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JULY 2020







ABSTRACT

MACHINE LEARNING BASED MULTI-SCALE JOINT

FORECASTING-SCHEDULING FOR THE INTERNET OF THINGS

NAKIP, Mert
MSc, Electrical and Electronics Engineering
Advisor: Assoc. Prof. Volkan RODOPLU

Co-Advisor: Prof. Cüneyt GÜZELİŞ
July 2020

The Massive Access Problem of the Internet of Things (IoT) is the problem of enabling
the wireless access of a massive number of IoT devices to the wired infrastructure. In
this thesis, we develop a Multi-Scale Algorithm (MSA) for joint forecasting-scheduling
at a dedicated IoT Gateway to solve the Massive Access Problem at the Medium Access
Control layer. In contrast with the current approaches to the Massive Access Problem
that assume random arrivals for IoT traffic generation, our algorithm forecasts the
upcoming traffic of IoT devices using a Multi-Layer Perceptron (MLP) architecture and
preallocates the uplink wireless channel based on these forecasts.

In order to show that predictive resource allocation algorithms can be implemented
in practice to solve the Massive Access Problem, first, we establish that the traffic
generation pattern of individual IoT device can be predicted accurately with respect
to the symmetric Mean Absolute Percentage Error (sMAPE) metric. To this end, we
present a comparative study of the performance of Autoregressive Integrated Moving
Average (ARIMA), Multi-Layer Perceptron (MLP), 1-Dimensional Convolutional Neu-
ral Network (1D CNN), and Long-Short Term Memory (LSTM) models on the problem
of forecasting the traffic generation patterns of individual IoT devices in Machine-to-
Machine communication. We classify IoT traffic into four classes: Fixed-Bit Periodic
(FBP), Variable-Bit Periodic (VBP), Fixed-Bit Aperiodic (FBA), and Variable-Bit Ape-
riodic (VBA). In our simulation studies, we show that LSTM outperforms all of the
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other forecasting models significantly for IoT devices in the VBP class. In addition,
we show that LSTM has almost the same performance in sMAPE for the FBA class as
MLP and 1D CNN. While the training time per IoT device is the highest for LSTM, all
of the forecasting models have reasonable training times for practical implementation.

Based on these results that demonstrate the predictability of IoT traffic generation
patterns, in order to alleviate the Massive Access Problem of the IoT, we propose a Joint
Forecasting-Scheduling (JFS) system to be implemented at an IoT gateway. Our JFS
system forecasts the traffic generation pattern of each IoT device in its coverage area
and schedules the uplink transmissions of these devices in advance in a collision-free
manner. Compared with reactive solutions to the Massive Access Problem, JFS has a
significant advantage in that it obviates contention, collision and handshaking. Next, we
compare the performance of ARIMA, MLP and LSTM forecasting models in order to
select a local-optimal forecasting model that achieves the highest network throughput
for the JFS system. This comparison reveals that the optimal choice of the forecasting
model for JFS depends heavily on the proportions of distinct IoT device classes that
are present in the network. Our network simulations show that the JFS scales up to
1000 devices with a forecasting-scheduling window size as long as 1800 seconds, while
achieving a total execution time under 1 second.

In order to scale the JFS system to support more than 1000 devices and achieve
scheduling over a longer forecasting-scheduling window size, we design MSA, which
operates at multiple time scales that are determined by the delay constraints of IoT
applications as well as the minimum traffic generation periods of IoT devices. The
multi-scale nature of our algorithm ensures scalable time and space complexity to
support up to 6650 IoT devices in our simulations. We compare the throughput and
energy consumption of MSA with those of Reservation-based Access Barring, Priority
based on Average Load, and Enhanced Predictive Version Burst Oriented protocols, and
show that MSA significantly outperforms these beyond 3000 devices. Furthermore, we
show that the percentage control overhead of MSA remains less than 1.5%.

The results of this thesis pave the way to building scalable joint forecasting-scheduling
systems to handle a massive number of IoT devices at IoT Gateways.

Keywords: Machine-to-Machine (M2M) Communication, Internet of Things (IoT),
Forecasting, Machine Learning, Scheduling, Massive Access Problem
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ÖZ

NESNELERİN İNTERNETİ İÇİN MAKİNE ÖĞRENMESİ TABANLI

ÇOK ÖLÇEKLİ BÜTÜNLEŞİK TAHMİNLEME-ÇİZELGELEME

NAKIP, Mert
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Danışman: Doç. Dr. Volkan RODOPLU
Yardımcı Danışman: Prof. Dr. Cüneyt GÜZELİŞ

Temmuz 2020

Nesnelerin İnternetinin (IoT) Devasa Erişim Problemi, çok sayıda IoT cihazının kablo-
suz erişimini, kablolu altyapıya sağlama sorunudur. Bu tez çalışmasında, Orta Er-
işim Kontrol katmanındaki Devasa Erişim Problemini çözmek için atanmış bir IoT ağ
geçidinde ortak tahmin-çizelgeleme için Çok Ölçekli Algoritma geliştirmekteyiz. IoT
veri akışının rastgele olduğunu kabul eden Devasa Erişim Problemine yönelik mevcut
yaklaşımların aksine, algoritmamız, Çok Katmanlı Algılayıcı mimarisini kullanarak
IoT cihazlarının yaklaşan trafiğini tahmin eder ve bu tahminlere göre yer-uydu bağı
(uplink) kablosuz kanalını önceden tahsis eder.

Öngörülü kaynak tahsisi algoritmalarının Devasa Erişim Problemini çözmek için
pratikte uygulanabileceğini göstermek amacıyla, önce bağımsız bir IoT cihazının trafik
oluşturma modelinin öngörülebilirliğini saptadık. Bunun için, Makineden Makineye
iletişimdeki bağımsız IoT cihazlarının trafik üretim modellerini tahmin etme prob-
lemi üzerine Özyineli Tümlevli Kayan Ortalama, Çok Katmanlı Algılayıcı, 1 Boyutlu
Evrişimsel Sinir Ağı ve Uzun-Kısa Süreli Bellek modellerinin karşılaştırma çalışmasını
sunmaktayız. Tahmin modellerinin performansını karşılaştırmak için simetrik Orta-
lama Mutlak Yüzde Hatasını ölçmekteyiz. IoT trafiğini dört sınıfa ayırmaktayız: Sabit
Bit Periyodik (FBP), Değişken Bit Periyodik (VBP), Sabit Bit Aperiyodik (FBA) ve
Değişken Bit Aperiyodik (VBA). Simülasyon sonuçlarımızda, Uzun-Kısa Süreli Bellek
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modelinin VBP sınıfındaki cihazlar için diğer tüm modellerden önemli ölçüde daha
başarılı olduğunu göstermekteyiz. Ek olarak, Uzun-Kısa Süreli Bellek modelinin Çok
Katmanlı Algılayıcı ve 1 Boyutlu Evrişimsel Sinir Ağı ile FBA sınıfı için simetrik
Ortalama Mutlak Yüzde Hatasında neredeyse aynı performansa sahip olduğunu göster-
mekteyiz. IoT cihazı başına eğitim süresi, Uzun-Kısa Süreli Bellek için en yüksek
olmakla birlikte, tüm öngörme modellerinin pratik uygulama için makul eğitim süreleri
vardır.

Tahminleme sonuçlarımız, IoT verilerinin oldukça öngörülebilir olduğunu gösterdiğin-
den, IoT’nin Devasa Erişim Problemini hafifletmek için Orta Erişim Kontrol katmanı
için öngörülü bir kaynak ayırma algoritması olan Bütünleşik Tahminleme-Çizelgeleme
sistemini önermekteyiz. Bütünleşik Tahminleme-Çizelgeleme sistemimiz, her bir IoT
cihazının trafik üretim örüntüsünü tahmin eder ve bu cihazların iletimini önceden çizel-
geler. Bütünleşik Tahminleme-Çizelgeleme sisteminin en yüksek ağ çıktısını elde ettiği
yerel optimal tahminleme modelini seçmek için Özyineli Tümlevli Kayan Ortalama, Çok
Katmanlı Algılayıcı ve Uzun-Kısa Süreli Bellek modellerini karşılaştırmaktayız. Bu
tahminleme modelleri altındaki ağ veriminin karşılaştırılması, Bütünleşik Tahminleme-
Çizelgeleme sistemi için tahminleme modelinin optimum seçiminin büyük ölçüde ağda
bulunan farklı IoT cihazı sınıflarının oranlarına bağlı olduğunu ortaya koymaktadır.
Ağ simülasyonlarımız, Bütünleşik Tahminleme-Çizelgeleme sisteminin tahminleme-
çizelgeleme pencere boyutu 1800 saniye olarak ölçeklenirken, 1 saniyenin altındaki bir
toplam yürütme süresi ile 1000 cihaza kadar destekleyebildiğini göstermektedir.

Bütünleşik Tahminleme-Çizelgeleme sistemini, daha uzun tahminleme-çizelgeleme
pencere boyutuna sahip çok daha fazla sayıda cihazı destekleyecek şekilde ölçek-
lendirmek için, IoT uygulamalarının gecikme kısıtları ve IoT cihazlarının asgari trafik
oluşturma aralıkları olarak belirlenen birden çok zaman ölçeğinde çalışan Çok Ölçekli
Algoritmayı önermekteyiz. Algoritmamızın çok ölçekli yapısı, simülasyonlarımızda
6650’ye kadar IoT cihazını desteklemek için ölçeklenebilir zaman ve alan karmaşıklığı
sağlamaktadır. Çok Ölçekli Algoritmanın verimliliği ve enerji tüketimi Rezervasyon
Tabanlı Erişim Engelleme, Ortalama Yüke dayalı Öncelik ve Gelişmiş Öngörülü Sürüm
Veri Bloğu Odaklı protokollerle karşılaştırılmaktadır ve Çok Ölçekli Algoritmanın
3000 üzerindeki cihaz sayısı için bu algoritmalardan önemli ölçüde daha iyi çalıştığını
göstermekteyiz. Ayrıca, Çok Ölçekli Algoritmanın yüzde kontrol ek yükünün % 1.5’in
altında kaldığını göstermekteyiz.

Bu tezde, sonuçlarımız IoT Ağ Geçitlerinde çok sayıda IoT cihazını işlemek için
ölçeklenebilir bütünleşik tahminleme-çizelgeleme sistemleri oluşturmanın yolunu aç-
maktadır.
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Güzeliş for his endless mentorship in regard to both my professional and personal life.
I would also like to express my special thanks to Prof. Mustafa Seçmen for his great
support during both my undergraduate and graduate studies. In addition, I would like to
thank Prof. Deniz Türsel Eliiyi for her contributions in the earlier phases of my thesis.

I would like to thank my fiancée Gizem Güler for always being there whenever I
needed her. I would also like to thank my teammates and colleagues Baran Can Gül,
Oytun Uzun, Alperen Helva, Roozbeh Qorbanian, Kubilay Karakayalı, Onur Çopur and
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Chapter 1

INTRODUCTION

The main goal of this thesis is the design of a machine-learning-based multi-scale joint
forecasting-scheduling system to solve the Massive Access Problem of the Internet
of Things (IoT). In this chapter, our goal is to clearly state the problem that will
be addressed in this thesis and to review the background that will be required for
the upcoming chapters. First, we review M2M communication and IoT in order to
demonstrate the increasing trend of the number as well as the growing range of IoT
devices. Second, we describe the Massive Access Problem of M2M communication.
Third, we describe how Machine Learning (ML) can be used to solve the Massive
Access Problem. In addition, we review the ML algorithms that we shall employ in
order to solve the Massive Access Problem. Fourth, we state the assumptions that
underlie the rest of this thesis. Fifth, we describe the relationship between our study
and the state of the art. Finally, we summarize how this thesis advances the state of the
art and give an outline for the rest of this thesis.

1.1 M2M Communication and IoT

The Internet has been growing rapidly in the last five years. According to Cisco’s
estimates (Cisco, Mar. 2020), approximately 30 billion devices are expected to be on
the Internet by the year 2023. Most of these devices are expected to be machines that
operate with minimum or no human intervention (Ghavimi & Chen, 2015).

In the current networking systems, there are four main types of communication. The
first type of communication is Human-to-Human (H2H) communication, which enables
a wired or wireless connection between two or more User-Enabled (UE) devices.
Some prominent examples of H2H communication are the mobile phone calls, video
conferences, and live video streams. The second type of communication is Human-
to-Machine (H2M) communication, where the UE device (which is operated by a
human) communicates with at least one device (which is not operated by a human
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user). In the majority of applications, this device is a web server. The third type of
communication is Machine-to-Human (M2H) communication. In M2H communication,
a device transmits data to UE devices without or with minimum human interaction. The
communication of all of the automatic notifications to smart phones or computers are
in M2H communication. The fourth type of communication is Machine-to-Machine
(M2M) communication, which constitutes the scope of this thesis. The communication
between two or more devices that operate without any human intervention is referred to
as M2M communication.

The M2M communication is a promising technology for the smart city concept of the
near future (Hasan, Hossain, & Niyato, 2013). An M2M communication system has
diverse applications within a large-scale network and a massive number of intercon-
nected devices (Lo, Law, & Jacobsson, 2013). The most common examples of M2M
communication are as follows (Lawton, 2004): smart utility meters, smart garbage
bins, surveillance and security, infrastructure management, smart parking system, traffic
monitoring, and electronic health by wearable devices (Glaros & Fotiadis, 2005). In
M2M communication, devices are “smart (intelligent) devices”. In this type of com-
munication, a large number of smart devices can communicate each other and make
collaborative decisions without human intervention (Chen, Wan, & Li, 2012) (Igarashi,
Ueno, & Fujisaki, 2012) to improve the efficiency of labor time (Verma et al., 2016).

Most of the M2M technologies support a network of a massive number of devices,
which are collectively known as “Internet of Things” (IoT) (Glitho, 2011). In recent
years, IoT has wide-range application areas, which aim to increase the quality of human
life (Bello & Zeadally, 2019)(Fortino, Russo, Savaglio, Viroli, & Zhou, 2017). Some
examples of these areas are cities, homes, universities, industrial factories, organiza-
tions, agriculture environments, hospitals, security and safety systems, and health-care
centers (Muralidharan, Roy, & Saxena, 2018)(Terroso-Saenz, González-Vidal, Ramallo-
González, & Skarmeta, 2019)(Gubbi, Buyya, Marusic, & Palaniswami, 2013)(Miorandi,
Sicari, De Pellegrini, & Chlamtac, 2012). Since these applications are the basis of the
smart cities of the near future (Zanella, Bui, Castellani, Vangelista, & Zorzi, 2014), the
number of applications are increasing every day.

From a networking perspective, the main challenge that IoT brings is the satisfaction
of the diverse set of Quality of Service (QoS) constraints of IoT applications (Asghari,
Rahmani, & Javadi, 2019). QoS constraints typically drive the determination of priorities
during network resource allocation for each specific type of data on the network.
Furthermore, QoS aims to address a heterogeneous set of performance objectives such
as maximizing network throughput, and reducing the energy consumption, packet loss,
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latency and jitter. One of the most important QoS constraints of IoT devices is the
delay constraint for a delay-sensitive IoT application: For each such application, there
is a specific delay constraint by which the IoT must successfully transmit its data to
the destination. Some examples of such delay constraints are as follows: 5 ms for
autonomous vehicles; 10 ms for teleprotection in a smart grid network; seconds to
minutes for smart home applications; and approximately 1 hour for smart utility meters
(Osseiran, Monserrat, & Marsch, 2016)(Ict, 2013).

According to Ericsson (Zaidi, Hussain, Hogan, & Kuhlins, Jan. 2019), IoT devices can
be segmented into four categories: Broadband IoT, Critical IoT, Industrial Automation
IoT, and Massive IoT. In Broadband IoT, the IoT devices use the enhanced mobile
broadband for IoT to provide large volumes of data transfer with high data rates and
low latencies. Examples of Broadband IoT are the applications of drones, Augmented
Reality, and Virtual Reality. In Critical IoT, the communication is time-critical. The
most common examples for the Critical IoT are the electronic health applications
and autonomous cars. In Industrial Automation IoT, in order to enable the real-time
automation, the seamless integration of cellular connectivity into the wired industrial
infrastructure is targeted. In Massive IoT, in addition to meeting a diverse range of
QoS requirements, including delay or energy consumption constraints, the successful
connection from the massive number of IoT devices to a cellular base station or a
gateway constitutes the main goal of the applications in this category. The last category,
Massive IoT, constitutes the main focus of this thesis.

1.1.1 Massive IoT

In the Massive IoT segment, the devices have much simpler and much more low-cost
hardware than the IoT devices in other segments. Thus, the data rates are lower than
the devices in the remaining segments as well. In addition, in Massive IoT, the data
volumes are lower than those in other segments; however, the number of devices that
fall into the coverage area of a base station is much higher than that in the Broadband,
Critical and Industrial Automation IoT segments.

In Table 1.1, we show sample applications for Massive IoT devices. Note that the
majority of the examples in this table are adapted from (Kuhlins, Rathonyi, Zaidi, &
Hogan, Jan. 2020). Ericsson estimates that 52% of all of the IoT devices will fall into
Massive IoT segment at the end of 2025 (Ericsson, Nov. 2019).
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Table 1.1. Sample applications for massive IoT
Application Area Application Name

Transportation and Logistic Fleet Managment

Agriculture
Climate Monitoring
Service Monitoring

Environment
Flood Alerting
Pollution Monitoring

Industrial
Process Control
Maintenance Monitoring

Utilities
Smart Metering
Smart Grid Management

Smart Cities

Parking Sensors
Smart Bins
Smart Lighting
Traffic Controling

Smart Buildings
Smoke Detectors
Security Systems
Home Automation

1.2 Massive Access Problem

The number of IoT devices in the Massive IoT segment is predicted to increase almost
exponentially at least up to 2025. The “Massive Access Problem” is the problem
of enabling the wireless access of a massive number of IoT devices to the wired
infrastructure. Among diverse IoT device types that include fleet management devices
as well as outdoor data sensors for smart cities, smart meters alone are estimated to
reach a density of 5,000 to 35,000 per cell in urban areas (Vodafone, Apr. 2010). In
Fig. 1.1, a representative visualization of the increasing massive number of IoT devices
is given. In this figure, the dashed red lines show the IoT devices that are attempting to
connect to the base station via wireless links.

The Massive Access Problem has been singled out as a key challenge that requires
a solution in order to enable the IoT revolution. Since current cellular systems (the
fourth generation (4G) wireless systems) would be unable to handle such a massive
number of devices due to the Physical Random Access Channel (PRACH) overload
(Ghavimi & Chen, 2015)(Zanella et al., 2013), the solution of the Massive Access
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Figure 1.1. An illustration of the massive number of IoT devices that attempt to access
a single base station or access point

Problem requires novel approaches that enable wireless connectivity in order to satisfy
the QoS requirements of the IoT devices. The scalable solutions developed in this thesis
to solve the Massive Access Problem constitute an important step in helping launch the
IoT revolution.

In the rest of this section, we shall review the key terms and models that will aid in
describing the Massive Access Problem. First, we review the Open Systems Intercon-
nection (OSI) model, which is the standard communication protocol stack for modern
networks. Second, we describe the Medium Access Control sublayer of the Data Link
Control layer in this protocol stack. Third, we describe the Physical Random Access
Channel in Long-Term Evolution cellular systems. Fourth, we describe the problem of
collisions that occurs when a massive number of IoT devices seek to access this channel.
Based on these concepts, we describe the Massive Access Problem. Finally, we outline
the existing approaches taken to solve the Massive Access Problem.

1.2.1 Open Systems Interconnection Model

The current communication systems are characterized and standardized by the OSI
model. As shown in Fig. 1.2, the OSI model consists of 7 layers, which are the (1)
physical layer, (2) data link layer, (3) network layer, (4) transport layer, (5) session
layer, (6) presentation layer, and (7) application layer.

The physical layer enables the transmission or reception of the bits rather than the data
packets and translation of the logical communication requests into hardware-specific
operations (Shaw, 2017).
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Figure 1.2. Open Systems Interconnection (OSI) model

At the data link layer, data transmission between two connected nodes is provided.
The response to the service requests and the allocation of resources are handled at this
layer. In addition, the errors that occur at the physical layer might be detected and
corrected. The data link layer consists of two sublayers which are the Medium Access
Control (MAC) sublayer (which is called the MAC layer, for short) and the Logical
Link Control (LLC) sublayer (which is called the LLC layer, for short). The MAC layer
determines which device is allowed to access to the medium at any time.1 The LLC
layer multiplexes protocols, and provides the data flow control, acknowledgment and
error notification. Since, we design the resource allocation algorithms for the MAC
layer, we will give the further details on the resource allocation at MAC layer after we
briefly review the rest of the layers of the OSI model.

At the network layer, which is the third layer in Fig. 1.2, the transmission of the
network packets from a source device to a destination device over the networks is

1Typically, the medium refers to the frequency channels that are available for communication. It may
also include the spatial channels, as in Multiple Input Multiple Output (MIMO) systems, which are
not addressed in this thesis.
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provided (Zimmermann, 1980). In the OSI model, this layer responds to the connection
requests from the transport layer and issues them to the data link layer. The transport
layer provides the end-to-end connections, reliability, and data flow control (Braden,
1989). The session layer opens, closes and manages the sessions between applications.
This layer is responsible for checkpointing as well as recovery in each session, and
combines or synchronizes the information of several streams. At the presentation
layer, the formation, representation, and the encryption of data are carried out in order
to fix the syntactical differences in data for the further operations at the application
layer (Grigonis, 2000). At the application layer, the communication protocols and the
interfaces that are used by the host, are specified. At this layer, the connection between
the host application and the layers of the OSI model is provided.

1.2.2 MAC Layer

We now explain the MAC layer briefly, since the analysis and the design of the proposed
algorithms in this thesis are performed for this layer. The MAC layer is the sublayer
of the data link layer, which is the second layer of the OSI model. The MAC layer
is responsible for the mapping between the logical and the transport channels, error
correction, physical addressing, and allocation of the air interface resources for both
uplink and downlink communication (Alpern, 2009). By the allocation of the resources,
the MAC layer controls the access to the transmission medium. It is also responsible
for the initiation of data retransmission when a collision has occurred.

The MAC layer uses the transport channels that are exported by the physical layer. The
transport channels of the physical layer are as follows: Physical Down Link Shared
Channel, Physical Broadcast Channel, Physical Multicast Channel, Physical Uplink
Shared Channel and PRACH (Samaoui, El Bouabidi, Obaidat, Zarai, & Mansouri,
2015).

