YASAR UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

ACCELERATED MODULAR INVERSE ALGORITHM
FOR MULTIDIGIT INTEGERS

PAKIZE SANAL

THESIS ADVISOR: ASST. PROF. HUSEYIN HISIL

COMPUTER ENGINEERING

PRESENTATION DATE: 25.07.2019

BORNOVA / iZMIR
JULY 2019

We certify that, as the jury, we have read this thesis and that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Jury Members:

Asst. Prof. Serap SAHIN, Ph.D.
[zmir Institute of Technology

Asst. Prof. Ibrahim ZINCIR, Ph.D.

Yasar University

Asst. Prof. Hiiseyin HISIL, Ph.D.

Yasar University

iii

Signature:

il

P
i

ificyt GUZELIS, Ph.D.
irector of the Graduate School

ABSTRACT

ACCELERATED MODULAR INVERSE ALGORITHM FOR MULTIDIGIT
INTEGERS

Sanal, Pakize
Msc, Computer Engineering
Advisor: Asst. Prof. Hiiseyin HISIL

July 2019

In this thesis, a multi-digit modular multiplicative inverse algorithm has been aimed
to SIMD parallelized by utilizing AVX2 instructions which are commonly
encountered on new generation Intel processors. Euclid’s extended GCD approach is
an well known method which also computes modular inverse and GCD together.
Binary XGCD algorithms based upon this technique are quite fast in computer
architecture since they only use shifting operations instead of multiplication.
Generalized version of binary XGCD algorithm was firstly introduced by Lehmer. It
reduces the numbers in digit level instead of bits, from left to right which makes the
algorithm fast for large numbers. The accelerated GCD algorithm proposed by
Jebelean and Weber also realized the same operation in reverse direction; from right
to left. Their method has been improved by some other researchers, and eventually
became more efficient. In all of these algorithms process Euclid's invariant equations
the distinct data in similar way and by same operation, naturally convenient for SIMD
parallelization. In this thesis, the modular multiplicative inverse version of this
algorithm is developed. The fundamental part of this algorithm has been SIMD

parallelized successfully and the sub-functions have been parallelized partially.

Key Words: Greatest Common Divisor (GCD), modular multiplicative inverse,
accelerated GCD, Lehmer algorithm, Jebelean-Weber algorithm, multi-digit GCD,
Single Instruction Multiple Data (SIMD), Intel Intrinsic, Intel's Advanced Vector
Extensions 2 (AVX2).

(0Y4

COK BASAMAKLI SAYILAR iCIN HIZLANDIRILMIS MODULER TERS
ALMA ALGORITMASI

Sanal, Pakize
Yiiksek Lisans Tezi, Bilgisayar Miihendisligi
Danisman: Yrd.Dog. Dr. Hiiseyin HISIL, Ph.D.
Temmuz 2019

Bu tez, yeni model Intel islemciler {izerinde bulunan AVX2 yonergeleri kullanilarak
sagdan sola ¢ok basamakl kiiciiltme yontemiyle uygulanan modiiler carpimsal ters
alma hesaplamasin1 SIMD paralel sekilde gelistirilmesini amaglamaktadir. Euclid in
genisletilmis GCD metodu hem GCD yi hem de modiiler ters almay1 hesaplayan iyi
bilinen bir yontemdir. Bu yontemle yazilan binary XGCD algoritmalari, ¢arpma
operasyonu yerine kaydirma operasyonu kullandigi i¢in bilgisayar mimarisinde hizli
algoritmalardir. Binary XGCD algoritmasinin genellestirilmis hali, ilk kez Lehmer
tarafindan yazilmistir. Bu algoritma, sayilari bit seyivesi yerine soldan saga basamak
seviyesinde kiigiiltiir, bu da algoritmay1 biiyiik sayilar i¢in hizli bir yontem haline
getirir. Jebelean ve Weber tarafindan sunulan genellestirilmis GCD algoritmasi da ayni
islemi tersten sagdan sola gerceklestirmektedir. Bu method ise zaman igerisinde farkli
arastirmacilar tarafindan gelistirilmis ve sonunda daha etkili hale getirilmistir. Tiim bu
algoritmalar, Euclid in invaryant denklemlerini birbirinden bagimsiz ama benzer
sekilde ve ayn1 operasyonlarla islemektedir, bu da SIMD paralellestirme i¢in olduk¢a
uygundur. Bu tezde, bu algoritmanin modular carpimsal ters alma versiyonu
gelistirildi. Bu algoritmanin ana dongiisii basarili bir sekilde SIMD paralel hale

getirildi ve alt fonksiyonlar kismen paralellestirildi.

Anahtar Kelimeler: En biiyilk ortak bdlen (GCD), modiiler g¢arpimsal ters,
hizlandirilmis GCD, Lehmer algoritmasi, Jebelean-Weber algoritmasi, cok basamakli
GCD, (Tek komut g¢oklu veri) SIMD, Intel Intrinsic, Intel’in Gelismis Vektor
Uzantilarn 2 (AVX2).

vii

ACKNOWLEDGEMENTS

Firstly, I would like to state my profound appreciation to my advisor, Dr. Hiiseyin Hisil
for his precious and constructive ideas during the formation and progress of this
research work. He has been encouraging since the days I began as an undergraduate
student. He has always been an understanding and patient supervisor for both my
academic and personal life. By his true leading and guidance, I overcame numerous
challenges during this study. Without his back-up and mentorship, it would not be

possible for me to accomplish my goal.

I am thankful to association committees of ECC2017, ECC2018, CHES2018, Summer
School on Real-World Crypto and Privacy. They supported me with scholarships to
attend their events. Their assistance is irrevocably significant for the way that I would
like to run through. I'm also grateful to Peter Schwabe who led me to participate in
these nice events and provide me good opportunities to meet new students and

professionals in this area coming from around the world.

My sincere thanks go to my office mates at Yasar University for creating such a great
working environment, for the sleepless nights we worked together before deadlines,

and for all the fun we have had in the last two years, especially on birthdays.

A lot of acknowledgments to Ozge Erten, who was a true friend ever since we started

high school, for almost 12 years.

Last but not least, I would like to thank my family in particular to my mother who
always supported me while writing this thesis with her high motivation and with her

pioneering ideas in my life.

Pakize Sanal
[zmir, 2019

TEXT OF OATH

I declare and honestly confirm that my study, titled “ACCELERATED MODULAR
INVERSE ALGORITHM FOR MULTIDIGIT INTEGERS” and presented as a
Master’s Thesis, has been written without applying to any assistance inconsistent with
scientific ethics and traditions. | declare, to the best of my knowledge and belief, that
all content and ideas drawn directly or indirectly from external sources are indicated

in the text and listed in the list of references.

Pakize Sanal

July 25, 2019

Xi

TABLE OF CONTENTS

FRONT MATTER
ABSTRACT . . o oo oo e e e e e e e
OZ . .
ACKNOWLEDGEMENTS oo
LIST OF FIGURES . . . o o o oo oo e e e e e
LIST OF CODES o o o oo

1 INTRODUCTION
1.1 MOTIVATION
1.2 AIMS & OUTCOMES
1.3 CONTRIBUTIONSo o ..
1.4 OUTLINE

2 BACKGROUND ON K-ARY GCD ALGORITHMS
2.1 LEHMER’S LEFT TO RIGHT K-ARY GCD SEQUENCE
2.2 JWSS RIGHT TO LEFT K-ARY GCD SEQUENCE
2.2.1 ELIMINATING SPURIOUS FACTORS

3 MODULAR INVERSE BASED ON JWSS METHOD
3.1 EXTENDED JWSS METHOD AND MODULAR INVERSE
COMPUTATIONo e
3.2 CORRECTNESS AND ANALYSIS
3.3 MAGMA CODES

4 SIMD IMPLEMENTATION
4.1 HIGH LEVEL REPRESENTATION OF DATA
4.2 LOW LEVEL REPRESENTATION OF DATA

5 CONCLUSION
REFERENCES

A CLASSICAL GCD ALGORITHMS

xiil

19

19
22
25

27
27
30

33

33

37

B SUPPLEMENTARY C CODES

X1v

41

2.1
2.2

4.1
4.2
4.3
4.4
4.5

Al

LIST OF FIGURES

Lehmer’s k-ary GCD illustration for k=28 11
Extended Euclidean GCD illustration 12
4-way Representation, a first attempt 28
4-way Representation, a second attempt 28
4-way Representation, a third attempt 29
4-way Representation, the selected approach 29
Graphical Illustration of Table 2 31
Extended Binary GCD illustration 40

XV

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
B.1
B.2
B.3
B.4
B.5
B.6

LIST OF CODES

Magma Code for Swap 25
Magma Code for Make Positive 25
Magma Code for Linear Transform 25
Magma Code for Make Digits Odd 25
Magma Code for Modinv2e 25
Magma Code for Remove Digits 25
Magma Code for ReducedRatMod 26
Magma Code for k-ary Modular Inverse 26
C Header Code for ModInvAVX2 41
C Main Code for ModInvAVX2 41
C Code for LinearTransform 41
C Code for reducedRatMod 42
C Code for MakeOdd 42
CCodeforSwap 42

xXvii

CHAPTER 1

INTRODUCTION

Several number theoretic constructions makes frequent reference to greatest
common divisors (GCD) or related primitives such as Bezout identity or modular

inverses as subroutine. Typical examples include,

1. Number theoretic functions: Basis of a two dimensional lattice, finite fields,

Groebner basis theory.

