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ABSTRACT 

A FRAMEWORK FOR CAPACITY EXPANSION PLANNING IN FAILURE-

PRONE FLOW-NETWORKS VIA SYSTEMIC RISK ANALYSIS 

 

Karataş Aygün, Nazlı 

MSc, Industrial Engineering 

Advisor: Assist. Prof. Dr. Önder Bulut 

Co-Advisor: Assist. Prof. Dr. Emrah Bıyık 

August, 2020 

We propose a capacity expansion framework to guarantee a certain service level in 

failure-prone flow-networks composed of supply, demand and intermediate nodes, and 

arcs in between. We formulate the problem as a general stochastic optimization model 

to minimize the total cost of additional edge capacities. Our model allows considering 

different cost structures corresponding to the nature of different real-life applications.  

We consider a non-linear cost structure that captures both the immediate cost of 

investment and the cost of future risk. The feasible region is composed of the 

additional edge capacities that satisfies a probabilistic constraint (certain service level) 

which is the probability of total demand-not-satisfied is greater than a predetermined 

level is less than a risk threshold and a boundary constraint which is the additional 

edge capacities are greater than or equal to 0. These constraints are based on a systemic 

risk measure. Systemic risk measure, in contrast to traditional risk analysis on the 

component level, captures a holistic view of the system-wide operation and calculates 

the risk of unsatisfied demand. The requirement for system-wide analysis arises from 

the complex and nonlinear relationship between components of the system. Systemic 

risk is due to initial edge failures and the cascade of these failures throughout the 

system. Due to the stochastic nature of initial failures and certain supply and demand 

nodes, the distribution of unsatisfied demand is calculated via simulations embodied 

within a Grid Search Algorithm that identifies the feasible region. Cost-optimal edge 

capacity expansion is computed by a population-based heuristic optimization 

algorithm, namely, Differential Evolution. Our methodology can be applied to 

numerous fields including financial systems, power systems and supply chains. We 
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apply our proposed framework to a medium-size general flow-network, and conduct a 

comprehensive numerical study to investigate the effects of system parameters on the 

feasible region and optimal solution. 

Key Words: Systemic risk, cascading failures, flow-networks, differential evolution, 

stochastic programming, grid search algorithm.
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ÖZ 

KOPMALARA EĞİLİMLİ AKIŞ AĞLARINDA SİSTEMİK RİSK ANALİZİ İLE 

BİR KAPASİTE ARTIŞ PLANLAMA ÇERÇEVESİ 

 

Karataş Aygün, Nazlı 

Yüksek Lisans, Endüstri Mühendisliği 

Danışman: Dr. Öğr. Üyesi Önder Bulut 

Yardımcı Danışman: Dr. Öğr. Üyesi Emrah Bıyık 

Ağustos, 2020 

Bu tezde, arz, talep ve aktarma düğümleri ile aralarındaki kenarlardan oluşan 

kopmalara eğilimli akış ağlarında, belirli bir hizmet seviyesini garanti etmek için bir 

kapasite artış plan çerçevesi öneriyoruz. Problemin amacı, en düşük maliyetli kapasite 

artış planlamasını bulmaktır ve problem genel bir rassal optimizasyon modeli olarak 

formüle edilmiştir. Modelimiz yapı itibariyle, çeşitli gerçek hayat uygulamalarına 

uyum sağlayan maliyet fonksiyonlarına izin vermektedir. Bu çalışmada kullandığımız 

maliyet fonksiyonu, direk maliyet ve gelecek risk maliyetlerini birlikte düşünür ve 

doğrusal olmayan bir yapıya sahiptir. Problemin olurlu bölgesi, karşılanmayan toplam 

talebin belirli bir seviyenin üstüne çıkma olasılığının belirlenmiş bir risk sınırından 

küçük olması ile tanımlanmıştır. Bu kısıtın bağlı olduğu sistemik risk ölçütü, sistem 

bileşeni özelindeki geleneksel risk ölçütü yerine, sistemsel operasyonlara bütüncül bir 

bakış açısı sağlar ve karşılanamayan toplam talep riskini hesaplar. Bu tarz bir sistemsel 

analiz ihtiyacı, sistem elementleri arasındaki karmaşık ve doğrusal olmayan 

ilişkilerden doğmuştur. Sistemik risk, sistemlerdeki ilk kopmalar ve bu kopmaların 

sistem genelinde artarak ilerlemesinden kaynaklanmaktadır. Karşılanamayan talebin 

dağılımı, Izgara Üzerinde Arama Algoritması içinde yer alan ve başlangıçtaki 

kopmaların, arz ve talep miktarlarının rassal doğası kullanılan simülasyonlarla 

hesaplanmıştır. En düşük maliyetli kapasite artışı ise, bir sürü tabanlı sezgisel 

algoritma olan Diferansiyel Evrim Algoritması kullanılarak hesaplanmıştır. Bu 

çalışmada sunduğumuz metodoloji, finansal sistemler, elektrik ağ sistemleri ve tedarik 

zincirleri gibi çeşitli alanlara uygulanabilir. Yaklaşımımızı orta büyüklükte genel bir 

akış ağına uyguladık. Buna ilaveten, sistem parametrelerinin olurlu bölge ve en düşük 
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maliyetli optimal çözüm üzerindeki etkilerini araştırmak için kapsamlı bir sayısal 

çalışma yürüttük.  

Anahtar Kelimeler: Sistemik risk, peş peşe ilerleyen arızalar, akış ağı, diferansiyel 

evrim algoritması, rassal programlama, ızgara üzerinde arama algoritması. 
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CHAPTER 1 

INTRODUCTION 

Modern societies depend highly on the proper functioning of many systems with 

multiple components, structural and operational relations. Some examples of these 

complex connected systems are financial systems, power, supply chains and 

transportation systems. These systems, as being organized as large network structures, 

are open to various threats that may cause failures affecting numerous components. 

Due to the complex and nonlinear relationship between components of the complex 

networks, disruption of a component might trigger other failures in the system, and 

therefore cause a complete malfunction. In other words, an initial breakdown can even 

cause a complete system failure when it propagates with a cascading mechanism. 

Although they are not so frequent, such systemic failures result in a vast amount of 

direct and indirect costs to the firms and society. The networks are inherently open to 

this large but rare cascades that are triggered by a small initial failure. To mitigate or 

decrease the losses from such catastrophic failures, it is inevitable to analyze complex 

connected systems along with potential threats that may affect them. Hence, a 

requirement for the analysis of system-wide operations and underlying risk factors has 

emerged. In this direction, systemic risk studies gained importance and came into 

prominence in the existing literature. Unlike traditional risk on the element level, 

systemic risk deals with the probability of the system-wide failures that affects the 

entire system, and provide a holistic view to the system operations.   

In this thesis, we propose a capacity expansion framework to guarantee a certain 

service level in general failure-prone flow-networks. We formulate the problem as a 

general stochastic optimization model, which is named as capacity expansion 

optimization model, to minimize the total cost of additional edge capacities. We 

consider a general flow-network with four types of elements: (i) supply (source) nodes 

that provide positive net flow to the system and have capacity limitations, (ii) demand 

nodes that have negative net flow as being a consumption point (iii) intermediate nodes 

(transmission) nodes have zero net flow that satisfies conservation rule where inflow 
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and outflow are equal, (iv) capacitated edges that allow flow between these nodes. In 

our network structure, we consider the stochastic nature of supply and demand levels 

to better mimic real-life environments. Moreover, we assume that total supply 

generation capacity is greater than or equal to total demand level for a well-defined 

problem. The capacitated edges are considered as failure-prone, and intolerant to 

overload.  Under the nominal conditions, the system is capable to satisfy the total 

demand (no unsatisfied demand) and there is no requirement for extra edge capacity. 

However, in the presence of cascading mechanism, an initial edge failure might trigger 

other failures in the system, and hence, result in unsatisfied demand. We formulate a 

flow-network optimization model to calculate flow and overload on the edges and 

unsatisfied demand. Our flow-network optimization model is a generic model that 

consists of four cost components that are cost of supply, cost of flow on edges, cost of 

overload on edges and cost of unsatisfied demand. Hence, it can be adapted to solve 

different-real life applications by tuning the model parameters.  

The edge capacities that guarantee a certain service level, namely, admissible edge 

capacities, are defined by a probabilistic and a boundary constraint that are structured 

using a systemic risk measure. To build these constraints, we benefit from pioneering 

work of the Chen et (2013) and Feinstein et al. (2017) on systemic risk measures which 

are formulated using two elements: (i) aggregation function is a system-level 

performance metric that provides a random outcome based on the system performance, 

(ii) acceptability criterion checks whether the distribution of random outcome satisfies 

a certain acceptance definition.  In this study, we consider the probability of total 

demand-not-satisfied (DNS) that is greater than a predetermined threshold as a system-

level performance indicator. DNS is obtained by solving flow-network optimization 

model for instance of supply, demand and initial edge failures.  The distribution of 

DNS is calculated from the solution of flow-network optimization model for all 

instances (scenarios) of supply, demand and initial edge failures. Acceptability is 

defined by the probability of DNS that is greater than a predetermined level is less than 

a threshold. Hence, admissible edge capacities (feasible region) are described as 

follows: the set of additional edge capacities that satisfies acceptability. We compute 

the admissible edge capacities via a grid search algorithm (GSA) that approximates 

the boundary of the feasible region. Since aggregation function is monotone in nature, 

computing the boundary of the feasible region is sufficient to define the whole feasible 
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region.  GSA works on a grid defined a priori where every grid point is considered as 

a candidate additional edge capacity. The algorithm moves on the grid by evaluating 

grid points according to acceptability criterion. Each evaluation requires Monte-Carlo 

simulation such that, given edge capacities (given a grid point), the distribution of DNS 

is calculated using scenarios generated by random supply, demand and initial failures. 

The cost-optimal capacity expansion is computed via a population-based heuristic 

optimization algorithm, namely, differential evolution (DE). In our problem, the initial 

population for DE is obtained from the feasible region, and the fitness function of DE 

(cost function) is simply the objective function of the capacity expansion optimization 

model. Our model allows decision-makers to consider different cost structures (linear 

or non-linear) corresponding to the nature and operational strategies of different 

systems.  

Our methodology can be applied to numerous fields including financial systems, 

power systems and supply chains. We perform a series of numerical experiments on 

the flow-network, to test our solution approach and understand the effects of system 

parameters on decisions and their cost.  

The related literature is reviewed in Chapter 2. In this chapter, we introduce the studies 

that provide the followings: (i) the concept of systemic risk together with mitigation 

strategies in several areas such as finance, power systems and transportation networks, 

(ii) analysis of cascading failures and propagation mechanisms without working on 

mitigation strategies., (iii) systemic risk measure modeling approach that we benefit 

in this thesis. Moreover, we discuss the contribution of our study to the state-of-the-art 

in the literature. 

In Chapter 3, we define our problem and introduce the features of our problem. We 

detail our approach to characterize system the system features that random supply, 

demand and initial edge failures. Moreover, we detail the methods that are employed 

for edge grouping. 

Chapter 4 gives the details of our modeling framework for capacity expansion problem. 

In this chapter, we formulate flow-network optimization model, systemic risk measure 

and capacity expansion optimization model, and explain the relation between these 

models.   



4 

 

In Chapter 5, a flowchart of our solution approach is presented along with the details 

of the solution framework. Thereafter, grid search algorithm and differential evolution 

are explained in detail in Chapter 5.1. and 5.2., respectively.  

Next, numerical study and discussions based on the findings are presented in Chapter 

6. This chapter is divided into two subchapters: (i) the values of system parameters and 

test instances for numerical studies, (ii) results that we discuss the effect of parameter 

changes on feasible region and hence, cost-optimal capacity expansion. 

Finally, a brief summary of the thesis and concluding remarks are presented in Chapter 

7. Moreover, future research directions are also discussed in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

In contrast to traditional risk analysis on the component level, systemic risk analysis 

provides a holistic view of the system-wide operation and underlying risk factors 

(Lucas et al., 2018), and has supplanted traditional risk on the element level (Ledwoch 

et al., 2016). It corresponds to the risk or probability of breakdowns in an entire system, 

as opposed to breakdowns in individual parts or components, and reveals the interplay 

between system components (Kaufman & Scott, 2003). Systemic risk is due to shocks 

and propagation mechanisms: shocks are the component failures; propagation 

mechanisms are the cascade of these failures due to complex connections between the 

components of a system (Bandt & Hartmann, 2000). 

Financial crisis in 2007-2009 revealed the analysis of risk at firm-level is not sufficient 

to capture the breakdown probability of an entire system (Chen et al, 2013). During 

this crisis, shocks at few companies propagated and brought down the entire financial 

system and real economy, and then, the regulations and measurements of systemic risk 

has gained importance in economy and financial market (Bullard et al., 2009). 