PRACH:

The PRACH is a periodic sequence of uplink time-frequency resource blocks, which
are used by devices for random access in LTE networks. The random access refers the
request of connection setup to the base station (Zaidi et al., 2018). Note that in current
LTE networks, the period and the number of resource blocks of the PRACH is defined
by the PRACH configuration index (Bouzouita, Hadjadj-Aoul, Zangar, Tabbane, &
Viho, 2015).
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The PRACH provides the synchronization between the base station and the devices,
and it reserves the resources for data. In order to access the PRACH, a device transmits
a preamble, which is a specific pattern selected randomly among a predefined set of
preambles (Condoluci, Dohler, & Araniti, 2017). Note that each preamble in this
set is orthogonal to other preambles. Since the set of preambles is a predefined set
with constant number of preambles, it is possible that more than one device can select
the same preamble. If two or more devices transmit the same preamble on the same
time-frequency resource block of the PRACH, a collision occurs. In this case, none of
the devices can access the PRACH. The collision problem on the PRACH is detailed in
the next subsection.

1.2.3 Collision Problem on PRACH

Figure 1.3. Visualization of collisions on the PRACH in the case in which a massive
number of IoT devices attempt to gain access to a base station or access
point

Even if the number of channels, the duration of each MAC-layer slot and the uplink
data rate of devices are sufficient to handle the massive number of IoT devices the
uplink collision may still occur at the PRACH, as shown in Fig. 1.3. In this figure, the
symbolic notation D inside a circle denotes an IoT device that attempts to access the
uplink time-frequency resource block of the PRACH, and this access attempt is shown
by an arrow. In addition, the red circles represent the devices that are being added as
time proceeds. That is, the number of devices increases with time. Since the number of
IoT devices increases rapidly, the number of red circles in Fig. 1.3 and the probability
of transmission of the same preamble to the same block of the PRACH by more than
one device also increases.

As we shall see, one of the key aspects of all of the scheduling schemes that we
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propose in this thesis is collision-free scheduling, which refers to scheduling the uplink
transmissions of devices in a manner that is completely free of any collisions. In contrast
with our approach, almost all of the current approaches to the Massive Access Problem
involve access in the presence of collisions. (The few exceptions will be noted in the
next subsection.) Since collisions decrease channel utilization and result in excessive
transmit energy expenditure, collision-free scheduling is highly preferable if it can be
achieved.

1.2.4 Current Approaches to Solve the Massive Access Problem

The current approaches to the solution of the Massive Access Problem can be classi-
fied into six categories: (1) Access Class Barring (ACB) schemes (Ghavimi & Chen,
2015)(Lien, Liau, Kao, & Chen, 2012)(Lin, Lee, Cheng, & Chen, 2014)(Jin, Toor,
Jung, & Seo, 2017)(J. Liu, Song, et al., 2017)(Tello-Oquendo, Leyva-Mayorga, et
al., 2018)(Tello-Oquendo, Pacheco-Paramo, Pla, & Martinez-Bauset, 2018), (2) Cog-
nitive M2M communication schemes (Aijaz & Aghvami, 2015)(Aijaz, Ping, Akha-
van, & Aghvami, 2014), (3) Game-theoretic approaches (Pang, Chao, Lin, & Wei,
2014), (4) Clustering-based (Park, Kim, & Har, 2015)(Liang, Xu, Cao, & Jia, 2018)
and rate-adaptive approaches (Si, Yang, Chen, & Xi, 2015), (5) Spread-spectrum,
Non-Orthogonal Multiple Access (NOMA) (Shirvanimoghaddam, Dohler, & Johnson,
2017) and Successive Interference Cancellation (SIC) approaches (Zanella et al., 2013),
and (6) CSMA/CA or slotted-ALOHA-based (Y. Liu, Yuen, Cao, Hassan, & Chen,
2014)(Shahin, Ali, & Kim, 2018) and collision-aware (Alavikia & Ghasemi, 2018) pro-
tocols. In all of these approaches, IoT traffic at the MAC layer is modeled by “random
arrivals”. Our key observation is that the performance of all of these approaches is
limited by this assumption at the MAC layer.

The assumption of “random arrivals” has so far dictated that only reactive MAC-layer
solutions to the Massive Access Problem are possible. In contrast with these solutions,
in this thesis, we show that when the traffic patterns of IoT devices are predicted via
machine learning, proactive solutions to the Massive Access Problem become viable.
In the next section, we shall focus on machine learning as a novel enabler of a solution
to the Massive Access Problem.
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1.3 Machine Learning for the Solution of Massive Access Problem

ML refers to the learning carried out by an algorithm, which learns the tasks that
are required and improves its own performance on these tasks via accumulation of
experience. The experience in ML is generally provided by the collected experimental
dataset. By the design of the structure of an ML algorithm, a mathematical model is
created. Thus, the ML algorithm computes the parameters of this mathematical model
based on the dataset, which is called the “training data”. By using computed parameters,
the ML algorithm aims to make predictions or decisions, where the algorithm is not
explicitly programmed to carry out these operations (Bishop, 2006).

Figure 1.4. Classification of Machine Learning problems

In Fig. 1.4, we present the broad classification of ML problems. The diagram also
identifies the problem class of the IoT data forecasting. As shown in this figure, in
order to review the ML algorithms that are used commonly, we can split the learning
algorithms of the ML models into three classes as follows: (1) reinforcement learning
(RL), (2) unsupervised learning (UL), and (3) supervised learning (SL).

The ML algorithms that fall in the RL class aim to maximize the cumulative reward or
minimize the cumulative penalty of actions that are taken by software agents. In this
class, there is no requirement for the training data with the desired output samples. In
addition, in this class, the algorithms are used when the exact parameters of the model
are not known, or the exact models are infeasible (Wiering & Van Otterlo, 2012). The
most common examples of RL algorithms are the real-time decision making systems
and the actively learning robotic systems.

10



The algorithms in the UL class require the dataset for the learning stage (which is
carried out on the training data), which is operates only on the input sample; that is the
algorithms in this class do not require the set of labeled samples (Hinton, Sejnowski,
Poggio, et al., 1999). The most common applications of the algorithms in the SL class
might be split into the dimension reduction of the data and clustering problems. The
feature elimination algorithms are examples of unsupervised dimension reduction. In
addition, a recommendation system is an example of the unsupervised clustering.

In the SL class, the training data is provided as input-output pairs; that is, each sample
in the dataset is fully and clearly labeled (Russel, Norvig, et al., 2013). In this class, an
algorithm optimizes its parameters in order to maximize the performance on the training
set. The problems that are solved by using SL fall into three classes, which are the
active learning, classification and regression (Alpaydin, 2020). One of the reasons for
using active learning is that when the subset of the dataset is unlabeled, manual labeling
is an expensive operation. In this case, the algorithm actively uses the information
source (which is called a teacher) in order to label each of the unlabeled samples. The
classification problem is a one of categorizating data into predefined categories. One
of the most popular examples of the classification problems is the image recognition
problem. Furthermore, the regression problem is to find the most accurate fit that
generalizes the function of the labeled training set. The models that solve the regression
problems are generally used for the prediction and the forecasting. Forecasting is a
sub-discipline of prediction in which the problem is to make a prediction regarding
the future based on time series data. That is, in a forecasting problem, at least one
input of the model is the past sample of the time series and the output of the model
is another sample. In this thesis, since we aim to compute the future samples of the
traffic generation pattern of individual IoT device, our problem falls into the forecasting
problem class.

1.3.1 Forecasting of the Traffic Generation Pattern of an IoT
Device

One of the major goals of this thesis is to show that the traffic generation patterns of
M2M communication are far more predictable than has been assumed so far in the
past work on the Massive Access Problem. While the random arrival model may be
well-suited to H2H or H2M traffic, it is not necessarily suitable for M2M traffic since
both the amount and the timing of machine-generated traffic can be highly predictable.
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Predictability of M2M traffic has far-reaching implications for the design of practical
access schemes. For example, if all IoT traffic could be predicted accurately, then a
base station or IoT Gateway could utilize a joint forecasting-scheduling architecture
in which it predicts the future traffic of all IoT devices over a scheduling window and
would schedule all of the traffic collision-free in advance. Thus, for the solution of the
massive access problem, the accurate knowledge on the traffic generation pattern of the
IoT devices has a key role.

In this thesis, in order to be able to achieve an efficient allocation of systems resources
across all IoT devices in a given coverage area, an IoT gateway forecasts the future
traffic generation pattern of each device based on its past traffic generation pattern. The
traffic generation pattern of an IoT device is a time series dataset that is comprised of the
collection of the number of bits that are generated by that device over time. In addition,
all of the features of the dataset potentially vary with IoT devices. The examples of
these features are the range of the number of bits, the seasonal trends, and the number of
samples. Furthermore, in order to use the ML models to forecast the traffic generation
pattern, we convert the time series data to input-output pairs. We apply this conversion
in order to be able to use supervised learning.

This completes our overview of forecasting for M2M traffic. In the next section, we
shall detail the general assumptions that underlie the design of wireless communication
systems for IoT in our treatment in this thesis.

1.4 Assumptions on the Wireless Communication System of IoT

In the mathematical framework of this entire thesis, we assume that there is a single IoT
Gateway, denoted by G, and a set of N IoT devices, denoted by N , each of which has
a direct wireless link to G. (The IoT Gateway may be co-located with or have a fast
wireless link to a cellular base station or Wi-Fi access point.) Furthermore, each IoT
device (“device” for short) in the coverage area CG of G is assumed to be associated
with G at all times. (We do not model loss or re-gain of association.) We assume that
each device in N remains in CG at all times. This models the case where each device
in N is static (i.e. non-moving) or is mobile but remains in CG.2 In our future work,
we shall address the cases in which mobile devices change coverage areas and devices
are added to or removed from the network (Section 4.5).

2The latter situation corresponds e.g. to those smart factories in which each mobile device remains in
the coverage area of a particular IoT gateway.
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We define a “burst” as a set of logically grouped data in close proximity in time,
generated by a single device. For example, the information bits all of which correspond
to a single reading from a smart meter, and those that correspond to a single GPS
coordinate reading from a fleet management device are examples of bursts. The aim
of IoT communication is to deliver the entire burst; that is, the delivery of only a part
of a burst would be useless. We assume a cross-layer design in which each burst is
identified as such to the MAC layer. Furthermore, as part of the overall end-to-end
delay constraint budget to the M2M server, each burst j to G has a MAC-layer latency
constraint, denoted by ∆ j, which depends on the application that generates the burst.

We denote each MAC-layer slot (or simply “slot”) at G by k. We assume that uplink
transmissions of all devices to G have been slot-synchronized. We define the “traffic
generation pattern” of device i as the number of bits generated by i during MAC-layer
slot k and denote it by the collection {Xi[k]} over the slot index k. We assume that each
IoT device generates at most one burst in each MAC-layer slot. We allow each burst to
be sent “with preemption”, which means that the transmission of the burst is allowed to
be split over a non-contiguous set of time slots.

We assume that there is a single uplink channel at G that is to be allocated among N .
(We shall address the multi-channel case in our future work.) In order to schedule
uplink transmissions without collision, each MAC-layer slot k at G can be allocated to
at most a single device at a time.

We say that burst j has been “successfully delivered” if all of its information bits have
been sent to G without any collision while satisfying the ∆ j latency constraint. We
define the “uplink cross-layer throughput” η from N to G as the total number of bits
in successfully delivered bursts divided by the total number of bits of traffic offered by
N over a scheduling window whose duration is denoted by Tsch.

1.5 Relationship to the State of the Art

There is a marked difference between this work and the current approaches to the
Massive Access Problem, which were categorized in Section 1.2.4. All of the papers
in these six categories model the traffic generation process by “random arrivals”. In
contrast, the main focus of this work is that high network performance can be achieved
by using forecasts of IoT device traffic.

In the recent literature, there have been a plethora of articles (Boutaba et al., 2018)
(Chinchali et al., 2018) on network traffic forecasting. The key difference is that these
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articles forecast large-scale, aggregate traffic patterns (such as traffic volume, link load,
path availability) whereas our work focuses on forecasting the future traffic of individual

devices at the MAC layer. For the Massive Access Problem, it is essential that the
forecast at the IoT Gateway be obtained for each device in order to be able to schedule
the traffic of individual devices that share the same wireless resources. This is in sharp
contrast with the assumptions of all the papers in this category. Furthermore, these past
works have not developed a joint forecasting-scheduling methodology, whereas this
constitutes a major focus of our work.

There have been only a few works (Petkov & Obraczka, 2012)(Petkov & Obraczka,
2011)(Edalat, Ahn, & Obraczka, 2016) in the literature that have taken a proactive
approach to Medium Access Control. The key differences between these works and ours
are as follows: (1) These works focus on H2H applications (such as Skype), whereas
our entire focus in this work is on the M2M traffic of IoT. The traffic generation patterns
of these two application domains are different. (2) For the subset of these works (Petkov
& Obraczka, 2012)(Petkov & Obraczka, 2011) that also specify scheduling techniques,
further differences are as follows: (a) They use a probabilistic channel scheduling
technique, whereas we employ fast, deterministic scheduling techniques. (b) We solve
the scheduling problem for IoT devices, which operate at widely different time scales,
using a novel multi-scale joint forecasting-scheduling technique that achieves high
network performance.

1.5.1 Contributions of this Thesis

The main contribution of this thesis is the development of a novel algorithm that operates
at multiple time scales to perform joint forecasting and scheduling of IoT devices at the
MAC layer. The second contribution of this thesis is the design of a Joint Forecasting-
Scheduling (JFS) system, to be implemented at an IoT Gateway, that forecasts the future
traffic generation pattern of each IoT device and schedules the traffic of these devices in
advance without any collisions over a scheduling window. To the best of the authors’
knowledge, the development of a joint forecasting-scheduling methodology at the MAC
layer is completely novel. The third contribution of this thesis is that we show that the
traffic generation patterns of M2M communication are far more predictable than has
been assumed so far in the past work on the Massive Access Problem. While the random
arrival model may be well-suited to H2H and H2M traffic, it is not necessarily suitable
for M2M traffic since both the amount and the timing of machine-generated traffic
can be highly predictable. Predictability of M2M traffic has far-reaching implications
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for the design of practical access schemes. The fourth contribution of this thesis is a
comparison of the performance of JFS with respect to the forecasting scheme employed.
Furthermore, in this thesis, we divided the IoT devices into four classes based on their
traffic generation characteristics: (1) Fixed-Bit Periodic (FBP), (2) Variable-Bit Periodic
(VBP), (3) Fixed-Bit Aperiodic (FBA), and (4) Variable-Bit Aperiodic (VBA). If an IoT
device generates a constant number of bits over time in each generation instance, we
categorize this device as “Fixed-Bit”; otherwise, we say that the device is “Variable-Bit”.
Furthermore, if the device generates traffic at regularly spaced time instances, then we
call the device “Periodic”; otherwise, we say that the device is “Aperiodic”.

1.6 Outline of this Thesis

The remainder of this thesis is organized as follows: In Chapter 2, we undertake a
comparative study of four fundamental forecasting models for the forecasting of the
traffic generation pattern of individual IoT devices in M2M communication. These four
forecasting models are the (1) Autoregressive Integrated Moving Average (ARIMA),
(2) Multi-Layer Perceptron (MLP), (3) 1-Dimensional Convolutional Neural Network
(1D CNN), and (4) Long-Short Term Memory (LSTM). Furthermore, by fine-tuning
the architecture and the parameters of each of these four models, we measure the best
performance attainable by each model in the symmetric Mean Absolute Percentage
Error (sMAPE) metric. In order to find the local optimal architecture of the MLP neural
network, we propose the MLP−Structure Selection Algorithm (MLP-SSA). In this
chapter, we analyze the trade-off between the sMAPE forecasting performance and the
training time of the forecasting models.

In Chapter 3, first, we propose the JFS for the Massive Access problem of IoT. JFS
system, which will be implemented in at an IoT Gateway, forecasts the future traffic
generation pattern of each IoT device and schedules the traffic of these devices in
advance without any collisions over a scheduling window. Such a system has the
advantage of potentially achieving a high throughput and minimizing the average
transmit energy spent by each IoT device, thereby prolonging the lifetime of battery-
limited IoT devices. Second, in this chapter, we perform a comparison of the throughput
performance of JFS system under three different forecasting schemes, which are the
ARIMA, MLP, and LSTM models. Since we measure the network performance via
the uplink cross-layer throughput in a full JFS system in our comparison, it provides
a much more accurate measure of performance than traditional performance metrics
for forecasting (such as Mean Square Error and symmetric Mean Absolute Percentage
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Error) that do not directly quantify the impact of forecasting on scheduling. Furthermore,
we propose a reservation-based heuristic scheduling algorithm, namely Priority based
on Average Load (PAL), to allocate the MAC-layer slots for IoT devices. In addition, via
our simulations, we estimate the computation time that would be required to implement
JFS in an actual system that operates at an IoT Gateway.

In Chapter 4, first, we present the development of a novel Multi-Scale Algorithm (MSA)
that operates at multiple time scales to perform joint forecasting and scheduling of IoT
devices at the MAC layer. The MSA improves the throughput performance achieved
by the JFS system, enables JFS to work with much longer scheduling windows and
decreases the effects of the forecasting errors on the network performance. The main
advantage of this approach is three-fold: (1) The amount of control signaling overhead
can be kept to a minimum. (2) The delays that occur in traditional protocols due to
contention, collisions and handshaking can be avoided. (3) If the forecasts are accurate,
high network performance can be achieved via reservation-based scheduling.

Second, in Chapter 4, we propose Multi-Scale Forecasting with a specific implemen-
tation via the MLP model. We show that a MLP-based architecture for forecast-
ing, combined with exact scheduling solutions, achieves high network throughput
while satisfying the diverse delay deadlines of the IoT devices. Furthermore, we
compare the throughput and energy consumption of MSA with those of three proto-
cols: (1) Reservation-based Access Barring (RAB), which is a reactive, joint access-
scheduling protocol that we have designed that combines features of Access Class
Barring (ACB)(Ghavimi & Chen, 2015) and reservation-based scheduling(Yu, Navarat-
nam, & Moessner, 2013). (2) PAL, which is a proactive protocol that we have designed
that utilizes non-preemptive priority scheduling(Stallings, 2009) such that the priority
across devices is determined based on the time-averaged forecast remaining traffic load
until the delay deadline. (3) Enhanced Predictive Version Burst Oriented (E-PRV-BO)
protocol, which is a proactive protocol that enhances the Predictive Version Packet
Oriented (PRV-PO) protocol in (Hammad, Moubayed, Primak, & Shami, 2017). Finally,
we present a comparison of the performance of MSA against those of the above three
protocols under the IEEE 802.11ah standard.

In Chapter 5, we summarize the contributions of this thesis. In addition, we discuss
the work that we plan to undertake in the future in order to extend this thesis in new
directions.
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Chapter 2

FORECASTING OF THE IoT DEVICE TRAFFIC AT THE
MEDIUM ACCESS CONTROL LAYER

2.1 Introduction

As discussed in Chapter 1, the Massive Access Problem of Machine-to-Machine com-
munication refers to the problem of providing the uplink wireless access of a massive
number of IoT devices to the wired infrastructure (Ghavimi & Chen, 2015). The ma-
jority of the network architectures under consideration for the wireless access of IoT
devices are expected to provide direct connectivity on the uplink from each IoT device
to a base station or IoT Gateway (Chen et al., 2012). However, among the many types
of IoT devices such as fleet management devices and outdoor data sensors for smart
cities, smart utility meters alone are estimated to reach a density of 5,000 to 35,000 per
cell in urban areas (Vodafone, Apr. 2010). Providing direct uplink connectivity to such
a high density of IoT devices constitutes a major challenge that must be overcome via
the design of wireless access protocols.

The past approaches (Liang et al., 2018)(Lien et al., 2012)(Lin et al., 2014)(Jin et al.,
2017)(J. Liu et al., 2017) to the Massive Access Problem have modeled the MAC-layer
traffic of individual IoT devices via random arrivals. Under the random arrival model,
the future traffic generation pattern of an IoT device cannot be predicted accurately
based on the past traffic of that device. The random arrival model thus leads to the
design of reactive MAC-layer protocols in which each IoT device contends for the
channel whenever it has newly generated data.

Prior work (Ghavimi & Chen, 2015) has shown that 4G systems cannot handle the
access attempts of IoT devices on the PRACH. As a result, a multitude of articles,
such as (Tello-Oquendo, Leyva-Mayorga, et al., 2018) and (Tello-Oquendo, Pacheco-
Paramo, et al., 2018), have proposed methods by which the PRACH overload problem
in Long Term Evolution (LTE) systems can be solved. However, these past approaches
have continued to assume random arrivals in modeling the traffic generation patterns
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of individual IoT devices. As a result, they have not been able to benefit from any
prediction of the future traffic generation patterns of individual IoT devices.

The main thesis of this chapter1 is that the traffic generation patterns of M2M communi-
cation are far more predictable than has been assumed so far in the past work on the
Massive Access Problem. While the random arrival model may be well-suited to H2M
or H2H traffic, it is not necessarily suitable for M2M traffic since both the amount and
the timing of machine-generated traffic can be highly predictable. For example, many
smart utility meters currently generate traffic in fixed amounts at regular intervals. As
a result, their traffic can be predicted with 100% accuracy. The main purpose of this
chapter is to explore whether predictability extends to other device classes and quantify
the performance of the prediction schemes employed.

Predictability of M2M traffic has far-reaching implications for the design of practical
access schemes. For example, if all IoT traffic could be predicted accurately, then a
base station or IoT Gateway could utilize a joint forecasting-scheduling architecture
in which it predicts the future traffic of all IoT devices over a scheduling window and
would schedule all of the traffic collision-free in advance. Thus determining to what
extent individual IoT device traffic generation patterns are predictable is the first step
towards understanding whether proactive solutions to the Massive Access Problem are
viable.

In this chapter, we divide the IoT devices into four classes based on their traffic genera-
tion characteristics: (1) FBP, (2) VBP, (3) FBA, and (4) VBA. If an IoT device generates
a constant number of bits over time in each generation instance, we categorize this
device as “Fixed-Bit”; otherwise, we say that the device is “Variable-Bit”. Furthermore,
if the device generates traffic at regularly spaced time instances, then we call the device
“Periodic”; otherwise, we say that the device is “Aperiodic”.

Based on this categorization, in order to understand the predictability of IoT device
traffic, we undertake a comparative study of four fundamental forecasting models for
the problem of forecasting the traffic generation pattern of individual IoT devices in
M2M communication. These forecasting models are: (1) ARIMA, (2) MLP, (3) 1-D
CNN, and (4) LSTM.