2. Cryptographic functions: Elliptic curve cryptography, lattice based
cryptography, post quantum cryptography.

3. Cryptanalytic functions: Number field sieve algorithm, index calculus

algorithm, Pollard’s rho algorithm, Shank’s baby step giant step algorithm.

Since all of these subroutines are computed on binary computers a typical
question is to optimize GCD related computations.

As the clock speed of modern processors got close to its foreseeable physical
limit on the current semi-conductor based transistors, a rather old hardware
trend started to gain more attraction from hardware vendors i.e. manufacturing
single instruction multiple data (SIMD) instruction sets. New processors are
devoting a larger die area for these type of instruction sets. This is a limited
yet powerful way of parallel processing. For example, vpmuludq instruction
can accommodate four 32x32—64 bit unsigned integer multiplications. The
same processor can do only a single 64x64—128 bit multiplication on its amd64
integer circuit. The computational capabilities of such an instruction set can be
highly exploited in software if the underlying computation is suitable for SIMD
processing.

This thesis is a study of reviewing existing k-ary GCD based algorithms
and investigate their suitability to AVX2 programming. In particular, we
concentrate on a variant which was developed with accumulative results by
Jebelean (Jebelean, 1993), Weber (Weber, 1995), Sorenson (Sorenson, 2004), and
Sedjelmaci (Sedjelmaci, 2007). We call this algorithm as the JWSS algorithm in

this work.

1.1 MOTIVATION

While developing and implementing a number theoretic function, oftentimes

there are two main concerns in mind,
i the function can be computed in finite time and memory.
ii having i satisfied, it would be very beneficial to compute efficiently.

One motivation of this thesis comes from computing GCD sequences
and other related operations such as modular inverses in above mentioned
fashion. Another motivation comes from low level parallelization of such
computations to utilize the underlying hardware at its peak. In particular, single
instruction multiple data (SIMD) support is an important feature of modern
microprocessors and is preferable in some implementations of cryptographic
primitives such as Montgomery and Genus-1&2 Kummer ladders, cf. (Bernstein,
2006), (Chou, 2015), (Bernstein et al., 2014), and (Karati and Sarkar, 2017).
Such implementations produce higher throughput in comparison to alternative
implementations using the 64 bit integer circuit. The key feature of the success
behind these implementations comes from the fact that ladder formulas can be
put in SIMD friendly form. A similar situation seems to be satisfied in k-ary
GCD algorithms given in Chapters 2 and 3. However, it is not clear whether a
SIMD implementation of these algorithms can provide any practical speed-up.
It is not even clear whether these algorithms can be realized at all in a SIMD
fashion. For instance, some GCD algorithms require integer division instruction
but not all SIMD platforms provide such an option. The most widely available
SIMD circuit, Intel’s AVX2, is one example of this class. Therefore, a SIMD
implementer has to overcome such inabilities. Yet, the linear transformation
phase of some other algorithms seems to be SIMD friendly. On the other hand,
no publicly available implementation is known to date in this context. These
unknowns also provide motivation to this thesis.

Intel introduced SIMD extension, MMX in the Pentium processor 1993, SSE
in Pentium IIT 1999 and then AVX in Sandy Bridge 2008. Intel AVX is 256
bit instruction set extension, twice the number of data elements that SSE can
process with a single instruction and four times that of MMX, has enhanced
performance with longer vectors, new extensible syntax, and rich functionality. It
is later extension, AVX2 was released in 2013 as a superior of AVX. Recently, Intel
AVX-512 was announced that available on the latest Xeon and i9 processors. This
fast development shows that the progress on SIMD is inevitable. Furthermore,
demanding technological development on Intel Intrinsics is easy to implement

suitable parallel algorithms in C language syntax. Having these in mind, SIMD

instructions have potential to boost the performance. This is mostly related with
how much the algorithm is suitable for SIMD parallelization. There are cases
where such a parallelization is not even possible. Therefore, a deeper research is
needed to test k-ary GCD algorithms in this context.

In summary, the main motivation of this thesis is to determine whether
Intel’s AVX2 instruction sets can be preferable in the implementation of these
algorithms over the 64 bit integer circuit. The expected outcome is to determine
whether one can obtain a better throughput in modular inverse computations

based on GCD sequences.

1.2 AIMS & OUTCOMES

The main objective of this thesis is to do research on SIMD implementation of
JWSS algorithm and its variants for computing multidigit modular multiplicative
inverse. The target hardware is widely available AVX2 on i3, i5, and i7 series
The programming environment is built on C language and Intel Intrinsics library.

Parallel implementation of the selected sequential algorithm is not a simple
task. Because it requires investigating the best combination of instructions by
considering many concerns simultaneously. This can be provided by maximizing
the range of options, reveal the necessary actions and reducing the bad choices
to achieve the best performance. In order to achieve this goal we determined the

following aims for this work:

e Perform a literature review on available algorithms to compute GCD and

modular multiplicative inverse.

e Modify JWSS algorithm to produce an extended GCD sequence. The
extended GCD sequence can then be simplified to produce Bezout’s

identity, modular inverse or simply GCD.
e Identify parts of JWSS algorithm that are suitable for SIMD programming.

e Determine hard-to-parallelize parts and develop efficient solutions/varia-

tions.

e Define the representation of the multidigit data with having in mind the

limitations of Intel AVX2 instructions.

e Implement the selected algorithm(s) with a high level programming

language. This language is Magma in our case.

e Implement SIMD version of the algorithm on AVX2 platforms reflecting

the Magma implementation.

e Measure the performance of several trials made. And then make a

comparison to determine the best strategy.

We obtained the following outcomes for this work:

e The k-ary style GCD algorithms are understood to be SIMD friendly
leaving a very small room for 2-ary algorithms on very small inputs. k-ary
GCD algorithms make some processing on a small portion of inputs and
then perform linear transformations to get rid of several bits at once. T'wo
classic approaches are left-to-right and right-to-left elimination of digits.
We selected the JWSS algorithm, a right-to-left method, to implement

after suitable modifications. Details are given in Chapters 2 and 3.

e A magma code is developed to satisfy the JWSS algorithm and our

modifications to be explained.

e A C/assembly SIMD implementation of the JWSS algorithms is developed.
This code showed that computation of GCD sequences can efficiently
benefit from widely available AVX2 SIMD instruction sets.

These aims and outcomes brought us to implementation oriented

contributions which are provided in Section 1.3.

1.3 CONTRIBUTIONS

Building on the aforementioned aims and outcomes, this work makes the

following contributions:

e Extended GCD adaptation of JWSS algorithm is proposed with minor

modifications for SIMD friendly implementation.

e The data permutation is costly on both AVX2 platforms. We show
how to eliminate all permutations despite the fact that SIMD lanes need
intercommunication. This allows a faster SIMD implementation of the
extended JWSS algorithm and of its variants. We provide a discussion of

how to represent data in order to get optimal performance.

e We provide the first AVX2 implementations of the variable-time modular

inversion algorithm based on our extended JWSS algorithm.

These contributions will provide implementers a wide angle of decision
alternatives when implementing a k-ary GCD algorithm in a SIMD platform.
Our reported experiences are expected to be very useful if the trend in SIMD

hardware support continues its progression.

1.4 OUTLINE

This master of science thesis is organized as follows. Chapter 2 provides a
literature review of selected algorithms in the context of aims of thesis work.
This chapter also provides extended GCD adaptations of both Lehmer and JWSS
algorithms. Chapter 3 provides the modular inverse variant of the extended GCD
algorithm and provides modifications tailored towards SIMD implementation.
Chapter 4 provides details on Magma and C/assembly implementations of JWSS

algorithms. Conclusions and future research directions are given in Chapter 5.

CHAPTER 2

BACKGROUND ON K-ARY GCD
ALGORITHMS

There are several algorithms to compute the GCD of two inputs. These inputs
can be integers, polynomials over integers, or elements of some Euclidean domain.
This thesis focuses on integer inputs. On the other hand, one method developed
for integer inputs can oftentimes be applied analogously for other mathematical
objects.

The classical Euclidean algorithm with division step has quadratic (Knuth,
2014) time complexity. This algorithm can be applied on processors with integer
division instruction efficiently. The bits are processed from left to right in
Euclidean algorithm. Another approach is Stein’s algorithm. This algorithm
processes the bits from right to left and the complexity of the algorithm is again
of quadratic time, (Stein, 1967). Asymptotically faster GCD algorithms exist.
For instance, see (Knuth, 1971), (Schénhage, 1971), (Stehlé and Zimmermann,
2004), and (Msller, 2008). However, the take over input sizes for such algorithms
are not in the context of this thesis work and thus omitted hereafter.