Similarly, Italian Blackout in 2003 (Buldyrev et al., 2010) and Northeast Blackout in 

2003 (Cassidy et al., 2016) showed that complex connected systems are prone to 

failure that can be caused by a random local event or malicious attacks. Consequently, 

risk quantification in power networks has gained attention of the researchers. Due to 

the tsunami in Japan on 11 March 2011, area that host the many advanced technology 

manufacturing firms is destroyed, and it causes a major impact on their supply. Hence, 

various manufacturing companies from all over the world, and supply chains are 

affected and their production is disrupted (Olson & Swenseth, 2014). In fact, 

globalization in supply chain increased vulnerability to disruptions like natural 

disasters and terrorism (Kleindorfer & Saad, 2005). As a result, system-wide risk 

assessment in supply chain management has gained importance (Stecke & Kumar, 

2009).  
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Systemic risk is mainly applied to finance and economics in the literature. The study 

of Eisenberg and Noe (2001) is a pioneering work for integration of the rich network 

structures in the systemic risk models. In their study, contagion of linkages due to 

interbank liabilities is studied and a linear programming problem that gives the 

solutions for clearing payment vector is formulated. The domino effect due to a single 

bank breakdown base on the interbank relationships in German banking system is 

studied by Upper and Worms (2002). Boss et al. (2006), presented a model called 

Systemic Risk Monitor (SRM) to assess the systemic risk in the Austrian banking 

system. Cont et al. (2010), developed a quantitative methodology to analyze the 

potential contagion in interbank networks. They apply their model on Brazilian 

financial system. Capponi and Chen (2015), used the idea of Eisenberg and Noe (2001) 

to develop a multi-period systemic risk mitigation strategy and built a controlled 

clearing-payment system.  

Systemic risks related to nature, technology and social systems is a macroscopic 

phenomenon resulting from elements’ micro-level relations in a complex system with 

each other and their environment (Lucas et al., 2018). Although systemic risk has 

increased its prominence in finance literature, it is applicable to diverse areas such as 

power systems (Fang et al., 2014; Cassidy et al., 2016), supply chains (Ghadge et al., 

2013; Ledwoch et el., 2016), transportation networks (Zhao et al, 2015; Pitilakis et al., 

2016); water networks (Distefano et al., 2018). The aforementioned studies in this 

paragraph and some other exemplary studies are introduced throughout this chapter.  

Baldick et al. (2008) claims that power systems, which are engineered designs, are 

operated to mitigate the risk of complete failures, hence it is unlikely that single 

element failures result in cascading failures. On the other hand, they emphasize that 

multiple elements’ failures or operational mistakes might occur and trigger chains of 

failures. Fang et al. (2014) provide a comparison between network-centric and power 

flow models for edge capacity allocation in a power system via a systemic view. They 

formulate a multi-objective optimization problem with two conflicting objectives: 

maximizing resilience and minimizing a linear investment cost. In the study of Cassidy 

et al. (2016) the use of systemic risk measures from the finance literature is proposed 

to calculate the cascading failure risk in power grids, and plan capacity expansion.  

Oehmen et al. (2010) discuss that system-oriented supply chain risk management is a 

shortcoming of the existing literature, and it’s important to identify supply-chain risks 
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from a system perspective due to volatility in global sales and supply markets.  Ghadge 

et al. (2013) also emphasize from another perspective that systems thinking based 

approaches are not well developed in the supply chain risk management literature. To 

fill this gap, they propose a holistic, systematic and quantitative risk assessment 

framework for measuring the overall risk behavior in supply chain. Pointing out the 

gap in the literature, system approach to the supply chain risk management has gained 

importance during the last decade. Especially, the studies that work on the supply chain 

disruptions, propagation mechanisms and resilience has been attracting researchers as 

follows: Behdani et al. (2012) proposed a framework that integrates pre-disruption and 

post-disruption perspectives that point out risk identification and risk treatment, and 

disruption impacts, respectively. They also provide a detailed literature review on the 

disruption phenomena, and introduce the risk quantification methods in detail. They 

classified the methods as follows: (i) qualitative/semi-qualitative methods that are 

analytic hierarchy process (AHP), expert group training, expert opinion (survey) and 

failure mode and effect analysis (FMEA), (ii) quantitative/semi-quantitative which are 

Petri-net, system dynamics, graph theory, discrete event simulation, input-output 

modeling. Scheibe and Blackhurst (2017), work on a qualitative research project to 

analyze the disruption propagation mechanisms throughout multiple tiers in the supply 

chain. For application of their approach, they work on a seven three-tiered supply 

chains where each tried consists of a focal firm, a supplier to the focal firm and a 

customer of the focal firm.  

The studies that analyze supply chain resilience in the presence of disruption are as 

follows: Schmitt and Singh (2012) analyze inventory placement and back-up 

methodologies in a multi-echelon network and observe their effect on reducing supply 

chain risk from a holistic perspective. They employ fill-rate as a system performance 

indicator. Li and Zobel (2020) present a framework to investigate the supply chain 

network resilience in case of a disruption propagation that affects the whole system. 

To quantify the system resilience, they select three different network-level 

performance metrics: (i) number of healthy nodes that is total number of non-disrupted 

nodes in the presence of disruption propagation, (ii) the largest connected component 

is the largest connected subnetwork at a certain time after disruption, (iii) the ratio of 

largest connected subnetwork and average shortest path between any pair of nodes. 

Baghersad and Zobel (2020) propose a methodology based on the system resilience to 
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quantify the impact of supply chain disruptions on firms’ performance. To measure the 

impact of disruptions, they use the followings: (i) operating performance measures that 

are change in operating income, change in return on sales, change in return on assets, 

change in sales, change in total assets, change in total costs and change in total 

inventory, (ii) stock prices. 

There are studies in the supply chain literature that directly point out the systemic risk 

phenomena. Ledwoch et al. (2016) use 5 centrality metrics (eigenvector centrality, hub, 

authority, closeness, and betweenness) to assess systemic risk in supply chain networks, 

and set up an exemplary case study on the supply network of Honda Acura. Sun et al. 

(2017) study risk of oil supply from the systemic perspective of oil supply chain. They 

propose the use of four risk factors that are availability, accessibility, acceptability and 

affordability to quantify the systemic risk of oil supply.  

Kamalahmadi and Parast (2017) provide an assessment of mitigation strategies against 

in a disruption in supply chain. They evaluate the impact of three mitigation strategies: 

prepositioning inventory, backup suppliers, and protected suppliers on the results of 

the disruption impacts. Zhao et al. (2018) propose a decision support system to analyze 

the robustness of supply chain networks against disruptions using topological analysis 

and performance measurement relevant to a supply chain context. They also present 

an optimization model that aims increase the performance of supply network. Their 

framework allows measurement of the performance of a supply chain network in the 

presence of a disruption, and understanding vulnerabilities of the network before a 

disruption. They employ four metrics to test the supply chain performance: the size of 

the largest functional subnetwork, average supply path length, total units delivered 

from supply to demand and average delivery cost.  

Zhao et al. (2015) present a model for cascading failures that consider dynamic 

redistribution of flow in the networks, and study robustness of different network 

topologies. They apply their framework the interconnected traffic networks of Beijing 

city. Pitilakis et al. (2016) propose an integrated framework for the probabilistic 

systemic vulnerability and risk assessment of transportation and utility networks. Their 

methodology is demonstrated through case studies in the road network and the harbor 

of Thessaloniki city. Salomon et al. (2020) utilize from resilience metrics to quantify 

the systemic risk in general complex systems. The applicability of their proposed 

approach is demonstrated on Berlin’s U-Bahn and S-Bahn systems and a multi-stage 
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axial compressor. Distefano et al. (2018) present a study that combines the structural 

decomposition analysis with network measures of systematic vulnerability to 

exogenous supply-shocks. With the help of network approach, they analyze the 

systemic structure and the evolution of the network in terms of potential vulnerabilities 

and allocation of a resources. 

Another stream of research in the related literature focuses on analysis of cascading 

failures and underlying mechanisms in complex networks without specifically 

addressing mitigation strategies or capacity expansion plans. Watts (2002), worked on 

the global cascades that are happen rarely but result in large disruptions on some 

random networks in his pioneering study. He presented a simple, binary-decision 

model which can be used to set up some explanations on the cascade mechanism in 

real systems. Crucitti et al. (2004) also studied large but rare failures resulted from a 

small initial disturbance. It is proven that if the initially failed node has the largest load 

in the system, the failure of this specific node results to total disruptions of the system. 

Buldyrev et al. (2010), presented a model to capture failure propagation on the 

interdependent network. They resulted that the vulnerability of interdependent 

networks to random failure increases with the increasing interdependence from the 

robustness perspective. Wynne and Dressel (2010) discussed the effect of bovine 

spongiform encephalopathy (BSE) not only on livestock and feed industries but also 

on the financial sector. Świerczek (2014) investigated the relationship between the 

level of supply chain integration and cascading failures. Even though high integration 

is promoted in traditional supply chain literature, over-dependence between 

partners/agents may result in "snowball effect" that amplifies the effect of disruptions.  

Korkali et al. (2017) studied several failure propagation mechanisms under different 

power and communication network structures. Zang and Moura (2017) focused on the 

question that where a small number of localized failures can lead to significant number 

of failures in the network. In their presented model, namely the Dynamic Bond 

Percolation (DBP) process, the failure probability of an edge depends on the number 

of failed neighboring edges in the network, and the recovery probability depends on 

the number of working neighboring edges. They applied their model on the 118-node 

IEEE test bus power grid. La (2017) developed a general model to capture the 

propagation of failures from one component to another both within the system and 

across multiple interdependent systems. 
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Systemic risk measure represented in this study is based on the pioneering work of 

Chen et al. (2013) and Feinstein et al. (2017). In the study of Chen et al. (2013), it is 

shown a variety of models can be obtained depending on the choice of aggregation 

function and base scalar risk model. Moreover, this study provides an explicit 

structural characterization of the systemic risk models. In the study of Feinstein et al. 

(2017), the systemic risk measure is constructed as a combination of two entities which 

are a value model or aggregation function and acceptability criterion which allows the 

simultaneous analysis of the entities in the financial system. In their study, aggregation 

function is defined as a value model which assigns capital allocation of the entities into 

a stochastic outcome; whereas acceptability criterion defines the subset of the random 

variables that are acceptable to the regulator of the system. The result of the model 

introduced in that study can be interpreted as the set of the additional allocation that is 

required to make the current system acceptable. Besides, they introduce a grid search 

algorithm to compute the systemic risk measures. 

In this thesis, we use a systemic risk measure that benefits from the finance literature 

to find the admissible edge capacities that guarantee a certain service level. The 

systemic risk measure quantifies the system-wide risk, and provides a set of admissible 

edge capacities. Application of the financial systemic risk measures to the other 

networks is new to the literature. Three studies work such systemic risk measures: (i) 

Cassidy et al (2016), (ii) Eckert and Beer (2019), (iii) Salomon et al (2020). Cassidy 

et al (2016) use a systemic risk measure to find a set of acceptable component 

capacities under which the risk of power failure in the grid is acceptably low. They test 

their framework on the IEEE 118-Bus and 30-Bus systems, and simulate the cascading 

edge failures resulting from a set of initial edge failures. Their study is the first to apply 

financial systemic risk measures to another network. Eckert and Beer (2019) propose 

the use of financially inspired systemic risk framework in structural mechanics. Instead 

of simulating an initial failure and the resulting cascading failures they characterize 

the risk of an initial failure from the reliability perspective.  Salomon et al. (2020) work 

on the use of financial risk measures to complex systems, such as turbines, industrial 

plants, and infrastructure networks using a resilience-based aggregation function. They 

apply their framework to a multistage axial compressor and U-Bahn and S-Bahn 

system of Berlin where their simulation is based on initial component failures and 

initial failures that might lead to cascading failures, respectively.  In our study, we both 
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simulate initial failures and resulting cascading failures. Cassidy et al. (2016) and 

Salomon et al. (2020) assume randomness only for initial edge failures; however, in 

our study we also assume the network has random generations and demand levels.  

Cassidy et al. (2016), and Eckert and Beer (2019) assume linear cost function that 

provide solution on the boundary of the feasible region. On the other hand, we consider 

a nonlinear cost structure, and propose the use of population-based heuristic to handle 

general cost structures. In the studies of Cassidy et al. (2016) and Salomon et al. (2020), 

a grid search algorithm (Feinstein et al., 2017) is employed to compute the systemic 

measure. In our thesis, we also use grid search algorithm to calculate the feasible 

region. Since grid search algorithm requires Monte-Carlo simulations to evaluate each 

grid point, the computational complexity increase with the increase in the number of 

elements, which corresponds to the problem dimension, that are subjected to capacity 

expansion. Hence, the efficiency of the algorithm can be increased if the elements that 

are subjected to capacity expansion are subdivided into groups, and allocating same 

additional capacity to the members of the same groups. For this grouping purposes, 

Cassidy et al. (2016) divide the lines into two groups according to a centrality index 

that is calculated using the number of shortest paths that the line is on. Salomon et al. 

(2020), grouped the metro stations in U-Bahn and S-Bahn system of Berlin according 

to their node degree. Since, selecting a proper edge grouping method that is in line 

with the nature of real-life application is critical. In our study, we employ two methods 

for grouping purposes that are utilization-based and eigenvector centrality, and we 

observe their effect on the feasible region, and hence, optimal investment. The 

numerical experiment based on edge grouping method also differs our study from the 

previous works. 

Compared to the state-of-the-art in the literature, contributions of this thesis are four-

fold: (i) flexibility to handle general edge capacity expansion cost structures by 

employing a population-based heuristic, DE, for cost optimization problem, (ii) a 

generic flow-network model that considers cost of supply, cost of flow on edges, cost 

of overload on edges and cost of unsatisfied demand (a service level metric), (iii) 

taking into account the stochastic nature of both supply (i.e., renewables in power 

networks) and demand from the systemic risk perspective, (iv) use of eigenvector 

centrality for edge grouping (extending the common use for node grouping) in 

systemic risk measurement. These contributions, together with the systemic risk 
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approach, provide a unified framework for the analysis and design of flow-networks 

to achieve cost-optimal service improvement.
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CHAPTER 3 

PROBLEM DEFINITION  

Our problem is defined as follows: finding cost-optimal capacity expansion that 

satisfies a certain service level in general failure-prone flow-networks. We first 

identify the set of additional edge capacities that need to be invested in (admissible 

edge capacities) such that the probability the total demand-not-satisfied (DNS) is 

within acceptable levels under shocks (i. e., edge failures). Then, we find the cost-

optimal capacity expansion among admissible edge capacities.  