In this chapter, by fine-tuning the architecture and the parameters of each of these four
models, we measure the best performance attainable by each model in the sMAPE

1The technical content in this chapter has been published as a conference paper (Nakip, Gül, Rodoplu,
& Güzeliş, 2019) in the Proceedings of the Cloud Computing and Internet of Things (CCIoT) 2019
Conference.
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metric. We show that LSTM outperforms all of the other models significantly for
devices in the VBP class in our simulations. Furthermore, we show that LSTM has
almost the same performance in the sMAPE metric as MLP and 1D CNN for devices in
the FBA class in our simulations. Finally, we show that both the training and execution
times per IoT device of each of these four models are reasonable and can lead to a
practical implementation at an IoT Gateway that employs joint forecasting-scheduling.

The rest of this chapter is organized as follows: In Section 2.2, we describe our
forecasting models. In Section 2.3, we present our methodology and our key findings in
regard to the forecasting performance as well as the training and execution times of our
models. In Section 2.4, we present our conclusions and directions for future work.

2.2 Forecasting Models

Each forecasting model is characterized by its sequence of inputs, sequence of outputs,
and the internal structure. The sequence of inputs and the sequence of outputs are
common for all of the forecasting models, except ARIMA. Let recall the common
notation for all models: At each discrete time slot m, the input of the forecaster of
device i is subset {xi[m− si

f ]} f∈Fi of the past traffic generation pattern {xi[m]}. In this
notation, si

f is the time index, relative to the current time, that corresponds to the f th

feature of the traffic generation pattern of device i. Furthermore, Fi is the set of all
indices of the features that are selected for device i.

The output of each forecaster, denoted by {x̂i[m+ k]}k∈{1,...,Ki}, is the Ki-step ahead
forecast for device i at current time m. The kth output corresponds to the value of the k-
step ahead prediction, where 1≤ k≤K. There are four possible ways in which to design
a forecaster that will forecast the same output set {x̂i[m+ k]}k∈{1,...,Ki}. These ways of
designing the output are (2) the recursive structure, (2) vectorial output of a dense layer,
(3) a set of softmax layers at the output each of which has a categorical output, and (4)
using a bank of Ki forecasters each of which performs 1-step ahead forecasting. In this
study, the ARIMA model is implemented with a recurrent structure, which is a standard
design of ARIMA; the other models (MLP, 1D CNN, and LSTM) are designed with the
vectorial output, denoted by [1 : Ki]. Since the recursive structure propagates the error
from (k−1)-step to k-step ahead forecasting, the recursive structure is not selected for
the MLP, 1D CNN and the LSTM models. The structure is not selected as the set of
softmax layers at the output because the categorical approach is not suitable for our
forecasting problem. In addition, a separate forecaster for each of the Ki outputs is not
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used because of the space- and time-complexity of such usage. For the implementation
of each forecaster in the JFS system, the value of Ki is calculated as Ki = dTsch

Ti
e; however,

in order to analyze the error propagation of the forecasters as a function of the number of
forecasting steps, the performance of forecasters is presented for an increasing sequence
of Ki’s in this chapter.

In this chapter, in order to measure the performance of the forecasting models, we
used sMAPE. The sMAPE quantifies the forecasting error of the model as a general
measurement technique. Furthermore, it shows how far the forecast value of the number
of bits is from to the actual value.

Let nSamples denote the number of samples; thus, the actual traffic generation pattern
is {xi[m]}m∈{1,...,nSamples}, and its forecast is {x̂i[m]}m∈{1,...,nSamples}. The calculation
of the sMAPE metric is given as

sMAPE =
1

nSamples

nSamples

∑
m=1

|x̂i[m]− xi[m]|
(|x̂i[m]|+ |xi[m]|)/2

δx̂i[m]6=xi[m] (2.1)

The original calculation of sMAPE in (2.1) covers only 1-step ahead forecasting. The
sMAPE for multi-step ahead forecasting is calculated as

sMAPE =
1

nSamples×Ki

nSamples

∑
m=1

Ki

∑
k=1

|x̂i[m+ k]− xi[m+ k]|
(|x̂i[m+ k]|+ |xi[m+ k]|)/2

δx̂i[m+k]6=xi[m+k]

(2.2)

Note that the sMAPE metric returns a result in the interval [0%,200%]. In order to
perform a fair comparison of the forecasting models, the parameters of the internal
structure of each model are optimized by using the methods that are explained in
Section 2.3.2 in order to minimize sMAPE.

2.2.1 Auto-Regressive Integrated Moving Average

The well-known ARIMA model is selected as the benchmark against which machine-
learning-based forecasting schemes (MLP, 1D CNN, LSTM) are compared. In this
section, the formation of the ARIMA model for each IoT device i is described. The
set of parameters of the ARIMA model are Autoregression (p), the Integration (d),
and the Moving Average (q) coefficients. First, for the ARIMA model, the sequence of
inputs to the ARIMA model are taken to be the entire past traffic generation pattern of
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device i. That is, the set Fi is not used to select the features of the input set because the
ARIMA model is able to capture the seasonal trends with its q coefficient or MALags,
which is a vector of positive integer lags associated with the moving average (MA)
coefficients. In this study, instead of the q parameter, MALags is used in order to extract
the important features more accurately. Note that we implemented the MALags of the
ARIMA model as the additive seasonal lags. Thus, the MALags of the ARIMA model is
set to Fi for each device i. Second, we perform exhaustive search in order to determine
the local-optimal p and d, where the search ranges of these parameters are denoted by
[zp

a ,z
p
b ] and [zd

a,z
d
b], respectively. Here, zp

a and zd
a are the lower bounds and zp

b and zd
b

are the upper bounds of the search ranges. (The numerical setting for each of these
parameters will be given in Section 2.3.2.)

2.2.2 Multi-Layer Perceptron with Local Optimal Structure

The internal architectural parameters of MLP are the number of layers E, and the
number of neurons ne in each layer e such that 1≤ e≤ E. We set all of these parameters
via the MLP-SSA, which we describe below. This algorithm finds a local optimal
solution for the problem of minimizing sMAPE across the validation set.

Fig. 2.1 shows the pseudo-code of the MLP-SSA function, which returns a local optimal
structure for the MLP. Among the list of inputs to this function are (1) Ẽ, which denotes
the maximum number of successive layers added such that no improvement is observed
in the sMAPE metric, and (2) Ñ, which denotes the maximum number of neurons (for
each layer) that are successively added without improvement in the sMAPE metric. On
Line 2, a new MLP architecture is created that has ni

0 inputs2 and Ki outputs. (The i

index refers to the device for which the MLP architecture is formed.) On Lines 3-4, the
lowest sMAPE value, denoted by sMAPElowest

allLayers, over all of the layers, is set to infinity,
and the number of layers that are added without gaining any improvement, namely
nLayersAddedWithoutImprovement, is set to zero. The main idea behind Lines 5-25 is
as follows: The algorithm begins (Line 6) by adding an empty hidden layer (that does
not yet have any neurons) to ml p. Then, for this hidden layer, it keeps adding neurons
until for Ñ successive stages, there is no improvement in the sMAPE metric. If this
stopping condition is satisfied, then the algorithm deletes (Line 18) the last Ñ neurons
that it has added (since these have not resulted in any improvement). The algorithm
keeps adding additional hidden layers as long as the number of layers added without
improvement is less than Ẽ (Line 5). If the stopping condition for this outer loop is

2In this chapter, we set the value of ni
0 to the length of Fi.
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MLP Structure Selection Algorithm (MLP-SSA)

1 MLP_Arch∗
MLP_SSA(Xtrain,Ytrain,Xval,Yval,ni

0,Ki, Ẽ, Ñ) {
2 ml p = new MLPArch(ni

0,Ki);
3 sMAPElowest

allLayers = +∞;
4 nLayersAddedWithoutImprovement = 0;
5 while(nLayersAddedWithoutImprovement < Ẽ) {
6 AddEmptyHiddenLayer(ml p);
7 sMAPElowest

currentLayer = +∞;
8 nNeuronsAddedWithoutImprovement = 0;
9 while(nNeuronsAddedWithoutImprovement < Ñ) {
10 AddNeuron(ml p);
11 TrainMLP(ml p, Xtrain,Ytrain);
12 sMAPE = TestMLP(ml p, Xval,Yval);
13 if(sMAPE ≥ sMAPElowest

currentLayer)

14 nNeuronsAddedWithoutImprovement++;
15 else
16 sMAPElowest

currentLayer = sMAPE;
17 }
18 DeleteLastNeurons(ml p, Ñ);
19 if(sMAPElowest

currentLayer ≥ sMAPElowest
allLayers)

20 nLayersAddedWithoutImprovement++;
21 else
22 sMAPElowest

allLayers = sMAPElowest
currentLayer;

23 }
24 DeleteLastLayers(ml p, Ẽ);
25 return ml p;
26 }

Figure 2.1. Pseudo-code for the MLP Structure Selection Algorithm (MLP-SSA) that
is used for the selection of the local optimal MLP architecture

satisfied, the algorithm deletes (Line 24) the last Ẽ layers that it has added and returns
the resulting MLP (Line 25).

2.2.3 1-Dimensional Convolutional Neural Network

In this section, we design a 1D CNN, which is shown for device i in Fig 2.2. We
experimentally selected the internal architecture of the 1D CNN model as follows: a
convolution layer, a max pooling layer, global average pooling, dropout, and a fully
connected layer. We use global average pooling to avoid overfitting by reducing the total
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number of parameters in the model. Furthermore, we set the Fully Connected Layer in
Fig. 2.2 as the MLP found via the MLP-SSA algorithm described in Section 2.2.2.

Figure 2.2. 1D CNN for [1 : Ki]-step ahead forecasting

We set the kernel size of the convolution layer and the max pooling layer to 3. We
also set the stride of the convolution layer to 2. We empirically selected the activation
function of the convolution layer and that of each neuron at each of the first three hidden
layers as ReLU , and we did not use any activation function for any neuron at the output
layer. Note that the number of neurons at the output layer is equal to Ki. The dropout
probability pdrop is set to 0.15. We search the range [zCNN

a ,zCNN
b ] in order to find the

local-optimal number of filters cCNN of the convolution layer.

2.2.4 Long-Short Term Memory Model

In this section, we use the LSTM model to forecast the IoT data traffic. We design
the structure of the LSTM model with the following sequence of layers after the input
layer: the lstm layer, two fully connected layers (indexed by ē = 1 and ē = 2), a dropout
layer, and the output layer, which is a fully connected layer with index ē = 3. In this
sequence, we use the dropout layer in order to increase the generalization ability of the
model, and we set the dropout probability to 0.15. We denote by hlstm the number of
lstm units in the lstm layer. Each lstm unit includes an update gate, a forget gate and an
output gate. Furthermore, hē denotes the number of neurons in each fully connected
layer ē ∈ {1,2,3}. Since Ki-step ahead forecasting requires Ki outputs, we set h3 = Ki.
The output of the kth neuron in the output layer is the kth-step ahead forecast. We take
the dropout probability pdrop to be equal for all devices and for all values of Ki. In order
to find the values of the parameters hlstm, h1 and h2, we search the ranges [zlstm

a ,zlstm
b ],

[zh1
a ,zh1

b ] and [zh2
a ,zh2

b ], respectively.
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2.3 Results

2.3.1 IoT Dataset

In this section, our goal is to select representative devices from each of the three IoT
device classes (VBP, FBA and VBA) for which forecasting is required. (Note that no
forecasting is required for the FBP class since each device in this class generates a fixed
number of bits at regular intervals; hence, its traffic generation pattern is completely
predictable.) In actual IoT systems, if the data from a sensor connected to the IoT device
is sent without compression, the data takes a fixed number of bits. Furthermore, if the
data is sent in an event-triggered fashion, where the IoT device transmits the new sensor
data only when a significant change has occurred in the value of the sensor reading
compared with the previous measurement, then the generated device traffic is aperiodic;
that is, the traffic is not generated at regular time intervals. We apply these facts in
generating traffic from IoT devices as follows: First, in our laboratory, we collected data
from the Relative Humidity (RH), Non-Methane Hydrocarbon (NMHC), and Nitrogen
Dioxide (NO2) sensors. Second, by using Huffman coding on the collected sensor data
from the RH and the NO2 sensors, we obtained a traffic generation pattern for these
devices that are variable-bit. Furthermore, assuming that the devices connected to the
NMHC and NO2 sensors transmit their data in an event-triggered fashion, we obtained
a traffic generation for these devices that are aperiodic. Thus, under these assumptions,
the traffic generation pattern of the RH sensor falls in the VBP class, the NMHC in the
FBA class, and NO2 in the VBA class.

2.3.2 Parameter Tuning and Training

We trained and tuned the ARIMA and MLP models on MATLAB, and the 1D CNN
and LSTM models in Python on the Google Colab platform using the Tensor Pro-
cessing Unit (TPU) accelerator. Furthermore, in all of the models below, for each
device i, we obtained the results for [1 : Ki] when Ki takes values in the sequence
K≡ [1,2,3,4,5,10,15,20,25,30].

ARIMA:

In order to train the ARIMA model, we used maximum likelihood estimation. We
implemented the ARIMA model by using the Econometrics Toolbox in MATLAB.
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The search interval for the parameter p is [zp
a ,z

p
b ] = [0,3] and for the parameter d is

[zd
a,z

d
b] = [0,3]. The local optimal values of the parameters of the ARIMA model were

found via exhaustive search for the parameters to be (p,d,q) = (0,1,24) for the RH
sensor, (0,1,1) for the NMHC sensor, and (0,1,3) for the NO2 sensor. We note that
the local optimal value of the Autoregression coefficient (p) of the ARIMA model is 0
for each of these devices.

MLP:

The connection weights and the biases are learned in the training stage by using the
Levenberg-Marquardt (LM) algorithm in order to minimize the Mean Square Error
(MSE). In order to forecast the traffic of all IoT devices in the VBP, FBA and VBA
classes, we use a variable learning rate in the LM algorithm. We set the initial learning
rate to 0.001. Furthermore, we set the decrease and increase factors to 0.1 and 10,
respectively, and the maximum learning rate to 1010. All of the hidden-layer neurons
utilize the tanh activation function while the output neurons are kept linear.

The resulting neural network architecture for each IoT device is given in Table 2.1. Each
entry in this table is indexed by the vector [1 : Ki] for vector Ki-step ahead prediction
(which appears at the top of each column) and the particular device (which appears
on the left hand side of each row). In the table, we further show the class (VBP, FBA,
VBA) in which each device falls. Each cell of Table 2.1 represents the local optimal
MLP architecture that has been found for that device and for that [1 : Ki]. The local
optimal MLP architecture is in the form [n1 n2 · · · nE], where E refers the total number
of layers. We see that for the majority of the cells in Table 2.1, the local optimal MLP
architecture for the RH dataset has a number of layers that is greater than or equal to
those for the other two sensor devices. The reason is that the traffic generation pattern
of a device in the VBP class has uncertainty only in the number of bits rather than the
timing of traffic generation; as a result, it tends to be more predictable than those for
the FBA and the VBA classes.

We trained the MLP model in the batch mode. We selected the optimal number of
epochs via early stopping, which stops the training when the MSE of the validation set
does not decrease for 50 successive epochs. Below, we give the sequence of the optimal
number of epochs that corresponds to the sequence of values in K for each device class.

• RH (VBP class): 14, 11, 22, 18, 7, 8, 12, 10, 41, 26

• NMHC (FBA class): 6, 13, 54, 14, 19, 14, 9, 10, 13, 11
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Table 2.1. Local optimal network architectures of MLP found by the MLP-SSA algo-
rithm up to 30-step ahead prediction for each IoT device

Device Class [1] [1:2] [1:3] [1:4] [1:5]
RH VBP [2 6 5 3] [1 3 5 8] [1 3] [1 3 9 6 4] [5]
NMHC FBA [6 1 1 1] [1 1] [1] [2 1] [1]
NO2 VBA [6] [5 6 11] [6 9] [6 7 13] [5 13 8]

Device Class [1:10] [1:15] [1:20] [1:25] [1:30]
RH VBP [4 12 3 6] [2 5 8 8] [3 9] [2 3] [2]
NMHC FBA [1] [2] [2] [2] [2]
NO2 VBA [6 7] [6 6] [6 6 7] [5 6] [5 7 8]

• NO2 (VBA class): 10, 16, 17, 16, 14, 15, 10, 15, 9, 13

1D CNN:

We set the activation function of each neuron of the 1D CNN as follows: We use ReLU

for the convolution layer, tanh for the hidden layers of the Fully Connected Layer, and
no activation function (resulting in a linear structure) for the output layer. In order to
find the number of filters cCNN in the convolution layer, we set the search interval as
[zCNN

a ,zCNN
b ] = [8,256]. We measure the value of sMAPE of the test set for each value

in this search interval that is in the form 2m for integer m: 3≤ m≤ 8.

For the sequence of values in K, the following are the number of filters: 256, 128, 8,
32, 64, 64, 128, 32, 256, 256 for the RH sensor. For the NMHC sensor, the sMAPE
error turned out to be identical (around 24%) for all values of cCNN. Thus, we took the
number of filters to be 8 for the sequence of values in K in order to keep the model
simple. We found the number of filters for the NO2 sensor to be 256, 16, 32, 64, 32, 8,
8, 8, 8, 8 for the sequence of values in K. For the majority of values in K, we see that
the 1D CNN model requires more filters for the most predictable dataset, namely for
RH.

The best epoch is determined by using early stopping whose stopping criterion is
identical to the one used for MLP. The best epochs for the sequence of values in K are
as follows:

• VBP: 87, 77, 163, 131, 114, 119, 87, 146, 103, 119

• FBA: 101, 56, 58, 55, 58, 70, 66, 64, 70, 64

• VBA: 235, 169, 174, 206, 215, 254, 262, 194, 285, 198
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LSTM:

For the training of the LSTM model, we used Adaptive moment estimation (Adam),
which is a first-order gradient-based optimization algorithm, in order to minimize the
MSE of forecasting. We implemented the same early stopping technique as for MLP
and 1D CNN. The best epochs for the sequence of values in K are as follows:

• VBP: 96, 67, 76, 144, 67, 75, 62, 172, 65, 92

• FBA: 93, 80, 69, 85, 129, 155, 168, 147, 54, 128

• VBA: 243, 248, 213, 204, 70, 69, 86, 55, 60, 56

The search intervals for the parameters hlstm, h1 and h2 are as follows: [zlstm
a ,zlstm

b ] =

[8,256]; [zh1
a ,zh1

b ] = [32,128] and [zh2
a ,zh2

b ] = [16,64]. In each interval, we take only the
values that have the form 2m for m : 3≤ m≤ 8. The resulting parameters of the LSTM
model are shown in Table 2.2 for each device. Each cell of Table 2.2 is in the form
(hlstm, h1, h2). Table 2.2 shows that in the majority of cases, hlstm is higher for the VBA
class than for the VBP and the FBA classes.

Table 2.2. Parameters of LSTM found up to 30-step ahead prediction for each IoT
device

Device Class [1] [1:2] [1:3] [1:4] [1:5]
RH VBP (8, 128, 32) (32, 128 16) (256, 64, 64) (8, 32, 16) (16, 32, 64)
NMHC FBA (8, 32, 16) (8, 32, 32) (8, 64, 16) (16, 32, 16) (8, 64, 64)
NO2 VBA (32, 128, 32) (32, 32, 32) (64, 32, 16) (32, 128, 64) (256, 64, 16)

Device Class [1:10] [1:15] [1:20] [1:25] [1:30]
RH VBP (8, 64, 64) (8, 128, 64) (8, 32, 32) (16, 32, 32) (16, 128, 32)
NMHC FBA (8,64,16) (8, 32, 16) (8, 32, 16) (256, 32, 64) (8, 32, 64)
NO2 VBA (64, 32, 16) (256, 64, 64) (32, 128, 32) (64, 128, 16) (8, 32, 64)

2.3.3 Comparison of Forecasting Performance Results

In this section, we present the performance of forecasting schemes, measured via
sMAPE. First, our goal is to validate that the traffic generation patterns of the actual
devices from which we collected data are representative of those for the VBP, FBA
and VBA device classes. To this end, we formed bootstrapped traffic generation
patterns from those of the actual devices while retaining inter-temporal statistics of
the traffic generation patterns. We trained each such bootstrapped device separately
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while preserving the same architecture as for the original device. Then, we compared
the forecasting performance for these devices with those for the actual devices. We
validated that the results presented in this section are similar to those for bootstrapped
devices in that the sMAPE displayed a standard deviation of approximately 10% of
the mean in each case. Since bootstrapping preserves the statistics of the original
traffic generation patterns while generating new realizations, our tests suggest that the
forecasting results presented in this section are robust to such variations.

We note that the sMAPE metric takes values in the range [0%, 200%]. We follow the
original definition of sMAPE in this regard, for which the metric gives 200% when all
of the forecasting results have maximal error, and gives 100%, when half of the results
are in error in a binary classification problem (e.g. as for the FBA class).

Figure 2.3. sMAPE results of RH (VBP) traffic generation pattern up to 30-step ahead
prediction

In Fig. 2.3, we show the forecasting error (sMAPE) for the traffic generation pattern of
the RH sensor, which falls in the VBP class. First, we see that LSTM outperforms the
other three models. The reason is that the traffic generation pattern of the RH sensor
has seasonal trends and LSTM captures both the short and the long term seasonal trends
in the generation pattern. Since 1D CNN, MLP and ARIMA do not have forget and
update gates in their structure, they do not capture these seasonal trends as effectively
as LSTM.

Fig. 2.4 shows the forecasting error for the NMHC sensor, whose traffic generation
pattern falls in the FBA class. We see that LSTM, 1D CNN, MLP outperform the
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Figure 2.4. sMAPE results of NMHC (FBA) traffic generation pattern up to 30-step
ahead prediction

ARIMA model by a significant margin in the sMAPE metric. We note that forecasting
the traffic generation pattern for the FBA class is equivalent to a binary classification
problem in which we represent the traffic at each discrete time instance by 0 or the fixed
number of bits that the device can send. The reason for the much worse performance
of ARIMA in Fig. 2.4 is that as a linear model, ARIMA performs well in those cases
in which it captures variables that vary continuously as a function of time. As a result,
ARIMA underperforms in capturing the non-linear relationship implied by the binary
classification problem.

In Fig. 2.5, first, we see that none of the four models are able to perform sufficiently
accurate forecasts of the traffic generation pattern of the NO2 sensor, which falls in the
VBA class. The reason is that, compared with the VBP and the FBA classes, both the
number of bits and the traffic generation times must be successfully predicted for the
VBA class. Second, we see that ARIMA outperforms the other three models in this case.
The reason is as follows: Since the ARIMA model is linear and the Autoregression
coefficient (p) of the model is 0 in our local optimal setting, the generalization ability
of ARIMA is expected to be higher than those of the other three models. As a result,
when all of the models have high sMAPE, ARIMA outperforms 1D CNN, LSTM and
MLP, all of which are non-linear models.