Both Euclid and Stein type algorithms underwent several modifications
allowing faster software and hardware realizations. Historically most important
achievements can noted as Lehmer’s and Sorenson’s generalizations.

Lehmer’s algorithm, which is in the left-to-right category of GCD algorithms,
simulates the consecutive division steps of Euclidean GCD on most significant
part of the inputs and then jumps the intermediate steps with the help of a
linear transformation step. This linear transformation can be implemented very
efficiently with a fast signed integer multiplier. Most modern processors support
this feature. The main loop of Lehmer’s algorithm eliminates roughly one word
of each input in every iteration. Lehmer’s algorithm is therefore very suitable
for processors with fast multiplication and division circuits.

Sorenson’s k-ary algorithm (Sorenson, 1994) can be viewed as the right-to-
left adaptation of Lehmer’s approach. This algorithm can also be viewed as
the generalization of Stein’s binary GCD algorithm. Sorenson described how
jumps from right to left can be achieved via linear transformations but did not
give an explicit algorithm explaining how to compute auxiliary constants needed

by the linear transformation. Sorenson proves that such constants exist and

suggest to look up from a table. Jebelean (Jebelean, 1993) and Weber (Weber,
1995) independently found how to compute the missing auxiliary constants via
an Buclidean type algorithm. Jebelean and Weber’s variant was implemented
and used for a long time in GMP library. One drawback of Jebelean and Weber’s
variant is that the linear transformations have a potential to introduce spurious
factor in the results. Such spurious factor can be eliminated with a final fast GCD
step. Sorenson later showed how to prevent such spurious factors with a closer
analogy to Lehmer’s method. In 2007, Sedjelmaci provide an explicit algorithm
for computing GCD using Sorenson’s approach, see (Sedjelmaci, 2007). We call
Sedjelmaci’s variant as JWSS k-ary GCD algorithm.

The latest developments on GCD sequences concentrated more on developing
a constant-time yet efficient GCD sequence. The first attempt based on Kaliski’s
variant was proposed by Bos (Bos, 2014). Very recently, possibly a case closing
solution came from Bernstein and Yang in (Bernstein and Yang, 2019). Bernstein
and Yang developed a new rule set for the computing a left-to-right k-ary GCD
sequence which eliminates several irregularities suffered in both Lehmer and
JWSS type variants, which are long right shifts, long zero checks, long divisions,
and long conditional swaps at the expense of doing more iterations on the outer
loop. We refer to (Bernstein and Yang, 2019) for BY algorithm.

The following sections briefly summarize Lehmer and JWSS variants. The
section provides more details than the original ones appeared in the literature.
In particular, the presented work in this thesis extends these algorithms in the
context of extended GCD algorithms so that outputs satisfies invariant equations

throughout the computation, coming from Bezout’s identity.

2.1 LEHMER’S LEFT TO RIGHT K-ARY
GCD SEQUENCE

Lehmer’s algorithm is an alternative approach to Euclid’s algorithm which
eliminate expensive long divisions (Lehmer, 1938). At each iteration of the main
loop, the algorithm produces four auxiliary single digit signed integer values with
respect to the the high-order digit of x, y where y could be 0 but not z, see (Katz
et al., 1996). These auxiliary values are then used to jump several steps through
the classical Euclidean algorithm. In particular, the auxiliary values are used to
apply linear transformations as given Algorithms 2 to reduce the size of x and y
from left to right. If the least significant digit of the smaller number is zero, the

algorithm makes a larger jump through long division.

Algorithm 1: AuxiliaryCoefficients

input : Integers ¥ and y with x has

bits.

output: Auxiliary values for Algorithm 2
1 A,B,C,D<+—1,0,0,1
2 while (y+ C) #0 and (y+ D) # 0 do
3 q,q

(7 + A)/(F+C)), (@ + B)/(5 + D))

4 if ¢ # ¢ then

5 Return A, B,C, D

6 else

7 A C+— C,A—qC
8 B,D<+— D,B—qD
9 jvg%gaf_qg

10 end

11 end

12 Return A, B,C, D

The original algorithm of Lehmer computes GCD only. We provide an

extended version in Algorithm 2.

Algorithm 2: Lehmer’s Algorithm
input : two positive integers x and y in

radix 3 representation, with
T >y.
output: ged(x,y),2’, v satisfying
-2 +y-y = ged(z,y).
1 x/zl,y/:O,x”:O,yuzl
2 while y > 0 do
3 Set , y to be the high-order digit of x,
y, respectively (y could be 0).
4 A, B,C,D +
AuxiliaryCoefficients(Z,y)
5 if B =0 then

6 q<x/y

7 T, Yy<— Y, r—q-y

8 vy =y =gy

9 2y ya =gy

10 else

11 r,y«< A-x+B-y,C-z+D-y
12 gy — Az +B-y,C-2'+D-y
13 'y — Az +By ,C-2"+D-y
14 end

15 end

16 return z, 2,y

Let zo,vo, 2, y, 2,y , 2,y € 7 satisfy the invariant equations

zox' +yoy = = and mox +yoy =Y.

/

These equations are still satisfied after every linear transformations on z, y, x,

/ / //'
y?'Z.?y?

/

x < ax + by, Y cr + ¢y,
T < axr + b:c”, y, — ay/ + by”,
1 cx + da:”, y// — cy/ + dy”.

To see this, observe that the initial values =1,y =0, 2" =0,y =1 trivially

satisfy the equations above. Now, for arbitrary values of a,b, ¢, d,z vy, 2",y in

10

the sequence of Algorithm 2, we get

/ ’
aror + ayoy =azx,

broxr + byoy =by.
which can be rewritten as

zo(az +bz") + yolay + by") =azx + by
zolcx +dz") + yoley +dy") =cx + dy.

It is possible to write a complete proof based on induction from this observation.
We recover the invariant equation once the updates on z,y, ZL‘,, y,, ZL‘”, y" are

performed. Similarly, we rewrite for the special case B = 0,

xox + Yoy =7,

qror +qyoy = qy.

in the form

volz —qz’) +yly —qy') =2 — q,

zo(z") +(y") =y

recover the invariant equation once more.

Figure 2.1 depicts the extended GCD sequence computed with extended
Lehmer sequence using Algorithm 2. For comparison, Figure 2.2 repeats the
same for identical inputs with extended Euclidean algorithm, see Appendix A. It
can be observed that every line in Figure 2 appears in at some place in Figure 2.2,
while Lehmer is noticeably shorter. The speedup gained with Lehmer’s approach
(over Euclidean GCD) is constant. On the other hand, Lehmer’s algorithm is

still of quadratic time complexity.

Figure 2.1 Lehmer’s k-ary GCD illustration for
k=28

-18903101032001
56 11808
0671943

368361
1607
199

It can be noted that larger values of £ makes the sequence even shorter. The

optimal choice for k£ depends heavily on the target hardware. For instance, a

11

typical choice for k£ on an 64-bit processor is 62. One bit is preserved for sign
management and another for possible carry bit generated by the addition part

of the linear transformations in Algorithm 2.

Figure 2.2 Extended Euclidean GCD illustra-
tion

42497
-147445
189872
6603093
33205337
13904963 30808430
370083 -80527334 73013767
5694210385 285486965 258849731
66213039 -366014299 65103349 331863498
65103349 314691769806 1109690 285329594513
1109690 -315057784105 741329
741320 18588043247896 368361
368361 3 2 1607

4607

4408

2849687501021
512942425923

284975371406 -3 1
17

* Y

The linear transformations in the case B # 0 seems to be SIMD friendly
since all multiplications can be computed in parallel. Unfortunately, the case
B = 0 is not. There is no obvious way of making the long integer division
SIMD compatible. Even worse, eliminating the case B = 0 does not seems to be
possible. Therefore, our conclusion is that Lehmer’s algorithm cannot put nicely
into SIMD parallel form. An implementer can of course insist on using SIMD
features in implementing the algorithm by using non-SIMD instructions for the
rare case B = 0. On the other hand, this would make the code hard develop and
sacrifice the code readability.

The next section discusses a right-to-left method which has a similar
disadvantage as in Lehmer’s algorithm. On the other hand, the situation can
be remedied by removing the long division step, namely dmod. The details are

provided in the following section.

2.2 JWSS RIGHT TO LEFT K-ARY GCD
SEQUENCE

The algorithm of Lehmer is oftenly used in GCD calculation of large numbers
which is also encountered in older versions of GNU-GMP library. While Lehmer’s
algorithm works in left to right fashion, JWSS method works in opposite

direction. The first explicit algorithm in this direction was proposed Jebelean and

12

Weber independently in early 1990s (Jebelean, 1993), (Weber, 1995). Jebelean
proposed the mathematical background of this problem whereas Weber handled
this matter in a programmatic way. The main loop of Jebelean and Weber’s
algorithm has potential to produce spurious factors which are handled separately.
Sorenson (Sorenson, 2004) describes a modification that prevents spurious factors
from appearing. Sedjelmaci (Sedjelmaci, 2007) contributed to Sorenson’s idea
by decreasing the running time of the algorithm and by making complexity
analysis easier. This is the reason that we call Sedjelmaci’s version as JWSS
method. All these aforementioned papers made significant contribution to the
basis of this thesis work. Considering that the original algorithm proposed by
Weber represents the idea in a more generic way, his notation will be used in the

following parts. Algorithm 3 recalls Weber’s version.