In this thesis, we employ a medium-size flow-network represented by a  𝒢 = (𝒱, ℰ), 

where 𝒱 and ℰ denote the set of nodes and edges, respectively. The considered flow-

network has random characteristics and open to initial edge failures. Specifically, we 

consider the stochastic nature of both supply (i.e., renewables in power networks) and 

demand for the random features of the network. In Chapter 3.1, we explain our 

modeling methodology and scenario generation approach to characterize randomness 

in supply generations and demand levels.  

When the system is working under nominal conditions (no failure), there is neither 

over capacity requirement nor unsatisfied demand, i.e., DNS = 0.  However, we 

consider a failure-prone flow-network where an initial failure might trigger other 

failures in the system, and hence, result in DNS. In Chapter 3.2., we introduce the 

details of our scenario generation approach based on edge failures and respective edge 

failure probability.  

We compute the set of admissible edge capacities using grid search algorithm (GSA) 

that approximates the feasible region boundaries on a predetermined 𝑛 dimensional 

grid where 𝑛 is the number of decision variables. Checking if a candidate solution (grid 

point) is feasible or not, requires Monte-Carlo simulations as detailed in Chapter 5.1. 

Hence, its computational intensity is directly affected by the choice of 𝑛  that is 

determined by the number of edges that are subjected to capacity expansion. To exploit 

GSA more efficiently, it is proposed to subdivide edges into groups according to their 
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similarities, and assign same additional capacity to the edges that are in the same group. 

In Chapter 3.3., we explain the grouping methods that we use in this study. In Monte-

Carlo simulations we use scenarios generated by an instance of random supply, 

demand and initial edge failures.  

An exemplary real-life infrastructure network that can be considered within the scope 

of our problem is power networks. In power networks, there are generator and load 

busses that corresponds to supply, demand and intermediate nodes in our network 

representation. In power systems, there might be random supply generation if 

renewable energy sources are employed. Moreover, there exist randomness in demand 

in power networks. Lines transmit power through the system, likewise edges transmit 

flow in our case. There might exist both single or multiple line failures in power 

systems. Some of the reasons of these type of failures are maintenance activities, 

natural disasters, terrorist attacks etc. These failures might result to removal 

(dysfunction) of the subjected link which changes the distribution of the power on the 

links. Consequently, the flow on some links might change and exceed its capacity 

(overload), and hence, may result to subsequent link failures, namely, cascading 

failures.  

3.1. Random Supply and Demand 

In our network structure, we consider the stochastic behavior of supply and demand 

which are used for scenario generation during Monte-Carlo simulation. The 

representation of a random variable is a design issue in stochastic problems. It is 

difficult or inconvenient to get samples from a continuous distribution for some 

instances, hence using a discrete representation is more convenient (Chakraborty, 

2015).   In order to generate finite number of scenarios to represent the stochastic 

nature of supply and demand, we employ discretized versions of the normal (d-normal) 

and uniform (d-uniform) distributions. We assume that random supply nodes are 

distributed d-normal with parameters (𝜇𝑗 , 𝜎𝑗) for random supply node 𝑗. On the other 

hand, random demand nodes 𝑗  are distributed either d-normal (𝜇𝑗 , 𝜎𝑗) or d-uniform. 

We obtain d-normal (𝜇𝑗, 𝜎𝑗) distribution as follows. We first let 𝑛𝑖𝑛𝑡 be the number of 

equal length intervals over the range [𝜇𝑗 − 2𝜎𝑗 , 𝜇𝑗 + 2𝜎𝑗]. Then, we split the range into 

𝑛𝑖𝑛𝑡  bins, and use the corresponding (𝑛𝑖𝑛𝑡 + 1)  boundary points of the bins as 

scenarios. Each scenario corresponds to an instance for Monte-Carlo simulation. The 
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d-uniform distribution also uses the same range ([𝜇𝑗 − 2𝜎𝑗 , 𝜇𝑗 + 2𝜎𝑗])  , and same 

𝑛𝑖𝑛𝑡 + 1 boundary points, but this time the probabilities of the boundary points are 

equal.  

As we increase 𝑛𝑖𝑛𝑡, we would be more capable of mimicking continuous distribution. 

On the other hand, total number of scenarios rapidly increases with the increased 

number of intervals. Hence, the trade-off between computation time and total number 

of scenarios must be taken into consideration while designing the numerical solution 

methodology. 

3.2. Initial Edge Failures 

Cascading failure is a sequence of dependent failures of individual components that 

successively weaken the system under consideration (Baldick et al., 2008). Our study, 

analyzes cascading edge failure mechanisms resulted from single or multiple edge 

failures. In the context of our study, a predetermined number of edges and their failure 

probabilities are defined. We employ two different methods to select a predetermined 

number of edges that are subjected to shocks, and are initially failed: (i) utilization-

based, (ii) random.  

In the utilization-based selection, the utilization rate 𝑢𝑟𝑖 of each edge 𝑖 is calculated as 

follows:  

𝑢𝑟𝑖 =  
𝑝𝑖

𝑃̅𝑖

 ∈ [0,1]         (1) 

where 𝑝𝑖 is the flow on edge 𝑖 and 𝑃̅𝑖 is the capacity of edge 𝑖. Utilization rate of edge 

𝑖 is calculated under nominal conditions when there is neither additional edge capacity 

nor initial edge failure. Then, the predetermined number of edges with the largest 𝑢𝑟𝑖 

are selected as the failing edges. In the random selection, however, initially failed 

edges are selected in a uniform random manner, and same certain probability is 

assigned to the edges that are initially failed. 

Initial failure probabilities of the failed edges in utilization-based are determined in 

two ways. In the first one, failure probabilities are calculated based on the normalized 

utilization rates of the selected edges. Normalization is done in a way that total failure 

probabilities of the edges sum up to a certain value in (0,1] that represents the real-life 

characteristics of systems under consideration. In the second one, failure probabilities 
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of the initially failed edges are assigned to a fixed common value. We assume that 

initial edge failures are independent, thus the probabilities of multiple edge failures are 

found by multiplication of the related single edge failure probabilities.  

The utilization-based initially failed edge selection is prominent in the literature 

(Kinney et al., 2005; Cassidy et al., 2016). Intuitively, this method points out the 

targeted attacks or the most expected failures that start from the highest-load edges. 

On the other hand, random failures are likely to occur as a result of a natural event or 

a maintenance activity.   

3.3. Edge Grouping 

To reduce the computational complexity, we reduce the number of decision variables 

by dividing the edges into 2 groups. The same additional edge capacities are allocated 

to the members of the same group by which we can reduce the problem dimension, 

and solve it in a manageable time. This grouping idea is in line with the real-life 

applications and the existing literature (Cassidy et al., 2016; Feinstein et al., 2017, 

Salomon et al., 2020). For instance, Feinstein et al. (2017) exemplify subdivision of 

the nodes which are financial institutions based on their types such as banks, insurance 

companies etc. In Cassidy et al. (2016), the lines in a power grid are divided into two 

categories according to their centrality index.  

We employ two different methods for grouping purposes: (i) utilization-based,              

(ii) eigenvector centrality. In utilization-based grouping, edges are assigned to groups 

based on their utilization rate 𝑢𝑟𝑖 (given in equation (1)). Then, edges with utilization 

rate above a predetermined threshold are assigned to Group-1, and the rest are assigned 

to Group-2.   

The second method, eigenvector centrality measure provides a node criticality index 

that measures node importance based on the importance of its neighbors (Bonacich, 

1972). We employ eigenvector centrality measure to obtain centrality index of the 

edges and use as grouping method as follows. For a given graph 𝒢, we consider the 

edge-edge adjacency matrix 𝐴 = {𝑎𝑖𝑘} for edges 𝑖 and 𝑘 (𝑖, 𝑘 ∈ ℰ) such that 𝑎𝑖𝑘 = 1 

if edges 𝑖 and 𝑘 are neighbors (connected to a common node), and 0 otherwise. Let Ν𝑖 

be the set neighbors of edge 𝑖, the centrality score of node 𝑖 𝜁𝑖 is obtained as follows: 

𝜁𝑖 =
1

𝜆
∑ 𝜁𝑘 =

1

𝜆
∑ 𝑎𝑖𝑘𝜁𝑘.   (2) 

𝑘 ∈ ℰ
 

𝑘 ∈ Ν𝑖
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Equation (21) can be rearranged as the eigenvector equation such that 𝐴𝜁 = 𝜆𝜁. To 

find non-negative 𝜁, the choice of is 𝜆 critical. Perron-Frobenius theorem (Gantmakher, 

1959) states that dominant eigenvalue 𝜆𝐷 of 𝐴 guarantees a unique and non-negative 

solution to 𝜁𝐷 .The components of the related eigenvector 𝜁𝐷  provides accessibility 

indices such that 𝑖𝑡ℎ component of 𝜁𝐷 gives the centrality index of edge 𝑖. Similar to 

the utilization-based method, edges with eigenvector centrality index above a 

predetermined threshold are assigned to Group-1, and the rest are assigned to Group-

2. An edge may have large number of neighbors but relatively low eigenvector 

centrality index if many of those neighbors have similarly low centrality indices. It can 

be regarded as a measure of how important an edge, based on the importance of its 

neighboring edges. To the best of our knowledge, such use of eigenvector centrality 

for edge grouping is new to the systemic risk literature. 

In the next chapter, we explain our modeling framework based on our problem 

definition. Our modeling framework considers the problem features detailed in this 

chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 

CHAPTER 4 

MODELING APPROACH 

Thus far, we defined our problem and the features of the problem. Throughout this 

chapter, we introduce our modeling approach and relations of the models that we use 

to build our cost-optimal capacity expansion framework. Our modeling framework 

starts with the flow-network optimization model (𝐹𝑃), that calculates the flow on the 

edges, overload on the edges and unsatisfied demand for a given edge capacity, an 

instance of supply, demand and an initial failure. If an initial failure triggers cascading 

failures, then (𝐹𝑃) is run repeatedly until system reaches steady-state (when there is 

no other failure), and DNS is calculated directly from at the steady-state. On the other 

hand, if there is no cascade, DNS is directly calculated from the first run of the (𝐹𝑃). 

To calculate DNS distribution, for a given additional edge capacity, which consists of 

the nonnegative elements, the same procedure is applied for all realizations (scenarios) 

of random supply, demand and initial edge failures. DNS distribution is used to check 

whether probabilistic constraint is satisfied for the candidate solution (additional edge 

capacity). Feasibility condition is set via a probabilistic constraint and a boundary 

constraint that is derived from a systemic risk measure. Since the members of 

candidate additional edge capacity are selected as nonnegative, boundary constraint is 

handled prior to the probabilistic constraint.  Then, a candidate solution is said to be 

feasible, if the probability of DNS that is greater than a predetermined threshold is 

acceptably low, and the set of admissible edge capacities is updated accordingly. 

Otherwise, we discard this solution. After completing the probabilistic constraint 

check for every candidate solution, and finding the feasible region, we next, find the 

cost-optimal solution via capacity expansion optimization model. The illustration of 

the relation between the models are given in the following flowchart.   
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Figure 4.1. Flowchart of the Modeling Framework 

The assumptions of our problem that we use to formulate flow-network optimization 

model, systemic risk measure and capacity expansion optimization model are as 

follows.  

• Our problem is not modeled as a design problem such that framework introduced 

in this study works on a given network with certain characteristics.  

• We assume that there exists randomness in supply and demand. 

• Considered network is failure-prone where an initial failure might trigger other 

failures in the system.  

• In this study, we consider edge failures only.  

• To reduce the computational complexity, we divide edges into 2 groups such 

that the same additional edge capacities are allocated to the edges in the same 

group. As a result, the number of decision variables is reduced to 2.   

• We assume that when the system is working under nominal conditions, i.e., 

neither initial failure nor additional capacity, there is neither over capacity 

requirement nor unsatisfied demand. 

• Supply generation from the random supply node is assumed to be priceless. As 

we consider a system that fits to several real-life environments, we assume 

that random supply is priceless. As an example, in power networks, the cost 

of the supply from a renewable energy source can be considered as priceless. 

As a result of this assumption, system wants to utilize from all of the capacity 

of the random supply.  



20 

 

• For a well-defined flow-network problem, we assume total supply capacity is 

greater than or equal to total demand level. 

In the following subchapters, we introduce the flow-network optimization model in 

Chapter 4.1., the systemic risk measure is explained in Chapter 4.2. and the capacity 

expansion optimization model is given in Chapter 4.3.   

4.1. Flow-Network Optimization Model 

We consider a general flow-network represented 66. The node set 𝒱 is the union of 

demand 𝒟, supply 𝒮 and intermediate nodes ℐ node sets. Capacitated supply (source) 

nodes provide positive net flow to the system. On the other hand, demand (sink) nodes 

have negative net flow as being consumption points, and intermediate (transmission) 

nodes, which have zero net flow, establish transfer between supply and demand nodes. 

The edge set ℰ is the union of demand edge ℰ𝐷, supply edge  ℰ𝑆 and intermediate edge 

ℰ𝐼 sets and all of them are capacitated. Supply and demand edges are unidirectional, 

and maintain flow between supply and demand nodes and intermediate nodes. 