Our main conclusion is that LSTM appears as the most promising model out of the four
models in regard to the forecasting performance, as measured by sMAPE. However,
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Figure 2.5. sMAPE results of NO2 (VBA) traffic generation pattern up to 30-step ahead
prediction

this performance must be compared against the training and execution times of this
model in order to determine whether the model can be implemented in practice. In the
next section, we undertake an examination of the training and execution times of these
models.

2.3.4 Comparison of Models with Respect to Training Time

We first examined the execution times of all of the four models and found that all
execution times are less than 0.5 seconds on a 4.00 GHz DL380 Gen10 Intel Xenon-
Gold 6138 48-Core Processor with 128 GB of RAM for the ARIMA and MLP models
and on the Google Colab platform for the 1D CNN and LSTM models. This execution
time is sufficient for most of the IoT applications that utilize sensors. In the rest of this
section, we focus on a comparison of the training times of the four models. The training
times that we report in this section have been obtained as the average over 10 training
trials for each of the devices for each forecasting model.

In Fig. 2.6, for the RH sensor (which falls in the VBP class), we see that all of the
four models have training times that are less than 150 seconds. This training time is
reasonable, assuming that the models will be trained off-line. (For online training,
further improvements to the models would be necessary, which we plan to undertake
in our future work.) Second, while ARIMA has a training time that is approximately
0.3 seconds, the training time of LSTM is approximately 50 to 130 seconds. This
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Figure 2.6. Training time of RH (VBP) traffic generation pattern up to 30-step ahead
prediction

300-fold difference in the training times of the two models must be compared against
the forecasting performance achieved by each model. Since the sMAPE of LSTM is
lower than that of ARIMA by at most 5%, network designers must carefully decide
how to trade off the forecasting performance against the training time in order to decide
between LSTM and ARIMA.

Figure 2.7. Training time of NMHC (FBA) traffic generation pattern up to 30-step
ahead prediction
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In Fig. 2.7, for the NMHC sensor (which falls in the FBA class), first, we see that LSTM
has a training time that is significantly larger than those of the other models beyond
K = 15 for the FBA class. In particular, the LSTM training time peaks at K = 25.
The reason is that the number of lstm units hlstm (shown in Table 2.2) equals 256 for
K = 25, which is much higher than those for the other values of K for LSTM. Second,
the training times of MLP and ARIMA are much lower than those of 1-D CNN and
LSTM. The reason is that the local optimal structures of MLP (shown in Table 2.1) and
ARIMA model are simpler than the structures of LSTM and 1-D CNN. Taking into
account both the training time and the sMAPE performance (Section 2.3.3), we see that
MLP outperforms all of the other models in regard to both of these metrics in this case.

Figure 2.8. Training time of NO2 (VBA) traffic generation pattern up to 30-step ahead
prediction

In Fig. 2.8, for the NO2 sensor (which falls in the VBA class), first, we see that the
training time of LSTM is much higher than those of the other three models. Second,
we see that the training time of ARIMA is the lowest of all of the four models, since it
has the simplest structure out of the four models. We note that ARIMA outperforms all
of the other models in both the training time and the forecasting performance in this
case. Finally, we note that the reason that the training time of the LSTM model peaks
at K = 5 and K = 15 is that hlstm equals 256 in these cases, which is much higher than
that for the other values of K.
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2.4 Summary

In this chapter, we showed that to the extent that the devices in our simulations are
representative of the VBP, FBA and the VBA classes, the traffic generation patterns in
the VBP and the FBA classes appear far more predictable than that in the VBA class
using the best forecasting model in each case. We also found that the LSTM model
outperforms all of the other models for the VBP class. Furthermore, we demonstrated
that for the FBA class, the performance of LSTM, 1D CNN and MLP are comparable
and much better than that of ARIMA. For the VBA class, none of the four models
achieve a sufficiently high forecasting performance for K-step ahead prediction for
K > 5. In regard to training time, LSTM has a significantly higher training time than the
other three models. Furthermore, ARIMA has the lowest training time out of the four
models. When the forecasting error and the training time are examined jointly, for the
VBP class, LSTM and ARIMA are comparable; for the FBA class, MLP outperforms
all of the other models, and for the VBA class, ARIMA outperforms all of the other
models.

Our results suggest a joint forecasting-scheduling architecture to be implemented at an
IoT Gateway in which the Gateway predicts the future traffic of devices in distinct device
classes and schedules their future traffic jointly based on these forecasts. This chapter
constitutes a first step towards building predictive networks, in which the network
predicts the traffic generation patterns of individual devices. Such predictions can be
subsequently used for efficient allocation of network resources based on forecasts. This,
in turn, holds the potential to deliver a much higher network performance than can be
achieved via reactive schemes that merely respond to current traffic demand.
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Chapter 3

JOINT FORECASTING-SCHEDULING SYSTEM

3.1 Introduction

As we have discussed in Chapter 1, the Massive Access Problem of the IoT refers to
the problem of enabling the wireless access of a massive number of IoT devices to the
wired Internet. Among the diverse set of IoT devices, smart utility meters alone are
expected to reach a density of approximately 5,000 to 35,000 devices per base station
in urban areas (Vodafone, Apr. 2010). Since the 4G wireless systems will be unable
to handle such an enormous number of devices per base station due to the PRACH
overload (Ghavimi & Chen, 2015), novel access solutions must be devised for the IoT
revolution to take off.

The past work on the Massive Access Problem (Aijaz et al., 2014) (Aijaz & Aghvami,
2015)(Jin et al., 2017)(Liang et al., 2018)(Lien et al., 2012)(Lin et al., 2014) has
modeled the traffic generation patterns of IoT devices via “random arrivals” at the MAC
layer. Under the random arrival model, since the future traffic of IoT devices cannot be
predicted accurately, only MAC-layer protocols that are reactive to the traffic demand
are feasible. In contrast, if the future traffic of individual IoT devices can be predicted
accurately, then proactive scheduling of device traffic becomes viable. Proactive
scheduling has the advantage of eliminating contention, collision and handshaking
when implemented centrally by an IoT Gateway or base station.

Our results in Chapter 2 indicate that the traffic generation patterns of certain classes of
individual IoT devices for M2M communication can be predicted with relatively high
accuracy in the sMAPE metric via machine and deep learning techniques. However, in
that chapter, the implications of the predictability of the traffic generation patterns of
individual IoT devices for scheduling were not investigated.

The first contribution of this chapter1 is the design of a JFS system, to be implemented

1The technical content in this chapter has been published as a conference paper (Nakip, Rodoplu,
Güzeliş, & Eliiyi, 2019) at the IEEE Global Conference on the Internet of Things (GCIoT) 2019.
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at an IoT Gateway, that forecasts the future traffic generation pattern of each IoT device
and schedules the traffic of these devices in advance without any collisions over a
scheduling window. Not only does such a system have the advantage of potentially
achieving a high throughput compared with reactive solutions to the Massive Access
Problem, but it can also minimize the average transmit energy spent by each IoT device
and thus prolong the lifetime of battery-limited IoT devices.

The second contribution of this chapter is a comparison of the performance of JFS with
respect to the forecasting scheme employed. In particular, we evaluate the network
performance of ARIMA against the machine-learning based MLP and LSTM models
when each of these models is used for forecasting the future traffic generation patterns
of IoT devices. In this chapter, we measure network performance via the uplink cross-
layer throughput in a full JFS system. This provides a much more accurate measure
of performance than traditional performance metrics for forecasting (such as MSE or
sMAPE) that do not directly quantify the impact of forecasting on scheduling.

The third contribution of this chapter is the development of a reservation-based heuristic
scheduling algorithm, which we call Priority based on Average Load (PAL), that
allocates the MAC-layer slots for IoT devices. The PAL achieves high throughput
performance in the majority of cases. Furthermore, its time complexity is linear in the
number of devices. Via our simulations, in this chapter, we estimate the computation
time that would be required to implement JFS in an actual system that operates at an
IoT Gateway.

The rest of this chapter is organized as follows: In Section 3.2, we present our system
for joint forecasting-scheduling. In Section 3.3, we present our results on the network
performance and the computation time of our system. In Section 3.4, we present our
conclusions.

3.2 Joint Forecasting-Scheduling System

The main idea behind JFS is as follows: The Gateway G forecasts the traffic generation
pattern {xi[m]} of each device i over a scheduling window of duration Tsch. The Gateway
then aims to schedule the devices’ uplink transmissions collision-free over this window
based on its forecasts. On a downlink broadcast channel, G communicates to each
device i the sequence of slots that are allocated to i on the uplink. In our system, on the
downlink, G communicates to each i this sequence of slots for i’s next forecast burst.

Whenever each device i transmits to G, it prepends to its transmission a compressed
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representation of its actual generated traffic pattern {xi[m]} since its last transmission.
Based on this information, G forecasts the future traffic pattern {x̂i[m]} of that device.

Figure 3.1. Joint Forecasting-Scheduling (JFS) System

Fig. 3.1 displays our JFS system. Note that there is a single forecaster for each individual
IoT device. In contrast, scheduling is performed jointly for all IoT devices over the
scheduling window of duration Tsch based on the outputs of the bank of forecasters. In
Fig. 3.1, each forecaster operates at a potentially different rate from those of the other
forecasters. In particular, the forecaster for device i operates at rate 1/Ti, where Ti is the
period at which device i generates its traffic. The scheduler takes in the forecasts from
the bank of forecasters and forms a schedule of duration Tsch that is represented at the
granularity of a MAC-layer slot.

We assume that we perform feature selection as a preprocessing step before each
forecaster. In Fig. 3.1, the input of each forecaster is a subset {xi[m− si

f ]} f∈Fi of the
past traffic generation pattern {xi[m]} of device i. In this notation, si

f is the time index,
relative to the current time, that corresponds to the f th feature of the traffic generation
pattern of device i. Furthermore, Fi is the set of all of the indices of the features selected
for device i. For example, if only the last five past samples of the traffic generation
pattern of device i are selected as features, Fi = {1,2,3,4,5}. The output of each
forecaster, denoted by {x̂i[m+ k]}k∈{1,...,Ki}, is the kth-step ahead forecast for device i

at current time m over the next Ki samples. Note that Ki = dTsch
Ti
e.

36



3.2.1 Forecasting of IoT Traffic

In this chapter, we shall present a comparison of the performance of three different
forecasting models (ARIMA, MLP, and LSTM) with respect to the network throughput
of JFS. To this end, in this section, we discuss the parameters of each of these forecasting
models. Note that since the 1D CNN model underperforms the other models as shown
in Section 2.3.3, we do not use this forecasting scheme within the JFS system.

Assume that we fix the forecasting model for each forecaster in the bank of forecasters
as ARIMA, MLP or LSTM. Then, as a metric for training and tuning the bank of
forecasters, we shall focus on the throughput difference Φ between the throughput ηo

obtained under perfect forecasts and the throughput η obtained under our forecasting
scheme over a scheduling window of duration Tsch. The equation of Φ is given by

Φ = ηo−η (3.1)

Each forecasting model is defined by its sequence of inputs, its sequence of outputs and
its internal structure. We determine the architectural parameters of the internal structure
of each model by minimizing Φ.

We shall now describe the internal structure of each of the forecasting models.

Auto-Regressive Integrated Moving Average (ARIMA):

We now explain how to form the ARIMA model for each IoT device i. ARIMA takes
all of the past samples as input for each device i and selects the set Fi based on MALags,
which is a vector of positive integer lags associated with the MA coefficients. (Note
that we do not use the MA coefficient q.) The other parameters of ARIMA are the
autoregression coefficient p and the integration coefficient d. The range of values over
which we shall search for the local optimal value of p shall be denoted by [zp

a ,z
p
b ], where

zp
a is the lower bound and zp

b is the upper bound of the search range. Similarly, the
search range for d shall be denoted by [zd

a,z
d
b]. After selecting the set Fi, we perform

exhaustive search simultaneously for p and d over a two-dimensional grid that consists
of their respective search ranges.
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Multi-Layer Perceptron (MLP):

The internal architectural parameters of the MLP are the number of layers E and the
number of neurons ne at layer e ∈ {1, . . . ,E}. We determine these parameters via a
Neural Network Selection Algorithm that we have devised. This algorithm finds a local
optimal value of Φ and is denoted by MLP-SSA-Φ.

The MLP-SSA (which is given in Fig. 2.1 in Section 2.2.2) is revised by replacing
the sMAPE calculation with Φ in order to design MLP-SSA-Φ. The MLP-SSA-Φ
algorithm works as follows: The algorithm successively adds empty layers, starting
with the formation of the input layer. At each layer that has been added, the algorithm
increments the number of neurons at that layer (starting with a single neuron) until the
value of Φ (which is obtained at the output of scheduling) no longer decreases. In this
case, the algorithm deletes the last neuron that was added that resulted in an increase
in Φ and fixes the number of neurons at that layer. The algorithm keeps track of the
smallest value of Φ, denoted by Φmin, that has been achieved thus far in the process
of adding layers. If Φmin does not decrease upon the addition of Ẽ successive layers
(where Ẽ is a parameter to be chosen), then MLP-SSA-Φ deletes the last Ẽ layers that
have been added and returns the resulting architecture as the final architecture of the
MLP model.

Long-Short Term Memory (LSTM):

We now explain how we determine the structure of the LSTM model. We form the
LSTM model with a single lstm layer, two fully connected layers (indexed as ē = 1 and
ē = 2), a dropout layer and the output layer, which is a fully connected layer indexed
as ē = 3. We tune the following architectural parameters of the LSTM model: (1) the
number of lstm units hlstm in the lstm layer, and (2) the number of neurons hē in each
fully connected layer ē ∈ {1,2,3}. Note that each lstm unit consists of the following
gates: an input, an output, an update and a forget gate. We set the value of the number
of neurons in the output layer, namely h3, to Ki for device i. Furthermore, we search
for the local optimal values of the parameters hlstm, h1 and h2 in the search intervals
[zhlstm

a ,zhlstm
b ], [zh1

a ,zh1
b ] and [zh2

a ,zh2
b ], respectively.
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3.2.2 Scheduling

We now explain how we perform scheduling for our JFS system, which was shown
in Fig. 3.1. Each burst j is generated in time slot r j and must be delivered by time
slot d j. (Thus, ∆ j = d j− r j.) We let a j denote the total number of bits in burst j. The
processing time p j of burst j is defined as the total number of MAC-layer slots that
the transmitting IoT device needs in order to send burst j to Gateway G. (As stated in
Section 1.4, JFS schedules each transmission in a distinct time slot such that it does not
collide with any other transmission.) We let R j denote the data rate (in bits per second)
at which burst j can be transmitted to G. Furthermore, we let τMAC denote the duration
(in seconds) of each MAC-layer slot. Thus, p j = d

a j
R jτMAC

e.

While scheduling may focus on a variety of objective functions, in this chapter, we focus
on the uplink cross-layer throughput η (as defined in Section 1.4). Furthermore, for
simplicity, we develop a heuristic, called PAL, and use it as the scheduling algorithm in
this chapter. (However, we emphasize that JFS is a general methodology, and a variety
of scheduling algorithms may be used in the Scheduler module of JFS in Fig. 3.1.)

Let J denote the set of all bursts across all devices N over the current scheduling
window. Let ã j[m] denote the number of bits of burst j that have not yet been sent to G.
Furthermore, we let ∆̃ j[m] denote the length of time that remains at the current time m

until the delay deadline d j of burst j. We let Jactive[m] denote the set of “active bursts”,
namely, those bursts which have been generated but not yet completely processed and
whose delay deadlines have not yet expired at the current time m. Then, we define the
“effective load” γ j[m]≡ ã j[m]

∆̃ j[m]
for each j ∈Jactive[m] at the current discrete time m.

Now, PAL is a greedy algorithm that schedules bursts on a single channel in a non-
preemptive fashion. “Non-preemptive scheduling“ means that if an IoT device has
started sending a burst, the algorithm continues to send that burst until the transmission
of the burst has been completed. That is, no other burst from any of the IoT devices
can be scheduled on the single channel while the current burst is being transmitted.
After the transmission of the current burst has been completed, PAL computes j∗ =

argmax j∈Jactive[m] γ j[m] for the current time m; that is, the algorithm finds the burst
j∗ with the largest remaining effective load at time m. Then, it reserves all of the c j∗

upcoming MAC-layer slots in the channel for burst j∗.

The pseudo-code of PAL is shown in Fig. 3.2. In this pseudo-code, we assume that
the following parameters are globally available: the duration of the scheduling window
Tsch, the duration of a MAC-layer slot τMAC, the capacity vector C̃ (whose jth entry
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PAL:

1 schedule PAL {
2 burstSeq 〈Jactive〉= 〈φ〉;
3 schedule S = zeros(N,Tsch/τMAC);
4 m = 0;
5 while(m < Tsch/τMAC) {
6 [〈Jactive〉,nReservedSlots] = ComputeSchedule(&S,〈Jactive〉,C̃,m);
7 m = m+ nReservedSlots +1;
8 }
9 return S;
10 }

Figure 3.2. Pseudo-code of the PAL heuristic

is equal to R jτMAC), and the entire set of bursts J . Each element of J is a burst,
which is a structure that contains the following fields: (1) burstID, which is the unique
identification (ID) of a burst, (2) deviceID, which is the unique ID of the device that
generated the burst, (3) numberOfBits (which is equal to a j), (4) generationTime, which
is the global index of the slot in which the burst is generated, and (5) deadline, which is
the global index of the slot by the beginning of which the burst must be delivered.

On Line 2 in Fig. 3.2, the sequence of active bursts, denoted by 〈Jactive〉, is set to the
null sequence. On Line 3, the schedule matrix S is set to the zero schedule matrix,
whose number of rows equals N and whose number of columns equals the number of
MAC-layer slots within the scheduling window, computed as Tsch/τMAC. The entry
(i,m) of S equals 1 if slot m has been allocated to device i ∈ {1, . . . ,N} and equals 0
otherwise. On Line 4, the global slot index m is initialized to 0. In each iteration m

of the outer loop (Line 5) of PAL, the algorithm calls the ComputeSchedule function
(Line 6), which computes a schedule given 〈Jactive〉 for the current slot m and returns
〈Jactive〉. On Line 6, the first input to the ComputeSchedule function is a pointer to the
schedule matrix S; the second input is 〈Jactive〉 for the current slot m; the third input is
the capacity vector C̃; and the fourth input is the global slot index m. On Line 7, the
global slot index is increased by nReservedSlots+1 in order to continue to schedule
bursts at the next available MAC-layer slot. Finally, on Line 9, PAL returns the schedule
matrix S.

We now describe the ComputeSchedule function, which is shown in Fig. 3.3. On Line
2, the FindBurstsGeneratedInSlot function finds the sequence of bursts 〈J̃ 〉, each of
whose generation time falls in the current time slot m̃. (Recall that J , which appears as
an argument of the FindBurstsGeneratedInSlot function, denotes the entire set of bursts
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1 [burstSeq, int] ComputeSchedule(schedule* s, burstSeq 〈Jactive〉,
vector C̃, int m̃) {

2 〈J̃ 〉= FindBurstsGeneratedInSlot(J , m̃);
3 〈J ′〉= Concat(〈Jactive〉,〈J̃ 〉);
4 〈γ[m̃]〉= CalculateAverageLoad(〈J ′〉, m̃);
5 〈Jsorted〉= Sort(〈J ′〉,〈γ[m̃]〉);
6 nBursts = length(〈Jsorted〉);
7 for( j = 0; j < nBursts; j++) {
8 Jcurrent = 〈Jsorted〉[0];
9 j = Jcurrent.burstID;
10 i = Jcurrent.deviceID;
11 a j = Jcurrent.numberOfBits;
12 d j = Jcurrent.deadline;
13 p j = da j/C̃[ j]e;
14 if((d j < m̃)||(C̃[ j](d j− m̃+1)< a j)) RemoveBurst(〈Jsorted〉,0);
15 else {
16 (∗s)[i, m̃ : m̃+ p j−1] = 1;
17 RemoveBurst (〈Jsorted〉,0);
18 return [〈Jsorted〉, p j];
19 }
20 }
21 return [〈Jsorted〉,0];
22 }

Figure 3.3. Pseudo-code of the ComputeSchedule function

over the current scheduling window.) On Line 3, 〈J ′〉 is formed by concatenating
〈Jactive〉 and 〈J̃ 〉. On Line 4, the CalculateAverageLoad function calculates, for each
burst j in 〈J ′〉, the average load at the beginning of slot m̃ as γ j[m̃] = a j/(d j− m̃+1).
On Line 5, the Sort function sorts 〈J ′〉 in descending order with respect to 〈γ[m̃]〉. On
Line 6, the total number of bursts, denoted by nBursts, is calculated as the length of
〈Jsorted〉. The for loop that begins on Line 7 attempts to schedule the first burst in
〈Jsorted〉, where the burst can be scheduled within the scheduling window. We shall
see that if the scheduling of the 0th element of 〈Jsorted〉 has been attempted (ending in
success or failure), 〈Jsorted〉 will be updated by removing this 0th element. On Line 8,
the current burst Jcurrent is set to the 0th element of 〈Jsorted〉. From this point onwards,
we shall refer to the burst that is being scheduled as the “current burst”. On Lines 9-12,
the variables j, i, a j, and d j are set to the corresponding fields of the current burst. On
Line 13, the processing time of the current burst p j is calculated.

On Line 14, if the deadline of the current burst has expired or the total capacity between
m̃ to d j is not sufficient to process the current burst, the RemoveBurst function removes
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the current burst 〈Jsorted〉[0] from the sequence 〈Jsorted〉. Otherwise, on Line 16, the
slots between m̃ and m̃+ p j−1 are allocated for device i; on Line 17, the RemoveBurst
function removes the current burst from the sequence 〈Jsorted〉; and on Line 18, the
ComputeSchedule function returns the updated sequence 〈Jsorted〉 and p j as the number
of reserved slots. On Line 21, if the ComputeSchedule function does not schedule any
burst at slot m̃, it returns 0 as nReservedSlots and the updated sequence 〈Jsorted〉.

3.3 Results

In this section, we present our results on the uplink cross-layer throughput as well
as the computation time of the ARIMA, MLP, and LSTM forecasting models. We
implemented the ARIMA and the MLP models in MATLAB on a 4.00 GHz DL380
Gen10 Intel Xenon-Gold 6138 48-Core Processor with 128 GB of RAM. In addition,
we implemented the LSTM model in Python on the Google Colab platform using the
TPU accelerator.

3.3.1 IoT Dataset

We divided the IoT devices into four distinct classes based on their traffic generation
patterns. The four classes are: FBP, VBP, FBA and VBA. If the device generates a
constant number of bits at all generation time instances, the traffic generation pattern
is of type “Fixed Bit”; otherwise, it is of type “Variable Bit”. Furthermore, if the
IoT device generates data at regular intervals, the traffic generation pattern is of type
“Periodic”; otherwise, it is of type “Aperiodic”.