Algorithm 3: Accelerated GCD Algo-

rithm
input : ug,vg > 0, with £5(ug) > ¢5(vo)
=1.

and gcd(ug, 5) = ged (v, 5)
output: gcd(ug, vg)

1 U< Uy, V< Vg
2 while v # 0 do
3 if {5(u) — lg(v) > s(v) then

4 u <— dmod(u, v, f)

5 else

6 (n,d) +
ReducedRatMod (u, v, 32)

7 u 4 |nv — dul|/pH)

8 end

9 RemoveFactors(u,)

10 swap(u, v)

11 end

12 x < gcd(dmod(vg, u,), u)
13 return gcd(dmod(ug, x, 3), x).

A toy example is provided below for t equals 2. Let u =
230073838367939094855 and v = 152188744061051876535. Writing the numbers

in radix 2'¢ we have,

u=12-(2')* + 30954 - (2'9)® + 30979 - (2'%)% 4 8101 - (2'%)! + 59719 - (21¢)°
v =8 (219 + 16395 - (2'%)® + 2148 - (2'%)? + 39894 - (2'%)! 4 13495 - (2'6)°

13

which can be succinctly summarized with the following sequences,

= [12, 30954, 30979, 8101, 59719,

U
V = [8, 16395, 2148, 39894, 13495]

In the first iteration, ReducedRatMod operation is calculated with two the

least significant digits of the numbers u and v,

[n,d] = [40267,27899] <+ ReducedRatMod([8101,59719], [39894, 13495])
which satisfy the equality nv — du = 0 (mod 22%16) and thus,
40267 - (39894 - 26 + 13495) — 27899 - (8101 - 26 +59719) =0 (mod 2°?)

Then, u is assigned the value nv — du which clears away at least one lower
digit of the updated u, by construction. Now also clearing away factors of 2 from
u we get,

U = [7877, 63688, 26415].

The values appearing in this step together with the other steps are

enumerated in Table 1.

Table 1 Example of Accelerated GCD Algorithm

d|

Step u

[,
1 [12, 30954, 30979, 8101, 59719 [8 16395, 2148, 39894, 13495] [40267, 27899
2 [8,16395,2148, 39894, 13495] [7877, 63688, 26415] 34141, 40069]
3 [7877,63688,26415] 20660, 65261, 2609)] 43805, —7421]
4 [20660,65261, 2609 7351, 3539)] 9520, 19344]
5 [7351,3539 (6098, 26707] 34324, 60436]
6 [6098,26707] 3585 12389, —20633)
7 [3589] [15] 239, 1]
- [15] [0]

In each step in the Table 1, new value of u is calculated, factors of 2 are
removed, and result is swapped with v. In the last step, when the number
represented in the v variable is 0, the GCD value is the number represented by
the u variable. The value of the GCD for the given example is 15.

The main part of Weber’s study is shown in Algorithm 3 and he named his
work as “Accelerated GCD Algorithm”. Besides, the algorithm has two auxiliary

14

parts, namely dmod and reducedRatMod.

The following conditions must be satisfied in order to utilize this algorithm

and kept during the loop,

1. u and v must be positive.
2. uw must be greater then v.

3. v and must be relatively prime.

The initial value of u being relatively prime with f, is a result of condition 2
and 3 written above.

Else condition is the most significant part of this work which reduces the
number u fairly quickly with respect to other algorithms. Herein, special (n,d)
values are produced by reducedRatMod function. The updated u with at least
two least significant digits 0, is obtained by special (n,d) values. Even though
the cropping operation has been realized in least two significant digits, the size
of the operands are trimmed around ¢ bits.

An “if condition” is used when the difference between u and v is large
and it decreases the distance between operands by using the so called dmod
function. It ensures that reducedRatMod algorithm works successfully by
providing 2s(v) < t(v) — 1 so that v and v variables can be swapped without
searching any conditions. This function reduces the number u more efficiently
in two manners: it does one multiplication rather then two and it does not lead
spurious factors.

The condition ged(v,5) = 1 is satisfied by RemoveFactors and swap
operations. At the end of the loop u = ged(ug, vo) may not be realized. This is
due to possible spurious factors occurred in reducedRatMod by the subtraction of
nv—du. Spurious factors problem has been solved by using dmod & gcd functions

two times in a row.

15

Algorithm 4: General ReducedRatMod

algorithm
input :x,y >0,m > 1, with

ged(xz,m) = ged(y, m) = 1.
output: (n,d) such that 0 < n,|d| < /m

and ny = xd (mod m)

1 ¢+ x/ymodm

2 f1 = (n1,d1) < (m,0)

3 fo=(ng,ds) < (¢, 1)

4 while ny > v/m do

fi< i — LZ—;J f2

swap(f1, f2)

7 end

8 Return fs.

[

[=2]

Theorem 2.2.1. (Weber, 1995) The output from the general reducedRatMod

algorithm satisfies
ny =nx (mod m) and 0 < n,|d| < v/m

This is an Euclidean step. Define nj, n, with initial values n; and ny,
respectively. The initial values of e, es, dy, dy are set as 0, 1, 0, 1, respectively.

Then, it is straight forward to show that the invariant equations

! !
nqyes + nydy =ny

! !
nqe1 + Nyds =no

are satified in every iteration.

The equation is nyv —diu = 0 (mod 2%) where the initial values are n; = 2%
and noy = 0. After these successful linear transformation steps, the invariant
equations are still satisfied. The values e; and e5 are not part of the computation
in Algorithm 4. They are rather auxiliary numbers to inspect through the

algorithm.

16

Algorithm 5: dmod operation
input : g, v, 8 > 0, with ged(vg, 5) = 1.

output: |uy — (up/ve mod
6Zﬁ(uo)76ﬁ(v0)+1)UO|/6£g(uo)f@3(vo)+1

1 U< Ug
while (5(u) > l5(vg) + W do

N

3 if u#£0 (mod 8"Y) then

4 u 4+ |u — (u/vyg mod BV)uy|
5 u <+ u/BY

6 end

7 end

(0]

d < ls(u) — Lg(vo)

9 if u # 0 (mod S%*!) then
10 u<+ |u— (u/vg mod BH1)ug|
11 end

12 Return u /3%t

If the difference between the size of the operands gets too large, there is
an long division operation to make large jumps through the Euclidean steps.
Weber achieves this by using dmod (digit modulus) operation (Weber, 1995). In
contrast, Sedjelmaci makes this operation by using mod operation (Sedjelmaci,

2007). Weber’s version is given in Algorithm 5.

2.2.1 ELIMINATING SPURIOUS FACTORS

Despite the fact that spurious factors might occur, Jebelean-Weber algorithm is
a fast alternative to the classical Euclidean ged algorithm. In our aim to compute
modular inverses however, these spurious factors are disasterous. One needs to
prevent them from happening even before attempting to compute the extended
ged sequence with a Jebelean-Weber variant.

Sorenson (Sorenson, 2004) decribes how to prevent spurious factors from
appearing. Later on, Sedjelmaci (Sedjelmaci, 2007) uses Sorenson’s description
to provide an explicit k-ary gcd sequence. The core ideas are provided in the

following theorem.

Theorem 2.2.2 ((Sorenson, 2004)). Let a, b, ¢, d € Z satisfy ad—bc = 1. Then,
ged(u, v) = ged(av — bu, cv — du).

Proof. We will show that ged(u,v) | ged(av — bu, cv — du) and ged(av — bu, cv —
du) | ged(u,v).

17

Suppose k = ged(av — bu, cv — du) where ad —be = 1 for a, b, ¢, d € Z. Then,
k| (av—>bu) and k | (cv—du). Therefore, we have ka = av—bu and kS = cv—du
for some «, § € Z. We multiply these equations with ¢ and a respectively and
get kca = acv — bcu and kaf = acv — adu. Now with subtraction we get
kca — kap = k(ca — af) = (ad — bc)u = u. Similarly multiplying with d and b,
we get kda = adv—bdu and kb = bcv—bdu. And so, k(da—bp) = (ad—bc)v = v.
Therefore, k | w and k | v. This implies ged(av — bu, cv — du) | ged(u, v).

Now, assume ¢t = ged(u,v). By definition, u = to and v = tf for some o,
€ Z. Now, av — bu = atf’ — bta’ and cv — du = ctf — dta’, and we get
ged(u,v) | ged(av — bu, cv — du).