However, intermediate edges are bidirectional, and establish transfer between 

intermediate nodes.  

In addition to the topological definition 𝒢  of the network, we let 𝒳  represent the 

stochastic nature of supply generation and demand levels, and deterministic edge 

capacities. We let 𝒮𝑅 ⊆ 𝒮 be the set of supply node indices having random capacity, 

and similarly 𝒟𝑅 ⊆  𝒟 be the set of demand node indices having random demand level. 

Stochastic supply generation and demand levels are introduced to mimic real-life 

environments better, and randomness in supply and demand is prominent in the 

existing literature. The stochastic nature of supply is analyzed in different settings such 

as supply chain networks (Santoso et al., 2005; Govindan et al., 2017) and power 

networks with renewable energy resources (Poudel et al., 2019; Biswas et al., 2019). 

Moreover, networks with random demand is studied in the existing literature (Babayan 

et al., 2005; Hinojosa et al., 2014; Qiu & Wang, 2016). 

The objective of the flow-network optimization model is to minimize the total cost 

with the following components: (i) total cost of flow on edges, (ii) total supply cost, 

(iii) total cost of unsatisfied demand, (iv) total cost of overload, where each of them 

are related to the corresponding decisions. 
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Indices, parameters and decision variables used in the model are given below: 

Indices 

𝑖 ∶ Edge index ∀𝑖 ∈  ℰ 

𝑗 : Node index ∀𝑗 ∈ 𝒱 

Parameters 

𝐿𝑗: Demand level of node 𝑗 є 𝒟 

𝐺̅𝑗: Capacity of supply generation at node 𝑗 ∈ 𝒮 

𝑃̅𝑖: Capacity of edge before investment 𝑖 є ℰ 

ϒ𝑗 : Unit cost of supply at node 𝑗 ∈ 𝒮 

𝜃𝑗: Unit cost of unsatisfied demand at node 𝑗 ∈ 𝒟 

𝛽𝑖 : Unit cost of flow on edge 𝑖 ∈ ℰ 

𝜌𝑖: Unit cost of overload on edge 𝑖 ∈ ℰ 

𝑐𝑖: Additional edge capacity (investment) for edge 𝑖 ∈ ℰ 

𝜈𝑖𝑗 : {
  1,                    

−1,                      

Decision Variables:  

𝑔𝑗: Supply at node 𝑗 ∈ 𝒮 

𝑦𝑗: Fraction of satisfied demand at node 𝑗 ∈ 𝒟    

𝑝𝑖 : Flow on edge 𝑖 ∈ ℰ     

𝑠𝑖: Overload on edge 𝑖 ∈ ℰ 

The flow-network optimization model below, takes as an input graph 𝒢, an instance of 

𝒳 = (𝐿𝑗 , 𝐺̅𝑗 , 𝑃̅𝑖), ∀𝑗 ∈ 𝒱 and ∀𝑖 ∈ ℰ, and additional edge capacity 𝑐𝑖 for edge i, and 

computes the flow in the network as follows: 

 

 

 

 

otherwise 

if edge 𝑖 is outgoing from node 𝑗 
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(FP) 

     𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         ∑ 𝛽𝑖|𝑝𝑖|

∀𝑖 ∈ ℰ

+ ∑ ϒ𝑗𝑔𝑗

∀𝑗 ∈ 𝒮

+ ∑ 𝜃𝑗(1 − 𝑦𝑗)𝐿𝑗  

∀𝑗∈ 𝒟

                                     

+  ∑ ρi𝑠𝑖

∀𝑖 ∈ ℰ

                                                                                   (3)       
 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜            𝑝𝑖 = 𝑔𝑗                                               ∀𝑗 ∈ 𝒮, ∀𝑖 ∈ ℰ𝑗        (4) 

            𝑝𝑖 = 𝑦𝑗𝐿𝑗                                           ∀𝑗 ∈ 𝒟, ∀𝑖 ∈ ℰ𝑗        (5) 

                                    ∑ 𝜈𝑖𝑗 𝑝𝑖 =  0𝑖∈ℰ                                            ∀𝑗 ∈ ℐ          (6) 

                                −(𝑃̅𝑖 + 𝑐𝑖 + 𝑠𝑖) ≤ 𝑝𝑖 ≤ (𝑃̅𝑖 + 𝑐𝑖 + 𝑠𝑖)        ∀𝑖 ∈ ℰ        (7) 

                                   0 ≤ 𝑔𝑗 ≤ 𝐺̅𝑗                                                      ∀𝑗 є 𝒮         (8) 

                                   0 ≤ 𝑦𝑗 ≤ 1                                                       ∀𝑗 є 𝒟          (9) 

                                   0 ≤ 𝑠𝑖                                                                ∀𝑖 ∈ ℰ.       (10) 

We define ℰ𝑗 is the set of edges that connected to node 𝑗 ∈ 𝒱 such that ℰ =∪𝑗 ℰ𝑗. The 

bidirectional edges between intermediate nodes are assigned with arbitrary reference 

directions for modeling purposes. Hence, flow on these edges are allowed to take both 

negative and positive values, bounded by the edge capacity 𝑃̅𝑖. For a well-defined flow 

problem, we assume total supply generation capacity is greater than or equal total 

demand, i.e., ∑ 𝐺̅𝑗 𝑗 є 𝒮 ≥   ∑ 𝐿𝑗  .𝑗 є 𝒟     

Constraints (4) and (5) determine supply generation at node ∀𝑗 є 𝒮  and satisfied 

demand level at node 𝑗 є 𝒟, respectively. The flow balance on intermediate nodes are 

satisfied by constraint (6). Constraints (7) and (8) are capacity constraints for flow on 

edge     𝑖 ∈ ℰ and supply generation at node  𝑗 є 𝒮. Finally, constraints (9) and (10) set 

boundaries for fraction satisfied demand and overload (slack variable).  

The objective function (5) of the flow-network model (FP) provides a flexible 

structure that can be adapted to different real-life applications by tuning the unit cost 

Boundary 

const. 

Flow  

balance 

eqn. 

Capacity 

 const. 
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parameters. For example, for the cases where all demand should be satisfied and 

shortages are not allowed, setting 𝜃𝑗  very large would yield solutions with 𝑦𝑗 =1. On 

the other hand, for cases where overloading the edges is not possible, one should set 

𝜌𝑖 to a very large value.  

Thus far, we have modeled an instance of the flow-network defined by 𝒢 and the flow 

optimization model written for a certain realization of random supply and demand. 

When the system is working under nominal conditions, there is neither over capacity 

requirement nor unsatisfied demand, i.e., the designed network is capable to run the 

system satisfactorily. We now consider that the network is inherently prone to cascaded 

failures triggered by shocks (initial edge failures). We model the initial edge failures 

by 0-1 Bernoulli random variable,  𝜅 = {𝜅𝑖}  for ∀𝑖 ∈ ℰ𝐼  where P ( 𝜅𝑖 11) is the 

probability that an intermediate edge experiences an initial shock. Edge that 

experienced shock is removed from 𝒢 and will not recover until the system reaches 

equilibrium. In case of an edge failure, the propagation mechanism proceeds as follows. 

After an initial failure, the flow problem (FP) is solved and overloaded edges {𝑠𝑖 > 0) 

are failed and, hence, these edges are removed from the graph. This continues until the 

system reaches an equilibrium when there is no new edge failure. At the end of these 

iterations, DNS is calculated as the main output for the systemic risk measure. 

We let Ω  be the finite set of scenarios defined by an instance 𝒳  and  𝜅  which 

corresponds to random supply and demand, and initial failures, respectively. For each 

scenario ω ∈  Ω, we let 𝑞(𝜔) denote the probability of the particular scenario ω. We 

illustrate the simulation process of the initial edge failures with the flowchart in Figure 

4.2., and DNS under scenario ω is calculated using equation, 

∑ (1 − 𝑦𝑗
∗(𝜔, 𝑐)) 𝐿𝑗(𝜔)            (11)    

∀𝑗∈ 𝒟

          
 

where 𝑦𝑗
∗(𝜔, 𝑐) is the optimal fraction of satisfied demand at demand node j, obtained 

from the solution of (FP) given the additional edge capacity vector 𝑐 = {𝑐𝑖} for 𝑖 ∈ ℰ. 
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Figure 4.2. Flowchart of the Failure Propagation Simulation 

Next, we construct a systemic risk measure that finds the edge capacities satisfying a 

certain service level. 

4.2. Systemic Risk Measure 

In the study of Feinstein et al. (2017) systemic risk measure is defined with a random 

variable called as aggregation function Λ that describes a system-wide performance 

metric such as service level, resilience, profit, cost etc., and an acceptability criterion 

𝒜 that defines the subset of the random variables that are acceptable to the regulator 

of the system according to a certain criterion. In this thesis, we select Λ defined using 

DNS that depends on network topology 𝒢, an instance of random supply, demand and 

deterministic edge capacities 𝒳 , random initial failure  𝜅  and the additional edge 

capacity vector 𝑐, i.e., Λ(𝒢, 𝒳,𝜅,c). We consider 𝜉 as the DNS risk level and 𝛼 as the 

corresponding probability risk level, and we define acceptability as the probability that 

DNS is above a certain threshold 𝜉 is within the tolerable limit 𝛼.  

The systemic risk measure is constructed from aggregation function and the notion of 

acceptability as follows, 

              𝑅(𝒢, 𝒳, 𝜅) = {𝑐 ∈ ℝ≥𝑜
𝑛  | Λ(𝒢, 𝒳, 𝜅, 𝑐) ∈  𝒜}                  (12)                                                

                                    = {𝑐 ∈ ℝ≥𝑜
𝑛  | 𝑃(Λ(𝒢, 𝒳, 𝜅, 𝑐)  ≥ 𝜉) ≤ 𝛼}    (13)  

We let Ω𝑟  be the set of scenarios under which resulting DNS is more than 

predetermined threshold level as follows: 
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              Ω𝑟(𝑐) = {𝜔 ∈ Ω | ∑ (1 − 𝑦𝑗
∗(𝜔, 𝑐)) 𝐿𝑗(𝜔) ≥ 𝜉  ∀𝑗 є 𝒟 }.    (14) 

Embedding (12) into equation (11) yields the following equation, 

         𝑅(𝒢, 𝒳, 𝜅) = {𝑐 ∈ ℝ≥𝑜
𝑛  |  ∑ 𝑞(𝜔) ≤  𝛼}

𝜔 ∈ Ω𝑟(𝑐) 
 .            (15) 

Systemic risk measure 𝑅(𝒢, 𝒳, 𝜅) corresponds to the feasible region of our capacity 

expansion optimization model. If, for a particular 𝑐, none of the scenarios result in a 

DNS that is above the threshold, then the set Ω𝑟(𝑐) would be the empty set, and 𝑐 

would be included in 𝑅(𝒢, 𝒳, 𝜅) directly from (15). There is a monotone relationship 

between DNS and additional edge capacity 𝑐 such that DNS is non-increasing in 𝑐. We 

employ a grid search algorithm (GSA) that is designed exploit such monotonicity 

property to compute systemic risk measure 𝑅(𝒢, 𝒳, 𝜅) in (15) as detailed in Chapter 

5.1. In the next chapter, we build the capacity expansion optimization model 

considering the risk measure presented in this chapter as the constraints of the model. 

4.3. Capacity Expansion Optimization Model 

We pose the problem of finding cost-optimal edge capacity expansion plan over 𝓖 as 

a stochastic optimization model: 

  (𝑷𝟒. 𝟏) 

   minimize  𝜂(𝑐)                                          (16)    

   subject to  𝑃(Λ(𝒢, 𝒳, 𝜅, 𝑐)  ≥ 𝜉) ≤ 𝛼 (17) 

     𝑐 ∈ ℝ≥𝑜
𝑛 ,   (18) 

where the non-negative decision vector  𝑐 = [𝑐1, 𝑐2, … , 𝑐𝑛] ∈ ℝ≥𝑜
𝑛   is the additional 

edge capacity. The objective function 𝜂(𝑐) ∈ ℝ represents the monetary value of the 

decision 𝑐. Note here that, since we divide edges into two groups, 𝑛 = 2. The systemic 

risk measure (13) is embedded into (𝑃4.1) such that it defines a feasibility condition 

that guarantees the probability of DNS is above a certain threshold (𝜉) is within the 

tolerable limit 𝛼, for a nonnegative solution. Hence, the choice of 𝜉 and 𝛼 is critical 

since they determine the feasible region for 𝑐, and, consequently, the optimal cost. 

Optimization problem (𝑃4.2) can equivalently be stated using (15) as follows: 
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(𝑃4. 2) 

   minimize  𝜂(𝑐)                                          (19)    

   subject to ∑ 𝑞(𝜔) ≤  𝛼𝜔 ∈ Ω𝑟(𝑐)               (20)     probabilistic const. 

     𝑐 ∈ ℝ≥𝑜
𝑛 .   (21)    boundary const. 

The structure of the model (𝑃4.2) is suitable to test several cost functions that can be 

either linear or nonlinear. Although use of linear cost functions are prominent in the 

literature (Fang et al., 2014; Cassidy et al., 2016), the strength of our approach is the 

capability to handle general nonlinear cost structures. If we would consider a 

monotone increasing cost function than apparently cost-optimal solution will be at the 

boundary of the feasible region, since increasing 𝑐1  and/or 𝑐2  corresponds to 

increasing 𝜂(𝑐). 

Note that, use of the systemic risk measure with a tractable computation procedure 

decreases our search space from ℝ𝑛  to the feasible region which decreases our 

computation time as well. From the optimization perspective, since constraint handling 

are done prior to the objective function calculation, the problem complexity is reduced 

significantly.  