We obtained the first part of our data from the Temperature and Relative Humidity
(DHT22), Light Dependent Resistor (LDR) and Air Quality (MQ135) sensors in our
laboratory, measurements of which we collected over 2.5 months. We downloaded
the second part of our data from the online data repository (University of Califor-
nia Irvine Machine Learning Repository, 2008)(De Vito, Massera, Piga, Martinotto, &
Di Francia, 2008), which contains Air Quality measurements that have been collected
from sensors over 1 year.
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Table 3.1. Computed parameter and Φ values of the forecasting schemes for N = 1000
devices

VBP FBA VBA

Parameters Φ Parameters Φ Parameters Φ

ARIMA
(p,d)

(2, 0) 0.0925 (1, 1) 0.1846 (3, 0) 0.0703

MLP
(n1,n2, . . .nE)

(5, 1) 0.0763 (1) 0.2057 (1) 0

LSTM
(hlstm,h1,h2)

(128, 64, 32) 0.0277 (128, 128, 32) 0.2290 (16, 128, 32) 0

3.3.2 Simulation Set-up

In our simulations, we set the values of the parameters of our JFS system as follows:
τMAC = 0.1 second; Tsch = 1800 seconds. The delay constraints (in seconds) of the
applications that utilize the sensors are as follows: ∆1 = 0.5, ∆2 = 1, ∆3 = 2, ∆4 =

180, ∆5 = 600, ∆6 = 3600 with corresponding traffic generation periods (in seconds)
T1 = T2 = T4 = 180, T3 = T5 = T6 = 3600. In addition, the data rate (in kbits/s) for the
IoT devices are as follows: R1 = 33.33, R2 = 40, R3 = 33.33, R4 = 50, R5 = 50 and
R6 = 426.67.

3.3.3 Parameter Tuning and Training

In this section, we present the structure of each forecasting model. For each model and
each device class, we apply the following sequence of operations in order to tune the
values of the parameters of the model: (1) We train the model on the traffic generation
pattern of a randomly selected device. (2) We test the model on the traffic generation
pattern of all of the devices in that device class. (3) We schedule the bursts of those
devices within the scheduling window by using our PAL heuristic (Section 3.2.2).

We display the resulting values of the architectural parameters of each model in Table 3.1.
In each of the subsections below, we discuss how we tune the parameters of each of the
forecasting models.

43



ARIMA:

We implemented the ARIMA model using the Econometrics Toolbox of MATLAB,
wherein we set the training function of the ARIMA model to maximum likelihood
estimation (MLE). Recall that each feature index is the time index of the past sample
relative to the current time. We set MALags equal to the sequence of feature indices
that we determine by analyzing the empirical autocorrelation function of the traffic
generation pattern. The resulting feature indices in our analysis were: 1, 2, 3 and
multiples of 12 up to 120 for the VBP class; 1 and multiples of 23 up to 92 for the FBA
class; and 1, 2, 3 for the VBA class. After we fixed the value of MALags for each device
class, we set the intervals for exhaustive search as [zp

a ,z
p
b ] = [1,3] and [zd

a,z
d
b] = [0,3].

The resulting optimal values of p and d are given in the first row of Table 3.1. In the
same row, in each column, we display the value of Φ that corresponds to the optimal
(p,d) for a specific device class. We see that the largest value of Φ occurs for the FBA
class.

MLP:

We set the activation function of the neurons in the hidden layers to the tangent hyper-
bolic (tanh) function. In addition, we did not use an activation function at the output
layer. We set the initial value of each connection weight and each bias term to a random
number distributed uniformly on the interval [0,1].

We used the LM algorithm for training the MLP in order to minimize the MSE. We set
the initial learning rate of LM to 0.001, the decrease factor of the learning rate to 0.1,
the increase factor to 10, and the maximum learning rate to 1010.

We set the number of neurons at the output layer equal to Ki for device i. Then, we
found the local optimal architecture for the hidden layers via the MLP-SSA-Φ algorithm
(Section 3.2.1). We set the parameter Ẽ of this algorithm to 3. In the second row of
Table 3.1, we display the resulting architecture of the MLP for each device class. In this
table, each cell is of the form (n1,n2, . . . ,nE). We note that the local optimal hidden
layer architecture is (1) for the “Aperiodic” device class. The reason is that as the traffic
generation pattern becomes more unpredictable, MLP performs better by virtue of its
simpler architecture.
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LSTM:

In order to train the LSTM model, we used the Adam and MSE as the metric to be
minimized. We implemented the same early stopping technique as for MLP.

We set the search intervals for the parameters hlstm, h1 and h2 as follows: [zlstm
a ,zlstm

b ] =

[8,256]; [zh1
a ,zh1

b ] = [32,128] and [zh2
a ,zh2

b ] = [16,64]. In each interval, we take only the
values that are powers of 2. We display the resulting architecture for each device class
under the LSTM model in the third row of Table 3.1. Each cell in this row is of the
form (hlstm,h1,h2). For LSTM, multiple architectures produce the same value of Φ. In
Table 3.1, we report the simplest LSTM architecture that achieves the lowest value of
Φ.

3.3.4 Comparison of the Throughput Performance of Forecasting
Models

In this section, we compare the performance of forecasting models with respect to
the uplink cross-layer throughput (Section 1.4) of JFS. Furthermore, we display the
throughput under perfect forecasts, which provides an upper bound on the performance
of our forecasting schemes.

In order to understand the relationship between the IoT devices classes and throughput,
we first set up a simulation in which the network consists of IoT devices from a single
device class. We note that no forecasting is needed for the FBP class because devices in
this class generate a constant number of bits at regular intervals. Hence, once the initial
shift in timing has been communicated to the Gateway, the entire traffic generation
pattern of that device is known. Therefore, in our simulations, we shall examine the
performance of forecasting schemes only for the VBP, FBA and the VBA classes.

First, we set up a simulation in which all of the IoT devices fall in the VBP class. The
throughput for this scenario is displayed in Fig. 3.4. In this figure, we see that LSTM
outperforms the other three models with respect to network throughput with a gap of
approximately 0.1. The reason for the superior performance of LSTM is that traffic
in the VBP class has seasonal trends, which LSTM captures effectively. ARIMA and
MLP are not able to capture the seasonal trends as well as LSTM does because the
LSTM model has forget and update gates in its structure which ARIMA and MLP lack.
Note that the throughput when LSTM is used as the forecasting scheme is the same as
that under perfect forecasting up to 700 devices. Beyond 700 devices, LSTM slightly
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Figure 3.4. Throughput of JFS for the VBP class

underperforms when compared with perfect forecasting; however, the gap is relatively
small.

Figure 3.5. Throughput of JFS for the FBA class

Second, we set up a simulation in which all of the IoT devices fall in the FBA class.
Fig. 3.5 displays the throughput of the JFS system for this device class under each
forecasting model. We see that the gap between the throughput under perfect forecasting
and that under the other models increases beyond 400 devices. We examined the result-
ing schedule of each forecasting scheme and found that typically LSTM overallocates
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and ARIMA underallocates the number of MAC-layer slots that are dedicated to each
burst. The impact of the overallocation of LSTM on throughput is that in the heavily
loaded regime beyond 400 devices, the gap between the performance of LSTM and that
under perfect forecasting widens dramatically. The reason is that in the heavily loaded
regime, overallocation of the number of slots for each burst prevents adjacent bursts
from being scheduled. In contrast, the performance gap between ARIMA and perfect
forecasting remains roughly constant except between 300 and 500 devices, where it
widens only slightly. Thus, ARIMA displays a robust performance as the traffic load
increases because it does not suffer from the effects of overallocation.

Figure 3.6. Throughput of JFS for the VBA class

Third, we set up a simulation in which all of the IoT devices fall in the VBA class.
Fig. 3.6 displays the throughput for this device class under each forecasting model.
We note that, compared with Fig. 3.4 and Fig. 3.5, the throughput for the VBA class
remains roughly constant near 1 for almost all of the forecasting models up to 700
devices. The reason is that for the VBA class, the distribution of bursts over time is
more sparse than those for the VBP and the FBA classes; hence, the network remains
in the lightly loaded regime. Furthermore, beyond 700 devices, the throughput for the
ARIMA model decreases beyond that achieved under perfect forecasts. The reason is
that ARIMA overallocates the number of MAC-layer slots for VBA traffic.

Finally, we set up a system simulation that has an equal proportion of IoT devices from
each of the FBP, VBP, FBA and VBA classes. In Fig. 3.7, we display the throughput up
to 1000 devices. We see that all of our forecasting schemes perform close to perfect
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Figure 3.7. Throughput of JFS in a simulation environment with an equal proportion
of devices from the FBP, VBP, FBA and VBA classes

forecasting. We note that the impact of the performance of JFS for the FBA class on
this simulation is delimited by the fact that only 25% of the total number of devices
belong to the FBA class in this simulation. Up to 250 devices, MLP and LSTM perform
very close to the perfect forecasting bound in Fig. 3.5. The inferior performance of
ARIMA in Fig. 3.5 translates into a performance loss in Fig. 3.7 that is proportional to
the number of devices in the FBA class in this simulation.

3.3.5 Comparison of Forecasting Models with Respect to Training
and Execution Times

In this section, we present our results on the training and execution times of our
forecasting models. We report the mean and the standard deviation (STD) for each
device class over all of the devices in 10 simulation runs.

Training Time:

We display the training time per device of each forecasting model for each device class
in Table 3.2. We see that there is a significant difference between the training time
of LSTM and those of the other models. The reason is two-fold: (1) The number of
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parameters for LSTM is greater than those of the other models, and (2) the architecture
of LSTM is more complex than those of the other models (Table 3.1).

Table 3.2. Training time of forecasting models per IoT device
VBP FBA VBA

Mean STD Mean STD Mean STD

ARIMA 20.986 0.198 4.014 0.2133 0.299 0.015

MLP 2.826 0.919 0.168 0.057 1.162 0.882

LSTM 591.856 6.599 44.659 15.584 11.891 3.727

Execution Time:

In Table 3.3, we show the mean and the standard deviation of the execution time per
device. We see that the mean of the execution time of all of the forecasting models are
less than 1 second. Furthermore, the execution time of the MLP model is two orders of
magnitude lower than those of ARIMA and LSTM for the VBP and FBA classes. For
the VBA class, the execution time of MLP is approximately 1/5 that of ARIMA and
two orders of magnitude lower than that of LSTM.

Table 3.3. Execution time of forecasting per IoT device
VBP FBA VBA

Mean STD Mean STD Mean STD

ARIMA 0.447 0.012 0.088 0.006 0.004 0.0008

MLP 0.004 0.001 0.0009 0.0003 0.0008 0.0003

LSTM 0.607 0.024 0.088 0.005 0.087 0.009

3.3.6 Computation Time of the PAL Scheduling Heuristic

The execution time of JFS depends not only on the execution time of the bank of
forecasters (all of which run in parallel) but also on the execution time of the scheduler.
In order to understand whether our JFS system can be implemented in practice, we now
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undertake an examination of the computation time of PAL, which is our scheduling
heuristic.

In Fig. 3.8, we see that the computation time of PAL grows approximately linearly with
the total number of devices. For 1000 devices, the computation time is roughly 0.1132
seconds with a standard deviation of 0.0196 seconds. (Each error bar shown in Fig. 3.8
corresponds to one standard deviation in each vertical direction.)

Figure 3.8. Computation time of PAL under perfect forecasting

We denote the execution time of forecaster i in Fig. 3.1 by T f c
i . Then, the execution

time of the bank of parallel forecasters, denoted by T bank, is the maximum execution
time over all of the forecasters in Fig. 3.1; that is, T bank = maxi∈N T f c

i . Note that
scheduling cannot start before the latest forecaster finishes its task. Joint forecasting-
scheduling must finish by the earliest generation time over all of the bursts in the
upcoming scheduling window. The earliest generation time over all of the bursts in
that window is within Tmin ≡mini Ti seconds of the current time. We denote the sum of
T bank and the computation time of the scheduler by TJFS. Thus, for the JFS system to
work in real time, TJFS must be smaller than Tmin.

We form a conservative estimate of T f c
i as the sum of the mean and two standard

deviations for T f c
i , using the data in Table 3.3. Similarly, we estimate the execution

time of PAL as the sum of the mean and two standard deviations in Fig. 3.8. Then, for
a total of 1000 devices, an upper bound on TJFS is estimated to be 0.1584 seconds for
MLP, which is the fastest forecaster. Note that only 4% of this upper bound is spent on
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forecasting and 96% on scheduling.

3.4 Summary

In this chapter, we showed that among all of the forecasting schemes, MLP provides a
reasonable trade-off between uplink cross-layer throughput and execution time. When
all of the FBP, VBP, FBA and VBA classes are represented in equal proportions in a
network, the throughput performance loss of MLP with respect to perfect forecasts
is minimal. However, MLP underperforms significantly in network throughput when
all of the devices in the network fall in the FBA class. In this case, a combination of
LSTM and ARIMA outperforms MLP. Hence, our key conclusion is that the choice of
the forecasting scheme depends heavily on the proportions with which distinct device
classes are represented in the network. In a network where these proportions change
dynamically, the selection of the forecasting scheme must be dynamic as well.
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Chapter 4

A MULTI-SCALE ALGORITHM FOR JOINT
FORECASTING-SCHEDULING

4.1 Introduction

In this chapter1, we develop a novel algorithm, called the Multi-Scale Algorithm (MSA)
for the JFS system. Our goal in designing this algorithm is to solve the Massive Access
Problem while satisfying the wide range of delay constraints of IoT applications.

In Chapter 3, we showed that the JFS system under perfect forecasts achieves a cross-
layer network throughput of 1 for at least up to 500 devices, which are connected to
the Gateway G. However, in that chapter, we also saw that the performance of the JFS
system decreases due to the forecasting errors as the number of devices increases.

The main contribution of this chapter is the development of a novel algorithm that
operates at multiple time scales to perform joint forecasting and scheduling of IoT
devices at the MAC layer. The main advantage of such a methodology is three-fold: (1)
The amount of control signaling overhead can be kept to a minimum. (2) The delays
that occur in traditional protocols due to contention, collisions and handshaking can be
avoided. (3) If the forecasts are accurate, high network performance can be achieved
via reservation-based scheduling.

In this chapter, we show that an MLP-based architecture for forecasting, combined
with exact scheduling solutions, achieves high network throughput while satisfying
the diverse delay deadlines of the IoT devices. Furthermore, such performance can
be obtained at practically feasible time and space computational complexity such that
it can be implemented at an IoT Gateway.2 We compare the throughput and energy
consumption of MSA with those of three protocols: (1) RAB, which is a reactive,

1The technical content in this chapter has been published as a journal paper (Rodoplu, Nakıp, Eliiyi, &
Güzelis, 2020) in the IEEE Internet of Things Journal.

2We envision that this IoT Gateway is either co-located with the base station or acts as a relay to the
base station. In the framework of this chapter, the IoT devices are connected not to the base station
but rather to this IoT Gateway and do not implement the LTE standard.
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joint access-scheduling protocol that we have designed that combines features of ACB
(Ghavimi & Chen, 2015) and reservation-based scheduling (Yu et al., 2013). (2) PAL,
which is a proactive protocol that we have designed that utilizes non-preemptive priority
scheduling(Stallings, 2009) such that the priority across devices is determined based on
the time-averaged forecast remaining traffic load until the delay deadline. (3) E-PRV-BO
protocol, which is a proactive protocol that enhances the PRV-PO protocol in (Hammad
et al., 2017). We show that MSA significantly outperforms all of these three protocols
beyond 3000 devices. Furthermore, we show that the percentage control overhead of
MSA remains less than 1.5% for up to 6650 devices. Finally, we present a comparison
of the performance of MSA against those of the above three protocols under the IEEE
802.11ah standard.

The rest of this chapter is organized as follows: In Section 4.2, we describe our system
design. In Section 4.3, we present our multi-scale algorithm for joint forecasting-
scheduling. In Section 4.4, we present our results on the network performance of
this algorithm. In Section 4.5, we discuss how our framework can be extended to
scenarios in which IoT devices join or leave the network. In Section 4.6, we present our
conclusions.

4.2 System Design

In our system, the Gateway G forecasts the traffic generation pattern {Xi[k]} of each
device i over a scheduling window of duration Tsch. It then aims to schedule the devices’
uplink transmissions free of any collisions over this window based on its forecasts.
We assume a Frequency Division Duplexing (FDD) system. On a downlink broadcast
channel, G communicates to each device i the exact set of slots, denoted by Ai, that are
allocated to i on the uplink. If i is always awake, this information may be communicated
to i just before its uplink transmission is to occur; however, if i sleeps in order to
conserve energy, Ai must be communicated to i by G in advance. In our system, on the
downlink, G tells each i its Ai for i’s next forecast burst.

Whenever each device i transmits to G, it piggybacks a compressed representation of its
actual generated traffic pattern since its last transmission. Based on this information,
G records for each i, that device’s actual traffic generation pattern {Xi[k]}, which G

uses for forecasting the future traffic pattern {X̂i[k]} of that device. (We assume that
strong forward error correction for short packets (Durisi, Koch, & Popovski, 2016) is
utilized at the physical layer such that we can assume that an uplink transmission that is
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scheduled free of collisions is received successfully.)

4.3 Joint Forecasting-Scheduling

We now present a novel joint forecasting-scheduling algorithm, in which G runs a
forecaster for each device i, based on which it schedules the uplink traffic of all of the
devices in advance over the scheduling window of duration Tsch.

4.3.1 Multi-Scale Forecasting

For each device i, we define the “traffic generation period” of i, denoted by Ti, as the
minimum duration between successive traffic generation instances of i such that all
traffic generation times are multiples of this duration. (This assumption is justified
for all IoT devices that sample at regular intervals.) We define (in absolute time units,
such as seconds) the “accurate forecasting window” T a f

i of device i as the time interval,
starting at the current time, over which G can form accurate forecasts of i’s traffic. For
each i’s traffic, accurate forecasts are possible typically up to a fixed number of samples,
denoted by Ki; thus, T a f

i = KiTi for every i. Now, Tsch, which is common for all devices,
must satisfy Tsch ≤mini∈N T a f

i since an optimized schedule is possible only when all
of the devices’ forecasts across the scheduling window are accurate. Thus, the longest
possible Tsch equals T a f

min ≡mini T a f
i . However, when Tsch is set to T a f

min, an optimized
schedule for all devices that spans their respective {T a f

i } cannot be computed since the
traffic pattern of any device i for which T a f

i is longer than T a f
min cannot be represented

over this Tsch.

A key novelty in this chapter is that we solve the above problem by representing {Xi[k]}
for each i at multiple time scales by summing the {Xi[k]} over increasingly larger,
non-intersecting “blocks” (of time slots) recursively as follows: At the bottom level
(or scale), which we shall call Level 0, the block size (or duration) is equal to τMAC,
which denotes the duration of a MAC-layer slot. The amount of data that falls in Block
b at this level is given by Xi[b] = Xi[k], where each block b is the MAC-layer slot k.
Now, given a set of VlMl blocks at level l, we group these blocks in Vl non-overlapping,
contiguous sets of Ml blocks in each set. We say that each of the blocks at level l that
are grouped to form block B at level l +1 is a “subblock” of B. The set of subblocks
of B is denoted by SB. Furthermore, let Xi(B) and Xi(b) denote the number of bits of
device i in block B (at level l +1) and in any of its subblocks b (at level l), respectively.
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Then,

Xi(B) = ∑
b∈SB

Xi(b)

We terminate the recursion at level L.3 (Hence, the total number of levels, including
Level 0, is L+ 1.) The Gateway G forecasts the traffic of device i at all levels l ≥ 0.
We let X̂i(b) denote the forecast of the number of bits of device i in block b at level
l. We define the “accurate forecasting window” of device i at level l, starting at the
current time t = 0, as [0, T̃ a f

il ], where T̃ a f
il is the length of the absolute time interval

(measured in seconds) over which G can form accurate forecasts of device i’s traffic at
level l. A key finding of the empirical part of this chapter (Section 4.4) is that when the
parameters of our algorithm are determined as will be described in Section 4.3.2, T̃ a f

il

is a monotonically increasing function of l for each i. This allows us to represent the
traffic generation patterns over scheduling windows whose lengths (in seconds) grow as
traffic is represented at increasingly coarser levels. This property will be exploited in
the next section.

4.3.2 Multi-Scale Forecasting-Scheduling Algorithm

Algorithm Parameters:

For our multi-scale joint forecasting-scheduling algorithm (which we call Multi-Scale
Algorithm or “MSA” for short), the total number of levels L+1, the block size Bl (in
seconds) at each level l and the length of the scheduling window (in seconds) T (l)

sch at
that level are determined as follows:

First, the latency constraints {∆ j} are sorted in non-decreasing order. Without loss
of generality, order these as ∆1 ≤ ∆2 ≤ ·· · ≤ ∆R̃, assuming that there are R̃ distinct
values for latency. (In ordering, ties between equal latency values are broken arbitrarily.)
Second, we uniformly quantize these values into equivalence classes (which we call
“bins”) as follows: The first bin, indexed as q= 1, has a latency constraint ∆̃1 =∆1. Next,
using a quantization interval of length Tmin ≡ mini∈N Ti, for integers q ≥ 1, latency
intervals of the form [∆̃1 +(q−1)Tmin, ∆̃1 +qTmin] partition the {∆ j} into bins. If no
∆ j falls in a bin, that bin is eliminated. The remaining bins are numbered in increasing
order from 1 to Q. We associate a latency constraint ∆̃q = min{∆ j|∆ j ∈ Bin q} with bin

3The procedure for the determination of L is specified in Section 4.3.2.
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q. Furthermore, we let ∆̃min ≡ ∆̃1 and ∆̃max ≡ ∆̃Q.

Second, given ∆̃1 < ∆̃2 < · · ·< ∆̃Q, there are three possible cases: (Case 1) Tmin ≥ ∆̃max:
In this case, we set L = 0 and B0 = τMAC. (Case 2) ∆̃min ≤ Tmin < ∆̃max: In this case, let
F denote the number of ∆̃q’s that are less than or equal to Tmin. Then, we set L = Q−F .
Furthermore, we set B0 = τMAC, and ∀l ≥ 1, Bl = ∆̃F+l . (Case 3) Tmin < ∆̃min: In this
case, we set L = Q. Furthermore, we set B0 = τMAC, and ∀l ≥ 1, Bl = ∆̃l .

Third, we set T (l)
sch = mini∈N {T̃ a f

il } for each level l.

Scheduling and Load Balancing:

The MSA has two general subroutines: Scheduling, which is used at Level 0, and Load
Balancing over Blocks (LBB), which is used at levels 1 to L.4

First, for scheduling, in this chapter, we shall use a particular technique, called “pre-
emptive scheduling of a single machine to minimize the weighted number of late jobs”
(Potts & Van Wassenhove, 1988), which we call Job Scheduling with Time Windows
(JSTW), for short. We apply JSTW to our case by modeling each burst (as defined in
Section 1.4) as a “job”, which produces the optimization program below.