In conclusion, ged(u, v) = ged(av — bu, cv — du). O

The solution, is therefore, requires a computation of two linear transformation
rather than one and operate on both operands. Building on this observation,
Chapter 3 presents an extended version of the JWSS algorithm. Our variant
does not use the long divison step which occurs rarely for practical values of ¢
(e.g. t=32-2=30 or t=64-2=62).

18

CHAPTER 3

MODULAR INVERSE BASED ON JWSS
METHOD

In this chapter, we show how to use the JWSS method to compute the modular

inverse

V! mod U

for given two positive integers U > V > 0 with U is odd and GCD(U,V) = 1.
The algorithm is essentially an extended GCD version of the JWSS algorithm.
We then analyze the algorithm and provide a proof of its correctness. We also

provide a Magma implementation at the end of this chapter.

3.1 EXTENDED JWSS METHOD AND
MODULAR INVERSE COMPUTATION

Since the notation and background on the JWSS algorithm has already been
provided in Chapters 2 and 3, it is suitable to give the extended version without
further discussion, in Algorithm 6. The computations regarding y’ and y” are
redundant. In other words, those computations can be removed from the modular

inverse computations. The algorithm is given in full detail to prevent repetition.

19

Algorithm 6: Modular Inverse Algorithm Based On JWSS

Method
input : ug > vg > 0 integers with u is odd and

ged(ug, vg) = 1.

' mod wuyg

output: (vy)~

1 U4 Uy, V4 g

2 7'+ 0, 2"+ 1

3y 0,9y« 1

a4 FE+0

5 v,y , F < Make0dd(v, 2, y/, F)

6 while v # 0 do

7 a,b, c,d < ReducedRatMod (u mod 2% v mod 2%, 22t)
8 u,v < LinearTransform(u,v,a, b, ¢, d)

9 x', 2" < LinearTransform(z’, 2", a,b, c,d)
10 y',y" < LinearTransform(y,y”, a, b, c,d)

11 u < RemoveDigits(u, 2t)

12 v — RemoveDigits(v, 2t)

13 u, 2" y", E < Make0dd(u, 2", 3", F)

14 v, o',y B < Make0dd(v, ', vy, F)

15 u,x’,y" < MakePositive(u,z’,y',u < 0)

16 v, 2" y" + MakePositive(v,z”,y",v < 0)

17 w,v, 22"y y" « Swap(u,v, 2, 2"y, y" v > u)
18 E<+— E+2t

19 end

20 Return Modinv2e(z', ug, E)

We subdivided basic tasks within the algorithm into auxiliary functions for
easier treatment. We start by detailing these functions all of which are self-

explanatory.

20

Algorithm 7: Swap Algorithm 9: Make Positive

input : z,y,a,b,¢,d € Z and input :x,a,b€7Z and a
a boolean value k boolean value k.
1 if &k = true then 1 if k = true then
2 Return y,z,0,a,d, c 2 Return —x, —a, —b
3 else 3 else
4 Return z,vy,a,b,c,d 4 Return z,a,b
5 end 5 end
Algorithm 8: Remove Digits Algorithm 10: Make Odd
input : x,t € Z where x =0 input :x,a,b,F €7
(mod 22) 1 while x =0 (mod 2) and
1 Return x/2% r # 0 do

2 r,a,b, F +
x/2,a-2,b-2,E+1

3 end

4 Return x,y, F.

Algorithm 10 here needs some extra care. It is used to make the number odd
by clearing the multiples of 2. However, since we need to maintain the invariant

equations

vor” + ugy’ = v * 2 (3.1)

vox’ + ugy” = u x 2F (3.2)

whose coefficients may not be divisible by 2, we keep track of those missing
divisions in counter variable E. This is necessary because if v is not an odd
number, the modular inverse operation within the reducedRatMod function will

not work.

Algorithm 11: Linear Transformation
input :a,bcd, x,y € Z.

1 Return bx — ay, dx — cy

Algorithm 11 provides the linear transformations to produce new values of
u, v, x and y using the numbers a, b, ¢, d generated from reducedRatMod function.
As seen in Theorem 3.2.2, linear transformations with these four updated values

does not violate the invariant equations.

21

Algorithm 12: Modinv2e
input : z,uo, E € Z where 2F mod w.

output: x(27)~ mod ug
1 fori<+1to k do
2 if z =0 (mod 2) then
3 T < T+ U
4 else
5 T4 x/2
6 end
7 end
8 Return x.

The algorithm 12 is used to perform missing divisions by 2 which are delayed
with the help of the counter E.

3.2 CORRECTNESS AND ANALYSIS

We prove that our algorithm (i.e. Algorithm 6) is correct by introducing the
following three theorems: Theorem 3.2.1 bounds the intermediate values in
Algorithm 4, Theorem 3.2.2 asserts the invariant equations in Algorithm 6 and

Theorem 3.2.3 shows that the algorithm is correct.

Theorem 3.2.1. For the intermediate values u and v in Algorithm 6, let a, b
be the output of ReducedRatMod algorithm for the inputs w and v. Then 0 <

lav — bu| < 20+ Dy,

Proof. By Theorem 2.2.1, we have 0 < a,|b| < 2" and it can be written as
0 <a<2"and 0 < |b| < 2" respectively. Then,

|av — bu| < |au| + [bv] < (|a] + [b])u < (2" + 2")u = 20Dy,

It is known that |av — bu| is divided by 2%, then the size of u is decreased by

almost 2! in every iteration. 0

Theorem 3.2.2. In the Algorithm 6, let ug,vy be the input values, and
u,v, 2", 2", E be the intermediate values in while loop. Then the following

equations hold:

v’ —uzx” = 0 mod ug (3.3)
vor’ = u2¥ mod uyg (3.4)
vor” = v2F mod ug (3.5)

22

Proof. We will prove by induction. Note that the equations hold for the initial
values (u,v, 2, 2", E) < (ug,v0,0,1,0). Now, by assuming the equations hold
after some number of iterations for some intermediate values u, v, 2’, 2" and F,
it is enough to show the equations still hold in the next iteration. For the next

a2’ and

new’ “new

iteration, denote the updated intermediate values by vpew, Unew, T
Enew-
In steps 8-9, the new intermediate values are set as Upew — AV — DU, Vpey <

! < ax’ —bx’ and 2’ < cax” — dx’ using a, b, ¢, d obtained in step

new new

cv —du,x

7 and performing Linear Transformations later. Then

VnewThew — UnewZoew = (cU— du)(az” —bx') — (av — bu)(ca” — dz') (3.6)

= —bevz’ — aduz” + advz’ + beux” (3.7)

= (ad — be)(ve' — uz") (3.8)

Since vz’ —uz” =0 mod wuy by our assumption, we have Upew . — Unew Lhew = 0

mod ug. Moreover, since vz’ — u2¥ = 0 mod ug and vyz” — v2¥ = 0 mod wuy,

we have
Vo) oy — Unew2™™™ = vg(az” — br') — (av — bu)25r (3.9)
= a(vpr” — v2%) — b(vex’ — u2F) (3.10)
= 0 mod ug (3.11)
and
Vo — Unew2 ™ = wy(ea” — da') — (cv — du)2Fre (3.12)
= c(vpr” — v2%) — d(vox’ — u2F) (3.13)
= 0 mod up. (3.14)

In the steps 15 and 16, it is clearly seen that the equations do still hold even
the signs of the intermediate values are changed after MakePositive functions,

because

(—Vnew)Thow — Unew(—Thew) = — [VnewZhew — UnewThey] = 0 mod ug(3.15)
Vnew (—Thew) — Unew (—Zhew) = — [UnewThew — UnewZoew) = 0 mod ug(3.16)
Vo(—Theyy) = (“tnew)2 = = (002 0y — Unew2™™] =0 mod uo(3.17)
vo(=2) = (—Unew)25 = — [voxﬁew — vneWQE“eW] =0 mod ug.(3.18)

Without loss of generality, assume the signs of the intermediate values are

23

suitably changed for the next steps, if it is necessary.
In steps 11, 12 and 18, the intermediate values are updated as upew <
Unew /2%, Unew <= Vnew /2%, Enew ¢ Enew + 2t. Then

/ !
v u Vnew L ow — Unewd
new / _ new " — new+*new new+*new — 0 mo d U
22t new 22t new 22t
SINCE Unew Tl oy — UnewT oy 18 divisible by 22 and ug is odd. Moreover,

unew 2Enew+2t = u 2Enew
22t - new)

2Enew

Une
< w) 9Bnewt2t _ 4y

92t
Thus, the equations do still hold. Continue to the next steps with updated
intermediate values.

In steps 13 and 14, Upew < Upew/2, 20, < 2z

new new’

EneW % Enew +
1 incrementally until wpe, is odd, and similarly vyew < Unew/2, 7! —

new
2!

new’

done for steps 11, 12 and 18, the equations do still hold. Continue to the next

FEiew ¢ FEuew + 1 incrementally until vy, is odd. Similar to the proof

steps with updated intermediate values.