In the next chapter, we provide the details of our solution approach for (𝑃4.2) . We 

use a grid search algorithm to find an approximation for the feasible region of the 

optimization problem (𝑃4.2) (Chapter 5.1). Then, cost-optimal capacity expansion is 

found using DE (Chapter 5.2). 

 

 

 

  

, 
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CHAPTER  5 

  SOLUTION APPROACH 

In this study, our solution approach is based on an iterative methodology which first 

identifies the feasible region dictated by the model constraints (20 − 21), and then, 

finds the optimal solution of the minimization capacity expansion optimization 

problem (𝑃4.2). The flowchart of the solution approach is represented in Figure 5.1. 

Given an initial flow-network, we first group edges as detailed in Chapter 3.3. Next, a 

grid search algorithm is run to identify the feasible set of the (𝑃4.2). We address the 

stochastic nature of supply and demand 𝒳  (Chapter 3.1) and initial edge failures 𝜅 

(Chapter 3.2) by employing Monte-Carlo simulations within a grid search algorithm. 

Given a nonnegative additional edge capacity 𝑐, the model is solved for every scenario 

𝜔, and empirical distribution of DNS is obtained. After that, probabilistic constraint is 

checked. The iteration starting with candidate 𝑐  repeats until feasible region is 

determined (Chapter 5.2). Then, this feasible region is used to create initial population 

of the population-based heuristic algorithm DE, as explained in Section 5.3. The cost-

optimal capacity expansion and corresponding cost are calculated at the final step. 

 

Figure 5.1. Flowchart of the Solution Methodology: The Steps to Find Cost-Optimal 

Additional Edge Capacities. 
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5.1. Grid Search Algorithm 

In our study, feasible region, which are the additional edge capacities that satisfy the 

probabilistic constraint (20)  and boundary constraint (21) , is determined using the 

distribution of DNS given a candidate 𝑐. Furthermore, there is a monotone relationship 

between DNS and additional edge capacity 𝑐 (DNS is non-increasing in 𝑐). Thanks to 

this monotonicity property, finding the feasible region is reduced down to determining 

the boundary of this region. We employ a grid search algorithm (GSA) (Feinstein et 

al., 2017) that is designed exploit such monotonicity property, and to find the boundary 

of the feasible region efficiently. In order to find 𝑐  values satisfying probabilistic 

constraint, at every iteration of GSA, flow model (𝐹𝑃)  coupled with Monte-Carlo 

simulations is run.  

The main steps of GSA are illustrated in Figure 5.2. Since edges are divided into 2 

groups as detailed in Chapter 3.3, in GSA, the region of additional edge capacities is 

approximated by a 2-dimensional grid bounded by minimum and maximum allowable 

additional edge capacities. The accuracy for approximation of the feasible set and run-

time of the algorithm are directly affected by the grid size selection.  

Given a grid and an unknown feasible region boundary, GSA starts by moving along 

the diagonal in direction [1 1]T until it finds the first feasible grid point 𝑐𝑖𝑛𝑡 in this 

direction (Figure 5.2.a.). Then, the grid is divided into 4 quadrants centered at  𝑐𝑖𝑛𝑡. 

Due to monotonicity, all the grid points in Quadrant-I are feasible, whereas all the grid 

points in Quadrant-III except from the boundary of the same quadrant are infeasible 

(Figure 5.2.b.). Feasible grid points in Quadrant-II are determined as follows: Starting 

with  𝑐𝑖𝑛𝑡 , if the current grid point is feasible, GSA moves horizontally to the 

immediate neighbor on the left. Otherwise, if infeasible, GSA moves vertically to the 

immediate neighbor on the top. In a similar fashion as seen in Figure 5.2.c., in 

Quadrant-IV, if the current point is feasible, GSA moves vertically to the immediate 

neighbor on the bottom. Otherwise, if infeasible, GSA moves horizontally to the 

immediate neighbor on the right. The algorithm stops when it hits the grid boundaries 

on Quadrant-II and IV.  Finally, the feasible points visited by GSA and the other 

feasible points identified by monotonicity property constitute the approximation of the 

feasible region as given in Figure 5.2.d. 
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Figure 5.2. Demonstration of the GSA Steps 

5.2. Heuristic Algorithm 

After determination of the feasible region, cost-optimal capacity expansion is found 

using a heuristic algorithm, namely DE. Cost of capacity expansion can be modeled in 

various ways depending on the specific application. In this thesis, we consider the cost 

function given in (22)  that captures immediate cost of investment and the cost of 

future risk. This is an exemplary cost function that is inline with our problem 

environment, other cost structures can also be employed in our problem.  

𝜂(𝑐) = (𝑘1𝑐1 + 𝑘2𝑐2 + 𝑄1𝜙1 + 𝑄2𝜙2) + 𝑘3(1 − 𝑒−𝜆(𝑐1,𝑐2)Θ)    (22) 

In (22), the first component given in parentheses is the immediate cost. The first two 

cost factors 𝑘1  and 𝑘2  represent per unit cost of additional capacity, while 𝑄1  and 

𝑄2 are fixed costs that are incurred when 𝑐𝑖 > 0, that is, for 𝑖 = 1,2: 

a. Diagonal Search b. Quadrant Division 

c. Move in Quadrant-II and IV d.   The Final Grid 
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𝜙𝑖 = {
1, 𝑐𝑖 > 0 
0, 𝑐𝑖 = 0.

            

The second component is to account for the future cost of the decision. We penalize 

the probability that the new system with the expanded capacity fails to achieve 

probabilistic constraint due to system evolution such as, changes in the supply and 

demand characteristics, degradation in edge quality/capacity, etc., before the next 

planned capacity expansion investment in the future. To formulate this, let T denote 

the time until  the probabilistic constraint is not satisfied in the future for selected 

[𝑐1 𝑐2] such that, 

𝐸[T] =
1

𝜆(𝑐1, 𝑐2)
 ,                     (23)   

and Θ be the time until the next capacity expansion study (known a priori). In our 

study, we assume that T is exponentially distributed with rate  

     𝜆(𝑐1, 𝑐2) =
1

𝑐1
+

1

𝑐2
                       (24)            

which is decreasing in 𝑐1 and 𝑐2. Under these definitions, the probability of the future 

risk can be calculated as, 

𝑃(T < Θ) = 1 − 𝑒
−(

1
𝑐1

+
1
𝑐2

)Θ
,   (25) 

and then, the monetary value of the calculated risk is  

𝑘3 (1 − 𝑒
−(

1
𝑐1

+
1
𝑐2

)Θ
).              (26) 

One of the main contributions of our study is the flexibility to handle general edge 

capacity expansion cost structures such as the one given above. To the best of our 

knowledge, the majority of the related literature assumes simpler cost structures (Fang 

et al., 2014; Cassidy et al., 2016; Salomon et al., 2020). 

In order to solve capacity expansion problem (𝑃4.2) with general cost structures, in 

this study, we employ a well-known population-based heuristic algorithm, differential 

evolution (DE). DE has good convergence properties (Storn & Price, 1997), and can 

handle both discrete and continuous decision variables efficiently. The algorithm starts 

with an initial population of size 𝑁  (with each member being 𝑛  dimensional), and 
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continues with mutation, cross-over and selection operations at each generation         

𝑔 = 1,2, . . . , 𝑔𝑚𝑎𝑥 until a stopping criterion is met.  

Mutation 

In the mutation phase, for each individual 𝑥𝑔
𝑗
 of the current population (called as target 

vector), a mutant vector 𝑣𝑔
𝑗
is generated for 𝑗 = 1,2, . . . , 𝑁. There are various mutation 

strategies used in the literature (Mallipeddi et al., 2011). 

In this study, for each target vector, three individuals 𝑥𝑔
𝑗𝑎   ,  𝑥𝑔

𝑗𝑏   and 𝑥𝑔
𝑗𝑐   from the 

population are randomly selected, and the mutant vector is calculated as follows: 

𝑣𝑔
𝑗

= 𝑥𝑔
𝑗𝑎 + 𝐹(𝑥𝑔

𝑗𝑏 − 𝑥𝑔
𝑗𝑐),     (27) 

where 𝐹 is a scaling factor, and usually chosen within the range [0.5,1] (Storn, 1996). 

Cross-over 

Cross-over operation increases the diversity of the population. At this step, the trial 

vector 𝑢𝑔
𝑗

= {uig
j

} for 𝑖 = 1,2, . . . , 𝑛 is generated by applying a uniform cross-over to 

𝑥𝑔
𝑗

= {xig
j

} and 𝑣𝑔
𝑗

= {vig
j

} as follows: 

uig
j

= {
vig

j
          if  rig

j
≤ CR

xig
j

, otherwise
        (28)

 

where rig
j

~U(0,1) and 𝐶𝑅 is the user specified cross-over rate in [0 1]. 

Selection 

 At this step, target and trial vectors are compared with regard to a fitness function    

𝑓(∙), and elitist selection is applied to select a new individual for the next generation 

as follows: 

𝑥𝑔+1
𝑗

= {
𝑥𝑔

𝑗
, if 𝑓(𝑢𝑔

𝑗
) ≤  𝑓(𝑥𝑔

𝑗
) 

𝑢𝑔
𝑗
,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    (29)
 

These three consecutive steps are repeated for each individual in the current population, 

and the next generation is populated until a stopping criterion is reached. The optimal 

solution of the problem is then the individual of the last generation which has the 

lowest fitness value. In this study, we use the following DE parameters: 𝑁 = 100 , 

𝑔𝑚𝑎𝑥 = 250, 𝐹~𝑈(0.2, 0.8), 𝐶𝑅 =  0.6.  
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In the next chapter, we introduce the values of the system parameters and test instances 

for numerical study, and report our findings on the effects of system parameters on the 

feasible region and cost.   
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CHAPTER  6 

 COMPUTATIONAL STUDY 

To test our solution approach, we apply proposed framework to a medium-size 

network. In this section, we report the results of our numerical study that we perform 

using MATLAB (R2016b). Required computational time for the solution of flow-

network optimization problem (𝐹𝑃) is less than 1 sec, and we require 30-45 min. for 

the check of probabilistic constraint of each grid point. Since computation of the 

feasible region depends on both the required time for probabilistic constraint check of 

each grid point and the number of points checked, there is not any exact computation 

time to identify feasible region. Finally, differential evolution (DE) requires 

approximately 5 sec. to find the solution if the maximum number of generations 𝑔𝑚𝑎𝑥 

is selected as 250. 

In particular, we perform an extensive numerical study which aims to show the 

applicability of our framework to a general flow-network, and investigate the 

followings. 

i. The objective function of the flow-network model (FP) provides a flexible structure 

that can be adapted to different real-life applications by tuning the unit cost parameters 

where these parameters might affect the feasible region.  

ii. Eigenvector centrality and utilization-based edge grouping result to different edge 

group assignments. We claim that as eigenvector centrality depends solely on the 

network topology where the more centralized edges (according to eigenvector 

centrality) tend to be in close proximity, the resulting feasible region highly depends 

on the group assignments of initially failed edges. The utilization-based group 

assignment depends on the network topology, supply and demand characteristics, edge 

capacities and flow-network optimization model. Consequently, when we employ 

utilization-based initially failed edge selection in our numerical experiments, the risk 

of decreasing 𝑐1 is more than 𝑐2. Hence, more 𝑐2 is required to decrease 𝑐1 compared 

to required 𝑐1 to decrease 𝑐2. 
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iii. We conjecture that supply and demand characteristics directly affect the feasible 

region and hence, the optimal solution. Both the location of the random supply and the 

parameters of the supply generation would affect the set of admissible edge capacities 

under the same demand distribution and parameters. Demand distribution and 

parameters determine the sample space (scenarios) and the corresponding probability 

of the scenarios. We claim that the increase in sample space range or right tail 

probabilities for random demand nodes under the same sample space leads to 

shrinkage in the feasible region. 

iv. We employ two different selection method for initially failed edges: random and 

utilization-based. Random failures affect any random edge, whereas in utilization-

based method the initially failed edges the most expected failures starting from the 

highest-load. As a result, we foresee that the resulting feasible region will be larger in 

random initially failed edge selection. 

v. DNS and risk thresholds, ξ and α, respectively, are the parameters of the probabilistic 

constraint which is used to define the feasibility. As a result, these parameters directly 

affect the feasible region. We claim if we increase ξ and α, feasible region stays same 

or enlarges.   

In Chapter 6.1., we introduce network topology, network parameters, cost parameters 

of the flow-network optimization problem (𝐹𝑃) and capacity expansion optimization 

problem (𝑃4.2) and test instances for numerical experiments. Then, we discuss our 

findings in Chapter 6.2. 
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6.1. Values of the System Parameters and Test Instances 

We conduct our numerical experiments on a representative flow-network illustrated in 

Figure 6.1. 

 

Figure 6.1. Network Graph. Square Blue Nodes Demonstrate Supply Nodes, Square 

Red Nodes Show Demand Nodes and Circle Black Nodes denote Intermediate 

Nodes. 

