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ABSTRACT 

FORECASTING-BASED HYBRID MODEL PREDICTIVE CONTROLLER 

FOR MICROGRID ENERGY MANAGEMENT 

Kahraman, Ayşegül 

MSc, Electrical and Electronics Engineering 

Advisor: Prof. Dr. Cüneyt GÜZELİŞ 

Co-Advisor: Assist. Prof. Dr. Emrah BIYIK 

August 2020 

Increase in energy demand, environmental effects of conventional power generation 

and higher renewable energy penetration have led us to consider the topics of the smart 

grid, distributed generation, electrical storage, and advanced controls and 

optimization. In this thesis, a microgrid control problem that takes into account the 

stochastic nature of the solar power generation and electrical load demand, while 

managing the microgrid operation by an advanced control technique, namely Model 

Predictive Control (MPC), is studied.  

First, we predict the electrical load demand and photovoltaic (PV) output power by 

using various forecasting methods. We apply Linear Regression, Seasonal 

Autoregressive Integrated Moving Average (SARIMA), and Multi-Layer Perceptron 

(MLP) methods to forecast generation of a building-integrated photovoltaic (BIPV) 

system and electrical load consumption of a building at Yaşar University, Turkey for 

a 24-hour horizon. 

Subsequently, we design three different MPC approaches and compare their 

performances: (i) deterministic MPC by taking point estimations of future load and PV 

generation directly, (ii) stochastic MPC by using the distribution of the historical net 

load, (iii) a hybrid method that combines the strengths of deterministic and stochastic 

MPC methods. To address the stochastic nature of load demand and renewable energy 

generation, we employ “chance-constrained” and “two-stage (recourse)” stochastic 

programming in the MPC controller. In order to reduce the number of scenarios in the 
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two-stage method, we apply a novel Singular Value Decomposition based model of 

order reduction. 

The novel contributions of this thesis are two-fold: (i) development of a hybrid MPC 

approach that combines the character of the historical data and point estimations for 

future horizon, and thus it outperforms better than purely deterministic or stochastic 

MPC approaches, and (ii) adaptation of Singular Value Decomposition technique in 

order to reduce the number of scenarios in two-stage stochastic programming. 

Key Words: microgrids, model predictive control, forecasting, multi-layer 

perceptron, stochastic programming, scenario generation, singular value 

decomposition.
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ÖZ 

MİKRO ŞEBEKE ENERJİ YÖNETİMİ İÇİN TAHMİNE DAYALI HİBRİT 

MODEL ÖNGÖRÜMLÜ KONTROL ALGORİTMASI  

Kahraman, Ayşegül 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Danışman: Prof. Dr. Cüneyt GÜZELİŞ 

Yardımcı Danışman: Dr. Öğr. Üyesi Emrah BIYIK 

Ağustos 2020 

Enerji talebindeki artış, geleneksel enerji üretiminin çevresel etkileri ve daha yüksek 

yenilenebilir enerji penetrasyonu, bizi akıllı şebeke, dağıtılmış üretim, elektrik 

depolama ve gelişmiş kontrol ve eniyileme (optimizasyon) konuları üzerine 

düşünmeye yönlendirmiştir. Bu tezde, bir mikro şebekenin kontrol problemi, ileri 

kontrol tekniği olan Model Öngörülü Kontrol (MÖK) ile yönetilirken, güneş enerjisi 

üretiminin ve elektrik yükü talebinin rassal doğası dikkate alınarak çalışılmıştır. 

İlk olarak elektrik yük talebini ve fotovoltaik (FV) çıkış gücünü tahmin etmek için 

farklı tahmin yöntemlerini kullandık. Türkiye'de Yaşar Üniversitesinde bulunan, 

binaya entegre fotovoltaik sistemin enerji üretimini ve aynı kampüste bulunan bir 

binanın elektrik yük tüketimini 24 saatlik zaman dilimi boyunca tahmin etmek için 

Doğrusal Regresyon, Mevsimsel Özbağlanımlı Tümleşik Kayan Ortalama ve Çok 

Katmanlı Algılayıcı (ÇKA) yöntemlerini uyguladık. 

Ardından üç farklı MÖK yaklaşımı tasarlayıp, bu yaklaşımların performanslarını 

karşılaştırdık: (i) gelecekteki yük ve FV üretimin noktasal tahminlerini alarak 

deterministik MÖK, (ii) geçmiş net yük dağılımını kullanarak rassal MÖK, (iii) 

deterministik ve rassal MÖK yöntemlerinin güçlü yönlerini birleştiren melez (hibrit) 

yöntem. Yük talebi ve yenilenebilir enerji üretiminin rassal yapısını ele almak için 

“şans kısıtı” ve “iki aşamalı (eklenmeli)” rassal programlama yöntemlerini MÖK 

yaklaşımı içinde kullanıyoruz. İki aşamalı yöntemde senaryoların sayısını azaltmak 

için, özgün bir Tekil Değer Ayrıştırma tabanlı model derecesi azaltma yöntemi 

uyguladık. 
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Bu tezin özgün katkıları iki şekildedir: (i) gelecekteki zaman dilimleri için geçmiş 

verinin karakterini ve noktasal tahminleri birleştiren ve bu sayede tamamen 

deterministik veya rassal MÖK yaklaşımlarından daha iyi performans gösteren melez 

bir MÖK yaklaşımının geliştirilmesi ve (ii) iki aşamalı rassal programlamada 

senaryoların sayısını azaltmak için Tekil Değer Ayrıştırma tekniğinin uyarlanmasıdır. 

Anahtar Kelimeler: mikro şebekeler, model öngörülü kontrol, tahmin, çok katmanlı 

algılayıcı, rassal programlama, senaryo üretimi, tekil değer ayrışımı.
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CHAPTER 1 

INTRODUCTION 

In the last decade, world energy consumption is increasing. According to the IEO2016 

report, the buildings, which are residential and industrial, consume 20% of worldwide 

energy consumption completely (Conti et al., 2016). Furthermore, this consumption 

will continue to grow because of the rise in the number of buildings and energy-

intensive facilities. These increases in energy demand cause a need to change in the 

traditional way of meeting energy. Between 2012 and 2040, renewable energy sources 

have qualified as the fastest-growing source in the world with an average 2.6 %/year 

rise. Under these circumstances, the use of renewable energy sources and smart grid 

technologies require additional interest. The fact that the electricity generation by 

renewable energy sources is cheaper than the main electric grid has caused the studies 

on this subject to become more common in the literature. Today, the decrease in their 

costs of renewable energy technologies indicates that these sources will be alternative 

to the conventional energy generation methods. In particular, photovoltaic systems are 

outstanding in terms of reducing costs. Since renewable energy technologies are 

competing against traditional fossil fuels, both the aim of decreasing carbon emissions 

and using clean energy at a lower cost cause reducing in fossil fuel utilization. With 

renewable energy has become more prevalent and increase in the number of facilities, 

new methods appear for generation and distribution networks. One of the promising 

studies relates to a small-scale local network, named “microgrid” that can operate in 

both grid-connected and off-grid mode. 

A microgrid can integrate distributed energy generation, which has a high amount of 

renewable energy into the main electrical grid. The microgrid enables the integration 

of generated energy from different sources and can consists many components such as 

photovoltaics and wind turbine, Combined Heat and Power (CHP) units, fuel cells, 

power units, heat units, cogeneration units, micro turbines, biomass reactors, heat and 

electricity storage units, electric vehicles and loads (Nikos et al., 2007). These 

generation components are called as Distributed Energy Resources (DER). In this way, 
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it is possible to supply electricity to the grid, purchase electricity from the grid, reduce 

peak loads, prevent fluctuations in the network and provide a distinguishable level of 

flexibility to the grid by load management. Additionally, they can reduce carbon 

emissions. Traditional electricity users should become more active in the electricity 

market and it is possible to accomplish this through a microgrid because they may take 

decisions related to the main grid. This situation plays an important role in microgrid 

technology becoming prevalent, whereas the use of renewable energy sources can be 

increased, then integrated into the main electric grid.  

Microgrid has a comprehensive supply side that consists of many energy sources as 

we indicate. While allowing the integration of energies from these various alternative 

sources, complex and multi-objective optimization problems should be solved for 

multiple generation sources, consumptions, and storage devices as safely and cost-

effectively. Hence, the energy management problem that we should consider to 

minimize the operational cost and provide all the constraints of the main grid and each 

individual component of microgrid occurs. The two outstanding problems relating to 

the microgrid are unit commitment to decide the activation of components and 

economic dispatch to minimize the operational cost. Many studies in the literature try 

to solve this management problem for making optimal decisions by trying to meet the 

balance between supply and demand sites under various challenges (Cagnano et al., 

2020). MPC is the one of the most common strategy in order to solve optimal control 

problems (Rawlings, 2000). Moreover, Bemporad underlines that the MPC gives a set 

of optimal control decisions for a specified horizon by taking initial measurements and 

then applies the very first decision, refreshes the measurements and solves the problem 

for the horizon again that is why called as rolling or receding horizon. This procedure 

repeats itself; thereby, MPC turns open-loop design to the feedback loop and considers 

the recent changes during the solution (Bemporad, 2006). There are many studies in 

the literature that focus on optimal control of the microgrid by assuming have the exact 

knowledge of uncertain inputs, it is called deterministic model predictive control. 

Tenfen et al. propose the MILP solution with a deterministic approach for a microgrid 

problem that has three types of load; critical, curtailable, and reschedulable; 

additionally, the system has the integration of both PV and wind generation (Tenfen et 

al., 2015). Another study solves MPC for a similar microgrid frame that consists of PV, 

wind turbine, battery, and grid connection to minimize the bought energy from the grid. 
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They calculate the renewable generation by using specific equations (Patiño et al., 

2014). 

The MPC aims to operate the microgrid management problem efficiently and finds the 

optimum decision sets of each component to satisfy the load demand of users 

continuously. In order to manage controllable generators, main grid and battery storage 

operations, the amount of generation and the consumption should be known with good 

accuracy as possible as. The management of the decision of power and energy set 

points of microgrid is possible only with accurate prior knowledge about power 

production, consumption, and storage capacities. Although this uncertainty adds 

difficulty and disturbances to the management problem, it is possible to forecast solar 

and wind power in the renewable generation part, and thermal and electrical load in 

the uncertain demand part to schedule the DER and storage units for finding optimal 

decisions to meet supply and demand sides. In general, short-term forecasting methods 

for the load demand and renewable power generation presents different performances 

according to the data set; thus, it is not an easy duty to detect the outperformed method 

on the others. In the literature, some conventional statistical methods such as 

regression models and Box-Jenkins ARIMA (Autoregressive Integrated Moving 

Average) models are performing well for multi-step ahead forecasts; they are used as 

benchmark methods, and capable of defining the relations between the historical 

observations of time series successfully.  Furthermore, some Artificial Neural Network 

models, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) and 

Recurrent Neural Networks (RNN), fuzzy logic, genetic algorithms and the hybrid 

frame of these methods are commonly used in the forecasting literature (Mellit & 

Kalogirou, 2008). 

In recent years, large-scale grid-connected PV power systems have been included in 

microgrid applications. However, the output power is highly variable, intermittent, and 

mostly depends on weather conditions (radiation, humidity, temperature, wind speed, 

etc.). Short term forecasting of the PV output power helps to schedule the power 

dispatch and the power quality of the main grid in order to get further system reliability 

(Wan et al., 2015). PV power forecasting is very prominent research in machine 

learning applications and it has been studied in many different aspects for years. In 

general, two different approaches are applied for forecasting of the PV power output. 

The first one is based on essential meteorological variable forecasts such as radiation, 
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wind speed, temperature, etc. which is used to forecast the PV output. The other 

approach is directly forecasting the output power of the PV system.  

A study highlight the hybrid method that involves a self-organizing map (SOM), 

learning vector quantization (LVQ) network, support vector regression (SVR) to train 

the input/output data sets for the classification of previous PV power output and fuzzy 

inference method for 1-day ahead forecasting. The results demonstrate that this hybrid 

method is better than SVR and ANN, but still forecasting performance is impaired in 

non-sunny days (Yang et al., 2014). Leva et al. propose Artificial Neural Network 

(ANN) and after training and tuning of ANN, the network obtains predictions of the 

PV power output by supplying the weather forecasts as an input. The results are 

assessed according to different error definitions and compared with the measured data 

(Leva et al., 2017). Rana et al. present the SVR model for very short term forecasting 

12 step-ahead (each time step is forecasted by separate forecaster) with 5 minutes 

interval data. Results pointed out the historical PV power data is enough rather than 

the use of meteorological inputs in this very short term forecasting (Rana et al., 2016). 

Ehsan et al. obtained a better predictor for 24 h-ahead PV power forecasting with 

verification by testing various features such as MLP architectures, algorithms, transfer 

functions, etc. for specific historical data in Tiruchirappalli, India (Ehsan et al., 2017).  

Similarly, an ANN-based approach is employed to forecast the output power of PV 

based on solar radiation and previous output power (Alomari et al., 2018). In the design 

part of the model, there are crucial factors that can affect the quality of forecasts: the 

architecture of the neural network, the complexity of the whole problem, and the size 

of the training sample. In the study of Ehsan et al., the authors design the Multi-Layer 

Perceptron (MLP) model while changing only one property at a time such as activation 

function, learning rule and a number of hidden layers to reach good forecaster structure. 

To achieve accurate and qualified forecasts, it is also necessary to have a large data set 

for training and validation (Yadav et al., 2015).  

In similar to solar power output, the load consumption is also uncertain, variable, and 

needs to forecast. The main contributions of the short term load forecasting are helping 

the economic dispatch and unit commitment of generation sources, ensuring the 

reliable and stable operation for the power system, and providing system dispatchers 

(Gross & Galiana, 1987). Papalexopoulos & Hesterberg present a study that underlines 

the relation between outside temperature and load consumption to help to have better 
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forecast performance. Modeling of the holidays is possible with binary variables (0-1) 

and it is important to declare this information to the model. If there is knowledge 

relates to trend, seasonality, time of a year, these serve to increase capturing accurate 

forecasts. Lastly, they evaluate the forecast quality of ARIMA and regression as close 

to each other (Papalexopoulos & Hesterberg, 1990). Catalão supports the importance 

of defining public holidays since these days explain to the behavior of the users.  

(Catalão, 2017). In addition, he mentioned that consumption is higher during weekdays 

than holidays, even the degree of uncertainty shows a decrease between peak hours 

and off-peak hours. The aforementioned study refers that the net load forecast is also 

possible because renewable energy generation can be classified as a negative load. 

However, in general, the net load forecast includes only wind power generation rather 

than the others such as solar and wind since it has more weightage. They accomplish 

their load forecasts by using temperature, hour, day, and week variables with Kernel 

density estimation instead of Neural Networks. A completed 24 h-ahead ANN-based 

load forecasting study uses 63 input neurons that are the current and previous days 

load, minimum and maximum temperatures of the current day, and forecasts of 

tomorrow, two-direction index of the weather station, and days of the week (Bakirtzis 

et al., 1996. A study compare Fuzzy Logic, Neural Networks, and Auto-Regressive 

models for a very short-term load forecast. The simulation results show that they are 

promising techniques except for the Auto-regressive for the short-term forecasting 

(Liu et al., 1996). Hippert et al. present a more comprehensive review relates to short-

term load forecasting (Hippert et al., 2001). Bozkurt et al. introduce two different 

models by using ARIMA and ANN to forecast short-term load demand. The results 

indicate that ANN with 1.8% MAPE outperformed the SARIMA model with a 2.6% 

MAPE based on 12 test weeks. In addition, they highlight that complex model with 

various feature sets decrease forecast performance (Bozkurt et al., 2017). 