In step 17, if the intermediate values are necessarily swapped as

/ ! /! /
Unews Unews Lhews Lnew Unews Unews Lhewr Lnewr WE have

UnewTnew — UnewZoew = — [VnewTmew — Unewnew) = 0 mod ug, (3.19)
ongew = 'UneWQEnew mod ug (320)

on;ew - unesznew mod . (321)

In the end of the while loop, we see that the equations still hold. O

Theorem 3.2.3. For two odd integers ug > vy > 0 with ged(ug,vg) = 1,

Algorithm 6 returns vy " mod .

Proof. Recall the second equation in Theorem 3.2.2, i.e.
vor’ = u2¥ mod wuy.
Note that, after the last iteration, v = 0 and v = 1. Therefore,
vor' = 2¥ mod ug
where 2’ here is the final value after the while loop. Then,

vox' (2F)' =1 mod ug

24

in other words 2/(2€)~! mod ug is the
Algorithm 12.

3.3 MAGMA CODES

desired solution which is obtained by
O

This section provides Magma implementations of the algorithms provided in

Section 3.1. These codes are then used to implement the same in C language.

DU W N =

OO UEWN - QUL WN = W

W=

Swap := function(x,y,a,b,c,d,k)
if k eq true then
return y,x,b,a,d,c;
end if;
return x,y,a,b,c,d;
end function;

Code 3.1: Magma Code for Swap

1| MakePositive := function(x,a,b,k)
2 if k eq true then

3 return -x, -a, -b;

4 else

5 return x, a, b;

6 end if;

7| end function;

Code 3.2: Magma Code for Make Positive

LinearTransform := function(x,y,a,b,c,d)
return b*x-axy, d*x-c*y;
end function;

Code 3.3: Magma Code for Linear Transform

MakeOdd := function(x,a,b,E)
while IsEven(x) and (x ne 0) do
x := x div 2; a *:= 2; b *:= 2; E +:= 1;
end while;
return x,a,b,E;
end function;

Code 3.4: Magma Code for Make Digits Odd

Modinv2e := function(xdd,ud,k)
for i:=1 to k do
if Is0dd(xdd) then
xdd := xdd+ud;
end if;
xdd :=
end for;
return xdd;
end function;

xdd div 2;

Code 3.5: Magma Code for Modinv2e

RemoveDigits := function(x, _2t)
return x div 2°_2t;

end function;

Code 3.6: Magma Code for Remove Digits

25

OO URWN -

swapt := function(a,b)
return b, a;
end function;

ReducedRatMod := function(u, v, _2t)
c := (u * Modinv(v, 2°_2t)) mod 2" _2t;
a = 27_2t;
b,d := copy2(0,1);
while a ge Sqrt(2°_2t) do
assert (A*e2 + Bxb) eq a;
assert (A*xel + B*d) eq c;

= a div c;
1= a - q*c;
a, c := swapt(a,c);

b :=Db - gxd;
b, d := swapt(b,d);
end while;
return a,b,c,d;
end function;

Code 3.7: Magma Code for ReducedRatMod

accelModinv := function(u, v, base, s, t, W)

xdd,xd,ud,vd := copy4(1,0,u,v);

ydd,yd := copy2(0,1);

E := 0;

v,xd,yd,E := Make0dd(v,xd,yd,E);

while (v ne 0) do
assert vd*xd + ud*yd eq u*2°E;
assert vd*xdd + ud*ydd eq v*27E;
a,b,c,d := ReducedRatMod(u mod 2~ (2*t), v mod 2~ (2%t), 2%t);
u, v := LinearTransform(u,v,a,b,c,d);
xd, xdd := LinearTransform(xd,xdd,a,b,c,d);
yd, ydd := LinearTransform(yd,ydd,a,b,c,d);
u := RemoveDigits(u, 2*t);
v := RemoveDigits(v, 2*t);
u,xdd,ydd,E := MakeOdd(u,xdd,ydd,E);
v,xd,yd,E := Make0dd(v,xd,yd,E);
u,xd,yd := MakePositive(u,xd,yd,u 1t 0);
v,xdd,ydd := MakePositive(v,xdd,ydd,v 1t 0);
u,v,xd,xdd,yd,ydd := Swap(u,v,xd,xdd,yd,ydd,v gt u);
E +:= 2xt;

end while;

return Modinv2e(xd,ud,E);

end function;

Code 3.8: Magma Code for k-ary Modular
Inverse

26

CHAPTER 4

SIMD IMPLEMENTATION

Intel’s AVX2 instruction set is currently the most accessible high-end processing
platform since it is available in and after every Haswell processors including other
popular processor families like Skylake and Kabylake. Therefore, it is reasonable
to investigate the performance of Algorithm 6. AVX2 provides 16 x 256-bit ymm
registers. The amount of data that can be kept in these registers is over 4 times
more than the data that be accommodated in the 16 x 64-bit integer registers.
Therefore, inputs of Algorithm 6 has potential to be processed faster on AVX2.
This section investigates this possibility.

AVX2 feature is extremely important where time consuming operations are
in question. AVX2 instructions are capable of processing a large set of numbers
at a time, rather than processing them individually and so that enhance the
application performance. These large numbers are placed into AVX2 vectors
such that, they can enlarge up to 256 bits. AVX2 features can be accessed via
immitrin.h header file through Intel intrinsics.

In implementing Algorithm 6 over AVX2 circuit, the first question that arises
is how to represent large integers. There is a vast number of possibilities at this
phase. It is our experience that the representation choice tends to make a huge
difference in the overall performance. We summarize a few below and explain

the best choice out of them together with the reasoning.

4.1 HIGH LEVEL REPRESENTATION OF
DATA

One approach could be working over the four 64-bit lanes where the lanes are
dedicated to v, u, ", and 2’. Such an approach look very simple, cf. Figure 4.2.
This approach leads to very poor utilization of the underlying hardware since
u and v tends to decrease where 2’ and z” tends to increase in size. However,
when keeping then side by side in vector form, the implementer is forced to
allocate equal amount of memory for all. And then, several digits will be dummily
processed. Other problems do exist. For instance, one can easily compute bu,
av, bx', and az” but then one has to permute inside 128 bit lanes in order to

compute bu — av and bx’ — az”. Similar comments applies to linear transforms

27

with ¢ and d. Finally, the implementation will require extra permutations for
packing data back in aforementioned v, u, z”, and 2’ form horizontally aligned

in vector form.

Figure 4.1 4-way Representation, a first attempt

Another approach which solves some of these problems is to separate vector
variables for u & v and 2’ & 2”. In this version, the 64 bit lanes in a vector
contains repeated data in the form u, u, and v, v. Yet another variable contains
2/, 2" and 2, 2”. In this form u and v can share equal number of digits from start
to the end of computation. Similar applies to 2’ and z”. This approach partially
solves the digit count problem in the first approach. However, permutations are
still not eliminates. For instance, Figure 4.2 depicts linear transformation phase

in such a situation.

Figure 4.2 4-way Representation, a second attempt

av cv ax' cx'
bu du bx" dx"
av-bu cv-du ax'-bx" | cx'-dx"

The output av — bu is now need to be copied over the first two lanes of v. Similar
applies to cv — du, ax’ — bx”, cx’ — dx”. The programmer should prevent such
permutations as much as possible in order to obtain a high throughput.

A third approach could be place limbs of each variable vertically. Figure 4.3
summarizes this situation. The main problem here is the maintenance of carries

between limbs. For instance, carries from as to az would require a sizeable

28

amount of extra code which will not only cost time but also sacrifice code

readability and easy maintenance.

Figure 4.3 4-way Representation, a third attempt

vecy ag as ag ag v[0][0] | »[0][1] | w[0][2] | w[O][3]
vecy ay ay ar aig o[1[0] | ©[1][1] | ©[1][2] | »[1][3]
vecs as as as an v[2][0] | ©[2][1] | v[2][2] | v[2][3]

Up to now, it seems that any alternative comes with a huge disadvantage.
Nevertheless, we were able to find the following fine grain solution.

The representation that we use separates all variables in to distinct vector
arrays and places the limbs of a variable first in horizontal fashion in 64 bit lanes
of a vector and then vertically over elements of the vector array. This approach

is depicted in Figure 4.4.

Figure 4.4 4-way Representation, the selected approach

vecy ag a1 az as v[0][0] | »[0][1] | »[0][2] | w[O][3]
vecy ay as ag a7 o[1][0] | »[1][1] | ©[1][2] | ©[1][3]
vees | _as | ay | aw [au ol2)0] | o2 | vi212) [o2

This final approach has its pros and cons. On the positive side, every variable is
maintained separately so that if not needed the limb access can be limited. In
addition, no permutation is needed between lanes. Moreover, the code readability
is fairly better in comparison with other alternatives. However, handling the
carries and right shifts seems to be problematic at the first glance. But we
found a programmatic way of minimizing the speed penalties referenced from
this representation. Our solution is as follows. We concentrate on Figure 4.4 for
simplicity. For instance, carries that needs to be transferred from a3 to as can
be handled by slow permutation operation. However, we want to eliminate all
such permutations. At this stage, one can define a vector pointer whose starting
address is a;. Then, the vector pointer acts as 64 bit right shifted array on
the whole number. This greatly simplifies doing the carries and the make odd
routine without causing untolerable speed penalties as in the other approaches.