JSTW:

max∑ j∈J a ju j

subject to:

1. ∑ j∈J y jk ≤ 1 ∀k ∈K+

2. ∑
d j
k=r j

y jk = u j p j ∀ j ∈J

At Level 0, JSTW is used to produce schedules of all devices over [0,T (0)
sch ]. Above, a j,

p j, r j and d j are parameters, and y jk and u j are binary decision variables. Furthermore,
J is the set of bursts to be sent to G over [0,T (0)

sch ], and a j is the number of bits in burst
j. The parameter r j is the (MAC-layer) slot in which burst j is generated, and d j is
the slot by the end of which all of the bits of burst j have to be sent to G. For each j,
d j ≤ dT (0)

sch /τMACe. Each y jk is defined only on the interval r j ≤ k ≤ d j, and y jk = 1 if
any of the bits of burst j are scheduled to be sent in slot k and y jk = 0 otherwise. Above,

4We note that any scheduling algorithm may be used for the first subroutine, even though we make a
particular choice for the purposes of this chapter.
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K+ is the set of k’s for which at least one y jk has been defined. Furthermore, u j = 1
if all of the bits in burst j are sent by the end of slot d j, and u j = 0 otherwise. Finally,
p j ≡ da j/C f ( j)e, is the “processing time” of burst j, where Ci denotes the maximum
number of bits that i can send to G in a slot (when it is the only device scheduled for
uplink transmission), and the function f ( j) maps burst j to the device that generated the
burst. Thus, the objective is to maximize the total number of bits in completed bursts
that are sent to G such that (1) in any given slot, at most a single burst can be scheduled5

and (2) the total number of slots allocated to burst j equals p j if all of the bits of j are
sent by d j, and no slot is allocated to j otherwise.

Second, at each level l : 1≤ l ≤ L, LBB is used to distribute the total number of forecast
bits over the set of blocks at level l on [0,T (l)

sch ]. The optimization program appears
below.

LBB:

minH(l)

subject to:

1. ∑
d(l)

j

b=r(l)j

z jb = 1 ∀ j ∈J (l)

2. ∑
J(l)
j=1 p(l)j z jb ≤ H(l) ∀b ∈B

(l)
+

Above, p(l)j , r(l)j , and d(l)
j are parameters, and H(l) and z jb are decision variables.

Whenever X̂i(b)> 0 for any device i in block b at level l, we say that device i generates
a “job” j at level l with X̂ (l)

j bits equal to X̂i(b). Above, J (l) is the collection of all

such jobs at level l over all devices N . Furthermore, r(l)j is the block at level l in

which job j is generated, and d(l)
j is the block by the end of which the bits in that job

must be successfully delivered to G. Thus, d(l)
j = r(l)j + d∆ j/Ble−1, where ∆ j is the

latency constraint of the bits in job j. Above, each z jb is defined only on the interval
[r(l)j ,d(l)

j ]. Furthermore, z jb = 1 if all of the bits in job j are assigned to block b (in
which case we say that job j has been “loaded” onto block b) and z jb = 0 otherwise.
Above, p(l)j ≡ dX̂

(l)
j /C f ( j)e, and B

(l)
+ is the set of blocks at level l for which at least one

z jb has been defined. Thus, the objective is to minimize the “height” H(l) at level l such

5This condition is implied by the facts that (1) bursts, by definition, are in close proximity in time, and
(2) in order to avoid collisions, in our design, we do not choose to schedule more than 1 device in any
given slot.
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that (1) each job is loaded onto exactly one block such that its delay deadline is met,
and (2) the total number of MAC-layer slots required to deliver the bits in all of the
jobs loaded onto block b is at most the height H(l) for each block b. In summary, this
algorithm balances the load across the blocks on [0,T (l)

sch ].

Multi-Scale Algorithm:

Fig. 4.1 shows the pseudo-code for our MSA. The MSA is a real-time, recursive
algorithm that begins at Level L and produces an uplink MAC-layer schedule at Level 0.
On the scheduling window [0,T (L)

sch ], this algorithm is called as MultiScaleAlgorithm(N ,
B(L)), where B(L) is the single block on this window at Level L. In Fig. 4.1, on Line 2,
W is the set of fixed forecasting parameters (“weights”) for all i, obtained via offline
training. (When MLP is used as the forecasting method as in Section 4.4.2, W is
a 5-dimensional (5D) matrix whose entry (l, i,e,n,m) is the connection weight that
emanates from neuron m at neural layer e− 1 and enters neuron n at neural layer e

for device i at level l of the MSA.) Furthermore, X is the 2D matrix of past {Xi[k]}
(where row i is the device and column k is the slot index), communicated to G (as in
Section 4.2).

Multi-Scale Algorithm:
1 void MultiScaleAlgorithm(D,B) {
2 [w(B),x(B)] =

LoadForecastingWeightsAndPastTraffic(D,W,X,B);
3 x̂(B) = ForecastFutureTraffic(D,w(B),x(B),B);
4 if(B.depth() == L)
5 S(B) = ScheduleDevicesAtMACLayer(D, x̂(B));
6 else {
7 [〈D̃〉,〈b〉] = BalanceLoad(D, x̂(B),B);
8 for(n = 0;n < length(〈D̃〉);n++) {
9 MultiScaleAlgorithm(〈D̃〉[n],〈b〉[n]);
10 }
11 }
12 }

Figure 4.1. Pseudo-code for the Multi-Scale Algorithm

We now describe a single recursive step of MSA: The index B locates the block globally
within the scheduling window [0,T (L)

sch ]. (In addition, B is a structure that contains the
sequence of its subblocks and the duration (in seconds) of any of its subblocks, which
is identical across all of the subblocks of B.) For a given vector of devices D, on Line
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2, the LoadForecastingWeightsAndPastTraffic function, whose pseudo-code appears
in Fig. 4.2, extracts those weights w(B) in W and those past traffic patterns x(B) in
X that belong to all of the devices in D that fall in block B. (The pseudo-code for
each of the functions that the MultiScaleAlgorithm calls will be described in detail
below.) On Line 3, the function ForecastFutureTraffic forecasts the future traffic x̂(B)

of all of the devices in D that fall in block B, based on the weights w(B) and the
past traffic patterns x(B). (We emphasize that the designer chooses the forecasting
scheme for the function ForecastFutureTraffic; the MSA does not assume any particular
forecasting scheme. A particular implementation of the ForecastFutureTraffic function,
based on MLP, appears in Fig. 4.3 and shall be detailed in Section 4.4.2.) If the
entire X required to perform dT (l)

sch/Ble-step ahead prediction of x̂(B) has not yet been
communicated to G (see Section 4.2), the function ForecastFutureTraffic stalls until
this prediction becomes possible. On Lines 4-5, if MSA has arrived6 at Level 0, the
function ScheduleDevicesAtMACLayer schedules the devices in D at the MAC Layer.
(A particular implementation of this function that employs JSTW is shown in Fig. 4.4.
However, we note that any collision-free burst scheduling algorithm may be used in the
place of JSTW.) The N×dT (0)

sch /τMACematrix S(B) (on Line 5) is the “scheduling matrix”
for block B, whose entry (i,k) equals 1 if device i is granted MAC-layer slot k over the
current scheduling window at Level 0, and equals 0 otherwise. If MSA has not arrived
at Level 0, on Line 7, the function BalanceLoad balances the traffic load in x̂(B), which
produces a sequence of vectors, denoted by 〈D̃〉, over the temporally ordered sequence
of all of the subblocks 〈b〉 of block B. (The earliest (left-most) subblock appears as the
first element and the latest (right-most) subblock appears as the last element of 〈b〉.)
The nth element of 〈D̃〉, which shall be denoted by 〈D̃〉[n], is the vector of devices each
of which falls in the nth subblock in the sequence 〈b〉 as a result of load balancing. On
Lines 8-9, MSA (recursively) calls itself on each of these vectors of devices, 〈D̃〉[n].
When the MSA in Fig. 4.1 terminates with a MAC-layer schedule on [0,T (L)

sch ], it will be
called again on the next scheduling window at Level L.

We now begin a description of each of the functions called by MSA. Fig. 4.2 displays
the pseudo-code of the LoadForecastingWeightsAndPastTraffic function. On Line 2,
the duration of the subblock b of B, is extracted from the structure B. On Line 3, the
total number of subblocks nPastSubblocks, in the past traffic generation pattern X, that
have passed until the beginning of the current block B is calculated. On Line 4, the
matrix of the traffic generation pattern for all of the devices in vector D is initialized to
the zero matrix, whose number of rows is the length of the vector D, and whose number

6B.depth() = L− l, where l is the level at which block B is located.
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LoadForecastingWeightsAndPastTraffic:
1 [4D-matrix, 2D-matrix]

LoadForecastingWeightsAndPastTraffic(D,W,X,B) {
2 |b| = B.GetSubblockDuration();
3 nPastSubblocks = size(X,2)/(d|b|/τMACe);
4 x = zeros(length(D),nPastSubblocks);
5 w = [ ];
6 for(i′ = 0; i′ < length(D); i′++) {
7 X̃ = Reshape(X[D[i′], :],d|b|/τMACe,

nPastSubblocks);
8 x[i′, :] = Sum(X̃,1);
9 w = Concat(w,W[L−B.depth(),D[i′], :, :, :],1);
10 }
11 return [w,x];
12 }

Figure 4.2. Pseudo-code for the LoadForecastingWeightsAndPastTraffic function

of columns is the number of past subblocks. On Line 5, the 4D matrix of connection
weights w for the current block B is initialized to the empty matrix. The entry (i′,e,n,m)

of w is the connection weight that emanates from neuron m at neural layer e− 1 to
neuron n at neural layer e for the device with local index i′. (In this notation, e≥ 1, and
e = 0 corresponds to the input layer.) For each device in vector D, on Line 7, the matrix
X̃ is formed by reshaping (as the term is used in MATLAB) the past traffic generation
pattern of the i′th device in D such that the number of rows of the reshaped matrix X̃
equals the number of MAC-layer slots in a subblock of B, and its number of columns
equals the number of past subblocks. The entry in the k′th row and the bth column of
X̃ is the number of bits generated by device D[i′] in the k′th MAC-layer slot of the bth
subblock of B. On Line 8, the number of bits generated by device D[i′] in each of the
past subblocks of B is calculated by summing the number of bits generated across all of
the MAC-layer slots that fall in that subblock. On Line 9, the structure of the connection
weights of the forecaster of the i′th device of D at the current level L−B.depth() is
concatenated to w along the first dimension7 of w.

Fig. 4.3 shows the pseudo-code for an implementation of the ForecastFutureTraffic
function. On Line 2, the duration of the subblock b of B is extracted. On Line 3, the
matrix x̂ is initialized to the zero matrix whose number of rows equals the length of D,
and whose number of columns equals the number of subblocks |B|/|b| of block B at the
current level of the MSA. For each of the devices in vector D, on Line 5, the input of the

7The “1” that appears as the third argument of the Concat function on Line 9 indicates that the
concatenation is performed along the first dimension.
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ForecastFutureTraffic:
1 2D-matrix ForecastFutureTraffic(D,w,x,B) {
2 |b|= B.GetSubblockDuration();
3 x̂ = zeros(length(D), |B|/|b|);
4 for(i′ = 0; i′ < length(D); i′++) {
5 x_ForecasterInput = [ ];
6 b = bD[i′]

last ;
7 while(length(x_ForecasterInput)< nD[i′]

0 ) {
8 x_ForecasterInput = [x_ForecasterInput,x[i′,b]];
9 b = b−dTD[i′]/|b|e;
10 }
11 x̃ = MLPForecaster(w[i′, :, :, :],x_ForecasterInput);
12 bi′

last,temp = bD[i′]
last ;

13 for(m = 1;m≤ KD[i′];m++) {
14 b̃ = bD[i′]

last + dmTD[i′]/|b|e;
15 b′ = b̃− size(x,2);
16 if(b′ < |B|/|b|) {
17 x̂[i′,b′] = x̃[m];
18 bi′

last,temp = b̃;
19 } else break;
20 }
21 bD[i′]

last = bi′
last,temp;

22 }
23 return x̂;
24 }

Figure 4.3. Pseudo-code for an implementation of the ForecastFutureTraffic function
based on MLP

forecaster of the device with local index i′, denoted by x_ForecasterInput, is initialized
to the empty vector. We define bi

last as the subblock in which the last traffic generation
instance of device i occurred (in the entire past) before the current block B. (In this
notation, i stands for the global index of the device, which was set at the beginning
of this chapter and fixed. In contrast, i′ is the local index as used in this pseudo-code.
Hence, i = D[i′] says that i is the i′th element of vector D.) We define ni

0 for each i

(where i is the global index of the device) as the required number of inputs (specified
exogenously) for the forecaster of device i. Our immediate goal will be to find the
indices of the last nD[i′]

0 subblocks (before the current block B) in which device D[i′] has
generated traffic. To this end, we define b as a temporary variable that holds the (global)
index of the last such subblock found so far. On Line 6, this variable b is initialized to
bD[i′]

last . On Line 7, while the total number of elements of the vector x_ForecasterInput
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is less than nD[i′]
0 , on Line 8, the number of bits generated by device D[i′] in block b,

namely x[i′,b], is concatenated to x_ForecasterInput. On Line 9, b is updated to the
subblock that contains the last generation instance of device D[i′]. (Recall that Ti is
defined as the period with which device i generates traffic.) We define the temporary
variable x̃ as the vector of the forecast number of bits of the device with local index i′.
The function MLPForecaster, which appears on Line 11, is our MLP-based forecaster,
whose pseudo-code appears in Fig. 4.9 in Section 4.4.2. On Line 11, this function
computes x̃. On Line 12, the temporary variable bi′

last,temp is set equal to bD[i′]
last . On Line

14, b̃ denotes the global index of the subblock in which the mth generation instance
of device D[i′] will fall in the future. On Line 15, b′, which is the local index of the
subblock within block B, is computed by subtracting the number of past subblocks from
b̃. On Lines 16-18, if the local index of the subblock is less than the total number of
subblocks in block B, the forecast traffic generation pattern for the device with local
index i′ in subblock b′ is set to the value of the mth step ahead prediction (for the
device with local index i′), and bi′

last,temp is updated to the global index of the subblock
that contains the latest forecast generation instance of the device with local index i′.
Otherwise, on Line 19, marking the subblocks that can have a positive number of bits of
forecast traffic for the device with local index i′ has been completed; hence, the function
breaks out of the for loop. On Line 21, bD[i′]

last is set equal to bi′
last, temp. On Line 23, the

function returns the 2D matrix x̂ of the forecast traffic generation patterns of all of the
devices in vector D at the level of the MSA at which the ForecastFutureTraffic function
has been called.

We now discuss a particular implementation of the ScheduleDevicesAtMACLayer
function that we employ in this chapter. The pseudo-code of this implementation
appears in Fig. 4.4. The a, p, r, and d are the vectors of a j, p j, r j and d j, respectively,
over the set of bursts that appear over the current scheduling window at the MAC layer.
On Line 2, each of these vectors is initialized to null. On Lines 3 - 13, the double for

loop iterates over all of the devices in vector D (Line 3) and over all of the MAC-layer
slots within the scheduling window (Line 4). On Line 5, if the number of bits for the
device with local index i′ in slot k′ is positive, this indicates that a burst is generated
in this slot. (Recall our assumption in Section 1.4 that each device generates at most a
single burst in any MAC-layer slot.) On Line 6, the number of bits in the k′th time slot
of x̂ for device i is concatenated to vector a. On Line 7, the processing time of burst j

is calculated as the smallest integer greater than or equal to the number of bits in the
k′th time slot of x̂ for the device with local index i′ divided by CD[i′], and appended to
p. On Line 8, the k′th time slot is concatenated to vector r. Based on our assumption
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ScheduleDevicesAtMACLayer:
1 2D-matrix ScheduleDevicesAtMACLayer(D, x̂) {
2 a = [ ]; p = [ ]; r = [ ]; d = [ ]; f = [ ];
3 for(i′ = 0; i′ < length(D); i′++) {
4 for(k′ = 0;k′ < size(x̂,2);k′++) {
5 if(x̂[i′,k′]> 0) {
6 a = [a, x̂[i′,k′]];
7 p = [p,dx̂[i′,k′]/CD[i′]e];
8 r = [r,k′];
9 d = [d,min(k′+ d∆D[i′]/τMACe−1,size(x̂,2)−1)];
10 f = [f,D[i′]];
11 }
12 }
13 }
14 Y = JSTW(a,p,r,d);
15 S = AssignSlotsToDevices(Y, f);
16 return S;
17 }

Figure 4.4. Pseudo-code for an implementation of the ScheduleDevicesAtMACLayer
function

AssignSlotsToDevices:
1 2D-matrix AssignSlotsToDevices(Y, f) {
2 S = zeros(N,size(Y,2));
3 for( j′ = 0; j′ < length(f); j′++) {
4 i = f[ j′];
5 S[i, :] = S[i, :]+Y[ j′, :];
6 }
7 return S;
8 }

Figure 4.5. Pseudo-code for an implementation of the AssignSlotsToDevices function

(Section 1.4) that each IoT device is associated with a single application in this chapter,
we define the delay constraint of the device that generated burst j as ∆ f ( j) ≡ ∆ j. On
Line 9, the deadline of burst j is calculated and is concatenated to the vector d. (The
minimum taken on this line treats any deadline beyond the current scheduling window
as if it were at the end of this scheduling window.) On Line 10, the i′th device in vector
D, which generated burst j, is concatenated to the vector of devices f.

On Line 14, the schedule for all of the bursts within the current scheduling window
is computed by solving JSTW via any mixed-integer solver. (We emphasize that any
collision-free burst scheduling may be used in the place of JSTW.) On Line 15, the
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MAC-layer slots that are allocated to devices are calculated based on the slots allocated
to the bursts of these devices (which appear in Y).

The AssignSlotsToDevices function appears in Fig. 4.5. On Line 2, the scheduling
matrix S is initialized as the zero matrix. The entry (i,k) of the S matrix is 1 if slot k is
allocated to device i and is 0 otherwise. On Line 4, for each burst with local index j′,
the index of the device, denoted by i, that generates j′ is obtained from the vector f. On
Line 5, the schedule of burst j′ is added onto the schedule for device i.

BalanceLoad:
1 [seqOfVectors, seqOfBlocks] BalanceLoad(D, x̂,B) {
2 p = [ ];r = [ ];d = [ ];
3 f = [ ];〈D̃〉= [ ];
4 |b|= B.GetSubblockDuration();
5 for(i′ = 0; i′ < length(D); i′++) {
6 for(b′ = 0;b′ < size(x̂,2);b′++) {
7 if(x̂[i′,b′]> 0) {
8 p = [p,dx̂[i′,b′]/CD[i′]e];
9 r = [r,b′];
10 d = [d,min(b′+ d∆D[i′]/|b|e−1,size(x̂,2)−1)];
11 f = [f,D[i′]];
12 }
13 }
14 }
15 Z = LBB(p,r,d);
16 for( j′ = 0; j′ < size(Z,1); j′++) {
17 for(b′ = 0;b′ < size(x̂,2);b′++) {
18 if(Z[ j′,b′] == 1 && f[ j′] /∈ 〈D̃〉[b′])
19 〈D̃〉[b′] = [〈D̃〉[b′], f[ j′]];
20 }
21 }
22 〈b〉= B.GetAllSubblocksInTemporalOrder();
23 return [〈D̃〉,〈b〉];
24 }

Figure 4.6. Pseudo-code for the BalanceLoad function

The pseudo-code of the BalanceLoad function appears in Fig. 4.6. On Lines 2-3, the
function initializes each of the processing time p, generation time r, delay deadline d
and the device index f vectors as well as the sequence 〈D̃〉 of device vectors to null.
On Line 4, the duration of a subblock of B is extracted from the structure B. For each
device i′ (Line 5) and for each subblock b′ (Line 6), if the number of bits generated by
device i′ in subblock b′, namely x̂[i′,b′], is positive (i.e. if there is a job at this level),
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the processing time of that job is calculated and concatenated to p on Line 8. On Line
9, the subblock index b′ is concatenated to r. On Line 10, the delay deadline of the job
is calculated (setting the delay deadline to the end of the current block B if the actual
delay deadline is some time after the current block) and is concatenated to the vector d.
On Line 11, the i′th device in vector D is concatenated to the vector of devices f. On
Line 15, the LBB optimization program for load balancing is solved and returns the
matrix Z. (The entry ( j′,b′) of Z is the number of bits of job j′ that is assigned at the
output of load balancing to subblock b′.) On Line 18, if the bits of job j′ have been
loaded onto subblock b′ and the device f[ j′] that generated the job j′ has not yet been
added to 〈D̃〉[b′], namely the device vector for subblock b′, that device is concatenated
to 〈D̃〉[b′]. On Line 23, the function returns the sequence 〈D̃〉 of device vectors over the
temporally ordered sequence 〈b〉 of subblocks of B as well as the sequence 〈b〉 itself.

In Fig. 4.7, we illustrate the operation of MSA on a single scheduling window [0,T (L)
sch ].

The total number of levels is L+1 = 3. We begin at Level 2 with the scheduling window
[0,T (2)

sch ] and M2 = 2. Let R(l)
b denote subblock b of Level l. On Line 7 of Fig. 4.1,

when MSA balances the forecast load, in this example, it produces D(R(2)
1 ) = {1,4,6,7}

as the set of devices that have a positive number of forecast bits in subblock R(2)
1 and

D(R(2)
2 ) = {1,2,3,5,7} as that in subblock R(2)

2 . Now, on Line 9 of Fig. 4.1, MSA
is invoked for subblocks R(1)

1 and R(1)
2 . For R(1)

1 and R(1)
2 , forecasting needs to be

performed only for those i ∈ D(R(2)
1 ), not for the entire N . On Line 3 of Fig. 4.1,

this forecasting produces {1,6,7} and {1,4,6,7} as the device indices with a positive
number of forecast bits for subblocks R(1)

1 and R(1)
2 , respectively. Invoking Line 9 on

R(1)
1 reaches the base case of the recursion and produces a MAC-layer schedule for

devices in {1,6,7} based on their forecast bursts at Level 0. As the MSA continues its
recursion, whenever it reaches Level 0, the next MAC-layer schedule over a scheduling
window of length T (0)

sch is created. The key point of MSA is that since accurate forecasts
are available for longer scheduling windows at the higher levels, balancing the load at
those levels pre-selects the device sets that need to be considered over the much shorter
scheduling window at Level 0. In this example, the MSA continues its recursion until
all devices have been scheduled at the MAC layer on [0,T (2)

sch ].