These kinds of stochastic inputs lead to the necessity of stochastic studies in the 

literature, in recent years, many researchers study on these by enhancing their 

approaches. The necessity of the stochastic approach is clearly underlined in Birges’ 

study (Birge & Louveaux, 2011), it is not possible to find the optimal solutions and 

minimize the cost without having knowledge about uncertainty.   

Pacaud et al. compare heuristic, deterministic MPC, and stochastic dual dynamic 

programming to minimize the operational cost of microgrid management. The results 
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claim that optimization-based solutions outperform the proposed heuristic approach. 

In addition, the stochastic method shows better performance than classic MPC to 

handle the uncertainty in the problem (Pacaud et al., 2018). Zhu and Hug underline the 

importance of the execution of a solution with an acceptable solution time and cost for 

the MPC problem with the stochastic approach (Zhu & Hug, 2014). As a solution to 

these, they employ the technique of optimality condition decomposition to obtain 

several sub-problems instead of the overall S-MPC problem. In a similar study, the 

formulation of the stochastic problem is completed as MINLP. The nonlinearity 

increases the challenge of the solution; thus, they also need to divide into master and 

subproblem for scheduling and power flow to find a solution easier (Su et al., 2013). 

Bernardini and Bemporad express a comprehensive study that combines the S-MPC 

formulation with discrete multiplicative disturbances (Bernardini & Bemporad, 2009).  

One of the most common method to solve the microgrid management problem is two-

stage (recourse) stochastic programming. In the study of Farsangi et al., the wide range 

microgrid problem that consists of both thermal and electrical parts are solved by using 

stochastic programming to illustrate the effect of demand response programs for the 

on-grid and islanded applications (Farsangi et al., 2018). The scenario generation is 

based on the discretization of PDFs to an equal specific limited scenario for every 

exogenous input parameter. The total number of scenarios for only the next hour is 

equal to the product of them. When the problem is solved for the finite horizon (24 

hours specifically), it causes exponential growth. For that reason, many studies prefer 

to escape to handling a high number of scenarios and prefer to apply reduction 

techniques. There are many various scenario reduction methods in the literature. 

Dupačová et al. study the uncertainty of electrical load by comparing 3 different 

reduction algorithms namely the forward selection of scenarios, the backward 

reduction of scenario sets, and single scenarios. The findings support that after the 

elimination of 50% of the scenario set, the rest of the scenarios still have almost 90% 

knowledge and accuracy (Dupačová et al., 2003). Mohammadi et al. applied scenario 

generation by taking PDF of every uncertain part of the problem and combine with the 

roulette wheel. They provide the reduction of the number of generated scenarios by 

omitting minor probabilities and taking the one with different probabilities 

(Mohammadi et al., 2014). Similarly, to solve the proposed microgrid management 

problem by using a two-stage stochastic scenario-based method, first, the Roulette 
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Wheel Mechanism and Lattice Monte Carlo simulation are applied for scenario 

generation based on each uncertain variable. Then, they perform the simultaneous 

backward method as the reduction technique to complete the solution in reasonable 

limits (Niknam et al., 2012). In the islanded microgrid operations, storage units, 

conventional and renewable generators supply the desired power to the customers 

(Hooshmand et al., 2012). Parisio et al. completed a study on multi-objective 

optimization, which aims to minimize both operational costs and emissions. They 

constitute the microgrid problem as MILP and solve with a two-stage programming 

approach by taking into consideration generated 50 scenarios to eliminate the effect of 

uncertainty of demand and renewable energy source. In addition, they integrate the 

MPC frame to solve this problem with feedback mechanisms through the horizon 

(Parisio et al., 2013).  Moreover, a similar framework is installed and performed at the 

Microgrid in Renewable Energy Center in Athens, Greece. Both two studies prefer to 

implement MILP instead of MINLP to escape computational complexity and 

emphasize the importance of preventing simultaneous behaviors for both batteries and 

the main grid as charging and discharging and as purchasing and selling (Parisio et al., 

2013). A comprehensive study about the stochastic modeling and optimization works 

in the literature claims that computational complexity and availability of statistics of 

uncertain inputs are the most challenging sides for real-life implementations (Liang et 

al., 2014). With a similar attitude, there are some other control applications of the 

mentioned MPC approaches, especially for buildings. Oldewurtel et al. present a study 

to control indoor temperature and they showed that the S-MPC method, which uses 

weather prediction outperforms to classic MPC approaches (Oldewurtel et al., 2010). 

S-MPC is a powerful approach that combines the advance of both MPC and stochastic 

programming, but it should be noted that it causes the increasing of computation time 

seriously. For this reason, many studies implement scenario reduction techniques 

(Zhang et al., 2018). The implementation of two-stage stochastic models to islanded 

microgrid operations is also possible. In these applications, the controllable generators 

are the main source and leading component to compensate for the first stage decisions 

during the second stage (Sachs & Sawodny, 2016). 

In addition, chance-constraint is an active area of research, especially in water 

resources management, optimization of power system operation and planning, process 

engineering, financial risk management, reliability-based design optimization, and 
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control (Geletu et al., 2013). Furthermore, it is capable of controlling complex dynamic 

systems that have uncertainties. For this reason, a chance-constrained MPC technique 

is powerful to specify minimized the operational cost and finding optimal power and 

energy set points. Ciftci et al. present a study that implements a chance-constrained to 

show controlling microgrid does not need a conservative solution by taking into 

consideration both uncertainties of thermal/electrical load and solar generation (Ciftci 

et al., 2019). Sirouspour completed a study about off-line chance-constraint 

optimization to find the optimum decision set, especially for storage units. However, 

there is an assumption that is electricity prices and exogenous generation and 

consumption amounts are known exactly for each hour throughout the horizon 

(Sirouspour, 2016). To schedule the controllable electric generators, the unit 

commitment problem, which is formulated as a chance-constrained program, is solved 

(Ozturk et al., 2004). Gulin et al. show that solution by taking into account the 

prediction uncertainty of solar generation and load consumption gives better 

performance than not (Gulin et al., 2015). They apply a chance constraint to minimize 

operational cost and they use only the main grid to compensate for the deficit/surplus 

energy to keep the power balance. Moreover, there are some studies combine features 

of both the two-stage and chance-constrained programs for control and optimization 

(Wang et al., 2011). 

In this thesis, we will deal with only the grid-connected applications, of course, some 

faults can cause possible shortages and breakdowns, the microgrid can handle by using 

own generators and storage units in these circumstances. Some other studies focused 

on risk management originating from uncertain inputs by decreasing the negative 

effects. The solution is given by developing risk assessment MPC in detail (Zafra‐

Cabeza, 2020). The maintenance, failure, and repair issues are also discussed in the 

literature for the microgrid management system (Prodan & Zio, 2014). Especially for 

the distributed generators and storage units, the life cycle and wear-tear costs should 

be also studied in detail. Furthermore, fault-tolerant strategies are crucial issues to 

ensure safe and stable operation in the control side (Prodan et al., 2015). There are 

some studies that relate to this, but there is still a need for comprehensive studies in 

these areas. 

The aim of this thesis is to present optimal control strategies of the microgrid 

management ensures that minimize the cost spend on necessary electricity needs and 
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optimal power dispatch by satisfying all the constraints with a reasonable solution time 

for the finite horizon. In particular, we want to show the usability of both stochastic 

and some hybrid MPC approaches to obtain efficient solutions. For this reason, we 

apply deterministic, stochastic, and hybrid forms of these to the same problem 

separately. While D-MPC does not consider the uncertainty of forecasts, S-MPC 

focuses on directly to the historical character of each hour. On the other hand, the 

combination of these, H-MPC is capable of eliminating diverges from the actual values, 

and the effect of inaccurate forecasts. Moreover, we evaluate the total operational costs 

according to how close we are to perfect prediction solutions, which is a deterministic 

solution of the exact knowledge on net load.  

This thesis contributes to the literature of scenario generation by implementing the 

SVD technique to continue in a reduced dimension before we generate any scenario. 

Despite various scenario generation and reduction methods that have been applied in 

the literature, we have not met with the usage of the SVD approach in this purpose so 

far. According to the results, it seems that is a convenient approach to keep the solution 

time in a reasonable range. Furthermore, although there are some studies and 

contributions that already completed in the stochastic programming and control side, 

we present the new approach by constituting the H-MPC, which finds the power and 

energy set points by solving the scenario set. We develop two different approaches to 

generate a scenario set for a hybrid frame. First, we basically shift the previously 

constituted scenario set based on the deviations between point estimations and mean 

of the set. Second, we create a new scenario set of forecasting errors and then we add 

point estimations to this set. We believe that stochastic solutions based on various MPC 

approaches have not been currently studied within the detail and comprehensive in the 

literature as we presented. This thesis comprises seven chapters, including the current 

one. General organization details of the chapters are presented as follows: 

Chapter 2 provides the identification of the microgrid problem as a system and general 

information related to the working principle of model predictive control. It is crucial 

to internalize this chapter properly since it affects and provides knowledge for the rest 

parts. 

Chapter 3 analyzes the different forecasting approaches for both load demand and solar 

power generation by concerning the performance criteria that helps to detect the best 
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forecasting performance. The best estimations for the entire horizon will be inputs of 

the following chapters. 

Chapter 4 introduces the mathematical model of all microgrid components in detail. 

By introducing the microgrid components, the deterministic approach of the model 

predictive control is applied to solve this energy management problem explained. It 

takes the point estimations directly that is forecasted in Chapter 3. By using these 

inputs, the power and energy set points are obtained and presented for all components 

in the microgrid problem. 

Chapter 5 deals with the stochastic nature of the presented microgrid problem in 

different ways and solve the control problem. To demonstrate the effect of uncertainty 

the problem is solved by using Worst-Case, Expected Mean, Two-Stage, and Chance-

Constrained methods. However, there is an additional comparison in this part related 

to input definition.  The definition of input sets is divided into two approaches. While 

the first approach is taking distribution of the net load that depends on the historical 

data the other takes as a hybrid by integrating distributions and the point estimations 

that are found in Chapter 3. 

Chapter 6 gives a comparison for the Deterministic, Stochastic and Hybrid solutions 

of the Model Predictive Control Methods for the presented microgrid problem by using 

the results of theoretical benchmark namely perfect knowledge. 

Chapter 7 summarizes and concludes all studies and offers possible future work in this 

field. 

 

 

 

 

 

 



11 

CHAPTER 2 

MICROGRID ENERGY MANAGEMENT PROBLEM 

A microgrid mainly consists of Distributed Energy Resources (DER) (photovoltaics, 

wind turbines, fuel cells and micro turbines (generators)), storage devices (batteries, 

fuel cells, electric cars) and loads (thermal, electrical). It operates in isolated mode, 

grid-connected mode, or both. If there are more than two DER, microgrid energy 

management is crucial when maintaining at cost-efficient operation.  

2.1. Overview and General Control Strategy 

The representation of proposed microgrid architecture shown in Figure 2.1, also, 

demonstrates the relation between generation, consumption and storage elements. 

 

Figure 2.1. Model of microgrid problem (Redrawn by using www.draw.io site). 

The proposed microgrid has only an electrical load that will be satisfied by available 

energy sources. The renewable generator is specified as photovoltaics, controllable 

generators as electric and storage units as batteries. In this frame, there is no thermal 

load; thus, thermal grid is not considered.  

In this study, we aim to control energy generation and storage technologies by using 

the MPC method to optimize set points of generators and state of charge the batteries. 
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In addition to this, to operate the microgrid with minimum daily operation cost while 

meeting expected demand, we specify the main grid buy/sell decisions. Control 

strategies have great importance in the system design process, as they ensure stable 

operation of a system, robustness against undesired disturbances, and high 

performance.  

In this method, the state of the system is taken at each control step, and then, MPC 

solves the problem with the help of the mathematical model. It finds out power and 

energy set points that keep the system within constraints and optimize system 

performance with its operational cost. Figure 2.2 describes the basic principles of the 

MPC control strategy. 

 

Figure 2.2. Working principle of MPC (Dai et al., 2012). 

As can be seen from Figure 2.2, MPC solves the optimization problem and provides 

the set of best decisions over a future horizon of m. It takes the set of control decisions 

through the horizon at any time step k. MPC implements only the first decision of the 

control strategy, and discards the rest of the decisions. Then again, it takes the 

measurement and new data of the environment and the system, then solves the 

optimization with updated initial conditions in the next step (k+1). This procedure 

repeats itself with the shifting of the prediction horizon. It is a dynamic optimizer, 

capable of handling multiple inputs, can satisfy constraints, and works with the horizon.  

It is an appropriate and promising method for our microgrid problem. 
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Figure 2.3. General representation and relation of the chapters for the energy 

management problem of the microgrid. 

In Figure 2.3, we illustrate our approaches to the solution of the microgrid problem 

with the general flow of this thesis. D-MPC does not take into account the stochastic 

nature of PV generation and load demand. It uses a single set of future forecast values 

to compute optimal decisions. On the other hand, S-MPC acknowledges that the PV 

generation and load demand exhibit stochastic behavior and uses their uncertainty to 

obtain a possible set of future that may help the escape of suboptimal performance. D-

MPC takes obtained net load as point estimations without any change. On the other 

hand, if we prefer to use distributions based on historical data of net load, then we 

apply S-MPC. Lastly, we may prefer to study with H-MPC, which is the combination 

of distribution and point estimations. The most important distinctness in these 

formulations the objective function and power balance equation takes shape according 

to the preferred MPC type. 

2.2. System Description 

Solar power is a huge energy source in the world. However, solar systems are an 

intermittent and exogenous energy source; it is difficult to obtain their future power 
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generation. In our microgrid problem, we select a study on a real PV system that we 

can collect the related data and system information.  

The PV generation data set used in this study is collected from a Building Integrated 

Photovoltaic (BIPV) system that was installed at Yaşar University, in Izmir, Turkey 

under the scope of REnewable ELectricity COOPeration (REELCOOP ) project. This 

system has a 7.44 kWp nominal power and consists of 48 PV modules. PV output 

power is in 15 minutes interval and climatic features such as radiation, temperature, 

wind speed, humidity, etc. are in a 1-second interval. The location and view of the 

installation of a BIPV system are shown in Figure 2.4 and Figure 2.5, respectively. 

 

Figure 2.4. A location of the BIPV installation in Yasar University campus. 

 

Figure 2.5. The BIPV system at Yaşar University, Izmir, TURKEY. 

Measurement data provides useful insight to forecast the power output of the PV 

system. Using recorded measurements generally is a prior preference since the 

meteorological center has the regional information, which cannot usually give shading 

effects and local knowledge of the system.  
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On the other hand, electrical load demand is also an uncertain component in the input 

side. The amount of electricity consumption is highly correlated with the type of 

building such as residential, commercial or type of it such as school, university, or 

hospital since it defines its energy consumption characteristics.  

The load data set is taken from one of the buildings at Yaşar University; thus, both 

solar power and electrical load have similar local characteristics. We also proceed with 

all the forecasting studies for the same length and same period by arranging both two 

inputs hourly intervals.  

We want to prove that micro grids are essential constitutions for large campus areas 

that can really meet all of the energy needs. Since we respect the privacy of personal 

information and the original power range of recorded data set is relatively low for a 

campus site, we prefer to multiply both sets of data by different coefficients. The 

importance of knowing actual demand is related to the solution of the control problem 

mainly focus on minimizing the operational cost but more importantly supplying the 

necessary demand. In this case, we actually trying to solve the net load forecasts that 

are equal to the electrical load forecasts minus solar power generation forecasts for 

optimal and economical dispatch planning. 