In addition, the code reads much simpler and shorter. One obstacle is that, gcc

29

-avx2 -00 mode does not work properly for detailed debugging. Therefore, the
code is developed in gcc -avx2 -03 mode and the debugging was performed

with screen outputs.

4.2 LOW LEVEL REPRESENTATION OF
DATA

AVX2 multipliers can handle 32x32—64-bit vector-vector integer multiplication.
Algorithm 6 operates on signed integers. Therefore, sign management is
necessary in our implementation. Therefore, we could use signed radix 31
representation. However, it is more beneficial to use signed radix 30 since we
can delay carries in linear transforms which requires a singed subtraction. When
the limbs are kept in 30 bits, the maximum value after linear transformation is
calculated as: (230 —1)-(2% —1) =260 —2.239 11, So that, numbers can be kept
in 64 bit registers easily including sign bit. After this operation, the numbers
must be reduced to 30 bits in order to perform the following iteration.

Our implementation works for arbitrary sizes of u. Table 1 and Figure 2.2

provides cycle counts on inputs of different sizes.

Table 2 Cycle Counts on Haswell i7-5500U
using AVX2 circuit for Algorithm 6

of limbs | # of bits | cycle counts
3 360 13680
5 600 26 064
7 840 41 568
10 1200 66 924
15 1800 146 688
20 2400 222264
25 3000 310440
30 3600 425940
40 4800 731112
45 5400 905 832
20 6000 1094 868

30

Figure 4.5 Graphical Illustration of Table 2

1200000

1000000
800000

600000 | #limbs

® clockcycle
400000
o ||| | | ‘ ‘
o.-llllllllllll |

T R A I IR IR SIS

Larger inputs benefit more from AVX2 features since ReducedRatMod
operation generates coefficients a, b, ¢, d only once for each iteration and
once the vectors [a,b,a,b] and [c,d,c,d] are ready to be used in the linear
transformation, they are reused for each limb of the numbers. Therefore, the
cost of ReducedRatMod are less dominant for larger inputs, which is handled
with the 64-bit circuit in the classic way using signed long data type.

We also experienced using AVX2-only intrinsics for the ReducedRatMod

operation but this option seems to be slightly slower.

31

CHAPTER 5

CONCLUSION

In this thesis, well-known quadratic time k-ary GCD algorithms which exist in
literature are examined. An extended version of a right-to-left GCD variant,
namely JWSS method, is provided. A modular inverse algorithm was derived
from the extended sequence and implemented. @ We conclude that SIMD
implementations of the modular inverse algorithm based on JWSS method is
very efficient on AVX2 circuit. Even better speeds are likely to be possible on
the new AVX-512 supported processors.

Bernstein and Yang have proposed a new k-ary ged variant which allows fast
and constant-time implementation of gcd and modular inverses. Their algorithm
solves several irregularities of existing approaches and nicely optimizes the ged
routine. It would be very interesting to investigate their algorithm on AVX
platforms in the context of this thesis. Because implementing their algorithm
would require an update on the ReducedRatMod function and completely deleting
subroutines MakeOdd, Swap, and IsZero. However, their algorithm came only
very recently (May 2019) towards the finishing of this thesis work. Therefore,

this investigation has been left as a future work.

33

REFERENCES

Bernstein, D. (2006). Curve25519: New Diffie-Hellman speed records. In Public
Key Cryptography - PKC 2006, 9th International Conference on Theory and
Practice of Public-Key Cryptography, New York, NY, USA, April 24-26,
2006, Proceedings, pages 207-228.

Bernstein, D. and Yang, B.-Y. (2019). Fast constant-time ged computation and
modular inversion. TACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340-398.

Bernstein, D. J., Chuengsatiansup, C., Lange, T., and Schwabe, P. (2014).
Kummer strikes back: New DH speed records. In Sarkar, P. and Iwata,
T., editors, Advances in Cryptology - ASTACRYPT 2014, volume 8873 of
LNCS, pages 317-337. Springer Berlin Heidelberg.

Bos, J. W. (2014). Constant time modular inversion. Journal of Cryptographic
Engineering, 4:275-281.

Chou, T. (2015). Sandy2x: New Curve25519 speed records. In Selected Areas in
Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB,
Canada, August 12-14, 2015, Revised Selected Papers, pages 145-160.

Jebelean, T. (1993). A generalization of the binary GCD algorithm. In Bronstein,
M., editor, Proceedings of the 1993 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’93, pages 111-116. ACM.

Karati, S. and Sarkar, P. (2017). Kummer for genus one over prime order fields. In
Advances in Cryptology - ASTACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages 3-32.

Katz, J., Menezes, A. J., Van Oorschot, P. C.; and Vanstone, S. A. (1996).
Handbook of applied cryptography. CRC press.

Knuth, D. E. (1971). The analysis of algorithms. Actes du Congrés International
des Mathématiciens, 4:269-274.

35

Knuth, D. E. (2014). Art of computer programming, volume 2: Seminumerical

algorithms. Addison-Wesley Professional.

Lehmer, D. H. (1938). Euclid’s algorithm for large numbers. The American
Mathematical Monthly, 45(4):227-233.

Méller, N. (2008). On Schénhage’s algorithm and subquadratic integer ged
computation. Mathematics of Computation, 77(261):589-607.

Schénhage, A. (1971). Schnelle berechnung von kettenbruchentwicklungen. Acta
Inf., 1:139-144.

Sedjelmaci, S. M. (2007). Jebelean-Weber’s algorithm without spurious factors.
Information Processing Letters, 102(6):247-252.

Sorenson, J. P. (1994). Two fast GCD algorithms. Journal of Algorithms,
16(1):110-144.

Sorenson, J. P. (2004). An analysis of the generalized binary GCD algorithm.
High Primes and Misdemeanors: Lectures in Honour of the 60th Birthday
of Hugh Cowie Williams, pages 327-340.

Stehlé, D. and Zimmermann, P. (2004). A binary recursive ged algorithm. volume
3076, pages 411-425.

Stein, J. (1967). Computational problems associated with Racah algebra. Journal
of Computational Physics, 1(3):397-405.

Weber, K. (1995). The accelerated integer GCD algorithm. ACM Transactions
on Mathematical Software (TOMS), 21(1):111-122.

36

APPENDIX A

CLASSICAL GCD ALGORITHMS

Algorithm 13: Naive Euclid’s

GCD Algorithm 14: Euclid’s GCD
input :a,b>0anda >0 input :a,b>0and a > 0.
output: ged(a, b). output: ged(a, b).

1 while b # 0 do 1 while b # 0 do

2 (a,b) < 2 (a,b) < (b,a mod b)

(max(b,a—b), min(b,a—b)) 3 end
3 end 4 return a.

4 return a.

The validity of algorithms above is related with the property of ged;

ged(a, b) = ged(a — qu)

Algorithm 15: Binary GCD
input :a,b>0and a > 0.

output: ged(a, b).
1 g+ 1
2 while ¢ mod 2 =56 mod 2 =0 do
3 (g,a,b) < (29,a/2,b/2)
4 end
5 while x # 0 do
6 while a mod 2 =0 do

7 a< a/2

8 end

9 while b mod 2 =0 do
10 b+« b/2

11 end

12 t < |a—bl/2
13 if x > y then

14 T+t
15 else

16 Y41
17 end

18 end

19 return (g-a).

37

The algorithm simply consist of successively reducing odd values by using the

following familiar properties of ged function:
1. If @ and b are both even, ged(a,b) = 2ged(a/2,b/2).
2. If a is even and b is odd, ged(a,b) = ged(a/2,b).
3. If a is odd and b is even, gcd(a, b) = ged(a, b/2).
4. If @ and b is both odd, ged(a,b) = ged(|a — b|/2, min(a, b)).

Using the idea that division by 2 is only requires shift operation and so, it
is a better algorithm than Euclid’s, though its worst case running time is also
0(n?), where n = log, n. Another difference from Euclid’s GCD is that it reduces
the least significant bits first. This algorithm is used in the GMP library for the

small size inputs.

38

Algorithm 16: Extended Binary GCD

input :a,b>0.
output: integers a, b and v such that
ax + by = v, where v = gcd(z, y).
1 g+ 1
2 while x mod 2 =y mod 2 =0 do
s (9.2y) < (29,2/2,y/2)
4 end
5 (u,v) < (z,y)
6 (A,B,C,D)+«+ (1,0,0,1)
7 while u # 0 do
8 while v mod 2 =0 do

9 u < u/2

10 if Amod 2 = B mod 2 =0 then
11 (A,B) + (A/2,B/2)

12 else

13 (A,B) « ((A+y)/2,(B—1x)/2)
14 end

15 end

16 while v mod 2 =0 do

17 v v/2

18 if C' mod 2 =d mod 2 =0 then
19 (C,D) «+ (C/2,D/2)

20 else

21 (C,D) < ((C+y)/2,(D—x)/2)
22 end

23 end

24 if © > v then

25 (u,A,B) < (u—v,A—C,B—D)
26 else

27 (v,C,D) « (v—u,C— A, D — B0)
28 end

29 end

30 return (a,b,g-v).