In this network, there exist 34 nodes (|𝒱| = 34)and 46 edges (|ℰ|=46). The network 

has 6 demand nodes (|𝒟| = 6), 6 supply nodes (|𝒮| = 6) and 22 intermediate nodes 

(|ℐ| = 22). We assume that one of the supply nodes have stochastic capacity, and 

demand levels of the two demand nodes are random. We assume that random supply 

node is distributed d-normal with parameters (𝜇𝑗 , 𝜎𝑗) for random supply node 𝑗, for  

𝑗 ∈ 𝒮𝑅 . Whereas, random demand nodes 𝑗 are distributed either d-normal (𝜇𝑗 , 𝜎𝑗) or 

d-uniform  [𝜇𝑗 − 2𝜎𝑗 , 𝜇𝑗 + 2𝜎𝑗] . The number of equal length intervals for d-normal 

and d-uniform distribution is 4, i.e., 𝑛𝑖𝑛𝑡 = 4. Hence, the number of corresponding 

boundary points of the bins are 5, and hence, the number of scenarios generated for 

each random node is 5. This leads to 51 = 5 different supply generation scenarios and 

52 = 25  demand level scenarios. The mean and standard deviation of d-normal 

supply generation and demand levels (𝜇𝑗, 𝜎𝑗), and the ranges for d-uniform demand 

levels [𝜇𝑗 + 2𝜎𝑗 , 𝜇𝑗 − 2𝜎𝑗] are given in columns 2 and 5, respectively in Table 6.1. 

Note that, the nodes with deterministic supply generation or demand level are 

represented with 0 standard deviation, i.e., 𝜎𝑗 = 0. Moreover, unit cost of supply 
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generation (𝛾𝑗 ) and unsatisfied demand (𝜃𝑗)  are given columns in 3  and 6 , 

respectively in Table 6.1. The cost of generation for the supply node with stochastic 

capacity is assumed to be negligible compared to the other supply nodes. One example 

for such a case would be renewable (wind, PV) generation in power networks. 

As we consider a general flow-network, the parameters, and hence the results are unit-

less in the numerical experiments. 

 

TABLE 6.1. Supply and Demand Parameters 

Supply Demand 

𝑗 ∈ 𝒮 (𝜇𝑗 , 𝜎𝑗) 𝛾𝑗 𝑗 ∈  𝒟 (𝜇𝑗 , 𝜎𝑗)/ [𝜇𝑗 + 2𝜎𝑗 , 𝜇𝑗 − 2𝜎𝑗]† 𝜃𝑗  

1 (60, 50) 0 7 (65, 10)/  [45,85] 1𝑒 + 07 

2 (80, 0) 50 8 (65, 10)/  [45,85] 1𝑒 + 07 

3 (85, 0) 50 9 (65, 0)  /  [65,65] 1𝑒 + 07 

4 (80, 0) 50 10 (60, 0)  /  [60,60] 1𝑒 + 07 

5 (95, 0) 50 11 (50, 0)  /  [50,50] 1𝑒 + 07 

6 (70, 0) 50 12 (50, 0)  /  [50,50] 1𝑒 + 07 

† The distribution of the demand level is either d-normal with parameters (𝜇𝑗, 𝜎𝑗) or d-uniform with 

parameters [𝜇𝑗 + 2𝜎𝑗 , 𝜇𝑗 − 2𝜎𝑗]. 

 

The capacities (𝑃̅𝑖) of the intermediate edges are randomly assigned to 45, 50 and 55. 

The supply and demand edges are introduced for modeling purposes, and are given 

very large capacity (1𝑒 + 05) compared to intermediate edges between. In Appendix 

I, the capacities that are assigned to each edge is given in detail. In our experiments, 

only intermediate edges (𝑖 ∈ ℰ𝐼 ) are subjected to capacity expansion, and initially 

failed edges are also selected among these edges (34 edges in total). The two costs 

associated with the edges in (𝐹𝑃)  are same for supply, demand and intermediate 

edges, and are taken as 𝛽𝑖 = 1 and 𝜌𝑖 = 1𝑒 + 03 , for the unit cost of flow and 

overload, respectively. 

We define the set of initially failed edges under the subset ℰ𝐼𝐹 ⊂ ℰ. The selection 

methodology and probability assignment to the initially failed edges are explained in 

Chapter 3.2. The maximum number of edges that are exposed to initial shocks 

simultaneously are taken to be 10% of total number of edges that can fail. Therefore, 

in our network, the number of initially failed edges is less than or equal to 4 depending 

on the scenarios generated, i.e., |ℰ𝐼𝐹| ≤ 4. In total, there are 24 = 16 initial failure 

scenarios which composed of 1  no initial failure, 4  single line failures, 6  two 
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simultaneous edge failures, 4  three simultaneous edge failures and 1  four 

simultaneous edge failure scenarios. Overall, given a nonnegative additional edge 

capacity 𝑐 = [𝑐1 𝑐2] ,i.e., 𝑐1 ≥ 0 and 𝑐2 ≥ 0, we run 2000 Monte-Carlo simulations 

to find the distribution of DNS and check probabilistic constraint as detailed in Table 

6.2. below. 

 

 TABLE 6.2. Number of Scenarios 

Random Supply 

Amount  

Random 

Demand Level 

Initial Edge 

Failure 
Total 

51 52 24 2000 

 

The parameters of the objective function of the problem (𝑃4.2) (cost function (22)) 

are given in Table 6.3. Moreover, in the numerical studies, 𝜉 is selected as 10% of the 

expected total demand ∑ 𝜇𝑗𝑗∈ 𝒟 , and 𝛼 is selected as 0.05. The parameters introduced 

thus far were at nominal conditions, and are referred to as base case parameters 

hereafter. 

 

TABLE 6.3. Objective Function (𝜂(𝑐)) Parameters 

𝑘1 𝑘2 𝑘3 𝑄1 𝑄2 Θ 

150 190 5000 750 1900 1 

 

For the numerical experiments, the test instances (TI) in Table 6.4. are used throughout 

this chapter. In this table, diamond (⋄) represents base case parameter, whereas star 

 (⋆)  shows a change in the parameter. 
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TABLE 6.4. Test Instances (𝑇𝐼) 

 
Edge 

Grouping 

Initial Failure 

Probability of 

Edge 𝑖, 𝑖 ∈ ℰ𝐼𝐹 

 

Supply 

Characteristics 

Demand 

Characteristics 
𝜉 𝛼 

𝑇𝐼1 eig. centrality 0.1 ⋄ ⋄ ⋄ ⋄ 

𝑇𝐼2 util. based 0.1 ⋄ ⋄ ⋄ ⋄ 

𝑇𝐼3 util. based 0.1 ⋄ ⋆ ⋄ ⋄ 

𝑇𝐼4 eig. centrality 0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ) ⋄ ⋄ ⋄ ⋄ 

𝑇𝐼5 util. based 0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ) ⋄ ⋄ ⋄ ⋄ 

𝑇𝐼6 eig. centrality 0.1 ⋆ ⋄ ⋄ ⋄ 

𝑇𝐼7 eig. centrality 0.1 ⋄ ⋆ ⋄ ⋄ 

𝑇𝐼8 util. based 0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ) ⋄ ⋄ ⋆ ⋄ 

𝑇𝐼9 util. based 0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ) ⋄ ⋄ ⋄ ⋆ 
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6.2. Results 

In this part, we demonstrate the feasible region boundaries resulting from various 

experiments using test instances in Table 6.4., and we discuss the effect of parameter 

changes on decision, and hence, cost. The feasible region boundary provide 

approximation to the feasible set of additional edge capacity 𝒄 (each 𝒄 corresponds to 

a grid point in GSA). For each additional edge capacity vector c, the sum of the 

probabilities of total demand-not-satisfied (DNS) that are above a certain threshold 

(𝝃) is compared to the risk threshold 𝜶. A grid point is said to be feasible is sum of the 

probabilities of DNS that are above 𝝃 is less than 𝜶, and not feasible, otherwise. see 

Figure 6.2.a. for an illustrative example of DNS distribution for a feasible grid point, 

and see Figure 6.2.b. for an infeasible example.  

 

 

Figure 6.2. Distribution of DNS for a Given Additional Edge Capacity 𝑐. 

In the following subchapters, we discuss the effect of system parameters on the 

resulting feasible region and cost of the optimal capacity expansion.  

 

6.2.1. Effects of Changes in Flow-Network Model Parameters 

The objective function of the flow-network model (𝐹𝑃) given below is composed of 

total cost of flow on edges (∑ 𝛽𝑖|𝑝𝑖|∀𝑖 ∈ ℰ ) , total supply cost (∑ ϒ𝑗𝑔𝑗∀𝑗 ∈ 𝒮 ), total cost 

of unsatisfied demand (∑ 𝜃𝑗(1 − 𝑦𝑗)𝐿𝑗  ∀𝑗∈ 𝒟 ) and total cost of overload (∑ ρi𝑠𝑖∀𝑖 ∈ ℰ ). 

For every cost component, there is a decision variable and corresponding cost 

parameter. 

∑ 𝛽𝑖|𝑝𝑖|

∀𝑖 ∈ ℰ

+ ∑ ϒ𝑗𝑔𝑗

∀𝑗 ∈ 𝒮

+ ∑ 𝜃𝑗(1 − 𝑦𝑗)𝐿𝑗 + ∑ ρi𝑠𝑖

∀𝑖 ∈ ℰ

 

∀𝑗∈ 𝒟

 

a. Feasible 𝑐 b. Infeasible 𝑐 
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The function given above provides a flexible structure that can be adapted to different 

real-life applications by tuning the unit cost parameters. For example, for the cases 

where all the demand should be satisfied and shortages are not allowed, setting the unit 

cost of unsatisfied demand  (𝜃𝑗)  on edge 𝑗 ∈ 𝒟 very large would yield solution where 

the fraction of satisfied demand is equal to 1, i.e., 𝑦𝑗 = 1. On the other hand, if service 

level requirement is not very high (unsatisfied demand is allowed), one can set 𝜃𝑗  is 

relatively small. Moreover, for cases where overloading the edges (𝑠𝑖 > 0) is not 

possible, one should set the unit cost of overload 𝜌𝑖 to a very large value.  

Figure 6.3 below shows the resulting feasible region boundaries for different 𝜃𝑗  and 

𝜌𝑖, in 𝑇𝐼1. As given in Figure 6.3.a., we first run GSA for three different 𝜃𝑗  under the 

same 𝜌𝑖 , where 𝜃𝑗 = 1𝑒 + 07 in the base case, and we test 𝜃𝑗 = 1𝑒 + 02 and 𝜃𝑗 =

1𝑒 + 12. Figure 6.3.a. shows that the current system is capable enough to satisfy 

probabilistic constraint (20), which is (∑ 𝑞(𝜔) ≤  𝛼𝜔 ∈ Ω𝑟(𝑐)  ), when the penalty for 

shortages are low, i.e., 𝜃𝑗 = 1𝑒 + 02. Intuitively, in this case, failure cascades can be 

stopped at earlier stages by allowing some unsatisfied demand, and hence, failure is 

not propagated through the entire system. Next, we test the base case where 𝜃𝑗 = 1𝑒 +

07. We observe that feasible region shrinks with the increase in 𝜃𝑗 . Finally, we set 𝜃𝑗  

to a very large number, i.e., 𝜃𝑗  = 1𝑒 + 12, to demonstrate the problem environments 

where demand shortages are not allowed. We observe that, this case yields no feasible 

solution on the grid as given in Figure 6.3.a. This implies that if we do not allow 

shortages at earlier stages, cascading failures might not be stopped until a complete 

failure if edge capacities are not very high. In real-life there can be very high service 

level requirements (the cost of unsatisfied demand very high), for such cases, it is 

recommended to increase edge capacities to mitigate the risk of complete failure.  

 Figure 6.3.b. shows the resulting feasible region of the experiments where we test the 

effect of change the  𝜌𝑖 under the same 𝜃𝑗 . We set 𝜌𝑖 as 0.5𝑒 + 03, 1𝑒 + 03, and 1𝑒 +

07, where 𝜌𝑖 = 1𝑒 + 03 is the base case parameter. Figure 6.3.b. reveals that feasible 

shrinks as we decrease the unit cost of overload 𝜌𝑖. We claim that when 𝜌𝑖 decreases 

under the same 𝜃𝑗 , system allows more overloads, and hence, failure propagation tend 

to move further. Hence, the failure propagation might not stop at early stages and result 

in a larger DNS with smaller 𝜌𝑖, compared to larger choice of 𝜌𝑖. As a result, risk 

increases and feasible region shrinks with the decrease in 𝜌𝑖. 
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Figure 6.3. Feasible Region Boundaries for Different 𝜃𝑗  and 𝜌𝑖. 

Table 6.5. shows the optimal capacity expansion and cost for the cases above. Even 

though the current system is capable enough to satisfy probabilistic constraint (20), 

it has a risk of not satisfying (20) in the future. Therefore, there exist a cost for 

future risks as given in the first row of the Table 6.5. We also show that, since 

feasible region shrinks with the decrease in 𝜌𝑖, 𝜂(𝑐𝑇𝐼1
∗ ) decreases as given in the 

below table. 