Both PV output power and load consumptions are completely stochastic and local 

variables. In Chapter 3, we will apply different forecasting methods to find the 

approaches that give the best estimations performance of load and generation for our 

data sets and their results are in detail. Without realistically knowing the expected load, 

we cannot efficiently manage microgrid decisions.  
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CHAPTER 3 

RENEWABLE ENERGY AND LOAD FORECASTING  

In this chapter, within the scope of the thesis, both the electrical energy to be produced 

from the renewable energy source PV and the consumption of electricity of consumer 

fed by the local grid are needed. The optimal control of the microgrid is possible with 

accurate knowledge about these mentioned stochastic inputs. The reason for this 

request is ensuring better control of the microgrid. We decide the power and energy 

set points that mainly based on the forecasted net load, which is equal to the difference 

between electrical load demand and PV power generation. We can reach a more 

accurate decision set by decreasing the forecasting errors; therefore, we can minimize 

the operation cost and find optimal power dispatch since we do not take decisions in 

the wrong direction. 

For the energy consumption and generation forecasting, the main applied models are 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Linear Regression 

and Multi-Layer Perceptron (MLP) and the details are given for both problems with 

the results obtained in each section.  

3.1. Performance Criteria 

The performance accuracy of the forecasting techniques can be evaluated by the 

different criteria. Mean Squared Error (MSE) is a measure of how good the training 

and testing success of the minimization methods. However, since MSE is a quadratic 

error, it is not in the same unit as the forecasted data. Although Root Mean Squared 

Error (RMSE) is in the same unit as the forecasted data, it is sensitive to outliers in the 

forecast errors, but not as much as MSE because of taking the square root of the sum 

of squares of these errors. Therefore, there are various criteria have developed to better 

evaluate how good the estimate is. These are Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error 

(SMAPE). We give the formulas of the mentioned criteria in Table 3.1.  

In this thesis, we specify MSE as forecast error to be minimized since it provides the 

possibility of using gradient-based algorithms according to parameters as the 

minimization algorithm. Another reason for choosing MSE as an error criterion is that 

if the error distribution is normal, the parameter values that give the smallest value of 
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the MSE are the most appropriate parameter values in terms of maximum likelihood 

in forecasting models. Despite these two important facts, it is necessary to measure the 

accuracy and performance of the forecasting methods with the other error criteria that 

are given in Table 3.1 is appropriate for the nature of the problem in addition to the 

minimized MSE. 

Table 3.1. Forecast criteria of error/success. 

Performance Criteria Formula 

MSE 1

𝑁
∑(𝑥̂𝑠 − 𝑥𝑠)

2

𝐿

𝑠=1
 

RMSE  

√
1

𝑁
∑(𝑥̂𝑠 − 𝑥𝑠)2
𝐿

𝑠=1
 

MAE  1

𝑁
∑|𝑥̂𝑠 − 𝑥𝑠|

𝐿

𝑠=1
 

MAPE  100

𝑁
∑

|𝑥̂𝑠 − 𝑥𝑠|

|𝑥𝑠|

𝐿

𝑠=1
 

SMAPE  100

𝑁
∑

|𝑥̂𝑠 − 𝑥𝑠|

(|𝑥̂𝑠| + |𝑥𝑠|)/2 

𝐿

𝑠=1
 

 

Both solar power and electrical demand have yearly historical data records. To be clear 

and equal for all the methods in the performance comparison part and increase the 

generalization ability of the forecast performances, we prefer to apply 5-fold cross-

validation to detect the parameters of each model by focusing on general error. The 

implementation of cross-validation may vary in the literature. In Figure 3.1, we 

illustrate the implementation details.  
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Figure 3.1. Representation of k-fold cross-validation. The data set is divided into 5 

parts. In each part, we reserve the test set first, then the rest of it is split into the 

training and validation if necessary. 

We usually choose k as 5 or 10, but there is no certain rule related to this, it depends 

on the data set and application (Kuhn & Johnson 2013). The increase of k causes a 

decrease in size between training and test sets. Thus, we can expect to decrease in bias, 

but it may incline the computation time. 

We try to find properly tuned parameters that give minimum MSE error. This means 

that an average MSE of 5-divided test set throughout the year, not by chance for the 

limited part of the year. We apply the same approach for all the forecast methods. 

3.2. Linear Regression 

Linear regression is a convenient way to forecast quantitative terms. It is a naive 

approach based on supervised learning, it learns by constituting an algebraic linear 

mapping from input to output. This method has been used for a long time because it is 

uncomplicated, analytically solvable and appropriate to make significant comments. 

Many methods and statistical approaches can be conceivable as an extension or 

generalization of the linear regression (James, 2013). Thus, it is important to start by 

using this method, make crucial inferences and continue by using other methods that 

are more complex. For the linear regression, there is approximately a linear relation 
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than can find by analytically between output ‘Y’ and input ‘X’. Additionally, there are 

constant unknown 𝛽 parameters represents intercept and slope, respectively. 

𝑌 ≈ 𝛽0 + 𝛽1𝑋 (1) 

The prediction can be done by using training data set and established 𝛽0 and 𝛽1. The 

forecasted 𝑦̂ is equal to equation (2). 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥 (2) 

As general, 

𝑦𝑖 ≈ 𝛽̂0 + 𝛽̂1𝑥𝑖,    𝑖 = 1,2, … ,𝑁 (3) 

Second part of the equation (3) is equal to 𝑦̂𝑖  for 𝑖 = 1,2, … ,𝑁  and the difference 

between  𝑦𝑖 called as residual. We can write residual term for every i as 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖. 

The summation of the square of residuals gives a residual sum of squares 𝑒1
2 + 𝑒2

2 +

⋯+ 𝑒𝑛
2, and the division with N equals to equation (4), which represents MSE.  

𝑀𝑆𝐸 =
1

N
∑(𝑦𝑖 − 𝑦̂𝑖)

2 =

𝑁

𝑖=1

 
1

N
 ∑(𝑦𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖)

2
𝑁

𝑖=1
 

(4) 

Since we are trying to forecast as close as possible to the actual result, equation (4) 

also represents the expression that should be minimized based 𝛽0 and 𝛽1. We call it the 

least square approach that minimizes this by choosing 𝛽0 and 𝛽1.  

As we mentioned before, we divide data into 5 parts, every one of them includes 

training and test set. Minimization of error is based on the test, but the focus should be 

given to both training and testing errors. There is a relation between model complexity, 

variance, and bias. In general, with the rise of complexity, while variance is increasing, 

bias is decreasing. To have a small error, the model should able to catch the appropriate 

data points –should have a good fit for data-. Thus, our predictions get close to actual 

ones, the bias that we can think as a measure of how we are close to defining the 

unknown function. If the model is taken too sophisticated, then when we use the test 

data, error may rise sharply under even minor change and it means variance is too large. 

By taking into consideration these relations and results, making comments about the 

result is the setting of models can complete. If there is more than one input, instead of 
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using two β parameter, we specify p different β as given equation (5). An extension of 

the single linear regression model, namely multiple linear regression, is preferred to 

represent the relationship between a dependent variable and several independent 

variables instead of one (Brown, 2009). 

𝑌 ≈ 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯++𝛽𝑝𝑋𝑝 (5) 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥1 ++𝛽̂2𝑥2 +⋯++𝛽̂p𝑥𝑝 (6) 

𝑀𝑆𝐸 =
1

N
∑(𝑦𝑖 − 𝑦̂𝑖)

2 =

𝑁

𝑖=1

 
1

N
∑(𝑦𝑖 − 𝛽̂0 −∑𝛽̂𝑗

𝑝

𝑗=1

𝑥𝑖𝑗)

2
𝑁

𝑖=1
 

(7) 

The minimized term is given by equation (7) by choosing  𝛽̂0, 𝛽̂1, … , 𝛽̂p . The 

calculation and representation of multiple regression are much easier by using vectors 

and matrices since finding all 𝛽̂ terms to minimize MSE. The inverse of 𝑋𝑇𝑋 exists 

only if the columns of X are full rank. We organize the expression based on this 

assumption. Then, 𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑦  can be arranged into the final version as  𝛽 =

(𝑋𝑇𝑋)−1𝑋𝑇𝑦. 

We define the historical and current values of the time series as dependent and 

independent variables. We apply two models that are one independent (single) and 

more than one independent variable (multiple) for both generation and consumption. 

For the linear regression, while we are adjusting the previous day as an independent 

variable for single, we integrate additional variables for the multiple and we illustrate 

the list of these variables in Table 3.2. 

Table 3.2. Independent variable sets of Linear Regression method to find PV power 

generation and load consumption. 

PV Power Generation Load Power Consumption 

Single Previous day PV power Previous day load power  

 Previous day PV power Previous day load power 

Multiple Solar Radiation Previous week load power 

Air Temperature Average load of previous day 

Wind Speed Average load of previous week 

Hour of day Hour of day 

 Day of the week 

  Weekdays/ Weekend 
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In general, multiple linear regression shows better performance since has extensive 

knowledge according to the one that has only one independent variable. Here, we add 

meteorological inputs; radiation, temperature, and wind speed. These factors highly 

affect the power generation of the PV system; therefore, it helps us to reach successful 

estimates since we use their forecasting before a day. The following Figure 3.2 

supports our expectations. It shows the hourly forecasting results of one of the most 

naive approaches taking into consideration averages of test folds. The implementation 

of the only previous day as a variable is not enough that is why multiple variables have 

lower SMAPE. In addition, the forecasting load demand of a very specific building 

has its own characteristics. Thus, the error level is rising in the load power forecasting 

by the comparison of solar power performance. 

 

Figure 3.2. Hourly SMAPE results for forecasting of PV power and load 

consumption through the year for linear regression. 

Table 3.3. Averages of different performance criteria for Linear Regression. 

  
  

MAE 

(kW) 

MSE 

(kW2) 

RMSE 

(kW) 

MAPE 

(%) 

SMAPE 

(%) 

Single  

 

PV Generation 46.69 9958.81 61.22 15.32 11.13 

Load Demand 191.29 77601.76 233.11 54.65 31.29 

Multiple  

 

PV Generation 24.03 2439.09 30.34 8.81 7.66 

Load Demand 106.02 35725.40 156.94 27.21 19.36 
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Table 3.3 summarize the average error criteria for each implementation. Although the 

linear regression is a benchmark, the results are promising, especially for multiple 

regression.  

3.3. SARIMA 

Both electrical load demand and PV power generation are time series; it is quite 

common methods for predicting the future. Parametric Seasonal Autoregressive 

Integrated Moving Average (SARIMA) models are an extended version of 

Autoregressive Integrated Moving Average (ARIMA) and correspond to the 

seasonality of the mode. These are one of the most convenient parametric approaches 

to forecasting time series.  

SARIMA models are multiplicative models. The form of SARIMA is 

(𝑝, 𝑑, 𝑞) 𝑥 (𝑃, 𝐷, 𝑄)𝑆  where (𝑝, 𝑑, 𝑞)  is relevant to the non-seasonal part and 

(𝑃, 𝐷, 𝑄)𝑆 is about seasonal part of the model. 𝑝 is the order of autoregressive and it 

can be explained with the function of p different historical 

values, 𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3,… , 𝑥𝑡−𝑝. 𝑝 is the necessary 𝑝𝑡ℎ past step from the current time 

in the past to forecast the next value. Order of d refers to the degree of differencing 

and it helps to make time-series stationary if it is non-stationary. 𝑞  is the moving 

average order and it is related to past forecast errors instead of past values (Hyndman 

& Athanasopoulos, 2017). 𝑆 indicates the seasonality of the model. Seasonal terms are 

quite similar to the non-seasonal terms, only they backshift with the seasonal term. We 

can write the representation of SARIMA as equation (8) (Taneja et al., 2016): 

ϕp(B)ΦP(B
S)(1 − B)d(1 − 𝐵𝑆)𝐷xt = θq(𝐵)Θ𝑄(𝐵

𝑆)𝜀𝑡 (8) 

where ϕ, θ, and 𝑑 are non-seasonal autoregression, moving average and differencing 

operator, Φ, 𝐷 and Θ are the seasonal operators of these. B represents the backshift, s 

is seasonal lag, 𝜀𝑡 is error variable and 𝑥𝑡 is a current value of the time series. 

We illustrate time series, Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) of the solar generation and electrical load demand in Figure 3.3 and 

Figure 3.4. Although in the first place there is no apparent tendency in the way of non-

stationary movements (increasing or decreasing trend), the reasonable decision is 
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applying Dickey-Fuller or Augmented Dickey-Fuller Test (ADF) to ensure that time-

series needs a differencing operation or not. For instance, an interval in the load 

consumption has quite low levels in the process corresponding to the summer months. 

The specification of trend in the series also means deciding on the term d. When ADF 

test statistics are outside tabulated critical values, ADF test returns maximum (0.999) 

or minimum (0.001) p-values. If the p-value less than 0.05, we can reject the null 

hypothesis and can assume the series is stationary. The ADF test shows that our 

generation and consumption series do not need to any differencing process since p 

values have a really small value that is not bigger than 0.001. 

In general, it is difficult to specify autoregressive and moving average parameters since 

there is not a precise solution method. Thus, we employed ACF and PACF plots to 

adjust boundaries and get intuition. While cross-correlation is a measure of the 

correlation between forecasted and actual values of time series, autocorrelation 

measures the linear relationship between lagged values of a time series. ACF indicates 

the relation between 𝑥𝑡  and 𝑥𝑡−𝑝, for different p. On the other hand, PACF shows the 

relation between 𝑥𝑡 and 𝑥𝑡−𝑝 after eliminating the impact of the lags 1 ,2, 3, . . .  , 𝑝 −

1. 

 

Figure 3.3. Yearly PV power generation, ACF and PACF of the solar power 

generation without applying the difference operation (d = 0). 
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In Figure 3.3, some lags are higher than for the others. Especially every 24th lag has a 

prominent spike; this is due to the seasonal pattern. There are no other repetitive peaks, 

which means this related time series data tend to indicate an only daily seasonality 

(Hyndman & Athanasopoulos, 2017). In the ADF test, we stated that there is no need 

to take seasonal (𝐷 =  0)  and non-seasonal (𝑑 =  0)  differences because the time 

series is stationary. We proceed exhaustive search in the MATLAB environment, 

within the limits determined according to the ACF and PACF graphics; p and q ∈ 

{1,2,3,4}, while P and Q Seasonal terms, on the other hand, the given in the set 

{1,2,3,4,23,24,25,26}, which are given by limiting the lag points of seasonality. We 

find the best model that has minimum MSE that express also the parameters of 

SARIMA by taking an average of each MSE in the cross-validation parts. One of the 

reasons for such a search for ARIMA is to find out how suitable the model is for this 

PV power-forecasting problem. 

 

Figure 3.4. The time series, ACF and PACF of the electrical load consumption 

without applying the difference operation (d = 0). 

On the other hand in Figure 3.4, we record 168th lag has a noticeable spike in addition 

to each 24th lag, which means electrical demand relates both 24th hour (daily 

characteristic)  and 168th hour (weekly characteristic). We select the rest of the 

parameters with the exhaustive search around the scope of ACF and PACF plots. We 
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search for p ∈ {1, 2, 3, 4}, q ∈ {1, 2, 3}, and P and Q, in the given set  𝐿 =

{11, 12, 13, 23, 24, 25, 35, 36, 37, 47, 48, 49, 167, 168, 169}. Table 3.4 illustrates the 

most convenient models for PV and load series after the evaluation of many 

combinations for these parameters. 

