products (Tan & Kannan, 1998). Supply chain 

management involves efficient management starting from the design of product or 

service until its final delivery to customers (Houlihan, 1985). The supply chain may 

result in waste, cost loss, inefficiency, and consumer dissatisfaction due to a lack of 

effective inventory management (Jones & Riley, 1985). Therefore, inventory 

optimization is an important problem in the supply chain. The key decision here is how 

much to order from the factory and how to keep the stock level in warehouses. While 

small businesses do not use a management system or just maintain manually, big 

companies use non-dynamic policies such as (s, S) inventory policies (Gavirneni, 

2005). However, after the Covid-19, many large to small size companies experienced 

profit loss due to sudden demand changes, due to not able to predict the number of 

demand arrivals. 

This thesis proposes a deep reinforcement learning (Mnih et al., 2013) approach for 

inventory optimization where the order amounts are adjusted based on real-time 

demand data. The deep reinforcement learning (DRL) applications such as AlphaGo 

(D. Silver et al., 2016), DQN Atari (Mnih et al., 2013), and OpenAi (Brockman et al., 

2016) break new ground in artificial intelligence. Inspired by these successful DRL 

implementations, it is decided to use DRL for an inventory optimization problem in 

this thesis. The aim of the thesis is to design intelligent agent-based modelling 

determining what amount and when to order by tracing the inventory problem 

changing environment (i.e., demand). The system is simulated by the Python 



 

 

 

 

 

2 

programming language (Van Rossum & Drake, 2009) and utilize the machine learning 

libraries in Python to facilitate the coding. 

1.1 Problem Definition and Assumptions  

In this thesis, a single-echelon inventory problem consisting of a single warehouse is 

modeled and a single product type is ordered from a higher echelon which is the 

factory as shown in Figure 1.1. It is assumed that the factory has no capacity constraint 

and can provide an infinite number of products. The delivery time from the factory to 

the warehouse is assumed to be zero. The objective function is determined to be the 

maximization of profit in which is considered fixed ordering cost and holding cost. If 

demand arriving at the factory is not satisfied, the agent will bear the penalty cost and 

profit will fall. But on the other hand, if the agent puts too much product in inventory, 

profit will fall again. For this dilemma, the agent aims to reduce the holding inventory 

cost as low as possible while meeting the demands. Demand is modeled by Poisson 

distribution with mean (λ) per time-period for a more realistic environment in the 

experiment. 

In the literature, basic reinforcement learning algorithms used in inventory 

optimization problems and heuristic policies are compared. These are given below, 

respectively. 

• Smart algorithm and (s, S) policy (Giannoccaro & Pontrandolfo, 2002) 

• Q-learning, Sarsa algorithm  and (r, Q) policy (Kemmer & Read, 2018)  

• DQN and (r, Q) policy (Oroojlooy, 2019) 

• Deep deterministic policy gradient (DDPG) and (r, Q) policy (Hutse, Victor, 

Verleysen, A., & Wyffels, 2019) 

In this thesis, the DQN algorithm is used to train the agent. Later, the trained model is 

compared with a static (s, S) policy. In addition, different from the other papers, By 

dynamically changing the value of λ, models are tested and compared under highly 

variable demand conditions. 



 

 

 

 

 

3 

 

 

Figure 1.1. The Structure of the Supply Chain 

As mentioned the purpose of the agent is to maximize the total profit throughout the 

supply chain. Different demand scenarios (as defined in section 3.3) are applied to test 

the robustness of the model. The DRL results are compared to a static inventory model 

where (s, S) levels are pre-defined based on the calculation of an analytical model and 

fixed throughout the run time which is 5 years. 

The remainder of the thesis is structured as follows: 

• Chapter 2 introduces RL, Deep Neural Networks, DQN by explaining the 

mathematical equations associated with them. The chapter discusses off-

policy, model-free, value-based methods. Different components of the DNN 

are presented and a regularization technique is discussed. Also, inventory 

optimization is defined. 

• Chapter 3 presents how the DRL algorithm is trained and it is compared with 

the static (s, S) policy in different environments. 

• Chapter 4 provides a summary and conclusion of the thesis and also providing 

guidelines for future work.





 

 

 

 

 

1 

CHAPTER 2 

LITERATURE REVIEW 

In this chapter is explained reinforcement learning, studies on deep neural networks as 

well as basic concepts. Also, methods such as regularization required for the DNN are 

discussed. The working principle of deep Q learning and (s, S) are also given in this 

section.  

2.1 Reinforcement Learning 

This section begins by introducing the main concepts of reinforcement learning. 

Reinforcement Learning (RL) is one of the branches of machine learning where an 

agent learns a specific state depending on the actions (Sutton & Barto, 2018). Other 

branches of machine learning such as supervised learning comparing to labeled inputs 

data then mapping outputs data. Unsupervised learning, on the other hand, uses 

clustering to interpret data based on unlabeled inputs data.   

 

Figure 2.1. Interaction of agent and environment in MDP (Sutton & Barto, 2018) 

RL uses the concept of Markov Decision Process (MDP) and it consists of agent, 

environment, action, state, and reward (as shown in Figure 2.1). At every timestep, the 



 

 

 

 

 

2 

agent receives state and reward signals as feedback from the environment depending 

on each action. The agent is expected to predict possible reward value from current 

action and define an optimal approach to maximize the value of the overall reward 

(Sutton & Barto, 2018). An (MDP) is defined by a set of states, s ∈ S, where S denotes 

the state space, a set of actions, a  ∈ A, where A denotes the action space,  

• The transition probability function is the probability of going from state s to 

state s′  when the agents perform action given by the a shown by (2.1) (Sutton 

& Barto, 2018). T: S × A ∈ [0, 1] : 

                                1,( | ) ( | ),j j

t t tp s s a Pr s s s s a a+= = = =
                              (2.1) 

• The reward function represents the reward given by the environment when 

agent takes the action (a) that results in a transition the state s to state s′, shown 

by (2.2). (Sutton & Barto, 2018),   R: S ×  S × A →  

                              1(, ,( | ,) ),j j

t t t tR s a s r s s a a s s+= = = =
                              (2.2) 

• The policy is mapping from states to actions and could be deterministic ( )s  

or stochastic ( )|a s . 