Idea of calculation Extended GCD is mostly used to find modular
multiplicative inverse by solving the following problem: given two integers x
and y, with at least one of them is nonzero, it computes d = ged(z,y). Then,
there exits integers A, B s.t. Ax + By = d. The equation Ax + By = d is called

Bezout equation and A, B is called Bezout’s coefficients. In particular, if xz and

y are relatively prime (i.e. ged(z,y) = 1), then Az + By = 1.

39

If x9, yo are the initial values and z, y is the next values,the following
invariants keep at the start of each iteration and after the loop: Axg+ Byy =z
and Czy + Dyy = y.

In the last case, B is called the modular multiplicative inverse of a wrt y

since By = 1 mod x. We then simply run Algorithm 16, the equation ends with
Az + By = 1 mod z, and it is equal to y~! = B mod z. Since the value z is not
needed in this calculation, we can simply ignore computing redundant A and C'

values for modular inverse operation.

Figure A.1 Extended Binary GCD illustration

18014144994474109800 1 2800527 mmmx? 85 0
18914144994474109809 1 97 -1
18670847220800562562 -2304208124300203726 SO ST 2007503810973
1034 -236426812430926372 muﬂwbum"m 2607565897973810973
‘3(,12(,@19\ TN 645
: 263726 Sibarrii
TL07A4 o3 00T SEITTIGIE T2 Sn0TaessaTar eI 097
Lr7esels SOAOR0IR03 11207215070 IS4005 CB61101T2 110 i35 -Lo420081282831442010
HSNOBITIOTS3T16
) 3 2 e 42169229
051 0000 672376 1114 -7138975581024979554
7982741867202 -14925386347166991764
5017302:

2607

5897973810973

434 7003045801 559:
1176849587 -32

STTILICONNI0 -TH00001TSTBITAORS00S SSSIORRGTIOIT 1610000721 1240190108
10009201620062 -14606017876474687668 2851088572947 16109067211240422103
535122415 -L4SOBOITST6IT408T008 2851088572047 16100067211240422103
27 5 76719652
590136 1131305
OIS0 IONT B1Biis0n 20203026742
-4549790808580690913 9565458250 47562411995
-11731967901527400361 178272912 SORF O30 166300

-11731967901527400361
11731967901527400361
-4649731980020183101
-4699707065739929195
~L1S00926030107019502
9737951225085243416
07521

12939259765676466390
12939259765676466390
SISRINTATIS L

2issn

021051315050
)
3088138162046903508

701)8‘)7 Y

E E 630667193
i el 10061355395079910206
1817054013491865001 +2004040079735020651

-1117349065: 762883854602
i3 io0isonirions ey «ozsmuovw

-10105940579551181070
3985420216779389690
3RS8TTATSA35T01482

it

2322 TOAIS32RASGTT
-9418215387968318460
526985326367

200

o3
-283000405 .m(.l ‘m‘v
-4192934 846

2 s OboR T
wuuu;l)uumwu 0 -20860527 183790487785
x [

40

OO UE WN -

APPENDIX B

SUPPLEMENTARY C CODES

typedef signed long si;

#define T 30

#define LIMB 3

#define MLIMB (LIMB+1)

#define vec __m256i

#define VMUL _mm256_mul_epi32

#define VSUB _mm256_sub_epi64

#define VADD _mm256_add_epi64

#define VSHR _mm256_srli_epi64

#define VSLR _mm256_slli_epi64

#define VBLD _mm256_blend_epi32

#define VSFL _mm256_shuffle_epi32

#define VPER _mm256_permute4x64_epi64

const vec ZERO = { OUL, OUL, OUL, OUL };

const vec ANDMASK = { (1UL << T) - 1, (UL << T) - 1, (1UL << T) - 1, (1UL << T)
-13}

const vec POSMASK[LIMB] = { { 1UL << (2 * T + 1), 1UL << (2 * T + 1), 1UL
<< (2% T+ 1), 1IUL << (2 * T+ 1) }, { 1UL << (2 * T + 1), 1UL
<< (2 * T+ 1), 1UL << (2 * T + 1), 1UL << (2 * T + 1) }, { 1UL
<< (2 * T + 1), OUL, OUL, OUL } };

const vec NEGMASK[LIMB] = { { 1UL << (T + 1), 1UL << (T + 1), 1UL << (T + 1),
1UL << (T + 1) }, { 1UL << (T + 1), 1UL << (T + 1), 1UL << (T + 1), 1UL
<< (T + 1) }, { 1UL << (T + 1), OUL, OUL, OUL } };

vec RANDMASK = { 0x00007FFFUL, OUL, OUL, OUL };
void myrand(vec *z, int 1) {
int i, j;
for (i = 0; i < 1; i++) {
for (j = 0; j < 4; j++) {
z[i][j] = ((unsigned long) random()) & ((1UL << T) - 1);

¥
z[0] [0] I= 1;
z[2] &= RANDMASK;

Code B.1: C Header Code for ModInvAVX2

1| while (IsZero(g)) {

2| //reducedRatMod

3| //linear transform

4 for (i = 0; i < LIMB; i++) {

5 f[i] = VADD(f£[i], POSMASKI[il);
6 gli]l = VADD(g[il, POSMASK[il);
7}

8

9 for (i = 0; i < LIMB; i++) {

10 tf[i] = VSHR(£f[i], T);

11 tglil = VSHR(glil, T);

12 }

13

14 for (i = 0; i < LIMB; i++) {

15 f[i] &= ANDMASK;

16 gli] &= ANDMASK;

171}

18| //makeodd

19 for (i 0; i < LIMB; i++) {

20 £[i] - VSUB(tf[i]l, NEGMASKF[il);

21 glil = VSUB(tgl[il, NEGMASKG[il);
22| '}
23| //swap
24|}
Code B.2: C Main Code for ModInvAVX2
1| for (i = 0; i < LIMB; i++) {
2| uf[i] = VMUL(cc, glil);
3| wvgli] = VMUL(dd, f[i]);
4| qf[i] = VMUL(aa, glil);
5| rgli] = VMUL(bb, £[i]);
6| f£[i] = VSUB(uf[i], vglil);
g N gli]l = VSUB(af[i], rglil);

Code B.3: C Code for LinearTransform

41

—

QOO U R WN

10
11
12
13
14

16

QOO UL WN -

void reducedRatMod(si* a, six b, si* c, si* d, si u, si v, const
si tt) {

si nn = tt;
sin=1<< tt;
si q, r, temp, Ud[1];
modinv_2e(Ud, v, nn);
r=((xUd * u) & (n - 1);
set4(a, b, ¢, d, n, 0, r, 1);
si sqrtn = 1 << (an / 2);
while (xa >= (sqrtn)) {

q = *a / *c;

al0] -= q * (xc);
b[0] -= g * (*d);
temp = *a; *a = *c; *Cc = temp;
temp = *b; *b = *d; *d = temp;

Code B.4: C Code for reducedRatMod

void makeodd(vec* a) {
int i;
vec af[MLIMB];
vec *as;
for (i = 0; i < MLIMB; i++) {
af[i] = ZERO;

int cnt = 0;

si tmp = a[0][0];

while (!(tmp & 1)) {
tmp = tmp >> 1;
cnt++;

}
if (ent '= 0) {
vec CNTMASK = { (1UL << cnt) - 1, (1UL << cnt) - 1, (1UL <<
cnt)
-1, (UL << cnt) - 1 };
for (i = 0; i < LIMB; i++) {
NEGMASK[i] = VSHR(NEGMASK[i], cnt);
af[i] = VSLR(a[i] & CNTMASK, T - cnt);
a[i] = VSHR(a[il, cnt);

}

as = (vec *) &af[0][1];

for (i = 0; i < LIMB; i++) {
a[i] = VADD(a[il, as[il);

Code B.5: C Code for MakeOdd

void swap(vec* a, vec* b) {
vec af[MLIMB], bf[MLIMB];
int ¢ = 03
int i, k;
for (i = 0; i < MLIMB; i++) {
af[j] = bf[j] = ZERO;
}

for (i = LIMB; i >= 0; i--) {
af[i] = _mm256_abs_epi32(alil);
bf[i] = _mm256_abs_epi32(b[il);
for (k = 3; k >= 0; k—-) {
if (af[i][k] < bf[i]l[k]) {
c=1; k=0; i=0;
} else {
c=0; k=0; i=0;
}
}
}
if (c == 1) {
for (i = 0; i < LIMB; i++) {
af[i] = alil; alil = blil; bli]l = af[il;
}

Code B.6: C Code for Swap

42