Table 3.4. Parameters of the proposed models for the SARIMA(p,d,q)(P,D,Q)s. 

  

Non-seasonal Seasonal 

AR Lags d MA Lags SAR Lags D SMA Lags 

PV Power Output 1 0 1 1,2,3,4,23 0 1,2,3,4,23,24 

Load Demand 1,2,3 0 1 All L set 0 All L set 

 

We show the SMAPE results of the hourly averages that we find at the end of cross-

validation for both series. Although we select many seasonal lags for the demand, still 

the error is more than the PV generation. It is an expected result since electrical 

demand is highly characteristic and needs a model that can work with complex 

relations. 

 

Figure 3.5. SMAPE results for forecasting of hourly PV power and load 

consumption through the year for SARIMA. 
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Table 3.5. Averages of different performance criteria for SARIMA. 

  

MAE 

(kW) 

MSE 

(kW2) 

RMSE 

(kW) 

MAPE 

(%) 

SMAPE 

(%) 

PV 36.37 7559.69 47.87 16.46 7.37 

Load 104.60 35848.45 151.47 30.18 21.78 

 

We calculate the performance criteria of the given SARIMA models using yearly data 

since we divide the series into 5 different test sets that has 72 days in each. We 

represent the average performance indicators for electrical generation and 

consumption in Table 3.5. SARIMA is a good model to choose if especially we have 

only time series and do not have any other additional features. 

3.4. MLP Model 

Artificial Neural Networks (ANN) are one of the common Machine learning 

techniques. There are various types of ANN, but within the scope of this study, we deal 

with only the Multi-Layer Perceptron (MLP). MLP is a multilayer algebraic ANN 

model. Figure 3.6 represents the general representation of the MLP structure with two 

hidden layers.  

 

Figure 3.6. The Multi-Layer Perceptron (MLP) structure with two hidden layers. 

The first layer of the MLP is the input layer, it accepts input values directly from the 

raw data or features that are obtained by selection/extraction methods from the raw 

data and it has the output layer that gives the outputs. Between the input and output 

layer, there are one or more hidden layers that are not directly connected to them. The 

process units called neurons, in each layer they are connected to all cells in the previous 
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layer and in the following layer. The outputs of the neurons in the previous layer 

perform a feed-forward connection process by feeding only the neurons in the next 

layer. These connections have weights and neurons transmit a weighted sum through 

the activation function to the output. There are some common activation functions in 

the field and we list them in Table 3.6.   

Table 3.6. Common activation functions (Hu & Hwang, 2002). 

Activation Function  Formula 

Sigmoid 
𝑓(𝑢) =

1

1 + 𝑒−𝑢/𝑇 

Hyperbolic tangent 𝑓(𝑢) = tanh (
𝑢

𝑇
) 

Linear 𝑓(𝑢) = 𝑎𝑢 + 𝑏 

 

In this thesis, the hyperbolic tangent sigmoid transfer (Tansig) function, which is a 

continuous-valued bipolar sigmoid function, is selected as the activation function of 

the MLP model used in the input and hidden layers. We use a linear activation function 

(Purelin) in the output layer since the real-time output is required because the time 

series prediction is actually a regression problem. We formulate forecasting problem 

for the time series of PV power output and load consumption; 1) historical and current 

values of the time series and 2) the features that are derived from the time series. 

We try both approaches for MLP models and give the details of the network with their 

results. MLP can learn by examples called supervised learning if there is enough input-

output data set and maps the input to the output handling these historical. MLP can be 

trained and it can learn to produce acceptable outputs for input data that are not in the 

training set, ANNs are considered similar to the human neurological system as they 

have the ability to learn. The representation of supervised learning 

algorithm;  {(𝑥𝑠, 𝑦𝑠)}𝑠=1
𝑁  , where 𝑥𝑠  and 𝑦𝑠  represent inputs and (desired) outputs, 

respectively.  

In training, we perform the Levenberg-Marquardt backpropagation algorithm, which 

is a gradient-based minimization algorithm of the least value of the MSE (forecasting) 

error. The reason for using the Levenberg-Marquardt algorithm is that it provides 
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regularization. This adds a generalization capability without adding a generalization 

term to the MSE that is desired to be minimized for increasing the generalization 

ability of the network, by applying a kind of Gradient-Newton method. It combines 

Newton Method’s fast local convergence and Gradient Descent’s prevention of 

instability through suitable step-size parameter selection. The designing of an MLP 

model that must be performed before the implementation of the selected LM learning 

algorithm, determining the number of layers, neurons in each hidden layer, size of the 

input layer, and what the features are, is a crucial process.    

We employ two different input sets and network architectures for MLP. The first one 

has an input layer that takes previous 24-hour generation amounts of the PV system, 

and the output layer gives the forecasts of 24 h PV power output for the next day. We 

demonstrate the representation of the first model in Table 3.7. 

Table 3.7. The size of the input layer and the creation of the features for the PV 

power forecasting. While the upper part summarizes the entrance of the inputs to the 

network, the lower illustrates the outputs. 

k k+1   k+n 

x1 x25 … x(n*24+1) 

x2 x26 … x(n*24+2) 

x3 x27 … x(n*24+3) 

… … … … 

x24 x48 … x((n+1)*24) 

    
k+1 k+2   k+n 

X25 X49 … X((n+1)*24+1) 

X26 X50 … X((n+1)*24+2) 

X27 X51 … X((n+1)*24+3) 

… … … … 

X48 X72 … X((n+2)*24) 

 

On the other hand, the second approach forecasts related hours using the prediction of 

solar radiation, temperature, wind speed, solar PV output at the same time at yesterday, 

and time of the day. We list of features in Table 3.8. 

As we can see from Table 3.8, the second model has more and more features than the 

first; therefore, we expect that the PV Model-II brings successful forecasts, as it is 

informative about the behavior and character of the PV module. 
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Table 3.8. Feature set of MLP to forecast PV power generation. 

Model  Features 

PV Model-I 

 
Previous day PV power 

 PV power on the previous day at the same hour 

PV Model-II Solar Radiation 

 Air Temperature 

 Wind Speed 

 Hour of day 

 

One of the challenging side related to MLP is designing the network architecture, 

especially the number of neurons in hidden neurons. There is no any strict rule to 

specify, instead, we define de interval and complete the exhaustive search that 

minimizes the MSE error upon the average of the test sets. Table 3.9 lists the number 

of neurons in each hidden layer that minimizes the MSE in these models. 

Table 3.9. Details of number of neurons in each hidden layer for each model. 

Forecasting Model 

number of 

neurons in 

the first 

hidden layer 

number of 

neurons in 

the second 

hidden layer 

PV Model-I 13 6 

PV Model-II 9 15 

Load Model-I 18 3 

Load Model-II 2 9 

 

We also try two different feature set for demand estimation. The first one is similar 

mostly with the first approach of solar power forecasting, except for the effective 

addition of the knowledge of which day we are trying to forecast.         

In a similar manner to the PV generation, we apply two different and promising feature 

set. The first load model has load consumption on the previous day, load on the 

previous week, day of the week, and the information about the day (weekday or 

weekend). Table 3.10 represents the configuration of the network and the entrance of 

the first load model.  
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Table 3.10. The size of the input layer and the creation of the features for the 

electrical demand forecasting. While the upper part summarizes the entrance of the 

inputs to the network, the lower illustrates the outputs. 

k k+1   k+n 

x1 x25 … x((n*24)+1) 

x2 x26 … x((n*24)+2) 

x3 x27 … x((n*24)+3) 

… … … … 

x24 x(49-168) … x((n+1)*24+1-168) 

x(25-168) x(50-168) … x((n+1)*24+2-168) 

x(26-168) x(51-168) … x((n+1)*24+3-168) 

x(27-168) x(52-168) … x((n+1)*24+4-168) 

… … … … 

x(48-168) x(72-168) … x((n+2)*24-168) 

Tuesday Wednesday … Wednesday 

1 1 … 1 

    
k+1 k+2   k+n 

X25 X49 … X((n+1)*24+1) 

X26 X50 … X((n+1)*24+2) 

X27 X51 … X((n+1)*24+3) 

… … … … 

X48 X72 … X((n+2)*24) 

 

Table 3.11. Feature set of MLP to forecast load consumption. 

Model  Features 

 

Load Model-I 

Previous day load consumption 

Previous week load consumption 

Day of the week 

Weekdays/Weekend 

 Load consumption on the previous day at the same hour 

 Load consumption on the previous week at the same hour 

Load Model-II Average load consumption of previous day 

 Average load consumption of previous week 

 Hour of day 

 Day of the week 

 Weekdays/ Weekend 
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Table 3.11 provides detailed expressions of the feature set of load forecasting models. 

In the second load model, the definition of features is not far from the first model; 

however, we model the architecture of the entrance in the input layer differently. 

We conclude the last forecasting model by using the numbers of neurons in Table 3.9 

and feature set in Table 3.8 and Table 3.11 for PV power generation and electrical load 

consumption, respectively. As we indicated before, forecasting of load demand of a 

specific building needs detailed information, even in that case, we may not foresee the 

many situations. Figure 3.7 shows the hourly average forecasting results of each time 

series by comparing the proposed approaches. In the upper part, hourly errors show 

the meteorological features bring better forecasting performance. 24 steps ahead 

forecasting is a quite challenging process, error rates rise by the increasing number of 

steps. The below part represents the electrical demand, even though we integrate 

additional explanatory features to the second model, we still cannot come up with a 

decreased level of error. Despite all these, the second model for both PV and load 

forecasting approaches capture relatively small errors than any other method that we 

applied and presented in this thesis. Figure 3.7 that demonstrates the average of test 

sets also supports this outcome. 

 

Figure 3.7. Hourly SMAPE results for forecasting of PV power and load 

consumption models through the year for MLP. 
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The SMAPE performance shows a decrease as the number of steps ahead increases.  

There are major advantages to the MPC frame. Although it gives a solution set for the 

entire horizon, we implement only the very first hours and solve it repeatedly 

throughout the horizon. Thus, even there is a high percent error of forecast before we 

implement all sets we can regulate the system and prevent large deviations by solving 

problems repeatedly for each hour. 

In Table 3.12, we present the results of the performance criteria for each model. We 

can see conclude that feature selection is crucial to reach accurate estimation. The 

RMSE is highly small in the PV Model-II. We do not achieve this amount of progress 

in the Load Model-II because of challenging characteristics, but still, we obtain better 

results within the comparison of Load Model-I.  

Table 3.12. Averages of different performance criteria for each model by using 

MLP. 

  

MAE 

(kW) 

MSE 

(kW2) 

RMSE 

(kW) 

MAPE 

(%) 

SMAPE 

(%) 

PV Model-I 42.16 8359.60 52.70 18.69 11.17 

PV Model-II 18.54 1645.90 25.27 6.48 6.07 

Load Model-I 94.20 29595.00 140.06 28.55 19.66 

Load Model-II 77.09 25347.94 126.36 21.77 17.05 

 

It is important to remark that these results are promising and possible to improve. 

However, the forecasting of time series needs longer historical data as possible (Leva 

et al., 2017). We apply these techniques to only one-year data, we believe in longer 

than a yearly data will show a smaller error than this performance. 

3.5. Performance Comparison of the Considered Methods  

We summarize all the forecasting work for the electric load demand and PV power 

output that are completed in this chapter and we compare their performance. Figure 

3.8 illustrates the 24-hour ahead average SMAPE for all hourly loads and electricity 

generation through a year. As we can see, the most promising technique is MLP model-

II for both applications.  
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Figure 3.8. Comparison of hourly average SMAPE results of every forecasting 

approaches. 

As discussed until this point, single regression is a benchmark model, with the 

increasing number of variables multiple regression presents improved performance. 

SARIMA method is an extension of the linear method and it is not capable of deal with 

non-linear relations, especially load forecasting in this study. The applied MLP 

methods show various performance; actually, we wanted to show the importance of 

features and design of a network.  Table 3.13 and Table 3.14 presents the average of 

each performance criterion, and the developed MLP model has better forecasting 

performance than the others do. As we can read from the tables, RMSE is around 25 

kW and 140 kW for solar power and electric demand. The SMAPE is 6.07% and 17.05% 

that we also desired to reach smaller than 10% for the PV model and 20% for the 

demand model. 

Table 3.13. Performance criteria for different PV power forecasting models. 

  

MAE MSE RMSE MAPE SMAPE 

(kW) (kW2) (kW) (%) (%) 

MLP Model-I 18.54 1645.90 25.27 6.48 6.07 

MLP Model-II 42.16 8359.60 52.70 18.69 11.17 

SARIMA 36.37 7559.69 47.87 16.46 7.37 

Multiple Regression 24.03 2439.09 30.34 8.81 7.66 

Single Regression 46.69 9958.81 61.22 15.32 11.13 
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Table 3.14. Performance criteria for different electrical load forecasting models. 

  

MAE MSE RMSE MAPE SMAPE 

(kW) (kW2) (kW) (%) (%) 

MLP Model-I 77.09 25347.94 126.36 21.77 17.05 

MLP Model-II 94.20 29595 140.06 28.55 19.66 

SARIMA 104.60 35848.45 151.47 30.18 21.78 

Multiple Regression 106.02 35725.40 156.94 27.21 19.36 

Single Regression 191.29 77601.76 233.11 54.65 31.29 

 

We apply the same model over a whole year, but while doing this we take advantage 

of 5-fold cross-validation to increase the generalization ability over the yearly data. 

We train each set and measure its performance, in the end, we choose the minimum 

MSE of an average of these five sets. We believe this forces the model to generalize 

over the year and present reliable and consistent results. Even though the MLP 

outperformed the other methods, there is still room for improvement of its general 

performance, mainly because it is possible to add new features, work with longer 

historical data and try new architectures. We use the MLP forecasting of this chapter 

as point estimations in Chapter 4, also operate these estimations and forecast errors in 

the second part of Chapter 5. All the information related to microgrid problem 

formulation and its deterministic solution is in Chapter 4. 
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CHAPTER 4 

DETERMINISTIC MODEL PREDICTIVE CONTROL (D-MPC)  

In this chapter, we present the objective function, and constraints of the mathematical 

model of a microgrid with their related explanations and details. Next, we implement 

the Deterministic Model Predictive Control (D-MPC) approach that is one of the 

advanced methods of real-time detailed control by feeding the point forecasts from 

Chapter 3. In the end, we give corresponded total cost of taken set point decisions in 

order to provide insight the daily operation of the microgrid by D-MPC is a cost-

effective manner or not. D-MPC uses point estimations of electrical load demand and 

PV power generation to ensure that optimal power dispatch of the microgrid 

management and defines power and energy set points by including unit commitment 

solution of the battery storage units and electric generators. 

4.1. Microgrid Mathematical Model 

The operational constraints are essential for the components of the microgrid 

consisting of the generator, battery, electric grid and net fixed load demand for defining 

the boundaries of the problem.  

The main problem is related to both the minimization of the operation cost of microgrid 

energy management and deciding the unit commitment of generator and battery usage. 

This commitment problem requires binary integer variables for some of the battery 

and electric generator decisions. However, the addition of integer variables makes the 

problem non-convex and increase the dimension. 

𝑘  is the index of the time, while 𝑖  representing the number of the generator 𝑁𝐺  , 𝑗 

represents the number of battery storage units 𝑁𝐵.  