2.1.1 Value Function 

Value function evaluates expected sum of reward policy when agent is at state ( )s  

(Kaelbling et al., 1996)  and represented ( ( )V s ), which defined as: 

  

                   
( ) ( )( ) ( )( ) ( ),   , ,

s S

V s R s s T s s s V s    


 = + 
                      (2.3) 



 

 

 

 

 

3 

The optimal value function selects the maximum value at state s between all ( )V s  

and the optimum policy can be defined as: 

            

( ) ( )( ) ( )( ) ( ) ,     ,  ,   
a

s arg max R s s X T s s s V s     
= + 






        (2.4)    

 

2.1.2 Q – Learning 

In 1992, Watkins introduced the Q-learning algorithm (Watkins & Dayan, 1992) and 

it became the most popular RL algorithm due to its ease of implementation. Q-learning 

uses the policy π for any s ∈ S and a = π(s) also known as Bellman equation: 

( ) 2

1 2,     [       · · ·  s   ,    ;  ]|t t t t tQ s a E r r r s a a  + += + + + = =
         (2.5) 

In the equation below, s means the current state, a represents the action the agent takes 

from the current state. 𝑠′represents the resulting state after the action taken by agents. 

𝑎′represents the action from the next state. r is the reward value, γ is the discount factor 

and finally α is the learning rate. The discount factor γ ∈ (0, 1] determines how 

important you are going to give to future rewards. As the value increases, the 

importance given to the future reward increases (Sutton & Barto, 2018). 

Then q-value is updated after observation based on the iterative formula: 

( ) ( ) ( ) ( )( )1 1, 1  ,   max ,   ,    1,  2,  . . . ,  t t t t t t t
a

tQ s s ra a Q a a Q a ts+ += − + +  =     (2.6) 

The Q-Learning algorithm is composed of three main methods which are off-policy, 

model-free, and value-based (Watkins & Dayan, 1992). The model-free method is 

divided into two main approaches. One of them is the value function based method 

which the agent tries to maximize a value function and understand the optimal policy. 



 

 

 

 

 

4 

Another method, policy search, agent determines optimal policy by searching among 

policy parameters (Sutton & Barto, 2018). 

 

 

Figure 2.2. The Q-learning Algorithm (Sutton & Barto, 2018) 

Policy-off means that the agent takes the best action (a′) using the ε- greedy policy in 

state s′ and tries to maximize the cumulative return (Watkins & Dayan, 1992). This is 

the biggest difference between policy-on and policy-off. The values of the reward 

functions are written on the matrix with dimensions number of states by the number 

of actions at the initial zero value (Sutton & Barto, 2018) . The q-value of each state-

action is saved in q-table. The agent selects action based on the q-tables with a 

probability of 1-ε with the highest cumulative action value i.e. 

( )1 1 argmax ,t a ta sQ a+ +=  or explores the environment by taking random actions. 

Namely, with a probability of ε it takes random action. These methods are called 

exploitation and exploration (Osband et al., 2016). 

2.2 Deep Neural Networks 

Deep Neural Networks (DNN) is one of the main factors in the development of 

artificial intelligence (AI) applications in recent years, which are autonomous car 

(Bojarski et al., 2016) and robots (Schulman et al., 2016) (Mnih et al., 2015) large 



 

 

 

 

 

5 

scale image recognition (Simonyan & Zisserman, 2015), speaker and language 

recognition (Richardson et al., 2015) and recommender systems (Zhang et al., 2019). 

Neural networks work is inspired by a biological neural network which is a complex 

interconnected neuron system and information can be extracted from the given inputs 

and produce a corresponding output (Haykin, 1994). Likewise, DNN consists of a 

series of interconnect layers where neurons receive a pattern and determine valuable 

output. That’s the way it recognizes and predicts patterns such as images, sounds, texts, 

or time series. Also, these patterns must be represented with the numeric value 

(Goodfellow et al., 2016).  

In this chapter, artificial neurons and activation functions are mentioned to give in-

depth knowledge of the working principle of artificial neural networks. Besides, The 

normalization methods, which make to learn artificial neural networks faster and 

simplifies the creation of deeper networks (Goodfellow et al., 2016), are also 

introduced in this section. 

2.2.1 Artificial Neuron 

Neurons are the simplest component of DNN and consists of bias, weights, and 

activation functions. Figure 2.3. shows, a neuron takes inputs xi, determines the 

weighted sum of the inputs, and is represented by wi. Then, this variable added with 

the value called bias denoted by b, which is previously determined. Subsequently, the 

neuron gets an output y, after passing through the activation function f. 

 



 

 

 

 

 

6 

 

Figure 2.3. The Artificial Neuron – Basic Concepts (Agatonovic-Kustrin & Beresford, 

2000)  

The exact equation for a neuron can be written as: 

                                              i

   i iy f w x b
 
 


= +



                                  (2.7) 

As the input wi gets closer to the model, the value of output (y) increases with it 

(Patterson & Gibson, 2017). 

2.2.2 Activation Function 

Neural networks are used in the approximation of nonlinear functions and different 

patterns can be satisfied through the activation function (Sutton & Barto, 2018). 

Because real-world problems are usually non-linear transformation (Goodfellow et al., 

2016). Relu activation function is used in this thesis. 

 



 

 

 

 

 

7 

 

Figure 2.4. RELU Graph 

• Rectified Linear Unit (ReLu): 

                                                      
( ) ( )  0,  f x max x=

                                (2.8) 

Relu has proved to be one of the best activation functions and has a wide range of uses. 

It prevents neurons from converging their weights zero (Glorot et al., 2011). 

 

 2.2.3. Training the Network 

The most important task of the DNN is to adjust the weights and bias and try to 

minimize the cost function J(θ) during training using the backpropagation technique 

(Larochelle et al., 2009). This technique starts with the weights by giving a random 

value for each input and then finds an error value by subtracting the calculated output 

value from the actual output (Patterson & Gibson, 2017). (θ) represents all DNN 

parameters and the cost function shows how to change parameters to minimize the 

error value. Thus, weights are updated usually using the gradient descent algorithm 

(Goodfellow et al., 2016). 