4.4 Results

We divide all IoT devices into four distinct device classes: (1) FBP (2) VBP, (3)
FBA, and (4) VBA. Here, “Fixed Bit” indicates that the device generates a constant
number of bits at all its traffic generation times, and “Variable Bit” indicates otherwise.
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Figure 4.7. Operation of the Multi-Scale Algorithm

Furthermore, “Periodic” indicates that the device generates its traffic at regular intervals,
and “Aperiodic” indicates otherwise.

The reason for this classification is three-fold: First, if we represent the traffic gener-
ation instances of the FBA traffic in discrete time, forecasting an FBA traffic pattern
is equivalent to a binary classification problem at each discrete time instance: The
forecaster needs to decide only whether a fixed-bit burst was generated at that time
instance or not. In contrast, forecasting VBA traffic requires, in addition, the estimation
of the number of bits at each generation instance. Second, forecasting VBP traffic can
utilize the knowledge that a burst is generated at every period of the traffic pattern. In
contrast, forecasting VBA traffic requires, in addition, the estimation of the inter-arrival
time between successive generation instances. Third, the traffic generation pattern of a
device that falls in the FBP class requires no forecasting, once the generation time and
the number of bits of any burst of this device is known. Thus, each IoT device class
corresponds to the type of forecasting problem that must be solved. Our classification
is a reflection of the differences among these forecasting problems.

4.4.1 Data Collection and Processing Methodology

First, we obtained actual measurements from (1) DHT22 (Temperature, Relative Humid-
ity (RH)), LDR and MQ135 (Air Quality) sensors in our laboratory (collected over 2.5
months), and (2) the Air Quality measurements in (De Vito et al., 2008)(University of
California Irvine Machine Learning Repository, 2008) (collected over 1 year). These
measurements fall in the VBP, FBA, and VBA classes. Second, we classified the report-
ing of the sensor measurements into two types: those reported (A) via data transmission
at regular intervals, and (B) in an event-triggered fashion, i.e., only if the measurement
changes by more than a threshold compared with the previous measurement. (The
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former falls under “Periodic” and the latter falls under “Aperiodic” device classes.) In
this study, we assumed that every IoT device is associated with a single sensor. (Our
algorithm in Section 4.3.2 does not rely on this assumption.) Third, after this classifica-
tion, we represented each reading from a given sensor by a fixed number of bits. Fourth,
we compressed the resulting stream of fixed-bit readings from each sensor via Huffman
coding on the entire stream. (We plan to investigate other compression schemes in
our future work.) The traffic generation pattern of each IoT device in the VBP, FBA
and VBA classes is thus this compressed stream of bits. Finally, we simulated traffic
generation patterns for smart meter readings, which fall in the FBP class, by generating
a single burst with a constant number of bits per device period (which is 1 hour in our
case) for each meter. The initial traffic generation time is uniformly distributed over
such a period and is independent across devices. None of the bitstreams generated for
the FBP class is compressed.

In order to create a simulation environment with a large number N of IoT devices, we
bootstrapped from the above representative IoT devices that belong to each of the four
distinct device classes. For the FBP and VBP classes, we performed bootstrapping
by aligning the generated patterns over all periods and selecting a sample at random
from each time point. For the FBA and VBA classes, we computed the empirical
autocorrelation function of the compressed traffic generation pattern of each IoT device.
For each such IoT device i, this pattern typically has multiple periods, and we selected
the largest period T (max)

i of this pattern. Then, we divided the traffic generation pattern
of device i into segments of length T (max)

i , aligned these segments, and formed the
traffic generation pattern of each bootstrapped device by selecting at random from
samples that are aligned at the same point in each period. This procedure is aimed at
preserving the inter-temporal characteristics of the data within each segment in forming
bootstrapped traffic generation patterns for the FBA and the VBA classes.

4.4.2 Choice and Parameters of the Forecasting Scheme

We have carried out the forecasting performed by Gateway G for each device in the
bootstrapped dataset. We formed forecasts only for the VBP, FBA and VBA classes.
The optimization of a MLP neural network (whose MSE was minimized using the
LM algorithm (Haykin, 2010)) that is trained for each IoT device in MATLAB was
observed to achieve a high throughput for the Multi-Scale Algorithm, compared with
RAB (Section 4.4.4). Furthermore, the execution time per device was less than 1 second
(see Section 4.4.4), which is sufficient for the devices in our dataset. For each IoT device,
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the training times for MLP ranged from 30 seconds to 2 minutes for approximately
10,000 samples with a storage requirement of approximately 2 kB. (Thus, training
10,000 devices at G has reasonable time and space complexity requirements.) Under
the network simulation set-up of Section 4.4.3, we have empirically validated for MLP
that T̃ a f

il , determined based on MSE, is a monotonically increasing function of l for
each i. For these reasons, the MLP is used as the forecasting scheme in this work.

In order to forecast the traffic of all IoT devices in the VBP, FBA and VBA classes, we
use a variable learning rate in the LM algorithm. We set the initial learning rate to 0.001.
Furthermore, we set the decrease and increase factors to 0.1 and 10, respectively, and
the maximum learning rate to 1010. In the design of the forecaster MLP, invoked for
a given device at a given level of the MSA, we use the first 70% of the set of samples
for training, the next 15% for validation, and the final 15% for testing. All of the
hidden-layer neurons utilize the tanh activation function while the output neurons are
kept linear. The number of outputs of the MLP is dT (l)

sch/Ble at level l. We let ni
0 denote

the number of samples into the past that will be used for forecasting the traffic of device
i. (Each such past sample is fed as an input to the MLP.) For each ni

0 : 1≤ ni
0 ≤ 100, we

run the MLPTraining function, which shall be described next, and pick the optimal ni
0,

denoted by (ni
0)
∗, that results in the lowest sMAPE over all choices of ni

0 in this range.
(The optimal values (ni

0)
∗ for a set of representative IoT devices will be displayed in

Table 4.1.)

Fig. 4.8 displays the offline training algorithm for the MLP, which computes the
connection weights for each device i. The calling script for the MLPTraining function
appears on Lines 1-19, and the MLPTraining function itself is shown on Lines 20-26.
We execute the calling script for the MLPTraining function only once before we run
the MSA on the entire sequence of scheduling windows that appear at the top level
L.8 On Lines 1-19, the calling script iterates through each level l (Line 1) and each
device i (Line 2) in the entire set of devices N . We now describe the operations that
are executed (Lines 3-17) for each l and each i. We denote by Xinit the past traffic
generation pattern before training begins. On Line 3, the total number of subblocks that
have passed until training begins, which is denoted by nInitSubblocks, is computed. On
Line 4, the matrix X̃ is formed by reshaping (as the term is used in MATLAB) Xinit[i, :]
such that the number of rows of the reshaped matrix X̃ equals the number of MAC-layer
slots in a subblock at level l, and its number of columns equals the number of past

8In practice, a refresh period may be chosen to re-train the MLP such that it incorporates into its
connection weights the new traffic generation patterns that form as MSA operates on successive
scheduling windows.
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Calling Script for MLPTraining:
1 for(l = 0; l ≤ L; l++) {
2 for(i = 0; i < N; i++) {
3 nInitSubblocks = size(Xinit,2)/(dBl/τMACe);
4 X̃ =Reshape(Xinit[i, :],dBl/τMACe,nInitSubblocks);
5 x = Sum(X̃,1);
6 nSamples = length(x)− (ni

0 +Ki);
7 XMLP = zeros(nSamples,ni

0);
8 YMLP = zeros(nSamples,Ki);
9 for(m = 0;m < nSamples;m++) {
10 XMLP[m, :] = x[m : (m+ni

0−1)];
11 YMLP[m, :] = x[(m+ni

0) : (m+ni
0 +Ki−1)];

12 }
13 Xtrain = XMLP[0:d0.7 nSamplese−1, :];
14 Ytrain = YMLP[0:d0.7 nSamplese−1, :];
15 Xval =

XMLP[d0.7 nSamplese:d0.85 nSamplese−1, :];
16 Yval =

YMLP[d0.7 nSamplese:d0.85 nSamplese−1, :];
17 W[l, i, :, :, :] =

MLPTraining(Xtrain,Ytrain,Xval,Yval,ni
0,Ki);

18 }
19 }

MLPTraining:
20 3D-matrix MLPTraining(Xtrain,Ytrain,Xval,Yval,ni

0,Ki) {
21 Ẽ = 3; Ñ = 1;
22 ml p = MLP_SSA(Xtrain,Ytrain,Xval,Yval,ni

0,Ki, Ẽ, Ñ);
23 TrainMLP(ml p, Xtrain,Ytrain,Xval,Yval);
24 w = ml p→ connectionWeights();
25 return w;
26 }

Figure 4.8. Pseudo-code for the MLPTraining function

subblocks (until training begins). On Line 5, the number of bits generated in each
such past subblock is calculated by summing the number of bits generated across all
of the MAC-layer slots that fall in that subblock. On Line 6, the total number samples
nSamples that will be used for training the MLP is calculated. We assume that the value
of nSamples is greater than or equal to 100 throughout this pseudo-code. On Line 7, the
input matrix for the MLP, namely XMLP, is set to the zero matrix, whose number of rows
is nSamples and whose number of columns is the total number of the inputs of MLP,
which is ni

0. On Line 8, the desired output matrix for the MLP, namely YMLP, is set to
the zero matrix, whose number of rows is nSamples and whose number of columns is
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Ki. On Lines 9-12, for each sample m, XMLP[m, :] is set equal to the traffic generation
pattern that consists of ni

0 samples starting at time m (Line 10), and YMLP[m, :] is set
equal to the traffic generation pattern that consists of Ki samples starting at m+ni

0 (Line
11). On Lines 13-14, each of Xtrain and Ytrain is set to the first 70% of each of the XMLP

and YMLP, respectively. Furthermore, on Lines 15-16, each of Xval and Yval is set to the
next 15% of each of the XMLP and YMLP, respectively. On Line 17, the 3D matrix of
connection weights of device i at level l, namely W[l, i, :, :, :], is set equal to the output
of the MLPTraining function.

On Line 22 of Fig. 4.8, the MLPTraining function calls the MLP structure selection
algorithm, implemented by the MLP_SSA function in Fig. 2.1 (in Section 2.2.2), which
returns a pointer to the selected MLP architecture. On Line 23, the local optimal
MLP architecture is trained with the training data. (As noted earlier, we used the LM
algorithm as a specific implementation of TrainMLP.) On Lines 24 and 25, w is set to
the 3D matrix of connection weights of the MLP architecture and returned. (The entry
(e,n,m) of the w is the connection weight from neuron m at layer e−1 to neuron n at
layer e.)

Table 4.1. The number of past samples used and the local-optimal MLP architecture
for representative IoT devices

Sensor Class (ni
0)
∗ MLP Architecture

(n1,n2, . . . ,nE)

Temperature VBP 30 (1, 5)
Relative Humidity VBP 5 (15, 8, 5)
LDR VBP 10 (5, 1, 5)
Air Quality VBA 20 (2, 5)
NO2 VBA 3 (9, 20, 5)
NHMC FBA 3 (8, 5, 5)
CO FBA 30 (4, 5)

In our simulations, the resulting forecaster MLPs had at most 2 hidden layers, each
of which contained at most 20 neurons, while the number of neurons in each layer
ranged from 3 to 30. Table 4.1 displays the information on the MLP architecture found
for a representative set of IoT devices, organized into the following columns: (1) the
sensor that is associated with the IoT device, (2) the traffic class of the IoT device, (3)
the local optimal number of inputs to the MLP, denoted by (ni

0)
∗, that resulted in the

MLP architecture (found by MLP-SSA) in the lowest sMAPElowest
allLayers (Fig. 2.1) over

all ni
0 ∈ [1,100], and (4) the corresponding MLP architecture. In the fourth column of

Table 4.1, each MLP architecture is described by a row vector, each entry of which
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shows the number of neurons ne in each layer e ∈ {1, . . . ,E}, where E denotes the
number of layers. The first hidden layer appears as the leftmost and the output layer
appears as the rightmost entry of this row vector. The number of neurons in the output
layer of each MLP architecture was fixed at 5 due to the empirical finding that appears
at the end of Section 4.4.3.

MLPForecaster:
1 vector MLPForecaster(wi,xi) {
2 x̃ = xi;
3 E = size(wi,1);
4 for(e = 1;e≤ E;e++) {
5 x̃ = [x̃,1];
6 if(e == E) x̃ = wi[e, :, :]x̃;
7 else x̃ = tanh(wi[e, :, :]x̃);
8 }
9 return x̃;
10 }

Figure 4.9. Pseudo-code for the MLPForecaster function

After the training of the MLP for each device has been completed offline, as described
in this section so far, the MLP is used for online forecasting, which we describe next:
Fig. 4.9 displays the online MLP-based forecasting scheme for device i. The first input
to the MLPForecaster function, namely wi, is a 3D matrix of connection weights for
device i, whose entry (e,n,m) is the connection weight that emanates from neuron m at
layer e−1 and enters into neuron n at layer e. The last column of wi[e, :, :] is the bias
term of layer e. The second input of MLPForecaster, namely xi, is the vector of the
past traffic generation pattern of device i for the level for which the MLPForecaster is
invoked. The vector x̃ is a temporary vector that shall denote the output vector of each
neural layer. On Line 2, x̃ is initialized to xi at the input layer. On Line 3, the number
of hidden layers E is set to the size of wi along the first dimension. Lines 4-8 calculate
the output vector x̃ of the MLP-based neural network. On Line 5, the bias multiplier
is concatenated onto x̃. On Line 6, if the current layer is the last layer of the MLP,
in order to compute the output of layer e, x̃ is multiplied by the matrix of connection
weights. Otherwise, on Line 7, the tangent hyperbolic activation function is applied to
the product of the connection weights and x̃. On Line 9, the function returns the output
vector of the MLP.
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4.4.3 Network Simulation Set-up

In line with Sections 1.4 and 4.2, we set up a network simulation whose aim is to
schedule the bursts generated by N devices at the MAC layer. Our simulation does not
use the traditional TCP/IP protocol stack, but rather schedules the bursts generated by
the IoT applications (specified in Section 4.4.1) directly at the MAC layer.

We present results for two network simulation set-ups: First, in Section 4.4.4, we
measure the performance of the MSA under a scenario in which the devices generate
a relatively heavy traffic load with respect to the total system capacity. Second, in
Section 4.4.5, we measure the performance of MSA under the IEEE 802.11ah standard
(“IEEE Standard for Information technology–Telecommunications and information ex-
change between systems - Local and metropolitan area networks–Specific requirements
- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 2: Sub 1 GHz License Exempt Operation”, 2017), where the
traffic generated by the set of IoT devices in our simulations turns out to be relatively
light compared with the available system capacity.

The set of delay constraints (in seconds) of all of the devices in our simulations is
as follows9: ∆(1) = 0.5, ∆(2) = 1, ∆(3) = 2, ∆(4) = 180, ∆(5) = 600 and ∆(6) = 3600
seconds, with the corresponding traffic generation intervals T1 = T2 = 180, T3 = 3600,
T4 = 180, T5 = T6 = 3600 seconds. Since Tmin = 180 seconds, after eliminating the
empty bins (Section 4.3.2), ∆̃1 = 0.5, ∆̃2 = 600, ∆̃3 = 3600 seconds. Thus, the total
number of levels is L+ 1 = 3. We assume that τMAC = 0.1 second. Thus, this set-
up falls under Case 2 in Section 4.3.2. Hence, B0 = 0.1, B1 = 600, and B2 = 3600
seconds. We found empirically that Ki = 5 for all i (in the relation T̃ a f

il = KiTi) is
the approximate point at which the MSE is minimized for each i and each l. Thus,
T (0)

sch = 900, T (1)
sch = 3000, and T (2)

sch = 18000 seconds.

In Section 4.4.4, the MAC-layer slot capacities that we utilize is given by the sequence
C(1) = 10, C(2) = 12, C(3) = 10, C(4) = 15, C(5) = 15, and C(6) = 128 kbits per slot. In
Section 4.4.5, the MAC-layer slot capacities are determined based on the set of data
rates under the 802.11ah standard and their calculation will be detailed in that section.

9We use a superscript on the delay constraints to denote the elements of the sequence of these delay
constraints in order to distinguish them from the notation ∆ j, which stands for the delay constraint
for burst j.
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4.4.4 Results on Joint Forecasting-Scheduling

Even though the performance of different forecasting schemes with respect to the
sMAPE metric was evaluated in Chapter 2, we have found that sMAPE, measured at
the output of the forecaster, does not correlate well with network performance at the
output of the scheduler in all instances. For example, sMAPE does not account for
the fact that the impact of the underallocation of burst processing times on network
throughput is different from that of overallocation. (While underallocation causes a
burst not to be delivered, overallocation permits the delivery of that burst while possibly
preventing the scheduling of adjacent bursts.) In general, the traditional forecasting
performance metrics, such as sMAPE, are not specific to the application that will
utilize those forecasts. In this work, rather than attempt to construct new forecasting
metrics that correlate well with network performance, we report directly the network
performance obtained by joint forecasting-scheduling.

To this end, in this section, we compare the uplink cross-layer throughput η (as defined
in Section 1.4) and the transmit energy consumption of the MSA with those of the
following three protocols: (1) RAB, which is a reactive, joint access-scheduling protocol
that we have designed that combines the features of Access Class Barring (Ghavimi
& Chen, 2015)(Leyva-Mayorga, Tello-Oquendo, Pla, Martinez-Bauset, & Casares-
Giner, 2016) and reservation-based scheduling (Yu et al., 2013), (2) PAL, which
is a proactive heuristic that we have designed that utilizes non-preemptive priority
scheduling (Stallings, 2009) such that the priority is determined based on the time-
averaged traffic load until the delay deadline, and (3) E-PRV-BO protocol, which is an
enhancement that we have designed on PRV-PO (Hammad et al., 2017). We shall also
compare the network performance of joint forecasting-scheduling with that obtained
under perfect forecasts.

First, RAB is a protocol that we have developed that reacts to current traffic demand
and uses a parameter pRAB similar to the pACB parameter of the ACB protocol of LTE10.
In RAB, there is no separate access channel. (Recall that a single channel is assumed
throughout this chapter.) At each point in time, a device i may in one of four states:
transmit, idle, backoff, and wait. If there is any traffic in i’s queue in the idle state,
i starts sending its data with probability pRAB in the first upcoming slot or defers its
access attempt to the next slot with probability 1− pRAB. The additional number of
slots, denoted by Oi, for which i wants to continue to send its data, is piggybacked

10The performance of ACB on the PRACH would give only the performance of the access channel,
whereas in this chapter, we focus on the network performance of both the access and the data channels;
hence, we do not compare directly with ACB.
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by i to the data sent in each slot. In RAB, G acknowledges the reception of data on
each slot to i and we allow this feedback to be instantaneous to give full advantage to
RAB. Whenever the Acknowledgment (ACK) is not received (which may only be due
to an uplink collision in our simulations), i goes into backoff with a global exponential
backoff parameter λ per slot, which is identical for all devices. During backoff, i drops
any burst whose delay deadline has expired. On the other hand, whenever an ACK
has been received, it signifies to i that the channel has been reserved for i for the next
Oi slots, which was communicated to G on i’s last transmission. On the downlink, G

communicates (instantaneously) to all other devices that the channel has been reserved
for the next Oi slots, upon which all other devices go into the wait state. Upon exiting
the wait state, the device goes into the idle state. In addition, any device whose backoff
has expired goes into the wait state if the current slot has been reserved and goes into
the idle state otherwise. (Note that there is no Carrier Sensing in RAB.) In summary,
RAB combines the features of ACB and reservation-based access protocols to provide
efficient utilization of a single uplink channel.

Second, PAL is a proactive heuristic protocol that we have developed, which allocates
the single channel without preemption to the burst with the highest forecast “average
load”, defined as the forecast number of bits in burst j divided by the remaining number
of slots until the deadline d j. Similar to MSA, each device is communicated on the
downlink in advance the slots allocated to its next forecast burst, as decided by PAL.

Third, PRV-PO (Hammad et al., 2017) is a QoS-aware downlink scheduling heuristic
that maximizes the energy efficiency (at the base station) of heterogenous traffic that is
comprised of delay-constrained, rate-constrained and best-effort classes. It assumes that
the future channel state is available via a ray tracing engine; however, it does not forecast
the (downlink) future traffic generation patterns of devices. We have modified PRV-PO
for the uplink11 multi-user channel in our case, as described below. Furthermore, we
enhanced PRV-PO via the capability to forecast the future traffic generation patterns
of individual IoT devices. The resulting protocol, called E-PRV-BO, has the following
additional features: (1) The cross-layer uplink throughput η (defined in Section 1.4)
replaces energy efficiency as the objective function.12 (2) The number of connections of
each IoT device is set to 1. (3) E-PRV-BO uses bursts in the place of packets in PRV-PO.

11In this modification, we assume that the queue length at each device is communicated to the IoT
Gateway at the beginning of each frame. This would require an additional mechanism by which each
device is scheduled for uplink access at the beginning of each frame.

12When η replaces energy efficiency as the objective function, E-PRV-BO achieves an energy consump-
tion that is comparable to that of MSA (which will be shown in Fig. 4.12). We have set the objective
function of E-PRV-BO to η in order to measure its maximum possible performance with respect to
the main metric in this chapter.
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Furthermore, in our simulations, all of the devices are delay-constrained. As opposed to
the simulations in (Hammad et al., 2017), in which the only type of delay-constrained
traffic is Voice-over-IP (VoIP), since IoT traffic has a wide range of delay constraints,
we generalize the maximum delay Dmax and the maximum jitter ∆tmax parameters of
PRV-PO to the delay constraint ∆ j and the maximum jitter ∆t j

max of burst j, respectively.
In our simulations, we set the frame size of E-PRV-BO to max j∈J ∆ j, which is the
longest delay constraint over all of the bursts on [0,T (0)

sch ].
13

Figure 4.10. Throughput (as defined in Section 1.4) of the MSA compared with those
of RAB, PAL, E-PRV-BO, and their respective upper bounds under perfect
forecasts

We set up a simulation, in which the percentage of (bootstrapped) devices in each of the
device classes (FBP, VBP, FBA, and VBA) is 25%. In Fig. 4.10, we present the results
on the uplink cross-layer throughput η . First, for RAB, for each λ , we maximize η

by picking pRAB via exhaustive search. (The optimal values of pRAB for representative

13This ensures that each burst that has not been scheduled in the current frame is handed over at most to
the next frame.
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λ ’s are displayed as a function of N in Fig. 4.11.) The resulting throughput is thus an
upper bound on η for the dynamic version of RAB in which pRAB would be adapted
to network traffic. In Fig. 4.10, we see that the MSA significantly outperforms the
performance upper bounds on dynamic RAB for all N for a wide range of λ ’s. (The
control overhead of MSA, which will be quantified below, has already been incorporated
into the simulation that produced Fig. 4.10.) By replacing Lines 2 and 3 in Fig. 4.1
with perfect forecasting, we obtain a performance upper bound on MSA. In Fig. 4.10,
we see that the gap between the performance of MSA and this upper bound is very
small and increases only gradually in N. Second, the MSA outperforms PAL, when
Multi-Scale Forecasting is used as the forecasting scheme, as well as the upper bound to
PAL obtained under perfect forecasts. The performance difference widens significantly
beyond 3000 devices. Third, MSA outperforms E-PRV-BO significantly, even when the
∆t j

max parameter of E-PRV-BO is chosen to maximize η via exhaustive search.14 We
see that MSA also outperforms the upper bound to E-PRV-BO obtained under perfect
forecasts, albeit by a smaller margin; however, the performance gap widens significantly
beyond 5250 devices.