𝑘 ∈ {1, 2, … ,𝑁}, 𝑖 ∈ {1,2, … , 𝑁𝐺}, 𝑗 ∈ {1,2, … ,𝑁𝐵}   

We give all the decision variables and modeling details of system components. These 

components remain the same throughout all chapters of the thesis. 
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4.1.1. Electric Generators 

There are 𝑁𝐺   generators in the microgrid, Pi
𝐺

  and 𝑃̅𝑖
𝐺   are known minimum and 

maximum power outputs, 𝑃𝑖
𝐺(𝑘) is established amount of power that produced from 

generator in time  𝑘 . The decision variables of the electric generators 

are 𝑃𝑖
𝐺(𝑘), 𝑧𝑖(𝑘), 𝛼𝑖(𝑘) and 𝛽𝑖(𝑘). 

𝑃𝑖
𝐺(𝑘) = amount of power generated from generator i in time k  

𝑧𝑖(𝑘) =  {
1,     𝑔𝑒𝑛𝑒𝑟𝑎𝑡o𝑟 i is operational 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝛼𝑖(𝑘) =  {
1,     𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑖 starts up 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝛽𝑖(𝑘) = {
1,     𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑖 𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑠  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The constraint (9) applies based on 𝑧𝑖(𝑘) that, represents generator is operational or 

not: 

𝑧𝑖(𝑘) . 𝑃𝑖
𝐺(𝑘) ≤  𝑃𝑖

𝐺(𝑘) ≤  𝑧𝑖(𝑘) . 𝑃̅𝑖
𝐺(𝑘) , ∀𝑖, ∀𝑘 (9) 

The starting and shutting down the generator give rise to additional costs. We can write 

the following equations to express the effect of the changing status of generators 

(𝛼𝑖(𝑘) and 𝛽𝑖(𝑘)) on cost. 

𝛼𝑖(𝑘) = zi(k). (1 − 𝑧𝑖(𝑘 − 1)), ∀𝑖, ∀𝑘 (10) 

𝛽𝑖(𝑘) = (1 − 𝑧𝑖(𝑘 − 1)). 𝑧𝑖(𝑘 − 1), ∀𝑖, ∀𝑘 (11) 

However, equations (10) and (11) makes the problem non-linear. The problem has 

already become computationally challenging due to integer variables. In order to 

prevent the problem from getting more difficult with the integration of the non-linear 

solution, we prefer to linearize this and any quadratic constraints that will come. 

Another motivation to continue by linear programming is the previous experiences that 

have shown that a piecewise affine term that results in a Mixed Integer Linear 

Programming (MILP), is more efficient than a quadratic solution (Parisio, 2011). Thus, 

we choose to keep along with MILP as a solution to this problem. MILP is very similar 
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to linear programming but includes a combination of both continuous and integer 

variables. 

We can write the following constraints (12), (13), and (14) for the identifying status 

of startup and shutdown of generators instead of quadratic constraints (10) and (11) 

to keep the problem as linearized. 

𝑧𝑖(𝑘) − 𝑧𝑖(𝑘 − 1) = 𝛼𝑖(𝑘) − 𝛽𝑖(𝑘), ∀𝑖, ∀𝑘 (12) 

𝛼𝑖(𝑘) ≤ 1 − 𝑧𝑖(𝑘 − 1), ∀𝑖, ∀𝑘 (13) 

𝛽𝑖(𝑘) ≤ 𝑧𝑖(𝑘 − 1), ∀𝑖, ∀𝑘 (14) 

As the fuel consumption rate varies between the upper and lower limits of generators, 

the general approach is to determine the fuel cost of electrical generators is to associate 

it with the fuel flow chart (Biyik, 2014). The general representation is as equation (15): 

𝐹𝑖
𝐺(𝑘) = 𝐶𝑖

𝑓
(𝑘0𝑖 + 𝑘1𝑖 . 𝑃𝑖

𝐺(𝑘))∆𝑇, ∀𝑖, ∀𝑘 (15) 

Based on equation (15), we can conclude that there are two various costs related to 

generators, first one is idling cost, even if the generator is not active there is still 

additional cost but it is not correlated with the generator power. On the other hand, the 

second cost is based on the power of the generators, we can find it by the sum of unit 

energy production cost and life cost.  

If we want to write the first part of the objective function that includes the sum of all 

the generator costs as in equation (16); fuel cost, life cost, starting and shutdown, and 

idling cost, respectively. Here, while the first part of equation (15) represents the sum 

of 𝐶𝑖
𝐺−𝑃𝐶 + 𝐶𝑖

𝐺−𝐿𝐶, second part of the equation (15) indicates the 𝐶𝑖
𝐺−𝐼 in equation (16). 

𝑀𝑖
𝐺(𝑘) = (𝑃𝑖

𝐺(𝑘)(𝐶𝑖
𝐺−𝑃𝐶 + 𝐶𝑖

𝐺−𝐿𝐶) + 𝐶𝑖
𝐺−𝑆𝑈𝛼𝑖(𝑘) + 𝐶𝑖

𝐺−𝑆𝐷𝛽𝑖(𝑘) + 𝐶𝑖
𝐺−𝐼𝑧𝑖(𝑘)) , ∀𝑖, ∀𝑘 (16) 

4.1.2. Battery Storage Units 

The decision variables of the battery storage units are 𝑃𝑗
𝐵𝐷(𝑘), 𝑃𝑗

𝐵𝐶(𝑘), 𝐸𝑗
𝐵(𝑘), 𝑏𝑗

𝑥(𝑘) 

and 𝑏𝑗
𝑦(𝑘). 

𝑃𝑗
𝐵𝐷(𝑘) = amount of power charged to the system by battery j in time k  
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𝑃𝑗
𝐵𝐶(𝑘) = amount of power discharged from the system by battery j in time k 

𝐸𝑗
𝐵(𝑘) = state of charge (SoC) in battery j in time k 

𝑏𝑗
𝑥(𝑘) =  {

1,     𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑠 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑏𝑗
𝑦(𝑘) =  {

1,     𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑠 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Constraint (17) and (18) refer to the limits of instantaneous power that the batteries 

can discharge from and charge to the system, and constraint (19) express the energy 

limits that can be stored in the batteries.  

𝑃𝑗
𝐵𝐷 ≤ 𝑃𝑗

𝐵𝐷(𝑘)  ≤  𝑃𝑗
𝐵𝐷
, ∀𝑗, ∀𝑘 (17) 

𝑃𝑗
𝐵𝐶 ≤ 𝑃𝑗

𝐵𝐶(𝑘)  ≤  𝑃𝑗
𝐵𝐶
, ∀𝑗, ∀𝑘 (18) 

𝐸𝑗
𝐵 ≤ 𝐸𝑗

𝐵(𝑘)  ≤  𝐸𝑗
𝐵
, ∀𝑗, ∀𝑘 (19) 

Constraint (20) indicates the relation between State of Charge (SoC) of batteries and 

power that they can discharge from and charge to the system with respect to their 

charge and discharge efficiencies.  

𝐸𝑗
𝐵(𝑘 + 1) =  𝐸𝑗

𝐵(𝑘) + 𝑃𝑗
𝐵𝐶(𝑘). 𝜂𝑗

𝐵𝐶 . ∆𝑇 −
𝑃𝑗
𝐵𝐷(𝑘)

𝜂𝑗
𝐵𝐷 ∆𝑇 , ∀𝑗, ∀𝑘 (20) 

Constraint (21) is preventing charge and discharge at the same time in the battery 

storage units.  

𝑃𝑗
𝐵𝐷(𝑘). 𝑃𝑗

𝐵𝐶(𝑘) = 0, ∀𝑗, ∀𝑘 (21) 

Since we study MILP, we should avoid obtaining quadratic constraints equation (21). 

Thus, we choose to linearize this expression by using auxiliary 0-1 decision variables 

and regulate it, as is equation (21′). 𝑏𝑗
𝑥 and 𝑏𝑗

𝑦
 represent the charging and discharging 

status of batteries and equation (21′) prevents to occur these events at the same time. 

                                          𝑏𝑗
𝑥(𝑘) + 𝑏𝑗

𝑦(𝑘) ≤ 1, ∀𝑗, ∀𝑘                                                  (21′) 
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We can write the second part of the objective function as in equation (22) that includes 

the life cycle cost of battery storage units related to the amount of charge and discharge 

power. 

𝑀𝑗
𝐵(𝑘) = (𝑃𝑗

𝐵𝐶(𝑘)𝐶𝑗
 𝐵𝐶−𝐿𝐶 + 𝑃𝑗

𝐵𝐷(𝑘)𝐶𝑗
 𝐵𝐷−𝐿𝐶), ∀𝑗, ∀𝑘 (22) 

4.1.3. Main Electric Grid 

The decision variables of the main electric grid are 𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘), 𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘), 𝑦𝑥(𝑘) 

and 𝑦𝑦(𝑘). 

𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘) = amount of power bought from the grid in time k 

𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) = amount of power sold to the grid in time k  

𝑦𝑥(𝑘) =  {
1,     𝑏𝑢𝑦𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑓𝑟𝑜𝑚 𝑔𝑟𝑖𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

yy(𝑘) =  {
1,     𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜 𝑔𝑟𝑖𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘
0,                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Here, constraint (23) tries to avoid taking buying and selling decisions at the same time. 

𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘). 𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) = 0 , ∀𝑘 (23) 

As we prevent the nonlinearity of the constraints by using equation (21′), similarly we 

also arrange equation (23′) instead of equation (23) by using auxiliary 0-1 decision 

variables 𝑦𝑥(𝑘) 𝑎𝑛𝑑 𝑦𝑦(𝑘).  

                                         𝑦𝑥(𝑘) + yy(𝑘) ≤ 1, ∀𝑘                                                          (23′) 

Eventually, we can write the last part of the objective function as in equation (24) that 

includes the total cost of interactions between the consumer and the electric grid 

because of bought or sold power. 

𝑀𝐺𝑅 = (𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘)𝐶𝐺𝑅−𝑏𝑢𝑦(𝑘)) − (𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)𝐶𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)), ∀𝑘 (24) 

We complete the writing of the mathematical model of the main components. After all, 

the formula of the linear objective function is completed for finite horizon N starting 

from t and given in equation (16). However, the objective function and the power 
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balance equation may change based on solution methods although the rest of the 

component formulas keep the same and we give as equation (25).  

∑ (∑𝑀𝐺(𝑘)

𝑁𝐺

𝑖=1

+∑𝑀𝐵(𝑘)

𝑁𝐵

𝑗=1

+𝑀𝐺𝑅(𝑘)) , ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑡

𝑡+24

𝑘=𝑡
 

(25) 

In this part, we explained the model details of the microgrid problem. We will solve 

this problem in the next part, but to solve this we should use the input parameters that 

fed by Chapter 3 of the MPC. 

4.2. D-MPC Formulation for Microgrid Energy Management Problem 

In this thesis, the proposed microgrid problem includes two distributed generators, two 

battery storage units and a photovoltaic (PV) system with the electrical loads only. 

Each generator and battery have different characteristics from each other such as their 

costs, capacities, powers, and sizes. Besides, the microgrid is connected to the main 

grid to ensure that buying the required energy and selling surplus energy.  

At this point, we have details of the microgrid problem, mathematical model, and best 

forecasts of stochastic inputs that are demand consumption and PV system output by 

the various methods (see Chapter 3). These forecasted values come as point estimates 

to become the input of D-MPC. The deterministic model assumes there is no 

uncertainty for these inputs and takes all the point estimates as it comes. The main 

advantage of the D-MPC approach compared to stochastic approaches is its simplicity, 

but the results are inflexible since they highly depend on the forecasts without allowing 

the realization of any uncertainty.  

Within the scope of this chapter, we perform the D-MPC approach that optimizes the 

performance of microgrid energy management. In the D-MPC approach, the final 

status of system dynamics is specified by measuring state variables (load, SoC, and 

fuel cost, etc.) at every control step through the horizon. We formulate our problem as 

MILP to obtain power set points of all the components for an energy management 

problem that we give the details of the mathematical model. A MILP solver aims to 

minimize the objective function, which is 𝑓𝑇𝑥 under some constraints.  
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min 𝑓𝑇𝑥  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑥                                

{
 
 

 
 

 

𝐴𝑥 ≤ 𝑏
𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

𝑥 = [
𝑥𝑐
𝑥𝑏
]

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
𝑥𝑐 ∈ ℝ

𝑛𝑐  𝑎𝑛𝑑 𝑥𝑏  ∈ {0,1}
𝑛𝑏

 

(26) 

where f represents the cost, x is a set of decision variables. While 𝑥𝑐 variables are real, 

𝑥𝑏 (binary) variables can take only 0 or 1, that is one reason why we prefer to use 

MILP. The objective function is 𝑓𝑇𝑥 which represents the operational cost and our aim 

is minimizing it by obtaining a feasible x vector.  

𝐴  stands for inequality constraint matrix, 𝑏  inequality value vector, 𝐴𝑒𝑞  equality 

constraint matrix and 𝑏𝑒𝑞  value vector, respectively. 𝑥𝑚𝑖𝑛  and  𝑥𝑚𝑎𝑥  represent the 

upper and lower limits of the variables. We have already listed model constraints and 

boundaries of the problem. However, like underlined in before, we prefer to explain 

and add the power balance equation and overall objective function here for D-MPC. 

The obvious reason to do this is the objective function and power equation will slightly 

get different shapes according to MPC approaches, will not stay the same for all 

procedures. We arrange the proposed microgrid description according to the 

mathematical model and give the all details of the problem in Table 4.1 and Table 4.2.  

Table 4.1. Model parameters of generators and batteries. 

Variables Unit Lower Bound Upper Bound 

𝑃1
𝐺(𝑘) kW 0 150 

𝑃2
𝐺(𝑘) kW 0 80 

𝑃1
𝐵𝐶(𝑘) kW 0 50 

𝑃2
𝐵𝐶(𝑘) kW 0 40 

𝑃1
𝐵𝐷(𝑘) kW 0 60 

𝑃2
𝐵𝐷(𝑘) kW 0 50 

𝐸1
𝐵(𝑘) kWh 120 600 

𝐸2
𝐵(𝑘) kWh 100 500 

 

MPC optimizes the operation cost by keeping these bounds. Here, we underline the 

minimum energy of batteries is equal to 20% of their upper limit, which means they 

not allowed to become zero. 
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Table 4.2. Model details of batteries. 

Variables Value 

𝐸1
𝐵(1) 180 

𝐸2
𝐵(1) 150 

𝜂1
𝐵𝐶  0.95 

𝜂2
𝐵𝐶  0.90 

𝜂1
𝐵𝐷 0.85 

𝜂2
𝐵𝐷 0.87 

 

Table 4.3 presents the detailed costs that affect the operational cost of the controllable 

generators and storage units.  

Table 4.3.  Microgrid costs in detail. 

Type of Cost Parameters Cost ($/kWh) 

  Generator1 Generator2 

Fuel  𝐶𝑖
𝐺−𝑃𝐶 0.6 0.8 

Starting  𝐶𝑖
𝐺−𝑆𝑈 2.5 1.5 

Shutdown  𝐶𝑖
𝐺−𝑆𝐷 2 1 

Idling  𝐶𝑖
𝐺−𝐼 1.15 1.2 

Life/Wear 𝐶𝑖
𝐺−𝐿𝐶 0.05 0.04 

  

 
Battery1  Battery 2 

Charging 𝐶𝑖
𝐵𝐶−𝐿𝐶 0.02 0.01 

Discharging 𝐶𝑖
𝐵𝐷−𝐿𝐶 0.025 0.015 

 

The main grid tariff may change from day to day and hour to hour. It can be forecasted 

also, but within the scope of this thesis, we assume to have full access to knowledge 

of grid buy/sell day-ahead costs before starting the optimization. Table 4.4 and Table 

4.5 show the hourly tariff of the electric grid costs.   