 



 

 

 

 

 

8 

This derivative called gradients and for each parameter shown as: 

                                                   

dC

d                                            (2.9) 

How to found the minimum cost is, the weights are updated with a small number of 

gradients each time, starting to take small steps depending on the learning rate towards 

the minimum direction which is meaning the opposite of the gradient direction 

(Goodfellow et al., 2016). That’s why the name "Gradient Descent". This process 

shows with this equation (2.10) and the learning rate donated by a: 

                                      
    new old

dC

d
  


 −

                               (2.10) 

Stochastic gradient descent is the most popular algorithm in deep learning such as 

Adam (Kingma & Ba, 2015) and AdaGrad (Duchi et al., 2011). Because weights 

converge faster by the optimal learning rates based on the distribution of the training 

data. These algorithms provide how much the values of the weights can be increased 

or decreased. Thus find the local or global minimum more correctly (Kingma & Ba, 

2015). 

2.2.4. Normalization  

In real-world data, variance and average scales between the columns of the data can 

significantly vary greatly (Srivastava et al., 2014). This problem makes it difficult to 

choose the optimal learning rate and other hyperparameters and consequently, 

misdirection of the gradients occurs. Batch normalization (Ioffe & Szegedy, 2015) 

solves this difficulty which takes a sample from the dataset as mini-batch and 

normalizes their mean equal to zero and variances as a unit (Ioffe & Szegedy, 2015). 

Thus gradient finds the optimum value. 



 

 

 

 

 

9 

  

 

Figure 2.5. Illustration of the Benefit of Normalization (Ioffe & Szegedy, 2015) 

2.2.5 Dropout and Early Stopping 

Dropout and early stopping methods are used to prevent overfitting in neural networks. 

Mainly, the dropout method (Srivastava et al., 2014) means to eliminate the neurons 

with a pre-specified probability value. Because when all weights get updated together 

with each training iteration however some of them have become better predictive 

capability than the other neurons and it continues until the end of this training 

(Goodfellow et al., 2016). Thus, this causes some neurons to decrease their predictive 

capacity. For this reason, the dropout technique allows us to make deeper and wider 

neural networks, by disabling the weight of some neurons at each training step and 

trying to equalize their predictive capacity (Goodfellow et al., 2016). 

The early stopping method means that the training stops if the total number of awards 

received by the model does not increase within a predefined episode. So, this method 

reduces the model's dependence on training data (Srivastava et al., 2014). 

 

 

                                              
 

Unnormalized data surface and the 

gradient is indicated by the red arrow. 

Normalized data surface and the 

gradient find optimum value faster than 

unnormalized data.



 

 

 

 

 

10 

2.3 Deep Reinforcement Learning 

Deep Reinforced Learning (DRL) has attracted a lot of attention from the AI 

committee. In 2017, an artificial intelligence application won a game against Go 

champion, which is one of the most complex board game in the world and it shows the 

world how intelligence learning models can be (D. Silver et al., 2016).  

The biggest difference between DRL and RL is that DRL can work in high-density 

data and continuous action problems due to DNN as a function approximate policy 

search or value function method (Goodfellow et al., 2016). This chapter introduces the 

Deep Q-Network (DQN) method which is used for this thesis due to the state size of 

our inventory and the number of actions the agent can be taken (Sutton & Barto, 2018). 

2.3.1 Deep Q-Network (DQN) 

As discussed earlier, Q-learning is the most popular model-free method in RL. In the 

first instance, it is unsteady when using DNN. Thus, most applications of it are limited 

to tasks with small-scale data. For the First Time, DQN (Mnih et al., 2013) has been 

developed that can play Atari 2600 games more successfully than humans. 

The loss function is minimized by using stochastic gradient descent and ε-greedy 

policy is applied to provide exploration and also it is a value-based algorithm like Q-

learning (Mnih et al., 2015). However, DQN using DNN to estimate the best Q* value 

function, Q(s, a; θ) which weight represented by θ. In this case of DQN, the loss 

function ( )tL   is defined by: 

                                      
( ) ( )

2

,    j s a target predictL Q Q =  − 
                         (2.11) 

( )
2

1 ,(  ,   )   ( | )|j j
a

a
a

jr maxQ s a max Q s  +
 = + −  



 

 

 

 

 

11 

The most important problem for DQN is high variance because it causes overfitting or 

weights that may not let the system learn very well (Goodfellow et al., 2016). For this 

reason, two main methods are developed to overcome this problem. The first one is 

the target Q-network method which is used as a loss function. As given in equation 

(2.11) loss function equation contains the same    parameters causing increase of 

variance and decrease of stability of learning. Because of these reasons, target Q-

network method updates    the parameter of Q-target after hundreds or thousands of 

training steps. (Mnih et al., 2015) 

                            
( )

2

1 ,(  ,   )   ( | )| j a
a

j
a

jr maxQ s a max Q s  −

+ − +
               (2.12) 

The experience replay memory is the second method. Unlike the Q-learning, this 

method stores the previous experiences of the agent instead of action-state values and 

it is shown as 1( ), , ,j j j js a r s +  (Mnih et al., 2013). Thus, the experience replay method 

uses with mini-batch in the training steps and they are playing a big role in decreasing 

the variance of large-scale, break the correlation between patterns and finding 

efficiently loss value at every training iteration in the future. The DQN algorithm is 

shown below. 

 



 

 

 

 

 

12 

 

Figure 2.6. Deep Q-Network (DQN) (Mnih et al., 2013)  

2.4 Inventory Optimization 

Inventory refers to materials and goods purchased for the profit of a company. One of 

the most important steps in the supply chain management is the inventory management 

policy that is the tracking of inventory from producers to storage and from these 

facilities to sales stores (E. A. Silver, 1981). In other words, inventory management 

requires knowing when to order, how much to order, and where to store goods (Jones 

& Riley, 1985). Accordingly, it is expected to follow a policy that gives appropriate 

orders of unknown demand fulfillment and minimize the holding cost.  

Many methods have been developed to find suitable policies. The (s, S) inventory 

control policy is introduced. 