 

TABLE 6.5. Optimal Capacity Expansion and Cost for 𝑇𝐼1 under different 𝜃𝑗 and 𝜌𝑖 

𝜃𝑗  𝜌𝑖 𝑐𝑇𝐼1
∗  𝜂(𝑐𝑇𝐼1

∗ ) 

1𝑒 + 02 1𝑒 + 03 [0.0 0.0] 5000.0 

1𝑒 + 07 1𝑒 + 03 [5.0 10.0] 6595.9 

 0.5𝑒 + 03 [12.0 11.0] 7339.5 

1𝑒 + 07 1𝑒 + 03 [5.0 10.0] 6595.9 

 1𝑒 + 07 [4.6 4.1] 5966.6 

 

6.2.2. Effects of Changes in Edge Grouping Method  

In this study, we employ two different edge grouping methods as detailed in Chapter 

3.3. Figure 6.4. shows group assignments of the edges resulting from eigenvector 

centrality methods and utilization-based methods, and Table A.2.1. in Appendix II 

provide more details regarding to edge indices and corresponding groups. For TI1, TI2 

and TI3 in Figure 6.4., we illustrate Group-1 edges in green and Group-2 edges in 

magenta. Group-1 and Group-2 edges in eigenvector centrality are concentrated in 

a. Changes in cost of unsatisfied demand b. Changes in cost of overload 
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separate regions of the graph. This is expected, since, in eigenvector centrality method, 

edges with high "importance" tend to be together as a single connected sub-graph. On 

the other hand, in utilization-based grouping, edges in a certain group are more 

dispersed throughout the network. The topology of the sub-graphs corresponding to 

each group is dependent on edge capacities, supply and demand characteristics. For 

example, compared to Figure 6.4.b., in Figure 6.4.c., mean demand at nodes 7 and 8 

are decreased by 10, while mean demand at nodes 9 and 10 are increased by the same 

amount. The resulting grouping shows that the edges between nodes 31-32, 18-29 and 

18-30 switch groups. Eigenvector centrality is, however, dependent only on the 

network topology, and is invariant to changes in network parameters. 

 

  

 

 

 

 

Figure 6.4. Demonstration of the Edge Group Assignments on the Network Graph. 

Green Colored Edges are Group-1, whereas Magenta Colored Edges are Group-2. 

 

 

b. 𝑇𝐼1, Eigenvector Centrality 

c. 𝑇𝐼3, Utilization-Based 

b. 𝑇𝐼2, Utilization-Based 
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In order to investigate the effect of edge grouping method on the feasible region, the 

boundaries of the regions generated by eigenvector centrality and utilization-based 

methods are compared using 𝑇𝐼1 − 𝑇𝐼2, and  𝑇𝐼4 − 𝑇𝐼5. Different groupings of the 

two methods result in different feasible region boundaries for 𝑇𝐼1 − 𝑇𝐼2 as given in 

Figure 6.5.a. Since the eigenvector centrality results in two connected sub-graphs 

(groups), edges in these sub-graphs are critical for proper functioning of the entire flow 

network. If any of these groups are subjected to initial shocks, some of the demand 

nodes may not be adequately served. Since we employ same method to select initially 

failed edges in all of the test instances used in this experiment (𝑇𝐼1, 𝑇𝐼2 , 

𝑇𝐼4, and 𝑇𝐼5), edges between nodes 19 − 25 , 20 − 21 , 16 − 19  and 17 − 27  are 

initially failed. However, these edges fall in different groups in different grouping 

methods: in 𝑇𝐼1 and 𝑇𝐼4 (eigenvector centrality), there is only 1 initially failed edge 

in Group-1 and 3  edges in Group-2; in 𝑇𝐼2  and 𝑇𝐼5  (utilization-based), all of the 

initially failed edges are in Group-1. Consequently, for 𝑇𝐼1 there is a trade-off between 

𝑐1 and 𝑐2, but 𝑐1 is allowed to be 0, since there is only 1 initially failed edge in Group-

1. On the other hand, for 𝑇𝐼2, 𝑐1 must be above a certain level, to compensate the 

capacity loss experienced due to initially failed Group-1 edges as shown in Figure 

6.5.a.  

As given in Figure 6.5.b., a similar trade-off is observed in 𝑇𝐼4, but unlike 𝑇𝐼1, both 

𝑐1 and 𝑐2 are allowed to be 0. If we consider the points where boundary hits to 0 on 

both axes, it can be said that 𝑐2 requires more guarantee than 𝑐1, to be 0 (see Figure 

6.5.b). On the other hand, we observe the opposite tendency for 𝑇𝐼5.  

 

Figure 6.5. Feasible Region Boundaries for Eigenvector Centrality and Utilization-

Based Edge Grouping. 

b. Initial Failure Probability = 

0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ) 
a. Initial Failure Probability = 0.1 
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After finding the feasible regions for  𝑇𝐼1 − 𝑇𝐼2 , and  𝑇𝐼4 − 𝑇𝐼5 , we solve the 

capacity expansion optimization problem (𝑃4.2) using DE. In the following table the 

cost-optimal edge capacity expansions 𝑐∗ and corresponding costs 𝜂(𝑐∗) is given.  

 

TABLE 6.6. Optimal Capacity Expansion and Cost for 𝑇𝐼1, 𝑇𝐼2, 𝑇𝐼4 and 𝑇𝐼5 

 𝑐∗ 𝜂(𝑐∗) 

𝑇𝐼1 [5.0 10.0] 6595.9 

𝑇𝐼2 [11.0 4.4] 6498.6 

𝑇𝐼4 [4.6 4.1] 5966.6 

𝑇𝐼5 [4.6 4.1] 5966.6 

 

As given in Table 6.6., 𝑐𝑇𝐼4
∗  and 𝑐𝑇𝐼5

∗  are the same, and hence, 𝜂(𝑐𝑇𝐼4
∗ ) and 𝜂(𝑐𝑇𝐼5

∗ ). On 

the other hand, 𝑐𝑇𝐼1
∗  and 𝑐𝑇𝐼2

∗  are not even in the feasible region of 𝑇𝐼2 and 𝑇𝐼1 , 

respectively. This implies that optimal solution highly depends on the edge grouping 

method. Therefore, the selection of a proper edge grouping method considering the 

nature of the specific real-life application is critical. 

 

6.2.3. Effects of Changes in Supply and Demand Characteristics 

In this chapter, we investigate the impact of changes in supply characteristics in TI6. 

We first start with the base case where the random supply is located at node 1, i.e., 

𝒮𝑅 = {1} with capacity distribution d-normal (60, 5). Keeping the random supply at 

node 1, we first test another case with a reduced mean of 50, d-normal (50, 5). As 

shown in Figure 6.6.a., reduction in random supply mean (while keeping the demand 

constant) resulted in a narrower feasible region for 𝒮𝑅 = {1}. We conjecture that this 

behavior is observed, because, when the random supply generation (cost-less, 𝛾1 = 0, 

in flow network (𝐹𝑃)) is reduced, the other (deterministic) supply nodes have to take 

up the slack, and may cause "congestion" in other parts of the network, which in turn 

increases the cascading failure risk.  

We further conjecture that this phenomenon is also dependent on the location of the 

random supply node. To test this, we move the location of random supply to the other 

nodes in separate tests, and recompute the corresponding feasible regions. Nodes 

1, 2 and 4 are at the right section of the graph, especially, nodes 1 and 2  are in close 

proximity to each other at the upper right section. On the other hand, nodes 3, 5 and 6 

are at the left section of the graph and distant from the nodes 1, 2 and 4. When the 
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random supply node is located at node 2 (see Figure 6.6.b.) and 4 (see Figure 6.6.d.), 

the feasible region boundaries for d-normal (50,5) and (60,5) are qualitatively similar 

to Figure 6.6.a. Whereas, we observe no differences in feasible region boundaries for 

d-normal (50,5) and (60,5) at nodes 3 and 5, as given in Figure 6.6.c. and Figure 

6.6.e., respectively. In Figure 6.6.f., where the random supply is located at node 6, the 

relative positions of the feasible region boundaries for d-normal (50,5) and (60,5) is 

opposite of the node 1, 2 and 4. At this case, feasible region shrinks slightly as with 

the increase in supply mean. 

In addition, as random supply is moved between nodes under a certain fixed mean 

(either 50 or 60), the feasible region boundary also moves. All these observations 

support our conjecture that the location of the random supply, which is costless, is an 

important factor for the boundaries of the feasible region. From the perspective of 

practitioners, for example in power grids, proper selection of the location of renewable 

sources are critical achieve the global cost-optimal solution for the entire network. 
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Figure 6.6. Feasible Region Boundaries for Different Locations of Random Supply 

Node with Means 50 and 60. 

 

 

 

c. Random supply is at node 3 d. Random supply is at node 4 

a. Random supply is at node 1 b. Random supply is at node 2 

f. Random supply is at node 5 e. Random supply is at node 6 
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After analyzing the effect of changes in supply characteristics, the effect of demand 

level distributions on the feasible region is studied under 𝑇𝐼7 as given in Figure 6.7.  

We employ d-normal and d-uniform distributions for random demand and generate 

scenarios accordingly as explained in Chapter 3.1. In this experiment, we run GSA for 

d-normal and d-uniform demand level distributions with parameters (65, 5), (65, 10) 

and [50.8, 79.1], [45, 85], respectively. The base case parameters are (65, 10) for d-

normal and [45, 85] for d-uniform, where 𝜇𝑗 = 65 and 𝜎𝑗 = 10 for both of them, and 

the set of random demand nodes is 𝒟𝑅 = {7,8}.  

First, we test the change in standard deviation using d-normal (65, 5) and (65, 10), 

where the range sample values are [55, 75] and [45, 85], respectively.  The range of 

sample values depends on the standard deviation under the same mean value. Since    

d-normal (65, 5) has a tighter range of sample values than d-normal (65, 10), it has 

lower risk of violating the probabilistic constraint (20), which is (∑ 𝑞(𝜔) ≤𝜔 ∈ Ω𝑟(𝑐) 

 𝛼 ), as given in Figure 6.7.a. We further test the change in standard deviation using        

d-uniform [50.8, 79.1]  and [45, 85] . Similarly, we observe that, feasible region 

shrinks with the increase in standard deviation (see Figure 6.7.b.). Since d-uniform 

[50.8, 79.1] has tighter range of sample values and lower standard variation, which is 

10.0, than d-uniform [45,85] (standard deviation is 14.14), and hence, it has lower risk 

of violating (20) compared to d-uniform [45, 85], as given in Figure 6.7.b.  

Next, we test the change in distribution of demand level under the same mean and 

standard deviation. In Figure 6.7.c., d-uniform [50.8, 79.1] is compared to d-normal 

(65,10) , where d-uniform [50.8, 79.1]  has tighter range of sample values that               

d-normal (65,10)  (sample space range is [45, 85]). Like in the previous two 

experiments, feasible region shrinks as the range of sample values enlarges. Finally, 

in Figure 6.7.d., the effect of the demand level distribution on the same range is tested. 

Note that, the standard deviation of the d-uniform on the range [45, 85] is 14.14, 

whereas standard deviation of d-normal (65,10)  is 10. In this case, right tail 

probabilities of d-uniform distribution are larger than d-normal, and hence, d-uniform 

has higher risk than d-normal under  𝑇𝐼7. 
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Figure 6.7. Feasible Region Boundaries for Different Demand Level Distributions. 

 

We next conduct a similar experiment by changing the demand mean under the 

standard deviation. In specific, we compare the cases d-normal (60,10) and d-normal 

(70,10) with the base case d-normal (65,10). As given in Figure 6.8., we observe that 

the feasible region shrinks with the increase in mean. Consequently, cost of the optimal 

capacity expansion increases, see Table 6.7. Note that, optimal cost increases by 10% 

when demand mean is increased by 5, whereas the increase in cost is 30% if the 

increase in demand mean is 10. The rate of increase in optimal cost is greater than the 

rate of increase in demand mean. 

b. Changes in the d-uniform 

parameters 

 

a. Changes in the d-normal parameters 

c. Changes in demand level distribution 

under same sample space range 

d. Changes in demand level distribution 

under same standard deviation 
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Figure 6.8. Feasible Region Boundaries for Different Demand Level Means. 

  

TABLE 6.7. Optimal Capacity Expansion for 𝑇𝐼7 under Different Demand Means 

(𝜇, 𝜎) 𝑐𝑇𝐼7
∗  𝜂(𝑐𝑇𝐼7

∗ ) % Increase 

(60, 10) [5.0 5.0] 5998.4 − 

(65, 10) [5.0 10.0] 6595.9 10% 

(70, 10) [9.0 16.0] 7836.9 30% 

 

 

6.2.4. Effects of Changes in Initial Edge Failure  

Scenario generation for initial edge failures (𝜅) are explained in detail in Chapter 3.2.  

10 different set of initially failed edges are selected randomly, and GSA is run 10 times 

to approximate their feasible regions under 𝑇𝐼1 and 𝑇𝐼2. We observe that feasible 

region resulting from random selection is larger than utilization-based selection in all 

of the tests. This is an expected outcome, since failures in utilization-based selection 

are on the edges that are most overloaded, and hence, the failure on these edges 

increase the “congestion” in the other parts of the network. As a result, risk due to the 

failures in the most utilized edges are more than the random initial edge failures. 

Hence, the cost of capacity expansion for utilization-based initial failures is greater 

than or equal to the capacity expansion cost of random initial failures. It can be said 

that more investment is required to decrease the impact of targeted failures on the most 

utilized edges (e.g., terrorist attacks) compared to random failures (e.g., natural 

disasters). In Table 6.8. below, we give the minimum cost of utilization-based selection 

and average cost of random selection of the 10 run.  
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TABLE 6.8. Optimal Capacity Expansion for 𝑇𝐼1 and 𝑇𝐼2 under Different Initial 

Edge Failure Selection 

 
Initial Edge Failure 

Selection Method 

Initial Failure Probability of 

Edge 𝑖, 𝑖 ∈ ℰ𝐼𝐹 

 

𝜂(𝑐∗) 

𝑇𝐼1 util. based 0.1 6595.9 

𝑇𝐼1 random 0.1 5919.8 

𝑇𝐼2 util. based 0.1 6498.6 

𝑇𝐼2 random 0.1 5913.3 

 

  

6.2.5. Effects of Changes in the Parameters of Probabilistic Constraint 

 In 𝑇𝐼8 and 𝑇𝐼9, we experiment the effect of DNS and risk thresholds, 𝜉 and 𝛼, 

respectively. These are the parameters of the probabilistic constraint (20), which is 

∑ 𝑞(𝜔) ≤  𝛼𝜔 ∈ Ω𝑟(𝑐) , where Ω𝑟(𝑐) = {𝜔 ∈ Ω | ∑ (1 − 𝑦𝑗
∗(𝜔, 𝑐)) 𝐿𝑗(𝜔) ≥ 𝜉  ∀𝑗 є 𝒟 } 

and 𝑞(𝜔) is the probability of the scenario 𝜔. 