Table 4.4. Day-ahead market costs for buying energy from electric grid. 

Hour 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 

Day-ahead Cost ($/kWh) 0.70 0.70 0.70 0.70 0.70 0.90 0.90 0.90 

Hour 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 

Day-ahead Cost ($/kWh) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

Hour 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-00 

Day-ahead Cost ($/kWh) 0.90 1.20 1.20 1.20 1.20 1.20 0.70 0.70 
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Table 4.5. Day-ahead market costs for selling energy to electric grid. 

Hour 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 

Day-ahead Cost ($/kWh) 0.49 0.49 0.49 0.49 0.49 0.63 0.63 0.63 

Hour 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 

Day-ahead Cost ($/kWh) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 

Hour 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-00 

Day-ahead Cost ($/kWh) 0.63 0.84 0.84 0.84 0.84 0.84 0.49 0.49 

 

We ensure that the electrical power is in balance in the microgrid at any time instant 

and equation (27) forced to keep the power balance between demand and generation. 

𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘) − 𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) +∑𝑃𝑖
𝐺(𝑘)

𝑁𝐺

𝑖=1

+∑𝑃𝑗
𝐵𝐷(𝑘) − 𝑃𝑗

𝐵𝐶(𝑘) +

𝑁𝐵

𝑗=1

PPV(k)

= 𝑃𝐿(k), ∀𝑖, ∀𝑗, ∀𝑘 

(27) 

Now, 𝑃𝐿(k)  and PPV(k)  are the forecasts of load consumption and PV power 

generation, respectively. We continue with PNL(𝑘)  by replacing 𝑃𝐿(k) − PPV(k)  to 

represent net load. Their dimensions are Nx1. According to our problem, N is the 

horizon and equal to 24 hours,  𝑁𝐺  and 𝑁𝐵 are the numbers of the electric generator 

and battery units, and we know both they equal to 2. If we arrange equation (27) and 

write specifically for this problem, we obtain equation (28).  

𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘) − 𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) +∑𝑃𝑖
𝐺(𝑘)

2

𝑖=1

+∑𝑃𝑗
𝐵𝐷(𝑘) − 𝑃𝑗

𝐵𝐶(𝑘)

2

𝑗=1

= 𝑃𝑁𝐿(𝑘), ∀𝑖, ∀𝑗, ∀𝑘 

(28) 

The objective function of an optimization model for the problem of microgrid energy 

management is also equals to the sum of all cost equations that we mentioned in 

equation (25) in closed form, the objective function is as follows: 
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min∑(∑(𝑃𝑖
𝐺(𝑘)(𝐶𝑖

𝐺−𝑃𝐶 + 𝐶𝑖
𝐺−𝐿𝐶) + 𝐶𝑖

𝐺−𝑆𝑈𝛼𝑖(𝑘) + 𝐶𝑖
𝐺−𝑆𝐷𝛽𝑖(𝑘)

2

𝑖=1

24

𝑘=1

+ 𝐶𝑖
𝐺−𝐼𝑧𝑖(𝑘))

+∑(𝑃𝑗
𝐵𝐶(𝑘)𝐶𝑗

 𝐵−𝐿𝐶 + 𝑃𝑗
𝐵𝐷(𝑘)𝐶𝑗

 𝐵−𝐿𝐶)

2

𝑗=1

+ (𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘)𝐶𝐺𝑅−𝑏𝑢𝑦(𝑘)) − (𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)𝐶𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘))) 

(29) 

The first cost term in the objective function represents the costs associated with 

electrical generators. It shows the summation of life cost and fuel cost based on 

utilization, generator startup, and shutdown costs, respectively. Next term expresses 

modeling the wear cost of battery storage units due to charge and discharge. The third 

term is the total cost of the electrical power bought from the grid. The last term refers 

to the total profit of the power sold to the grid. Since this term indicates income, it is 

written as a negative sign to the objective function, which we are trying to minimize. 

The only way to generate income from this problem is to sell energy to the main 

electric grid, especially during high tariffs. Like load demand and renewable 

generation, the cost of selling to the grid and buying from the grid are also stochastic 

and non-measurable inputs. However, we assume that these prices are known based on 

the day-ahead market. D-MPC solves our problem for the  𝑁 = 24 . Finally, the 

obtained problem is solved using “intlinprog” function solver via MATLAB to 

minimize operational cost.  

D-MPC ignores the possibility of any stochasticity in the objective function and the 

constraints. There is no necessity dealing with random variables in here because we 

know net load as pointwise. However, it includes uncertainty that is why we prefer to 

study also S-MPC and H-MPC to observe results and differences. Before 

implementing these methods in Chapter 5, we present the results of D-MPC in the next 

part. 

4.3. D-MPC Simulation Results  

We summarize the results and MPC decisions of the deterministic approach in this part. 

We illustrate in Figure 4.1 both the 24-hour ahead net load forecasts that we find taking 
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the difference between forecasted load demand and PV power in Chapter 3 for a 

specified day and realized net load profile. 

 

Figure 4.1. Forecasted (based on MLP method) and realized net load profile over 24 

hours. 

D-MPC performs control for the 24-time step by assuming the daily net load profile 

as in Figure 4.1. MPC aims the minimization of the operational cost of the microgrid; 

therefore, it decides each component such as charge and discharge of batteries, usage 

of generators, and trade of the main grid to meet the estimated net electric demand. 
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Figure 4.2. Electric generators power production over 24 hours (the upper limit of 

generators are 150 kW and 80 kW for Generator I and II). 

In Figure 4.2, we present the power generated by the controllable generators. Due to 

electric generators have the start-up and shutdown cost, the controller tends to operate 

them continuously when they employed despite the idling cost. In addition, D-MPC 

usually uses the larger capacity generator since the priority is meeting the electric need 

of the microgrid and generally do not use the second generator during lower demand. 

The next component is battery storage units that are beneficial components in these 

systems since they give the opportunity to charge during lower costs and discharging 

later during higher costs. Figure 4.3 displays the initial charge in batteries and 

variations in energy levels with charging and discharging decisions along the horizon. 

Figure 4.4 shows the electricity price of the next 24 hours and the grid decisions. By 

taking into consideration Figure 4.3 and Figure 4.4, the decisions of storage units 

corroborate the expectation by charging between midnight and 6 am that is the range 

with the lowest demand as well as cheaper electricity price than the daylight and 

discharge the batteries during peak loads and higher prices. 
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Figure 4.3. SoC of the battery storage units with charging and discharging decisions. 

 

Figure 4.4. Amount of power bought/sold between grid and consumer according to 

deterministic method. 

To summarize all the previous results of the microgrid components, we constitute 

Figure 4.5. We can see the effort of the controller to meet the demand with the 

minimum amount of operation cost. If we apply every decision through the day, the 
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total cost is equal to $5217.70. However, in a real application, we know we implement 

the first hour decisions, then refreshing the MPC with respect to the new measurements. 

 

Figure 4.5. Microgrid decisions through the horizon according to D-MPC. 

 

Although we specify the uncertain inputs by forecasting methods, it still corresponds 

to the naive approach since these point estimations are accepted as is. The deterministic 

approach does not consider the uncertainty of forecasts. The solar power and electrical 

load are the uncertain and highly characteristic series, if the forecasting result is far 

from the actual, the controller will take a set of decisions in the wrong direction. This 

situation may end with unnecessarily high operation costs or energy consumption more 

than need. For these reasons, we believe that we should add stochastic consideration. 

In the following chapter, we study both the stochastic based on historical data and the 

hybrid approach of point estimations and historical knowledge. 
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CHAPTER 5 

STOCHASTIC MODEL PREDICTIVE CONTROL (S-MPC)  

A problem may include a number of random variables because of uncertainties. In our 

problem, electrical demands depend on uncertain consumer behaviors; PV power 

generation depends on solar radiation, wind speed, and temperature, which are 

uncertain parameters. In addition, grid costs also depend on uncertain market 

conditions, but we prefer to take these costs from the electric market directly. 

There is a set that includes all possible outcomes, by collecting different random events 

from this, a new class is constituted. We can write for every event is an element of the 

class with its probability P. The combination of set, class, and probability refers to 

probability space. Each random event comes with probabilities between 0 and 1. 

On the contrary to the D-MPC, the strong future of the Stochastic Model Predictive 

Control (S-MPC) is handling model uncertainties. Ensuring the stability of the system 

and keeping the balance have importance in microgrid applications. This chapter 

explains the main approaches to be perused when developing an S-MPC for stochastic 

programming. We employ the S-MPC by using the distribution of the historical net 

load and apply model reduction. The principal components in the historical data are 

identified by using an Singular Value Decomposition (SVD) analysis on the historical 

data. To the best of our knowledge, this is the first study that generates the scenarios 

from the reduced-order transformed data. Moreover, we develop a novel approach that 

combines the strengths of deterministic and stochastic MPC methods by integrating 

point estimations and the distribution of net load. In this approach, we not only 

generate scenarios based on historical net load set but also perform scenario generation 

by using forecast errors. 

5.1. S-MPC based on Distributions 

Stochastic programs may consist of one or more uncertain variable. There may be 

several random variables such as electricity prices, demand by consumers, energy 

generation by renewable generators based on mainly weather conditions in real life 

problems. The random vector is defined with ξ. We can represent the functional form 

as 𝜉(𝑤). 
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If the Probability Density Function (PDF) of random vector  "ξ"  is known, then the 

procedure where repeats itself and character are also known. Distribution of ξ can be 

estimated from historical data also. We are conscious that it is possible to create many 

scenarios based on the distribution of the random vector. We prefer to deal with only 

the distribution of net load in this thesis. 

In contrast with taking pointwise forecasted values as we did in D-MPC, now we focus 

on the distribution. Our aim is to optimize the total cost and to do this we also solve 

the expectation of random components of the problem based on the various solution 

approaches. We investigate Stochastic Programming Methods under the four main 

approaches: Worst-case, expected value, two-stage (recourse) and chance constraint 

(probabilistic) method.   

5.1.1. Worst-Case and Expected Value Method  

Actually, Worst-Case handles the worst possible combination under all uncertainties. 

Net load demand is the only uncertainty component that we do not know through the 

horizon. Then, worst-case analysis and takes all decisions to satisfy this highest load 

by assuming this demand will come true with probability 1. The objective function is 

completely the same with equation (29) in Chapter 4.1, but the power balance 

constraint takes the maximum load demand instead of point estimations for every hour 

and the 𝑃𝑁𝐿  the same as in Chapter 4.1 as in equation (28), refers to the possible 

maximum load vector. 

This situation leads to a huge overestimation of the load demand, because the needed 

power of the microgrid may have considerably less than the expectation. Thus, the 

solution minimizes the possible loss but causes a big amount of waste with a low profit. 

We know we meet the demand with full confidence. It is safe, but a computationally 

expensive method to apply. As the microgrid is grid-connected, the needed power is 

procurable through buying energy from the main electric grid at worst. Of course, there 

may be a shortage, repair, or maintenance related to the grid, but we all know that are 

rare events. If we try to prepare for the worst depending upon historical net demand 

data, Figure 5.1 is an inevitable scenario. The MPC takes decisions to optimize total 

cost, but although its effort when the real needed power is coming, quite likely we will 

see huge losses in advance. Although the MPC takes decisions to optimize total cost 
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subject to the worst-case approach, when the real needed power is updated, quite likely 

huge losses show.  

 

Figure 5.1. The net load for every hour based on the Worst-Case scenario method. 

Since the Worst-Case method focus on the highest demand, Figure 5.1 demonstrates a 

distinguishably high amount of load demand and does not expect a negative load 

within the horizon. MPC solves the optimization and takes decisions of generators 

(Figure 5.2), storages (Figure 5.3), and grid usage (Figure 5.4) with respect to 

electricity tariff and constant costs (see Table 4.3) to meet this power for the next 24 

hours. 

In Figure 5.2, while the first generator that has lower fuel costs is used at all hours, the 

second generator is not used during the hours with relatively low power requirements. 
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Figure 5.2. Generator decisions for the Worst-Case. 

Battery decisions indicate in advance of charging them to use during high electricity 

costs. 

 

Figure 5.3. Change of SoC based on charge and discharge decisions according to 

Worst-Case method. 
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Figure 5.4 exposes which with this amount of demand, makes a profit by selling energy 

to the grid is not in question. It should be noted that the main objective is to satisfy the 

requirement load no matter what. 

 

Figure 5.4. Amount of power bought/sold between grid and consumer according to 

Worst-Case method. 

 

 

Figure 5.5. Microgrid decisions through the horizon according to Worst-Case 

method. 
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Last, we show all the decisions of the microgrid to meet the net load in Figure 5.5. The 

worst-case solution causes a large consumption since it is excessively close to the 

upper or lower bonds. Thus, it will be better to find the expectation to be close to 

average. The worst-case solution causes a large consumption since it is excessively 

close to the upper or lower bonds. Thus, we decided to escape from aggressive and 

unrealistic decisions by continuing with the Expected Value Method. 

In the Expected Value Method, it is moderate to proceed with average without being 

aggressive, rather than working with upper and lower bounds. This actually solves the 

problem replacing uncertain input by its expected value. 

We create a histogram that represents the frequency of each load value. By analyzing 

a histogram of yearly data, we can understand the probabilities and related values. 

Therefore, we can find the expectation of each hour with the product of the value and 

corresponded probability. 

 

Figure 5.6. Hourly net load and the constitution of the input demand for Worst-Case 

and Expected Value methods at 12 pm, representatively. 

To show the general approaches of mentioned methods for a representative hour in a 

day, we create Figure 5.6, while the first graph illustrating the net demand for all year, 

the second graph presents both corresponded demand by finding the maximum load 

and obtaining the average load for Worst-Case and Expected Value method, 
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respectively. The difference between these hourly expectations is quite large and very 

helpful in showing the attitudes of both methods. 

Electric demand predictions are used by deducing their expected value during the 

historic data to extract the behavior of users. Figure 5.7 expresses the estimation of the 

net load falls below half at almost all hours.  

 

Figure 5.7. The net load for every hour based on Expected Value. 

Figure 5.8, Figure 5.9 and Figure 5.10 illustrates all MPC decisions for each microgrid 

components. 
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Figure 5.8. Generator decisions for the Expected Value. 

 

The unit commitment of the generator is still dominant on the side of using “Generator 

1”. However, not only the utilization of “Generator 1” but also the number of hours 

that work with the full capacity of "Generator 2" are quite considerable. Still, it is 

obviously the usage of electric generators is high. 

We observe the state of storage units as discharging during peak loads, charging in the 

opposite conditions. The fact MPC gives the result of the upcoming 24 hours and 

applies the first one then finds a new set by throwing the rest. After for example a week 

later, with changing all conditions, decisions may vary completely according to the 

day. Related to the main grid, while buying decisions are preferred within the subject 

of peak hours, selling decisions are favored during the minimum demand. 
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Figure 5.9. Change of SoC based on charge and discharge decisions according to 

Expected Value method. 

 

Figure 5.10. Amount of power bought/sold between grid and consumer according to 

Expected Value method. 

In Figure 5.11, we give all the optimization outcomes of the expected value method. 