2.4.1 (s, S) Inventory Policy 

In an (s, S) inventory policy, review period of current inventory levels could be either 

periodic or continuous (Zheng & Federgruen, 1992). When inventory level drops to 

the reorder point (s), the order quantity (Q) equals to the current stock level is 

subtracted from optimal order-up-to level (S) (Veinott & Wagner, 1965). Therefore, Q 



 

 

 

 

 

13 

does not take a constant value as in other policies like (r, Q). Considering the example 

in Figure 2.7, it is seen that the blue line is the inventory level, optimal order-up-to 

level (S) is equal to 50 and the optimal reorder point (s) is equal to 10. When the 

inventory level drops below the reorder point, an order is placed with the inventory 

level equal to S. 

 

Figure 2.7. (s, S) Inventory Policy 

In this thesis, the DRL technique is compared with a static model whose optimal (s, S) 

levels are calculated by using Zheng and Federgruen's algorithm (1992) given in 

Figure 2.8. The algorithm is simple to comprehend and implement. Let, 

• D = The one-period demand 

• 
 ,    0,1,2,...;  jp Pr D j j= = =

 

• y = The beginning of the inventory position, integer y. 

First of all, step 0 is calculated the base stock level indicated as y* with the Poisson 

percent point function using penalty cost (p) and fixed setup cost (K). 

 



 

 

 

 

 

14 

 

Figure 2.8. Finding Optimal (s, S) Policy Algorithm (Zheng & Federgruen, 1992)  

The optimum s value is calculated for S with its lower limit fixed at S0. The reorder 

point s value is decremented one unit until the period when the expected cost, G(s), is 

less than the long-run average cost c(s, S0) and it is defined as s0. The cost function 

value is calculated with expected total costs showing as M(j), (k (s, y)) in the equation. 

                                 
( ) ( ) ( ),    ,  /   c s S k s S M S s= −

                     (2.13) 

When beginning inventory is ( )  s j y+  units, ( )  1   j y s  , ( ) ( )( ) ,  M j k s y  be 

the expected total costs until the next order arrives. 

                                     
( ) ( ) ( )

1

00 1 ,  0 0m p M
−

= − =
                            (2.14) 

( ) ( ) ( )1 1 ,       1,2,  ....M j M j m j j= − + − =
 

                                 

( ) ( ) ( )
1

0

,               
y s

j

k s y K m j G y j y s
− −

=

= + − 
                  (2.15) 



 

 

 

 

 

15 

M(*) and k(s, y) clearly define the discrete renewal equation. Finally, the long-run 

average cost c (s, S) is calculated using the following equation.  

                                          
( ) ( ) ( ),    ,  /   c s S k s S M S s= −

                               (2.16) 

In step 1, c (s, S) function is recalculated by using s0 and S which equal to S0 +1. The 

maximum inventory level point S is increased one unit until the one-period expected 

to cost G(S) value is higher than c(s, S) function. However, when S0 is equal to S, 

reorder level s is incremented one unit until ( ) ( )0,      1c s S G s +  ( )0,  c s S  is 

updated with new reorder level s afterwards. At the end of the algorithm, it returns 

optimal reorder value s and maximum inventory level point S as S0. 

For numerical example, The example model at Veinott and Wagner is chosen, with 

linear holding and holding costs, zero lead time, and Poisson distributed one-period 

demands (Veinott & Wagner, 1965).The following parameters are common to all 5 

problems and identical to those used in Veinott and Wagner (Veinott & Wagner, 

1965):  

• fixed setup cost, K = 60;  

• holding cost rate, h = 1; 

• penalty cost, p = 9. 

 The mean one-period demand (µ) is displayed from 10 to 25, increasing by 5. 

 

 

 

 

 



 

 

 

 

 

16 

 

Table 2.1. Performance of Algorithm 

µ Reorder Point (s) Order-Up-to Level (S) 

10 6 40 

15 10 49 

20 14 62 

25 19 56 

  

Finally, the applications of (s, S) policy in the literature are examined. In the study of 

Fries (1975), the model is examined for the perishable product when the lifetime is 

two periods or more. Considering the defined cost function, it has shown that the 

policy (s, S) is not optimal when the product life is 2 periods or more and the planning 

period is at least the product life (Fries, 1975). A paper of Brunaud et al (2019) 

compared using the (r, Q) policy and (s, S) policy on the gas storage problem. A 

continuous review of the (r, Q) policy is adapted to a discrete-time easing the need of 

having the inventory level exactly at the reorder point to trigger replenishment. Thus, 

although the efficiency of these policies is the same, the (r, Q) policy has become a 

better policy by responding to demand faster as expected (Brunaud et al., 2019). Also, 

Chen et al (2001) try to explore the impact of variations in service level constraints on 

attained service levels. The experiment is performed for a continuous (s, S) review 

policy and it proves that inventory policy with minimal service level models performs 

better than a policy with mean service level constraints (Chen & Krass, 2001). 

 

 



 

 

 

 

 

17 

CHAPTER 3 

INVENTORY OPTIMIZATION EXPERİMENT with DQN AGENT 

In this thesis, the Deep Q-Network algorithm is proposed in section 1.1. is developed 

in Python language by using the Keras library developed by Google engineers (Chollet 

& others, 2015). The reasons for using the Keras library are: 

• Easy to use but also supported advance TensorFlow functions  

• GPU support  

• Can be work with NumPy (S van der Walt et al., 2011) and Pandas 

(McKinney, 2010)  

• Support other machine learning frameworks too 

This section describes how the agent is trained and tested. In addition, the design and 

development phase of the environment is discussed. 

 

 

 

 

 



 

 

 

 

 

18 

3.1. Environment 

The environment state is considered to be the current inventory level in the system. 

The actions are defined to be the amount of order that is given from the warehouse. 

The variables and notations used are defined in Table 3.1.  

Table 3.1. Supply Chain Variables 

 

( )iI t , (i = RL, SS) represents the inventory level of the actor i at time step t.  

( )iO t , (i = RL, SS) denotes the ordering size of the actor i at time step t.  