Figure 4.11. The values of pRAB that maximize the throughput η for different λ ’s

We now present the results on energy consumption for the same simulation as for

14We maximized η over κ > 0 where ∆t j
max = κ∆ j ∀ j ∈J and found that the optimal κ is 1 in this

simulation setting. However, note in Fig. 4.10 that ∆t j
max = ∞ produces an η that is very close to the

one for κ = 1.
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Fig. 4.10. We model only the transmit energy consumption15 and assume that the uplink
transmission of data in each slot consumes 1 unit of energy16. We let E denote the
total transmit energy consumption of all devices divided by the total number of bits in
successfully delivered bursts. In Fig. 4.12, we see that E for RAB is at least 2 to 4 times
that of MSA when N > 3000, while that of PAL is higher than but comparable to that
of MSA. The reason for the relatively flat behavior of E for MSA, PAL and E-PRV-BO
as a function of N is that they schedule bits free of collisions based on forecasts. In
Fig. 4.13, in which we have zoomed into the lower part of Fig. 4.12, we see that E of
E-PRV-BO is larger than that of MSA for all N by a factor that ranges from 1.24 to 1.52.

Figure 4.12. Total transmit energy consumption of all devices divided by the total
number of bits in successfully delivered bursts

In order to understand the source of the gradual decrease of the throughput η of MSA
as a function of N in Fig. 4.10, we graph in Fig. 4.14 the throughput of MSA for four
networks each of which is made up of only a single device class. The results show that
η remains almost constant in N for FBP. For VBP and VBA, η decreases for more than
2800 devices and 4400 devices, respectively. Our examination has revealed that this is
not due to the underestimation of device traffic in forecasting but rather the insufficiency
of the MAC-layer system capacity to deliver the traffic. For FBA, η decreases much
more sharply in N. In this case, our examination has revealed that because the forecaster

15For many IoT devices, transmit energy is expected to dominate over idle energy consumption.
16This is a coarse approximation that does not take into account the differences in path loss as well as

the data rate from each device to G.
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Figure 4.13. Total transmit energy consumption of only the predictive protocols, ob-
tained by zooming into the lower part of Fig. 4.12

makes a binary decision between the two possible values of Xi[k] for device i in slot k,
underestimation of Xi[k] typically results in a large throughput penalty since 0 slots are
allocated for that burst in advance.

Figure 4.14. Throughput of the MSA for four networks, each of which is made up of
devices from only one of the device classes FBP, VBP, FBA and VBA
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Figure 4.15. Throughput under overallocation of processing time slots in MSA

Fig. 4.15 shows η of MSA for the same set-up as in Fig. 4.10 except that we deliberately
allocate s extra slots for each burst. The results show that such overallocation decreases
η monotonically as a function of s across all N. This implies that accurate forecasts of
the processing times play a significant role in the high throughput performance of MSA.

The extra control overhead incurred by MSA is the size of the compressed representation
of each device i’s generated traffic pattern since i’s last transmission to G, summed over
all devices. Each device encodes this traffic pattern by transmitting the slot numbers
that have a positive number of generated bits as well as the number of generated bits in
each such slot. (The slots are numbered in multiples of Ti for device i, taking slot 0 as
the first slot whose generation pattern has not yet been reported to G.) We define the
percentage control overhead of MSA as the total number of extra control bits used by
all devices in this encoding over the total number of control and data bits sent by all
devices. In Fig. 4.16, for the same set-up as for Fig. 4.10, we see that the percentage
overhead grows slowly in N and remains less than 1.5% for up to 6650 devices.

We have used MATLAB’s Artificial Neural Network (ANN) toolbox for implementing
MLP and IBM ILOG CPLEX Optimization Studio 12.8 for scheduling. All simulations
were run on a 4.00 GHz AMD FX(tm)-8350 8-Core Processor with 32 GB of RAM in
the absence of any other concurrent compute-intensive processes. For the same set-up
as for Fig. 4.10, Fig. 4.17 displays the growth of the computation time in N for only
forecasting and only scheduling (excluding all other components of system simulation)
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Figure 4.16. Percentage control protocol overhead of the MSA under the network
simulation set-up of Fig. 4.10

Figure 4.17. Computation time of the forecasting and the scheduling operations of
MSA under the network simulation set-up of Fig. 4.10

as an indicator of the scalability of these operations if they were implemented in an
actual Gateway. We see that the computation time for forecasting grows almost linearly
in N, whereas that for scheduling grows superlinearly in N in most instances. The fact
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that the total computation time of these two operations is approximately 250 seconds
for 6650 devices (compared with T (0)

sch = 900 seconds) implies that the MSA can be
run in real-time for a set of devices with Tmin on the order of minutes, as used in this
simulation.

Figure 4.18. Computation time for system simulation excluding the forecasting and the
scheduling operations, under the network simulation set-up of Fig. 4.10

Fig. 4.18 displays the total system simulation time excluding forecasting and scheduling
for the same scenario. This system simulation time is dominated, in our current
implementation, by the I/O operations performed by IBM ILOG. This simulation time,
which is spent on simulating the system for the entire set of nodes, would not be incurred
by an actual Gateway that runs the MSA.

4.4.5 Performance Comparison under the IEEE 802.11ah
Standard

In this section, we compare the performance of the MSA against those of the other
schemes under a specific scenario that utilizes a selection of data rates that are avail-
able under the IEEE 802.11ah standard (“IEEE Standard for Information technology–
Telecommunications and information exchange between systems - Local and metropoli-
tan area networks–Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz
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License Exempt Operation”, 2017). For the set of IoT devices in our simulations, this
scenario under the IEEE 802.11ah standard corresponds to the case with a relatively
light traffic load with respect to the total system capacity.

In our simulation, out of the possible channel bandwidths for IEEE 802.11ah, we use a
single 2MHz channel for all devices, each of which utilizes the channel with a possibly
different modulation scheme. The guard interval duration is 8 µs. The devices, which
appear in Section 4.4.3, are assigned to the modulation schemes, code rates and the
corresponding data rates (Sun, Choi, & Choi, 2013) under the IEEE 802.11ah standard
in the same order as they appear in that section as follows: (1) QPSK with code rate
1/2 (1.3 Mbps), (2) 16-QAM with 1/2 (2.6 Mbps), (3) QPSK with 3/4 (1.95 Mbps),
(4) 16-QAM with 3/4 (3.9 Mbps), (5) 64-QAM with 2/3 (5.2 Mbps), and (6) 64-QAM
with 5/6 (6.5 Mbps). The MAC-layer slot capacities that correspond to this sequence
of data rates are calculated by multiplying the data rate by τMAC = 0.1 second17; thus,
C(1) = 130, C(2) = 260, C(3) = 195, C(4) = 390, C(5) = 520, and C(6) = 650 kbits per
slot.18 Finally, in presenting the comparison with RAB, we find the optimal value of
the backoff parameter 1/λ of RAB, as before, via exhaustive search for this network
simulation set-up.

In Fig. 4.19, we compare the throughput of MSA against those of RAB, PAL, and
E-PRV-BO. We also display the upper bounds for MSA, PAL and E-PRV-BO under
perfect forecasts. First, we see that both the throughput of the MSA and that of the
MSA under perfect forecasts are close to 1 for the entire range of the number of devices
up to 6650. Second, we see that the throughput of PAL under perfect forecasts is close
to that of the MSA; however, the throughput of PAL (under our MLP-based forecasting)
gradually decreases to 0.828 for 6650 devices because, unlike MSA, PAL is not able to
balance the load over the scheduling window due to its greedy structure. The effects of
this fact become pronounced when the MLP-based forecasting overallocates the number
of slots, which causes the performance of PAL to fall as the number of devices increases.
Third, the throughput of E-PRV-BO under perfect forecasts falls sharply beyond 4900
devices, and that of E-PRV-BO begins to decrease relatively fast beyond 2800 devices.
Fourth, we see that RAB significantly underperforms all of the predictive protocols.

In Fig. 4.20, we present the results on the transmit energy consumption per successfully

17We note that we do not implement the MAC layer of IEEE 802.11ah, since our work presents the
novel MAC-layer scheme that replaces the MAC layer of IEEE 802.11ah. That is, we utilize only the
Physical Layer constraints imposed by the IEEE 802.11ah in this section.

18We use the superscript for the sequence of capacities in order to distinguish these from Ci, which
denotes the MAC-layer capacity for each device i. The Ci’s take values from the above sequence of
capacities that are specified using the superscript.
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Figure 4.19. Throughput (as defined in Section 1.4) of the MSA compared with those
of RAB, PAL, E-PRV-BO, and their respective upper bounds under perfect
forecasts for the scenario under the IEEE 802.11ah standard

transmitted bit, denoted by E , for MSA, PAL, E-PRV-BO, RAB, as well as those of
MSA, PAL and E-PRV-BO under perfect forecasts. We see that the energy consumption
of RAB is 2.3 to 16 times higher than that of MSA. Furthermore, while E of RAB
increases sharply with N beyond 6000 devices, those of the predictive protocols remain
almost constant in N. In Fig. 4.21, in which we have zoomed into the lower part of
Fig. 4.20 for only the predictive protocols, we see that the values of E for MSA and
that of MSA under perfect forecasts are equal and are approximately 85% of the values
of E for E-PRV-BO and for E-PRV-BO under perfect forecasts. Furthermore, MSA
outperforms PAL under perfect forecasts in the E metric for all N up to 6650 and
outperforms PAL in the same metric for all N < 5300.
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Figure 4.20. Total transmit energy consumption of all devices divided by the total
number of bits in successfully delivered bursts for the scenario under the
IEEE 802.11ah standard.

Figure 4.21. Zoom-in to the lower part of Fig. 4.20 for only the predictive protocols
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4.5 Discussion on the Practical Use of the JFS System

In this section, we discuss how our joint forecasting-scheduling framework can be
extended to scenarios in which IoT devices join or leave the network.

Initially, when a device i is introduced into CG, there is a training period by the end of
which the trainable parameters of the forecaster of i at G have converged. We envision
that the entire communication system will be divided into two subsystems: The first
subsystem, which runs traditional random access and uplink data channels, handles
the traffic of IoT devices whose forecasters are still in training. The second subsystem,
which is based on joint forecasting-scheduling, handles the communication of all IoT
devices whose forecasters have converged.19 Once the forecaster for a device has
converged, the device is transferred from the first to the second subsystem. In this work,
we have focused on the steady-state operation of the second subsystem; that is, we have
assumed that the training period of each device in N has already been completed.

After device i has been transferred to the second (i.e. the joint forecasting-scheduling)
subsystem, G remains associated with that device at all times unless the device is taken
off the network. Hence, a newly generated burst of such a device will not cause the
device to attempt to re-form association with G. Thus, each device whose forecaster
has converged no longer contends for the channel, as would be the case in reactive
protocols; instead, the slots for its next forecast burst are communicated to the device
by G (Section 4.2).

Finally, a signaling scheme typically exists that tracks whether each device is still on the
network. Based on this signaling scheme, the forecaster for that device may be disabled
once the device has been marked as off-the-network. This will prevent the allocation of
any future MAC-layer slots to that device that might otherwise be allocated due to the
forecasts that are based on the past traffic generation pattern of the device.

4.6 Summary

In this chapter, we developed a novel algorithm, called the Multi-Scale Algorithm, that
represents the traffic generation patterns of IoT devices at multiple time scales and
schedules their uplink traffic to an IoT gateway in advance based on a combination
of load balancing across time blocks and scheduling at the MAC-layer slot resolution.

19The training of the forecaster may continue incrementally even after the forecaster has converged, as
the device continues to generate new traffic.
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Our main finding was that when the traffic generation pattern of an IoT device is
summed across increasingly longer time blocks, thus leading to successively coarser
representations of the traffic generation pattern, the future traffic can be predicted
accurately over a longer time window. Based on this finding, the MSA begins by
distributing the forecast traffic load of IoT devices at the coarsest level. The algorithm
successively balances the traffic load at increasingly finer resolutions until at the lowest
level, the algorithm performs MAC-layer scheduling of the forecast traffic. The main
advantage of MSA is that it leads to manageable time and space complexity and allows
a joint forecasting-scheduling system to be implemented over a much longer scheduling
window that could be achieved otherwise.

In this chapter, we also compared the performance of MSA with those of reactive, joint
access-scheduling schemes and showed that MSA achieves not only a much higher
network throughput but also a much lower transmit energy consumption with respect to
these schemes. In addition, we compared the performance of MSA against our proactive
heuristic, PAL as well as E-PRV-BO. We found that MSA outperformed both of these
proactive schemes. The development of the MSA for the joint forecasting-scheduling of
MAC-layer IoT traffic has the potential to open the way to the solution of the Massive
Access Problem in an architecture that uses a Gateway dedicated to IoT devices.
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Chapter 5

CONCLUSIONS

In this thesis, in order to solve the Massive Access Problem, we have proposed Multi-
Scale Joint Forecasting-Scheduling, which is a cross-layer proactive resource allocation
scheme that combines forecasting of individual IoT device traffic and scheduling. This
algorithm allocates the time-slot resources at the MAC layer for each of the IoT devices
that are in the coverage area of an IoT gateway, denoted by G. In this system, first, G

forecasts the traffic generation pattern of each IoT device over a scheduling window.
Then, it aims to schedule the devices’ uplink transmissions free of any collisions over
this window based on its forecasts. In this thesis, first, in Chapter 2, we examined the
forecasting of the IoT traffic generation pattern at the MAC layer and compared the
performance of LSTM, MLP, ARIMA and the 1D CNN models. Second, in Chapter 3,
we proposed the Joint Forecasting-Scheduling system and demonstrated its performance
for distinct forecasting schemes as well as the PAL heuristic, which was developed
as the scheduling algorithm. Finally, in Chapter 4, we proposed the Multi-Scale
Algorithm (MSA), which extends the duration of the scheduling window and improves
the performance of the JFS system by using representations of the traffic generation
patterns at multiple time scales.

In Chapter 2, we showed that in the sMAPE metric, the traffic generation patterns in
the VBP and the FBA classes appear far more predictable than those in the VBA class
using the best forecasting model in each case. Furthermore, we have arrived at the
following conclusions: (1) For the VBP class, the LSTM model outperforms all of the
other models. (2) For the FBA class, the ARIMA model underperforms all of the other
models, and the performance of LSTM, 1D CNN and MLP are comparable. (3) For the
VBA class, all of the four models perform insufficiently for K-step ahead prediction
for K > 5. For the majority of the device classes, with regard to training time, LSTM
has the highest, and the ARIMA has the lowest training time out of the four forecasting
models. When the forecasting error and the training time are examined jointly, we
found that (1) for the VBP class, LSTM and ARIMA are comparable; (2) for the FBA
class, MLP outperforms all of the other models; and (3) for the VBA class, ARIMA
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outperforms all of the other models.

In Chapter 3, we proposed our novel JFS system, and we examined the performance
of the JFS system under perfect forecasting and under each of the LSTM, MLP and
ARIMA forecasting models. In this chapter, we also proposed the heuristic scheduling
algorithm PAL, which allocates the MAC-layer resources to IoT devices in the coverage
area of G. We empirically showed that the time complexity of PAL is approximately
linear in the number of devices. Among all of the forecasting schemes, MLP provides a
reasonable trade-off between uplink cross-layer throughput and execution time. When
all of the FBP, VBP, FBA and VBA classes are represented in equal proportions in
a network, the throughput performance loss of MLP with respect to that of perfect
forecasts is minimal. However, MLP underperforms significantly in network throughput
when all of the devices in the network fall in the FBA class. In this case, a combination
of LSTM and ARIMA outperforms MLP. Hence, our key conclusion is that the choice
of the forecasting scheme depends heavily on the proportions with which distinct device
classes are represented in the network.

In Chapter 4, we proposed a novel algorithm, namely MSA, for joint forecasting-
scheduling of uplink MAC-layer IoT traffic. The MSA operates at multiple time scales
that are determined by the delay constraints of IoT applications as well as the minimum
traffic generation periods of IoT devices. In this chapter, we implemented Multi-Scale
Forecasting (MSF) based on the MLP neural network because we have showed that
MLP has the best trade-off between the throughput performance and the training time.
In our design, MSA forecasts the upcoming traffic of IoT devices using an MLP
architecture and preallocates the uplink wireless channel based on these forecasts. We
showed that an MLP-based architecture for forecasting, combined with exact scheduling
solutions, achieves high network throughput while satisfying the diverse delay deadlines
of the IoT devices. Via our simulations, we demonstrated that the multi-scale nature of
our algorithm ensures scalable time and space complexity to support up to 6650 IoT
devices. Thus, such performance can be obtained at practically feasible time and space
computational complexity such that it can be implemented at an IoT Gateway.

We compared the throughput and energy consumption of MSA with those of three
protocols: (1) RAB, which is a reactive, joint access-scheduling protocol that we have
designed that combines features of ACB (Ghavimi & Chen, 2015) and reservation-
based scheduling (Yu et al., 2013). (2) PAL, which is given in Section 3.2.2, which is a
proactive protocol that we have designed that utilizes non-preemptive priority scheduling
such that the priority across devices is determined based on the time-averaged forecast
remaining traffic load until the delay deadline. (3) E-PRV-BO protocol, which is
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a proactive protocol that enhances the PRV-PO protocol in (Hammad et al., 2017).
We showed that MSA significantly outperforms all of these three protocols beyond
3000 devices. Furthermore, we showed that the percentage control overhead of MSA
remains less than 1.5% for up to 6650 devices. Finally, we presented a comparison of the
performance of MSA against those of the above three protocols under the IEEE 802.11ah
standard. Our results pave the way to building scalable joint forecasting-scheduling
engines to handle a massive number of IoT devices at IoT Gateways. Furthermore, we
presented the performance of the MSA for each of the pure device classes FBP, VBP,
FBA and VBA, and showed that the throughput for the MSA decreases significantly for
the FBA, where this result is very similar with JFS system in Chapter 3.

In conclusion, our results suggest a joint forecasting-scheduling architecture to be
implemented at an IoT Gateway, in which the Gateway predicts the future traffic of
devices in distinct device classes and schedules their future traffic jointly based on these
forecasts. We showed that the Multi-Scale Joint Forecasting-Scheduling achieves a
much higher network performance than reactive schemes.

5.1 Contributions of the Thesis

The first contribution of this thesis is the development of a novel algorithm that operates
at multiple time scales to perform joint forecasting and scheduling of IoT devices at
the MAC layer. The main advantage of such a methodology is three-fold: (1) The
amount of control signaling overhead can be kept to a minimum. (2) The delays that
occur in traditional protocols due to contention, collisions and handshaking can be
avoided. (3) If the forecasts are accurate, high network performance can be achieved
via reservation-based scheduling.

The second contribution of this thesis is the design of a JFS system, to be implemented
at an IoT Gateway, that forecasts the future traffic generation pattern of each IoT device
and schedules the traffic of these devices in advance without any collisions over a
scheduling window. We showed that not only does such a system have the advantage of
potentially achieving a high throughput compared with reactive solutions to the Massive
Access Problem, but it also minimizes the average transmit energy spent by each IoT
device and thus prolongs the lifetime of battery-limited IoT devices.

The third contribution of this thesis is that in Section 2.3.3, we showed that the traffic
generation patterns of M2M communication are far more predictable than has been
assumed so far in the past work on the Massive Access Problem. While the random
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arrival model may be well-suited to H2M or H2H traffic, it is not necessarily suitable for
M2M traffic since both the amount and the timing of machine-generated traffic can be
highly predictable. In this thesis, we divided the IoT devices into four classes based on
their traffic generation characteristics: (1) FBP, (2) VBP, (3) FBA, and (4) VBA. If an
IoT device generates a constant number of bits over time in each generation instance, we
categorize this device as “Fixed-Bit”; otherwise, we say that the device is “Variable-Bit”.
Furthermore, if the device generates traffic at regularly spaced time instances, then we
call the device “Periodic”; otherwise, we say that the device is “Aperiodic”.

Predictability of M2M traffic has far-reaching implications for the design of practical
access schemes. For example, if all IoT traffic could be predicted accurately, then a
base station or IoT Gateway could utilize a joint forecasting-scheduling architecture
in which it predicts the future traffic of all IoT devices over a scheduling window and
would schedule all of the traffic collision-free in advance. Thus determining to what
extent individual IoT device traffic generation patterns are predictable is the first step
towards understanding whether proactive solutions to the Massive Access Problem are
viable.

The fourth contribution of this thesis is a comparison of the performance of JFS with
respect to the forecasting scheme employed. In particular, we evaluate the network
performance of ARIMA against the machine-learning based MLP and LSTM models
when each of these models is used for forecasting the future traffic generation patterns
of IoT devices. In this work, we measure network performance via the uplink cross-
layer throughput in a full JFS system. This provides a much more accurate measure of
performance than traditional performance metrics for forecasting (such as Mean Square
Error and symmetric Mean Absolute Percentage Error) that do not directly quantify the
impact of forecasting on scheduling. Furthermore, via our simulations, we estimate
the computation time that would be required to implement JFS in an actual system that
operates at an IoT Gateway.

5.2 Future Work

The development of the Multi-Scale Algorithm for the joint forecasting-scheduling of
MAC-layer IoT traffic has the potential to open the way to the solution of the Massive
Access Problem in an architecture that uses a Gateway dedicated to IoT devices.

In our future work, first, we shall develop scheduling heuristics as well as fast forecasting
schemes in order to reduce the total computation time at the IoT gateway. Second,
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we shall generalize the MSA from the single channel case treated in this thesis to the
case of multiple channels. Third, we shall improve the forecasting performance of the
IoT device traffic generation pattern by improving both the forecasting model and the
feature selection mechanism.
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forecasting schemes for IoT device traffic in machine-to-machine communication.
In Proceedings of the 2019 4th international conference on cloud computing and

internet of things (pp. 102–109).
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