The range of the plot is quite narrow than the Worst-Case. In both, generator 1 is 
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always on during the horizon, and the notable action is while making a decision of 

selling increasing, buying is decreasing in the grid side. 

 

Figure 5.11. Microgrid decisions through the horizon according to Expected Value 

method. 

The solution and formulation of the Worst-case and Expected value methods are based 

on a deterministic solution; however, both methods take into account the distribution 

of data to obtain the decision set. For these reasons, we investigate both of them under 

the stochastic chapter. Next, we continue to the different method, which is easy to 

implement, and computationally not an expensive method.  

5.1.2. Chance-Constrained Method 

As the net load is a random variable, we add a probabilistic constraint. We formulate 

the expression for the probabilistic constrain as equation .This equation allows to a 

violation in defined limits to increase the feasible regions (Farina et al., 2016). The 

solution of the proposed MILP problem by the integration of a Chance-Constrained 

Method is possible by taking the power balance equation based on equation (28) (see 

Chapter 4.2) with a minor change and without changing the objective function (see 

Chapter 4.1, equation (29)). The implementation of Chance-Constraint to our problem 

is as equation (30): 
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Pr{𝑃𝐺𝑅−𝑏𝑢𝑦(𝑘) − 𝑃𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) +∑𝑃𝑖
𝐺(𝑘)

𝑁𝐺

𝑖=1

+∑𝑃𝑗
𝐵𝐷(𝑘) − 𝑃𝑗

𝐵𝐶(𝑘)

𝑁𝐵

𝑗=1

≥ 𝑃𝑁𝐿(k)} ≥ 1 − 𝛼, ∀𝑖, ∀𝑗, ∀𝑘
 

(30) 

where 𝛼  is related to the design parameter which defines the risk of the performance 

and can take a value between 0 and 1;therefore,  1 − 𝛼 defines the confidence level in 

the management problem.  

Until this point, we always tried to satisfy energy demand completely. The Chance 

Constrained defends that we can meet the electrical demand with a high degree of 

probability. In general, this probability is chosen as 90 or 95% (Birge, 2011). We get 

as 95%, which means there is a chance to 5% for fail and chance to 95% for the meet 

demand. The implementation of Chance-Constraint by taking 𝛼 as 0.05 to equation 

(30) ensures the meet of demand mostly. The objective function is not different from 

the deterministic approach. We are still paying the expenditure of the microgrid system, 

but the difference is input. Herein, it is valuable to express, how we detect the demand. 

In Chapter 5, we always deal with the net load. By taking Inverse Cumulative Density 

Function (ICDF) of historical data of net load for every hour we detect the point that 

gives probability is equal to 1 − 𝛼. The value is recorded now is the demand that you 

should cover along delta T.  

In a similar manner to the previous methods, we show our presented approach for the 

Chance-Constraint at 12 pm. in Figure 5.12. We apply ICDF for the entire horizon to 

detect the probabilistic net load vector.  
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Figure 5.12. Representation of the net load Cumulative Distribution Function for the 

12 pm to specify net load and corresponded probabilities by taking 𝛼 as 0.05. 

In the end, we just find the Nx1 demand vector PNL for the 24-hours horizon. With this 

conversion, we appoint current electrical demand and give in Figure 5.13. 

 

Figure 5.13. The Net Load for Every Hour based on Chance-Constrained. 
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In this case, we observe a couple of time generation expectation is more than 

consumption. In several intervals, we record zero net loads. On the other hand, the 

magnitude of peak hours in kW is between Worst-Case and Expected Value.  

To compare system decisions of Chance-Constrained with Worst-Case and Expected 

Value, we give the MPC results of the current method in Figure 5.14, Figure 5.15, 

Figure 5.16 and Figure 5.17, respectively.  

 

Figure 5.14. Generator decisions for the Chance-Constrained. 
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Figure 5.15. Change of SoC based on charge and discharge decisions according to 

Chance-Constrained. 

 

 

 

 

 
Figure 5.16. Amount of power bought/sold between grid and consumer according to 

Chance-Constrained. 
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Although we encounter a higher level of demand in the Chance-Constrained Method, 

the movement on the side of profit is more than the previous approach. 

 

Figure 5.17. Amount of power bought/sold between grid and consumer according to 

Chance Constrained. 

5.1.3. Two-Stage (Recourse) Method 

In this case, we have to make a set of decisions without the complete knowledge of 

some random events (net load demand) such decisions are called “first-stage decisions” 

or “here and now decisions”. Then, because of the realization of those random vectors, 

complete information is obtained for the net load. After that, the second stage or 

corrective actions are taken for microgrid energy management and it called as “second 

stage decisions” or “wait and see decisions”.  

Random vector ξ has a finitely supported distribution ξ, in other words it takes ξ =

ξ1, … , ξℎ (called scenarios) with respective probabilities 𝑝1, … , 𝑝ℎ.  

For a realization of the random demand vector ξ, we can find the optimal solution with 

linear programming problem: 

min  ((𝑓𝑇𝑥) + (𝑞𝑇𝑦)) (31) 

While x representing first stage decisions, y represents the second stage. In this thesis, 

only net load gives the uncertainty to the problem, and we prefer to limit the second 

stage with only grid decisions. At the first stage, it has to be taken a set of decisions x 

-1500

-1000

-500

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

)

Time (hr)

Net Load Gen1 Power Gen2 Power Batt1 Charge Batt1 Disch

Batt2 Charge Batt2 Disch Gird buy Grid sell



64 

on random net load ξ, at the second stage, after realization of demand becomes known; 

necessary grid actions y can be taken. In this case, we update the formulation of the 

MILP with adding some probability terms to the objective function and solving many 

power balance equations as many as the proposed number of scenarios for the second 

stage part. Only grid decisions include probability terms. Of course, we write the 

objective function with respect to their probabilities. We can write the second-stage 

part of the objective function as in equation (32). 

∑𝑝ℎ ((𝑃ℎ
𝐺𝑅−𝑏𝑢𝑦(𝑘)𝐶𝐺𝑅−𝑏𝑢𝑦(𝑘)) − (𝑃ℎ

𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)𝐶𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)))

ℎ
 (32) 

where ℎ is the number of scenarios that we will solve.  

More specifically, we can formulate the objective function instead of equation (29), 

we arrange the second-stage decisions of objective function as equation (32) and 

integrate into the objective as we completed in equation (33). 

Grid decisions are the only option to bring into balance for every load demand. On the 

contrary to D-MPC, two-stage method solves power balance equations as many as the 

number of scenarios. Power balance equation of our problem as in equation (34). 

min ∑ (∑(𝑃𝑖
𝐺(𝑘)(𝐶𝑖

𝐺−𝑃𝐶 + 𝐶𝑖
𝐺−𝐿𝐶) + 𝐶𝑖

𝐺−𝑆𝑈𝛼𝑖(𝑘) + 𝐶𝑖
𝐺−𝑆𝐷𝛽𝑖(𝑘)

2

𝑖=1

𝑡+24

𝑘=𝑡+1

+ 𝐶𝑖
𝐺−𝐼𝑧𝑖(𝑘)) +∑(𝑃𝑗

𝐵𝐶(𝑘)𝐶𝑗
 𝐵−𝐿𝐶 + 𝑃𝑗

𝐵𝐷(𝑘)𝐶𝑗
 𝐵−𝐿𝐶)

2

𝑗=1

+∑𝑝ℎ ((𝑃ℎ
𝐺𝑅−𝑏𝑢𝑦(𝑘)𝐶𝐺𝑅−𝑏𝑢𝑦(𝑘))

ℎ

− (𝑃ℎ
𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘)𝐶𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘))))

 

s.t. 

(33) 

𝑃ℎ
𝐺𝑅−𝑏𝑢𝑦(𝑘) − 𝑃ℎ

𝐺𝑅−𝑠𝑒𝑙𝑙(𝑘) +∑𝑃𝑖
𝐺(𝑘)

2

𝑖=1

+∑𝑃𝑗
𝐵𝐷(𝑘) − 𝑃𝑗

𝐵𝐶(𝑘)

2

𝑗=1

− 𝑃ℎ
𝑁𝐿(k)

= 0 , ∀𝑖, ∀𝑗, ∀𝑘, ∀ℎ 

(34) 
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In fact, the stochasticity is related to both load demand and PV output power as we 

mentioned before. To solve this, the distributions of data are generated based on 

historical data. If we know the distributions, it is possible to create finitely many 

possible paths we call scenarios. Instead of checking both PV and load distribution, 

we prefer to work with net load and represent the possible future with as few as 

scenarios. We prefer to study with histograms based on yearly historical net load. Since 

we started to talk about scenarios, the formulation is refreshed for the two-stage 

method. The probability part is related to only grid decisions because we preferred to 

compensate for uncertain load with the electrical grid only. In this situation all the 

battery storage and electrical generator decisions are made before the realization of net 

load in the first-stage, then we take the grid decisions as buy or sell based on the 

amount of net load in the second-stage.  

To solve this problem, we divide the histogram of each hourly net load distribution 

into 5 parts for every hour. We demonstrate this explanation and procedure in Figure 

5.18 for the 12 pm. 

 

Figure 5.18. Histogram of the net load time series for the 12 pm. 

Even the single hour division brings five possible scenarios, this procedure is valid 

every single hours. In this case, the number of possible scenarios is equal to 524 =

5.96𝑥1016. Of course, to check all these paths is computationally expensive and takes 
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a long solution time. Therefore, we apply the scenario reduction method to detect a 

reasonable number of scenarios. Figure 5.19 demonstrates the scenario tree for the 

following 24 hours by including all the possible paths.  

 

 

Figure 5.19. Representation of scenario tree for the horizon before scenario 

reduction applied. 

The recourse model works with a scenario set and corresponding 

probabilities; thus, we define the road of scenario generation and their 

probabilities and illustrate these steps in Figure 5.20. 
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Figure 5.20. The general arrangement details of scenario generation for the proposed 

two-stage (recourse) method under the stochastic approach. 

We present all the details of the dimension reduction, scenario generation, and finally 

reduction below. 

Scenario Generation and Reduction: 

There are many ways to reduce the number of scenarios. Reducing of dimension is one 

of the valid methods. Historical raw data includes precious and hidden information, so 

we can extract the necessary information by investigating the raw data. In machine 

learning, this hidden information is discovered by the help of eigenvalues and 

eigenvectors. Generally, by using Principal Component Analysis (PCA) and Singular 

Value Decomposition (SVD), we can understand the prominent parts that have the 

largest information of the data. The important point is reducing dimensionality and 

complexity without losing accuracy and generality. If we can explain the data with 

fewer components, we may reach better knowledge without loss of information and 

study with less effort for both analyzing and plotting (Alpaydin, 2004). The much more 

details of the PCA can be found in this press. While SVD helps to create fewer 

components that explain still the general, PCA eliminates non-crucial components. The 

basic idea is using SVD to specify expandable components in the original SVD matrix 

to find PCA. We accomplish the reduction of the dimension by using SVD is highly 

relevant to PCA in many approaches. While PCA works with only a square matrix, 

SVD is the solution to this as A can be an arbitrary (𝑚𝑥𝑛) matrix. This proves that 

SVD is a more robust and overall method for altering of basis and decreasing 

dimensions (Cynthia, 2019). Also, SVD provides a computationally efficient way of 

actually locating PCs and provides further insight into what a PCA really does, and it 

offers valuable means of representing the effects of a PCA, both graphical and 

algebraic (Jolliffe, 2002). 

A yearly-recorded net load 24x365 is considered as x, but we apply SVD on X, which 

is equal to the difference between x and an hourly average of x to center the data and 

study with zero-center. There are 24 features represented by rows and 365 observations 

represented by columns, and we are trying to explain X with fewer “r” features. Before 
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implementing and deciding anything, we analyze importance of eigenvalues to 

perceive possibility of reduce dimension in the demand data.  

 

Figure 5.21. SVD analysis for understanding the importance of components based 

on eigenvalues. 

As we can from Figure 5.21, after some points number of components do not help to 

explain data. However, we present further analysis and specifying procedures to decide 

what the efficient reduced size is; thus, we continue to the SVD. X matrix can be 

decomposed into factors by using SVD as in equation (35).  

𝑋 = 𝑈Σ𝑉−1 (35) 

U and V are orthogonal matrices with orthonormal eigenvectors and Σ is a diagonal 

matrix (Orumie & Onyinyechi, 2019). The square root of diagonal elements gives the 

singular values. We created the T transformation matrix by reducing the number of 

basis from 24 to r by using the orthonormal P matrix. 

𝑍 = 𝑇′𝑋 (36) 

In equation (36), the new Z matrix has r rows and m columns as much simpler and still 

the descriptive for the data set. We determine to r by measuring SMAPE. r is selected 



69 

while comparing the mean of SMAPE between X and TZ multiplication for different 

values which shows various descriptor levels for the whole data set. 

 

Figure 5.22. Hourly SMAPE (percentage) for different number of reduced singular 

value of the net load. 

We catch the noticeable positive progress without increase complexity needlessly at a 

level 8. There are three different levels in Figure 5.22, when the number of singular 

value is equal to four (purple line); this situation causes a high-level error, with 5, 6, 

and 7 singular value represents the model close performance. The investigation of 8 

singular value (thicker blue line) presents observable and desired progress with under 

10% SMAPE. Figure 5.23 illustrates that eight features capture the movements and 

character highly successfully of the data set. We prefer to present this comparison plot 

for a weekly range of any randomly chosen to see readably. It is possible to go further 

captures by increasing the number of singular value, but we should aware of increasing 

complexity cause some damages in the application.  
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Figure 5.23. Comparison of original net load and the recovered data after the 

reduction of the dimension. 

Results of Scenario Generation by Dimension Reduction: 

Instead of proceeding with  524 huge of the number of scenarios, with the dimension 

reduction approach, now we can study with 8 components. Even with this, the new Z 

matrix still covers the more than 80% of the knowledge and character of data. 

Therefore, the total scenario is equal to 58 = 390625. However, it is still quite a large 

number for integration to the S-MPC problem. We give the representation of the 

scenario tree in Figure 5.24 to show how the number of scenarios exponentially 

increases even for 8 components and why we need to still reduce the number of 

scenarios. 
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Figure 5.24.  Representation of scenario tree after the dimension reduction. 

The final step related to scenarios is to generate all possible (58 = 390625) ones and 

eliminate low probabilities. Instead of analyzing each one, we decide to choose the 

100 scenarios, which have the highest probabilities. We prefer to limit our scenario 

numbers since the computer is not capable of solving a large number of scenarios 

within a reasonable time in the optimization problem. Figure 5.25 represents the 

chosen scenarios that have the highest probabilities and Figure 5.26 indicates the 

corresponding probability values to these loads. After the selection of the scenario set, 

we arrange the probabilities of the selected group so that their summation equals to 1.  
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As we mentioned before, the first stage decisions relate to electrical generators and 

battery storage units. This means no matter which scenario or demand occurs, these 

decisions will not change. Figure 5.27 and Figure 5.28 shows these generator and 

battery decisions and change of SoC along the horizon. Almost all scenarios have a 

common point that the demand is relatively low and plateau between 20.00 pm and 

5.00 am.  In light of this information, it was an expected fact the minimum usage level 

for both generators corresponds to this interval of time. Here, although startup, 

shutdown, and lifetime costs are lower for the second generator, the first generator 

which has a lower fuel cost for the unit energy is in demand. We conclude the unit fuel 

cost is quite effective in the decision mechanism of this optimization. 