( )tD  , random variable, denotes the demands coming with the mean (µ) of the Poisson 

distribution at time step t 

( )iP t , (i = RL, SS) represents the profit of the actor i at time step t 

 

In the basic supply chain process, a decision-maker, or is called it an agent, is 

responsible for 3 stages: distribution, order and demand fulfillment. In this experiment, 

the order and demand fulfillment stages are considered. After each periodic review, 

the agent decides whether or not to place an order to satisfy the demand with a non-

lead time. If the agent decides to order, then it bears the fixed ordering cost as well as 

the holding cost. For the unsatisfied demand, it incurs penalty cost as the unsatisfied 

demand amount. In this thesis, a static (s, S) inventory policy is compared with an RL 

agent-based policy. In Table 3.2, the values of variables in the supply chain are set. 

 

 

 

 

 



 

 

 

 

 

19 

Table 3.2. Supply Chain Constant Variables 

  

  

Unit Price, P 100 

Fixed Ordering Cost, Co 80 

Periodic Time Review (time-step) 1 

Unit Holding Cost (per periodic-review), h 1 

Unit Penalty Cost (per periodic-review), p 80 

Warehouse Capacity 100 

Lead time 0 

  

3.1.1. The Profit Function 

Equation (3.1) shows how to calculate the total profit for a single period: 

 

                      ( ) ( ( ) ) ( ) ( ) ( ( ))i t iP t D P Dp p Nc Co h I t=  −  −  −               (3.1) 

 

According to (3.1) ordered amount is multiplied by unit selling price and the penalty 

cost for unfulfilled demand, holding cost as well as fixed ordering cost are 

decremented from that amount. Nc is a binary variable and is equal to 1 if the agent 

made an order, otherwise 0. Total profit is seen as the performance measure of the 

supply chain network. 

3.1.2. State and Action Space 

Once again, the states and the actions refer to the inventory level and the order size, 

respectively. The state space (inventory level) is considered to be the levels between  



 

 

 

 

 

20 

-20 and 100 in training stage. The backlog is not allowed after the inventory level 

equals -20 Hence, the state space contains 120 dimensions. On the other hand, the 

action space includes the integer values between 0 and 6. Hence, actions can occur in 

7 possible discrete values. It is indicated by ( )a t  and the equation is defined below. 

                                    ( ) *10 [0,1,2,3,4,5,6]a t k k= =                      (3.2) 

3.1.3. The Reward Function 

The RL agent selects the most proper actions according to the reward function. Here, 

the reward function is considered to be profit. Profit is undoubtedly one of the most 

important variables in the supply chain and therefore is considered it as a reward 

function as (3.3) shows by: 

                                                          
0

( )
m

i

t

r P t
=

=                                  (3.3) 

In (3.3), m represents training time and as can be seen in the equation above, the model 

receives the reward only once in one episode. This function is designed for give 

freedom to the agent in the environment and prevent over-compliance with training 

data. 

3.1.4. Determining the Reorder Point and Order up to Quantity for the Static 

Model 

As mentioned in chapter 2, the RL-based solution is compared to a static model. The 

utilized analytical model for the static inventory problem is developed by Veinott and 

Wagner (1965). It is used to find the reorder point (s) and the order up to levels (S). 

As in the RL model, the performance metric is considered same in the static model as 

the RL model. Namely, total profit is calculated as in (3.1) by assuming the same 

assumptions. 



 

 

 

 

 

21 

3.2. Training of the RL Agent 

As discussed in the problem description, the problem consists of a supply chain 

network with a single-echelon level. There is a single type of product and zero lead 

time from the factory. The DQN algorithm is implemented for the RL agent. The 

parameters and their values considered in the training are shown in Table (3.3). 

 

Table 3.3. Hyperparameters of DQN 

  

  

Replay Memory Size 7000 

Batch Size 512 

Discount factor γ  0.98 

Greedy- ε0 0.05 

Greedy- ε1(after 50 episode) 0.01 

Greedy- ε2 (after 100 episode) 0.005 

Loss Function MSE 

Optimizer  ADAM 

Dropout  

 

  0.1 

Kernel Initializer He-uniform 

Activation F. ReLu, 

Softmax 

 

Early Stopping (Episode) 

 

50 

  

  



 

 

 

 

 

22 

In the training process, the random.poisson function of the NumPy library (S van der 

Walt et al., 2011) is used for demand distribution and the average of demands (µ) is 

taken as 10. This thesis aims to observe how a trained agent behaves under changing 

environmental conditions, in other words, is it would overfit the training data set. The 

values in our action dimensions are a great value that it can exceed the maximum 

capacity with a single random action. When the agent exceeds the maximum capacity 

or falls below the minimum capacity, the episode ends and the and then the training 

continues with the next episode. Thus, depending on the reward function, the agent 

learns the minimum and maximum capacities. All are shown to the agent with an 

observe state. This state consists of the current state, reward value, binary game over 

value which refers to whether it exceeds maximum capacity or minimum capacity, 

respectively. 

The mean square error (MSE) is used as the loss function in the DNN and the task of 

the agent is to reduce the loss value as much as possible. ADAM is preferred for the 

learning rate optimization algorithm and its parameters are determined according to 

the study (Kingma & Ba, 2015). Adam is an algorithm that updates neuron weights 

more efficiently depending on the learning rate. It has developed use the advantages 

of two algorithms, AdaGrad and RMSProp. AdaGrad is used to preverse the learning 

rate of parameters with sparse gradients and mostly use in computer vision problems. 

Also, RMSProp preverse learning rate of parameters but it adapted learning rate on 

average of the gradients for the weights. Adam algorithm make use mean first moment 

and second moment of uncentered variance.  

All models in this thesis have an input layer, two hidden layers and an output layer. 

These layers use the ReLu and Softmax activation functions, excluding the input layer, 

respectively. 

 

The number of hidden neurons and learning rate is determined as the most important 

parameters in this experiment. Because, the learning rate is the frequency of updating 



 

 

 

 

 

23 

the weights. Hidden layers divide the input data into specific patterns, and each hidden 

layer function focus only one pattern. For example, a hidden layer functions that are 

used to identify bird’s beak, wing and eyes used in combination by subsequent layers 

to identify bird species in images. Depending on the number of variables in the 

problem, those layer values: [32,16], [64,32], [128,64] are selected.  The learning rates 

are considered to be: 0.01, 0.001, and 0.0001. Table 3.4 show the simulation results 

based on the RL-based simulation solution. In the simulation, each timestep equals 

one day and training time is considered to be 800 days. 