We first test the change in 𝜉 under the same 𝛼. For this test, we set 𝜉 as 0.1, 0.2 and 

0.3, where the base case is 0.1. Note that  is represented as percentage of the expected 

total demand, hence 𝜉 = 0.1 defines 10% of the total demand (0.1 × ). As 

given in Figure 6.9.a. feasible region enlarges with the increase in 𝜉, and hence, the 

cost of optimal capacity expansion decreases or stays the same, as expected. Next, we 

run GSA for different values of 𝛼 under the same 𝜉. We set 𝛼 as 0, 0.01 and 0.05, 

where the base case is 0.05. Similarly, along with the increase in 𝛼, feasible region 

enlarges (see Figure 6.9.b.). Note that, 𝛼 = 0 does not yield any feasible 𝑐 on the grid 

under consideration.    
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Figure 6.9. Feasible Region Boundaries for Different 𝜉 and 𝛼 

We further test how the cost of future risk (𝑘3) changes the optimal solution, and 

summarize the results in Table 6.9. When cost of future risk (𝑘3 = 5000)  is 

significantly higher than the values of the immediate cost parameters, the optimal 

solution 𝑐∗  responds to changes in 𝜉  and 𝛼 , whereas the optimal cost  

𝜂(𝑐∗) is relatively insensitive. On the other hand, when all the cost components are 

comparable (when 𝑘3 = 1000), both  𝑐∗and 𝜂(𝑐∗) are sensitive to changes in 𝜉 and 𝛼. 

Furthermore, because 𝑐2 has relatively large fixed cost, the solution drives 𝑐2 to 0 at 

all instances. 

 

TABLE 6.9. Optimal Capacity Expansion for 𝑇𝐼8 and 𝑇𝐼9 under Different  

𝜉 and 𝛼 Values 

𝑘3 𝜉† 𝛼 𝑐∗ 𝜂(𝑐∗) 

 10% 0.01 [6.0 5.0] 6034.8 

5000 10% 0.05 [4.6 4.1] 5966.6 

 30% 0.05 [1.0 0.0] 5900 

 10% 0.01 [10.0 0.0] 3250 

1000 10% 0.05 [3.0 0.0] 2200 

 30% 0.05 [1.0 0.0] 1900 

 

† 𝜉 is represented as percentage of the expected total demand. 

 

 

 

 

 

 

a. Change in  𝜉  b. Change in 𝛼 
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As a summary of the numerical study, we investigated and resulted the followings.  

i.  Effects of Changes in Flow-Network Problem Parameters 

Feasible region shrinks with the increase in the cost of unsatisfied demand 𝜃𝑗  under 

the same 𝜌𝑖, whereas feasible region expands with the increase in the cost of overload 

𝜌𝑖 under the same 𝜃𝑗 . 

ii. Effects of Changes in Edge Grouping Method 

For the test instances that we assign 0.1 as initial failure probability, we find the 

followings. In eigenvector centrality edge grouping, there is a trade-off between 𝑐1 and 

𝑐2, but 𝑐1 is allowed to be 0, since there is only 1 initially failed edge in Group-1. On 

the other hand, in utilization-based, 𝑐1 must be above a certain level, to compensate 

the capacity loss experienced due to initially failed Group-1 edges. We observe similar 

behavior when the initial failure probability is taken as 0.1(𝑢𝑟𝑖 Σ𝑢𝑟𝑗⁄ ).  The main 

difference is that in this test instance, boundary hits to 0 on both axes in eigenvector 

centrality edge grouping. 

iii. Effects of Changes in Supply and Demand Characteristics 

Reduction in random supply mean (while keeping the demand constant) resulted in a 

narrower feasible region when random supply is located at nodes 1, 2 and 4. We 

conjecture that this behavior is observed, because, when the random supply generation 

(cost-less, 𝛾1 = 0, in flow network (𝐹𝑃)) is reduced, the other (deterministic) supply 

nodes have to take up the slack, and may cause "congestion" in other parts of the 

network, which in turn increases the cascading failure risk. On the other hand, we 

observe an opposite behavior is observed when the random supply node is 6, and no 

differences in feasible region boundaries when the same supply means are tested as in 

nodes 1, 2, 4 and 6. In addition, as random supply is moved between nodes under a 

certain fixed mean (either 50 or 60), the feasible region boundary also moves.  

Increase in random demand sample space (while keeping the supply constant), results 

in shrinkage in the feasible region. On the other hand, risk increases if we increase the 

demand standard deviation under the same sample space. In addition, we observe that 

the feasible region shrinks with the increase in mean, and hence, the cost of the optimal 

capacity expansion.  

iv. Effects of Changes in Initial Edge Failure   

We select 10 different set of initially failed edges randomly, and run the GSA. We 

observe that feasible region resulting from random selection is larger than utilization-
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based selection. As a result, more investment is required to decrease the impact of 

targeted failures on the most utilized edges (e.g., terrorist attacks) compared to random 

failures (e.g., natural disasters). 

v. Effects of Changes in the Parameters of Probabilistic Constraint 

Feasible region enlarges with the increase in 𝜉 (while keeping 𝛼 constant) and hence, 

the cost of optimal capacity expansion decreases or stays the same, as expected. 

Likewise, along with the increase in 𝛼, feasible region enlarges (see Figure 6.9.b.). 

Note that, 𝛼 = 0 does not yield any feasible 𝑐 on the grid under consideration.   
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CHAPTER  6 

CONCLUSIONS AND FUTURE STUDIES 

In this study, we introduced a capacity expansion framework to guarantee a certain 

service level in failure-prone flow-networks. The problem was formulated as a general 

stochastic optimization model (capacity expansion optimization model) that aims to 

minimize the total cost of additional edge capacities. Our model allows us to handle 

different cost structures (linear or non-linear) corresponding to the nature and 

operation of different systems. We considered a non-linear cost structure that captures 

both the immediate cost of investment and the cost of future risk. A population-based 

heuristic algorithm, differential evolution (DE) was employed to compute the cost-

optimal additional edge capacities. The constraints of the capacity expansion 

optimization model are related to the systemic risk measure which composed of two 

elements: aggregation function and acceptability criterion. Aggregation function 

gives us the distribution of total demand-not-satisfied (DNS), and acceptability 

criterion is the probability of DNS that is above a certain threshold is less than a risk 

threshold. Hence, feasible region is defined by the additional edge capacities that 

makes the current system acceptable. To approximate the feasible region, we used a 

grid search algorithm where the stochastic nature of supply and demand, and initial 

edge failures are addressed by Monte-Carlo simulations. We performed a series of 

numerical experiments to understand the effects of system parameters on feasible 

regions, optimal capacity expansion and their costs using a medium-size general flow-

network. 

Practitioners from several real-life application areas might benefit from the framework 

introduced in this study. Both the constraints and the objective function can be defined 

according to the problem environment. As an example, in a supply chain environment 

aggregation function can be considered as a system performance indicator and the 

acceptance criterion might be changed accordingly. Moreover, we can simulate node 

failures (company) instead of edge failures, and capacity expansion can be defined for 
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nodes. Similarly, the objective function might be selected among the ones that fit 

supply-chain context. 

The choice flow-network problem parameters depend on the problem environment, 

and they are selected accordingly. There might be some cases where high amount of 

penalties applied to unsatisfied demand or edge overloads are not possible. We can 

adapt our problem to such cases by tuning the cost parameters of the flow-network 

optimization model. Numerical results show that these parameters directly affect the 

feasible region, and hence the optimal solution. As a result, it is critical to understand 

problem environment, and decide on the problem parameters accordingly. We further 

observe different edge grouping methods result in different feasible regions, 

consequently, cost-optimal capacity expansion might change. Therefore, selecting a 

proper edge grouping method that is in line with the nature of real-life application is 

critical. Another observation is that the location and the capacity of random (cost-less) 

supply together determine shrinkage or expansion of the feasible region. Thus, both 

location and capacity of the supply nodes are important factors for achieving the global 

cost-optimal solution for the entire network. We also test different demand level 

distributions under the same supply generation capacities. Results reveal that feasible 

region enlarges along with the tighter range of demand level under the same demand 

mean. Moreover, feasible region shrinks with the increase in demand mean as expected. 

Hence, investment cost increase with the increase in demand mean. Finally, we argue 

that it is critical to decide on cost function parameters, since the balance between the 

cost of future risk and the value of immediate cost parameters highly affects the 

optimal solution. When cost of future risk is significantly higher than the values of the 

immediate cost parameters, the optimal solution responds to changes in the DNS and 

risk thresholds, whereas the optimal cost is relatively insensitive. On the other hand, 

when all the cost components are comparable, both the optimal solution and cost are 

sensitive to changes in the parameters of the probability constraint. 

This thesis can be extended in the following research directions: (i) the cost of 

unsatisfied demand can be directly considered within the objective function. Such an 

extension would be in line with the real-life practices where cost of shortage in demand 

satisfaction, e.g., loss of goodwill cost or penalty cost, is included in the cost function. 

(ii) To control the system operation with more decision variables, the number of edge 

groups can be increased. One should note that, however, increase in the number of 



57 

 

edge groups would also increase the problem dimension at the price of increased 

computational complexity. Furthermore, grid search algorithm should also be adapted 

to the changes in the problem dimension. (iii) Instead of first identifying the feasible 

region, and then finding the optimal solution, one can solve the problem using an 

optimization algorithm in a unified framework that handles constraint satisfaction and 

optimality concurrently. However, this may lead to a poor initial population selection, 

which is very critical for convergence and optimality in a population-based heuristic 

algorithm (that performs well for the class of problems considered in this thesis). 
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APPENDIX 1 – EDGE CAPACITIES  

Table A1.1. Edge Capacities 

𝑖 
 

 

𝑃̅𝑖 𝑖 𝑃̅𝑖 𝑖 𝑃̅𝑖 𝑖 𝑃̅𝑖 

1 1𝑒 + 05 13 50 25 50 37 45 

2 1𝑒 + 05 14 50 26 55 38 45 

3 1𝑒 + 05 15 50 27 50 39 45 

4 1𝑒 + 05 16 50 28 50 40 45 

5 1𝑒 + 05 17 50 29 50 41 45 

6 1𝑒 + 05 18 55 30 50 42 45 

7 1𝑒 + 05 19 50 31 50 43 45 

8 1𝑒 + 05 20 50 32 50 44 45 

9 1𝑒 + 05 21 50 33 50 45 45 

10 1𝑒 + 05 22 50 34 45 46 45 

11 1𝑒 + 05 23 50 35 45   

12 1𝑒 + 05 24 50 36 45   
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APPENDIX 2 – EDGE GROUP ASSIGNMENTS 

Group assignments are detailed in the following table. Threshold for Group-1 is 0.1 

for eigenvector centrality based edge grouping (𝑇𝐼1) and is 0.4 for utilization-based 

grouping (𝑇𝐼2 and 𝑇𝐼3). Since, supply and demand edges are introduced for modeling 

purposes, we don’t show their group assignments. 

Table A2.1. Edge Group Assignments  

𝑇𝐼1 𝑇𝐼2 𝑇𝐼3 

Group-1 Group-2 Group-1 Group-2 Group-1 Group-2 

𝜁𝑖𝐷  𝑖 𝜁𝑖𝐷  𝑖 𝑢𝑟𝑖 𝑖 𝑢𝑟𝑖 𝑖 𝑢𝑟𝑖 𝑖 𝑢𝑟𝑖 𝑖 

0.34 13 0.09 38 0.78 23 0.37 42 0.80 23 0.39 39 

0.34 14 0.08 24 0.78 18 0.37 28 0.79 18 0.36 41 

0.33 16 0.08 37 0.77 17 0.37 32 0.75 17 0.35 27 

0.33 33 0.08 45 0.74 45 0.36 27 0.73 45 0.32 42 

 0.33 17 0.08 31 0.67 35 0.31 14 0.68 35 0.28 14 

0.33 15 0.08 29 0.62 26 0.30 15 0.64 34 0.27 19 

0.13 30 0.07 23 0.61 20 0.24 21 0.64 26 0.27 21 

0.13 34 0.06 27 0.56 30 0.24 19 0.63 30 0.25 15 

0.13 32 0.06 44 0.56 34 0.22 22 0.59 20 0.20 22 

0.12 28 0.05 46 0.54 16 0.12 25 0.58 28 0.17 33 

0.11 40 0.03 43 0.48 40 0.07 38 0.43 36 0.11 25 

0.11 42 0.02 26 0.46 13 0.07 37 0.43 16 0.10 38 

0.10 39 0.01 21 0.44 36 0.07 29 0.43 40 0.10 29 

0.10 41 0.005 22 0.44 39 0.07 31 0.42 13 0.10 31 

  0.08 35 0.41 41 0.04 44 0.41 32 0.09 37 
  0.01 19   0.02 24   0.04 24 

  0.01 36   0.00 33   0.04 44 

  0.01 25   0.00 46   0.01 43 

  0.01 20   0.00 43   0.00 46 

  0.06 18         

 