 

 

Table 3.4. Settings Hyperparameters of DQN 

 

 

Model 5 produces the best result compared to others. When looking at the 10th (Figure 

3.1), 100th (Figure 3.2) and 255th (Figure 3.3) training episodes of this model, the 

policy can be understood correctly.. In each Figure 3.1, 3.2 and 3.3, from top to down, 

inventory level, ( )iI t , order amount, ( )iO t , and cumulative profit, r , can be observed, 

respectively.  

Layer 

Size 

32 - 16 64 - 32 128 - 64 

Model 

no 

1 2 3 4 5 6 7 8 9 

Learning 

Rate 

0.01 0.001 1x10-4 0.01 0.001 1x10-4 0.01 0.001 1x10-4 

Best 

Reward 

2522 3102 405 7131 959146 10258 512212 64651 35214 



 

 

 

 

 

24 

 

Figure 3.1. The Agent Trained Until the 20th Episode 

In Figure 3.1., It has been observed that the agent has not learned the situation-

action pair yet. The order amount stuck around 20 and it exceeds the maximum 

inventory capacity level. Therefore, the model is exposed to the cost of the 

penalty. 



 

 

 

 

 

25 

 

Figure 3.2. The Agent Trained Until the 100th Episode 

It is observed that the agent started to learn the state-reward relationship about better 

in episode 100 and by exploring new action policies. Hence, the system starts to make 

a profit. 

 

 



 

 

 

 

 

26 

 

Figure 3.3. The Agent Trained Until the 250th Episode 

In Figure 3.3, the agent completes training with the early stopping method in the 255th 

episode. Compared to the 100th episode agent, it can be observed that the inventory 

level is reduced from an average of 50 to 15 level. Thus, cumulative profit increased 

from 6*105 to 1*106. 

 

3.3. Comparison of RL Solution with the Static Approach 

This section is shown how the intelligent trained agent can adapt to the changing 

environment by comparing it with a static (s, S) inventory policy. There are four 

different (s, S) value update scenarios and different numbers of experiments depending 

on the value of the average of Poisson distributed one-period demand (µ) in each 

scenario. For the static model, the (s, S) values are calculated by analytically. Training 



 

 

 

 

 

27 

time is 1800 days and the average of every 16 days is calculated to make the graphics 

easier to understand. The percentage of Profit (RL-SS) shows how much profit DRL 

agent makes than (s, S) policy in percentage. From top to down the Figures 3.4 and 3.5 

show inventory level in the warehouse, Ii (t), amount of order given to the factory, Oi 

(t), and the cumulative profit of the network, r, respectively. 

Three experiments is defined based on average demand amounts arriving at the 

warehouse. These are 5, 10 and 20 shown in Table 3.5. In the static model, (s, S) levels 

are calculated according to the mean demand arrival and the model is run accordingly. 

Once again three experiments are defined as follows: 

• First experiment µ = 5 

• Second experiment µ = 10 

• Third experiment µ = 20 

 

Also, scenarios based on the dynamic nature of demand arrivals are defined. In the 

first scenario mean demand is static and does not change in time. In addition, scenarios, 

where mean demand arrivals change dynamically in time, are also considered. Table 

3.5 shows the results of the experiments for the first scenario for both static and DRL 

model. It is observed that the DRL results are always better than the static results. 

 

Table 3.5. Results of the First Scenario 

µ 5 10 20 

Agent RL (s, S) 

Static 

RL (s, S) 

Static 

RL (s, S) 

Static 

Total Orders 8920 8890 17980 16548 35120 33000 

Total Profit 753745 715260 2106240 1518215 3911355 3175420 

Percent of 

Profit (RL-

SS) 

5,38% 38,73% 23,17% 



 

 

 

 

 

28 

 

Since the model is trained in an environment where µ equal to 10, it is expected that it 

will result with the best profit in Table 3.5. The result is summarized in Figure 3.4.  

In Figure 3.4, although the DRL agent orders more amount than the static model (s, S 

agent), it keeps the average inventory level lower. The static (s, S) agent keeps the 

inventory level at around 20, while the RL agent keeps it at around 15. 

 

 

Figure 3.4. 2nd Experiment Chart of the First Scenario 

In Figure 3.5. first experiment’s results are shown. In that figure, even when µ is equal 

to 5, the RL agent manages to keep the inventory level lower than the static (s, S) 



 

 

 

 

 

29 

agent. Moreover, the number of total orders of the RL agent is higher than the static 

agent. 

 

Figure 3.5. 1st Experiment Chart of the 1st Scenario 

In the second scenario, µ changes every 300 days and (s, S) values are updated after 

150 days depending on µ.  

• µ value is chosen with equal probability for values of 30,10,5,25 and 7 with 

using the random.choice function in the NumPy library. Thus, µ changes every 

300 days. 



 

 

 

 

 

30 

 

 

 

 

 

Table 3.6. Results of the Second Scenario 

µ (30,10,5,25,7) 

Probability 0.2 

Update rules µ is changed every 300 days, (s, S) is updated after 150 days   

Agent RL 

 

(s, S) 

Static 

Total Orders 24360 16923 

Total Profit 2735819 1669308 

Percent of 

Profit (RL-SS) 

63,88% 

 

Table 3.6 summarizes the results of the second scenario. As seen in Figure 3.6., the 

adaptation of the RL agent to a changing environment is faster than the static agent (s, 

S), especially the subject about the fulfillment of demand. 

 



 

 

 

 

 

31 

 

Figure 3.6. Experiment Chart of the Second Scenario 

In the third scenario, µ changes every month. The average demand is estimated by 

considering the last three month's demand. Two experiments are considered in the 

third scenario. 

• In the first experiment, µ takes the values of 10, 30, 5, 25, 7, 18, 4, 13, 20 and 

27 with equal probabilities. 

  



 

 

 

 

 

32 

• In the second experiment, µ takes the values of 18, 5, 25 and 10 with 

probabilities of 0.3, 0.2, 0.2 and 0.3, respectively. 

Table 3.7 summarizes the results for the first experiment explained in the first bullet 

above. 

Table 3.7. Results of the 1st Experiment of the Third Scenario 

µ 30,10,5,25,7,18,4,13,20,27 

Probability 0.1 

Update rules µ is changed every month, (s, S) takes the average of the µ  

in the past 3 months 

Agent RL 

 

(s, S) 

Static 

Total Orders 29580 25992 

Total Profit 3322037 2635682 

Percent of 

Profit (RL-

SS) 

26,04% 

 

 

In Figure 3.7., although the RL agent keeps higher inventory level, it makes more 

profit by satisfying more demand than the static agent (s, S). Again DRL outperforms 

even in changing environment. 

. 

 



 

 

 

 

 

33 

 

Figure 3.7. 1st Experiment Chart of the Third Scenario 

 

 

 

 

 



 

 

 

 

 

34 

 

Table 3.8. Results of the 2nd Experiment of the Third Scenario 

µ 10,5,25,18 

Probability 0.3, 0.2, 0.2, 0.3 

Update rules µ is changed every month, (s, S) takes the average of the µ 

in the past 3 months 

Agent RL 

 

(s, S) 

Static 

Total Orders 25460 22683 

Total Profit 2806395 2322296 

Percent of 

Profit (RL-

SS) 

20,84% 

 

This experiment shows that the RL agent's inventory level is higher, but it appears to 

predict demands better. 



 

 

 

 

 

35 

 

Figure 3.8. 2nd Experiment Chart of the Second Scenario 

 Finally, in our last scenario (the fourth one), the static agent (s, S) takes the average 

of the µ in the last months for update s and S values inally, in our last scenario, the 

agent (s, S) takes the average of the µ in the last months for update s and S values.  

• µ values and probabilities of choice are used in the same values as in the 

previous scenario for each expirement. 



 

 

 

 

 

36 

Table 3.9. Results of the 1st Experiment of the Fourth Scenario 

 

Table 3.9 summarizes the fourth scenario explained above. Although the orders are 

similar, As can be seen in Figure 3.9 that the RL agent is holding more inventory than 

the static one. But RL agent has managed to make higher profits in this experiment. 

This shows that RL agent adapts to the environment better than the static agent. 

 

µ 10,5,25,18 

Probability 0.3, 0.2, 0.2, 0.3 

Update rules µ is changed every month, (s, S) takes the average of the µ in the 

last months 

Agent RL 

 

(s, S) 

Static 

Total Orders 24730 21030 

Total Profit 2777101 2195809 

Percent of 

Profit (RL-SS) 

26,47% 



 

 

 

 

 

37 

 

Figure 3.9. 1st Experiment Chart of the Fourth Scenario 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

38 

Table 3.10. Results of the 2nd Experiment of the Fourth Scenario 

µ 30,10,5,25,7,18,4,13,20,27 

Probability 0.1 

Update rules µ is changed every month, (s, S) takes the average of the µ 

in the last months 

Agent RL 

 

(s, S) 

Static 

Total Orders 32450 28952 

Total Profit 3686268 2982561 

Percent of 

Profit (RL-

SS) 

23,59% 

 

Table 3.10 and Figure 3.10 summarize the results for second experiment for the fourth 

scenario. In Figure 3.10, RL agent keeps inventory level lower than the static policy 

although it orders more products. Therefore, the RL agent makes more profit than the 

other policy. 

 

 

 

 



 

 

 

 

 

39 

 

Figure 3.10. 2nd Experiment Chart of the Fourth Scenario 

 

 

 



 

 

 

 

 

40 

Since µ comes with a certain probability in the experiments, each experiment is run 5 

times to make the results more precise. The results are then averaged over all 5 runs 

and they are summarized in Table 3.11. 

Table 3.11. The Result of All Experiments Running 5 Times 

  Total Profit Percent of 

Profit (RL-

SS) 

Agent  RL SS  

1.Scenario     

 1.1.Experiment 751545 715160 5,08% 

 

 1.2.Experiment 2076248 1519215 36,66% 

 

 1.3.experiment 3890214 3175420 22,51% 

 

2.scenario     

 2.1. Experiment 2574529 1799458 43,07% 

3. scenario     

 3.1. Experiment 3254532 2655702 22,54% 

 3.2. Experiment 2816395 2327296 21,01% 

4.scenario     

 4.1. Experiment 2736241 2175623 25,76% 

 4.2. Experiment 3886268 2998561 29,60 % 

 

At the end of all these experiments, the RL agent keeps the inventory level lower when 

periods of average demand decrease, otherwise it keeps the inventory level higher. 

Besides this, it appears imitating the pattern of demands when ordering. Finally, the 

RL agent makes more profit than the (s, S) agent. 

 

 

 

 

 



 

 

 

 

 

41 

CHAPTER 4 

Conclusions and Future Work 

The inventory optimization problem can be defined as finding the optimal control 

policy order to satisfy the uncertain demand and ensure that the product is in the right 

place at the right time. The aim of this study is to investigate how reinforcement 

learning deals with uncertain demand and how its performance outperforms a static 

policy. For this purpose, the environment of a single echelon inventory system is 

developed in a python language and an agent using the deep reinforcement learning 

algorithm is trained and tested in this environment. Thus, simulation helped to make 

it possible to observe what kind of policy reinforcement learning will be developed 

and allowed us to test policy in different environments. 

A Deep Q-learning algorithm has been proposed to solve the proposed problem. 

According to that, and the defined agent could react the future demand by learning the 

process and follows an order policy accordingly. Besides, the model doesn't need any 

static input like (s, S) heuristic policy because the model trains itself according to the 

reward function, not the incoming demands. 

In summary, the reinforcement learning application has proven that it can compete 

with current static methods to solve the proposed (s, S) inventory control problem. 

This thesis suggests that using reinforcement learning integrated with systems such as 

Warehouse Management Software (WMS) can increase the profitably of the system. 

If companies can make integration of inference with data stream, decisions allow faster 

and better execution. 

 



 

 

 

 

 

42 

As future works, two Deep Q-Network agents can be studied to increase the value of 

reward function by training each other. Besides, the Deep Deterministic Policy 

Gradient (DDPG), which is an RL algorithm that has continuous action spaces, can 

also be used in inventory optimization problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

43 

REFERENCES 

Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural 

network (ANN) modeling and its application in pharmaceutical research. Journal 

of Pharmaceutical and Biomedical Analysis, 22(5), 717–727. 

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, 

L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016). 

End to End Learning for Self-Driving Cars. 1–9. 

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & 

Zaremba, W. (2016). OpenAI Gym. 1–4. arXiv preprint arXiv:1606.01540. 

Brunaud, B., Laínez-Aguirre, J. M., Pinto, J. M., & Grossmann, I. E. (2019). Inventory 

policies and safety stock optimization for supply chain planning. AIChE Journal, 

65(1), 99–112. 

Chen, F. Y., & Krass, D. (2001). Inventory models with minimal service level 

constraints. European Journal of Operational Research, 134(1), 120–140. 

Chollet, F., & others. (2015). Keras. GitHub. Retrieved from   

https://github.com/fchollet/keras 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization. Journal of Machine Learning Research, 

12, 2121–2159. 

Fries, B. E. (1975). Optimal Ordering Policy for a Perishable Commodity With Fixed 

Lifetime. Operations Research, 23(1), 46–61. 

Gavirneni, S. (2005). Information Centric Optimization of Inventories in Capacitated 

Supply Chains: Three Illustrative Examples. In Supply Chain Optimization (pp. 

1–49). Springer-Verlag. 

Giannoccaro, I., & Pontrandolfo, P. (2002). Inventory management in supply chains: 



 

 

 

 

 

44 

A reinforcement learning approach. International Journal of Production 

Economics, 78(2), 153–161. 

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks 

(G. Gordon, D. Dunson, & M. Dudík (eds.); Vol. 15, pp. 315–323). JMLR 

Workshop and Conference Proceedings. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 

Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. In International 

Journal of Neural Systems (Vol. 05, Issue 04). 

Houlihan, J. B. (1985). International Supply Chain Management. International 

Journal of Physical Distribution & Materials Management, 15(1), 22–38. 

Hutse, Victor, Verleysen, A., & Wyffels, F. (2019). Reinforcement Learning for 

Inventory Optimisation in multi-echelon supply chains. 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network 

training by reducing internal covariate shift. 32nd International Conference on 

Machine Learning, ICML 2015, 1, 448–456. 

Jones, T. C., & Riley, D. W. (1985). Using Inventory for Competitive Advantage 

through Supply Chain Management. International Journal of Physical 

Distribution and Materials Management, 15(5), 16–26. 

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A 

survey. Journal of Artificial Intelligence Research, 4, 237–285. 

Kemmer, L., & Read, J. (2018). Reinforcement learning for supply chain optimization. 

The 14th European Workshop on Reinforcement Learning, EWRL 2018, 14. 

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd 

International Conference on Learning Representations, ICLR 2015 - Conference 

Track Proceedings, 1–15. 

Larochelle, H., Bengio, Y., Louradour, J., & Lamblin, P. (2009). Exploring strategies 



 

 

 

 

 

45 

for training deep neural networks. Journal of Machine Learning Research, 10, 1–

40. 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Stéfan 

van der Walt & J. Millman (Eds.), Data Structures for Statistical Computing in 

Python (pp. 56–61). 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & 

Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. 1–9. 

arXiv preprint arXiv:1312.5602. 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., 

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, 

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & 

Hassabis, D. (2015). Human-level control through deep reinforcement learning. 

Nature, 518(7540), 529–533. 

Oroojlooy. (2019). Applications of Machine Learning in Supply Chains. In Theses and 

Dissertations. 4364. Lehigh University. 

Osband, I., Blundell, C., Pritzel, A., & Van Roy, B. (2016). Deep exploration via 

bootstrapped DQN. Advances in Neural Information Processing Systems, 4033–

4041. 

Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach (1st 

ed.). O’Reilly Media, Inc. 

Richardson, F., Reynolds, D., & Dehak, N. (2015). A unified deep neural network for 

speaker and language recognition. Proceedings of the Annual Conference of the 

International Speech Communication Association, INTERSPEECH, 2015-Janua, 

1146–1150. 

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2016). High-

dimensional continuous control using generalized advantage estimation. 4th 

International Conference on Learning Representations, ICLR 2016 - Conference 



 

 

 

 

 

46 

Track Proceedings, 1–14. 

Silver, D., Schrittwieser, J., Simonyan, K., Nature, I. A.-, & 2017, U. (2016). 

Mastering the game of Go without human knowledge. Nature, 550(7676), 354. 

Silver, E. A. (1981). Operations Research in Inventory Management: a Review and 

Critique. Operations Research, 29(4), 628–645. 

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. 3rd International Conference on Learning 

Representations, ICLR 2015 - Conference Track Proceedings, 1–14. 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). 

Dropout: A simple way to prevent neural networks from overfitting. Journal of 

Machine Learning Research, 15(56), 1929–1958. 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. A 

Bradford Book. 

Tan, K. C., & Kannan, V. R. (1998). Supply Chain Management: Supplier 

Performance and Firm Performance. International Journal of Purchasing & 

Materials Management, 34(3), 2–9. 

van der Walt, S, Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A 

Structure for Efficient Numerical Computation. Computing in Science 

Engineering, 13(2), 22–30. 

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace. 

Veinott, A. F., & Wagner, H. M. (1965). Computing Optimal ( s, S ) Inventory 

Policies. Management Science, 11(5), 525–552. 

Watkins, C. J. C. H., & Dayan, P. (1992). Technical Note: Q-Learning. Machine 

Learning, 8(3), 279–292. 

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender 

system: A survey and new perspectives. ACM Computing Surveys, 52(1), 1–35. 



 

 

 

 

 

47 

Zheng, Y.-S., & Federgruen, A. (1992). Corrections to “Finding Optimal ( s , S ) 

Policies is About as Simple as Evaluating a Single Policy.” Operations Research, 

40(1), 192–192. 

 