 

Figure 5.25. 100 sample of net load scenarios, which is the most probable ones. 
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Figure 5.26. Probability of each scenario. 

 

Figure 5.27. Two-stage decisions for the generators. 
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Figure 5.28. Change of SoC based on charge and discharge decisions. 

In parallel to the actions of controllable generators, charging acts are in the early 

morning, and on the other hand, the discharging processes occur in both high demand 

and relatively high grid cost. 

Figure 5.30 presents all decisions except the decisions of the main electric grid. After 

the first level decisions completed according to the expected 100 scenarios of the net 

power demand, the plus or minus part of the amount of energy needed will be net off 

with the main grid. In order to exemplify this, we demonstrate the decision set of grid 

buy/sell in Figure 5.29, with respect to the most probable scenario. The trend of the 

bar and line have similar ups and downs.   
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Figure 5.29. Amount of power bought/sold between grid and consumer for the most 

probable scenario. 

 

 
Figure 5.30. First stage decisions of energy management problem of microgrid. 

We give expected daily operational costs of each method in Table 5.1. 

 

-150

-100

-50

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 (
kW

) 

Time (hr)

Gen1 Power Gen2 Power Batt1 Charge Batt1 Discharge Batt2 Charge Batt2 Discharge



76 

Table 5.1. Comparison of control strategies for all S-MPC approaches. 

Control Strategy Total Operational Cost  

Worst-Case 16138 

Expected Value 3391.4 

Chance-Constrained 3376.8 

Two-Stage  3572 

 

The Table 5.1 indicates that while the worst-case method gives the unnecessarily high 

cost, the expected value and chance-constrained are really close to each other. On the 

other hand, the two-stage solution shows a relatively higher cost than chance-

constrained and expected value solutions do for the same day. If we solve the same 

day by using perfect knowledge that refers to the realized net load for the same day, 

the cost is equal to 6271. The results point out that we cannot give certain comments 

based on the solution of a single day. For this reason, we will take the comprehensive 

results for all year in Chapter 6. 

5.2. S-MPC based on both Distributions and Forecasts 

In this study, the third and the last approach for the MPC is hybrid solution. The basic 

idea is accurate forecasts help to minimize the cost; however, we should take into 

consideration the uncertainty of these deterministic forecasts. While chapter 4 

presenting these point estimations by looking recent past, chapter 5 gives the stochastic 

attitude on yearly-based data. Here, we propose a hybrid approach that helps the usage 

of deterministic forecasts in a stochastic manner. 

5.2.1. Worst-Case and Expected Value Method 

In this method, we implement the same procedure with Chapter 5.2.1. However, we 

change the input matrix by adding the net load forecasts into the yearly forecasting 

error instead of yearly-recorded net load data, with the aim of employing more 

information related to the next day that we run the MPC.  Worst-case method cause to 

extreme overestimation of electrical demand, because it specifies the net demand by 
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taking into consideration the highest load for the entire period. Figure 5.31 illustrates 

the all decisions for the entire period of the next day. We also show the obtained load 

demand by this process.  

 

Figure 5.31. Battery, generator, and main grid decisions of H-MPC in Worst-Case 

method. 

Load demand that is the input of MPC highly influences the decisions of controllable 

components. Whereas worst-case takes the highest power, each generator is usually 

active during the considered period and both battery units deploy to store during low 

energy prices and discharge in the reverse conditions. On the other hand, the main grid 

is always able to cover the missing power since there are some boundary constraints 

related to other components than the grid. 
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Figure 5.32. Battery, generator, and main grid decisions of H-MPC in Expected 

Value method. 

Although the worst-case solution brings overestimated demand and corresponded 

unrealistic decision set, it underlines the being aggressive is not a solution to help to 

meet the demand and minimize the operational cost at the same time. In a similar 

manner with Chapter 5.2.1, we implement the expected value method to be more 

realistic to the same demand matrix. The obtained MPC results are in Figure 5.32. Still, 

we use electric generators densely; however, in this case, the net load is around the 

average during midday. Even it seems possible to sell to the grid during higher 

electricity costs to earn more money. 

5.2.2. Chance-Constrained Method 

We already have formulated the chance-constrain method. With the change of input 

set, we know the decisions related to microgrid management. Therefore, we apply the 

same approaches in Chapter 5.2.2. We give the obtained current power set points in 

Figure 5.33.  
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Figure 5.33. Battery, generator, and main grid decisions of H-MPC in Chance-

Constrained method. 

5.2.3. Two-Stage (Recourse) Method 

In H-MPC solves the microgrid problem with the same attitude in Chapter 5.1.3. 

Naturally, the objective function and power balance equation are the same with 

equation (33) and (34). However, the net load scenarios and corresponding 

probabilities that are provided by the histograms change and we solve the problem 

with the new scenario set with respect to all microgrid constraints. We propose two 

approaches related to the constitution of new scenario sets under the scope of 

integrating point estimations with the histogram of the time series. The first approach 

is relatively simpler and this solution defends making some corrections on the previous 

results that we already have. This approach defends making some corrections on 

scenarios that we generate in Chapter 5.1.3 by using net load forecasting.  

On the other hand, the second approach supports using knowledge about the histogram 

of forecast error. We believe the hourly average forecasting errors helps to arrange 

point estimations in a realistic way. We illustrate the flow of both approaches in Figure 

5.34. 
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To use previously generated demand scenarios, we should shift each value in the set 

as much as the difference (∆) between point estimations that use as input in D-MPC 

in Chapter 4 and the hourly mean of the net load scenario set. 

∆ = 𝐹𝑁𝐿 − 𝜇𝑆̅ (37) 

𝐹𝑁𝐿 is forecasted net load,  𝜇𝑆̅ is an average of every hour for the day. This ∆ represents 

the diversion of the mean from forecasting and we can estimate as written in equation 

(37). When we add the ∆ into constituted scenario set, we can obtain the combination 

of the historical data and 24-hour forecasts of the net load. This hybrid frame is 

valuable since it keeps the hourly net load out of big diversions and takes consideration 

into to very recent past. We can mathematically express the scenario set of Hybrid 

Approach-I as in equation (38).   

𝐻𝐿1 = 𝑆𝐿̃ + ∆ (38) 

where, 𝑆𝐿̃  is the scenario set of the net load, which is the obtained in the previous 

Chapter 5.1.3.  
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Figure 5.34. The general arrangement details of scenario generation for the proposed two-stage (recourse) method under the hybrid approach. 

∆ 

𝜇𝑆̅ 

𝐹𝑁𝐿 

𝐻𝐿1 

𝑆̃𝐿 

𝑝𝐿 

𝐻𝐿2 

𝑆̃𝐸 
𝑝𝐸 

𝐹𝑁𝐿 



82 

 

Figure 5.35. Representation of Hybrid Approach-I on a sample. 

Figure 5.35 visualize this hybrid process in 3 parts, starts by selecting a scenario from 

the generated set in the first graph, then draw the difference between forecasted net 

load and average of the scenario set. Finally, we achieve the last version of one of the 

net load scenarios when we add this difference to the previously selected scenario.  

In the first hybrid approach, of course we apply the same procedure to the every 

scenario in the set. The last version of the reorganized scenario set is as in Figure 5.36. 

It should be noted that we preserved the obtained corresponding probabilities from the 

previous chapter without making any change. 

The second approach comprises the combination of forecasting error for the 24 hour 

with point estimations that comes from forecasting studies. We believe that if we know 

the hourly forecasting error than we can present a realistic scenario set of the net load 

by combining point estimations and these errors. 

The second approach comprises the combination of forecasting error for the 24 hour 

with point estimations that comes from forecasting studies. We believe that if we know 

the hourly forecasting error than we can present a realistic scenario set of the net load 

by combining point estimations and these errors. 
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Figure 5.36. 100 most probable net load scenarios that are found at the end of the 

Hybrid Approach-I, and their corresponding probabilities. 

As we show in Figure 5.34, to do this, we generate a new 100 scenarios based on the 

forecasting errors, then we add the 24 hours ahead point estimations into this scenario 

set. Thus, now we obtain generated a new scenario set by the help of (39). 

𝐻𝐿2 = 𝑆𝐸̃ + 𝐹𝑁𝐿 (39) 

where, 𝑆𝐸̃ is the scenario set of the forecasting error and 𝐻𝐿2 is the net load set of the 

second hybrid approach. To find  𝑆𝐸̃ , we apply the SVD method to a matrix of 

forecasting errors to generate error-based scenarios. This time X matrix is equal to the 

difference between 24x365 historical forecasting errors and the hourly average of these 

errors. The rest of the process until to finding reduced single component is quite same, 

by using equation (35) and (36) we find the new component number for the forecasting 

error By checking SMAPE results of each tried number of singular values, we decide 

to take "r" is equal to 9. The reason is the considerable progress in the ability to express 

the model mostly is observed on 4, 6, and 9 components, but the daily average of the 

SMAPE falls under the 10% after 9 value, as we illustrate in Figure 5.37 with the 

thicker line. 
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Figure 5.37. Hourly SMAPE (percentage) for different number of reduced singular 

value of the forecasting error. 

We can still increase the number of components, but this increase brings complexity 

and unreasonable solution times unnecessarily. Figure 5.38 shows the general capacity 

to express the data set of forecasting error by using 9 singular values. Error data is 

noisier according to the net load; thus, the performance of the error model may have 

difficulty to catch the sharp-edge of the error. To analyze this situation, we take 

randomly a month to show the general performance and illustrate in Figure 5.38. 

The scenario generating approach is based on the idea of employing a histogram. 

Within the very similar to Chapter 5.1.3, we divide the histogram of historical 

forecasting errors into 5 parts for every hour; in this case, we may generate 59 =

1953125  different scenarios. To pursue the two-stage method within a reasonable 

time, we apply the scenario reduction method by choosing the 100 scenarios with the 

highest probability. 
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Figure 5.38. Comparison of original forecasting error and the recovered data after 

the reduction of the dimension. 

Now, we obtain 100 different scenarios for the daily (24 hours) forecasting error, the 

next step can be extracted by considering Figure 5.34. Equation (39) creates the second 

scenario set of net load. We can solve the recourse problem under the scope of the 

second hybrid approach by using the generated scenario set and the related probability 

set that comes from the previous step. In order to represent how this idea works, we 

prefer to visualize for three samples out of the set as in Figure 5.39. The first graph 

presents the three scenarios from the forecasting error set, second shows the 24 hours 

ahead forecast of the net load. The last one illustrates the constituted scenarios by 

adding the point estimations to every scenario vector in the first graph. Figure 5.40 

expresses all possible scenarios and related probabilities. According to the figure, our 

approach involves a very wide range; however, it is also clear that the most of the 

scenarios concentrate around the average, which is acceptable behavior. 
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Figure 5.39. Representation of Hybrid Approach-II on 3 samples. 

 

 

Figure 5.40. 100 most probable net load scenarios that are found at the end of the 

Hybrid Approach-II, and their corresponding probabilities. 
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a) Hybrid Approach-I   b) Hybrid Approach-II 

Figure 5.41. Generator decisions. 

In Figure 5.41, we show the two model results of the Hybrid Approach of making 

decisions about using electricity generators. Their decisions are different but tend to 

the same attitude. For example, both solutions give priority to the Generator-1 and just 

use Generator-2 during the high electricity cost and high demand needs.  Similarly, the 

storage units, batteries, also make the very close decisions to each other, Figure 5.42 

illustrates the charge and discharge decisions and SoC situation, the a and b plots have 

the same SoC at the end. 

 

a) Hybrid Approach-I   b) Hybrid Approach-II 

Figure 5.42. Change of SoC based on charge and discharge decisions. 

In our two-stage implementation, as we indicated before we limited the second stage 

decisions with only the main electricity grid. That is why the first stage decisions, 

generator, and battery take similar decisions regardless of our scenario generation 

approaches. However, the grid buy/sell decisions are in a different manner. Grid 

decisions are mostly related to the probabilities, it decides by taking into consideration 
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according to the probabilities of the scenario set. The two hybrid approaches have 

various type of scenario distributions and related probabilities, both Figure 5.36 and 

Figure 5.40 support us in this thought. Moreover, Figure 5.43 also illustrates this 

differentiation. Contrary to the generator and battery components, grid decisions are 

highly different from each other; we insert the most probable net load scenario into 

Figure 5.43. Both the net load through the 24 hours and its probability highly differ. 

The daily operational cost also shows the difference between these two approaches 

mostly because of proposed grid movements. 

 

a) Hybrid Approach-I   b) Hybrid Approach-II 

Figure 5.43. Amount of power bought/sold between grid and consumer for the most 

probable scenario. 

The total cost of electrical power at the end of the daily operation for the microgrid is 

$5659.8 if we apply the first approach. On the other side, the second hybrid approach 

ends up with $5149.3. First, both costs are more than the two-stage in the S-MPC 

implementation in Chapter 5.2.3. The stochastic approach considers historical data and 

the presented solution is far from the specificity. Naturally, the net load that is very 

special to the date, it should be more associating with the previous day, season, place, 

etc. For these reasons, we propose the hybrid model that is a combination of historical 

knowledge and point forecasts. We prefer to employ historical knowledge and point 

estimations together since we are aware of these forecasts are not certain; instead, we 

accept and use them as probabilistic forecasts. 
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Table 5.2. Comparison of Control Strategies for all H-MPC when the Horizon is 24. 

Control Strategy Total Operational Cost ($) 

Worst-Case 20143 

Expected Value 5224.6 

Chance-Constrained 5830.6 

Two-Stage  5659.8 

Two-Stage  5149.3 

 

We list the expected daily operational cost of each method in Table 5.2 based on a 

specified day. Still, to make a proper comment, we should take the overall performance 

of the year. However, we can make a naive comparison with the results of Table 5.1. 

As a reminder, the theoretical benchmark was 6271, and it can be seen clearly the 

expected costs of H-MPC solutions are much closer to the perfect solution than the S-

MPC solution. However, we will make a clearer and comprehensive comparison in 

Chapter 6 for both S-MPC and H-MPC methods.  
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CHAPTER 6 

COMPARISON OF D-MPC, S-MPC AND H-MPC METHODS  

After we introduce all the methods that is used and applied them for a specific day, we 

realized that it is difficult to specify general comment about which method is 

outperformed to others, we run each MPC through the yearly (360 days) manner. For 

this reason, to compare the performance of our methods with the realized net load, we 

implement the following procedure by using the defining equations.  

First, we find the expected cost according to the set of decisions throughout the year. 

Based on equation (25) in Chapter 4.1, we calculate the expected cost of every day and 

we reach this cost by using equation (40). Here, d, i, and j represent the simulation day, 

number of generator and battery storage units, respectively, and we have 360 days to 

calculate. Equation (40) is valid for all in this study except the two-stage method for 

both S-MPC (Chapter 5.2.3) and H-MPC (Chapter 5.3.3).  

CE(d, k) = ∑(Mi
G(d, k) + Mj

B(d, k) + MGR(𝑑, 𝑘))
 

24

𝑘=1

, ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑑
 

(40) 

where 𝑘 ∈ {1, 2, … ,24}, 𝑖 ∈ {1,2}, 𝑗 ∈ {1,2}, 𝑑 ∈ {1,2… ,360}. 

For the two-stage methods that we indicated in Chapter 5.2.3 and 5.3.3, we organize 

the cost equations as (41) because of the probabilities.  

CE(d, k) = ∑(Mi
G(d, k) + Mj

B(d, k) + MGR(𝑑, 𝑘) +∑phMh
GR(𝑑, 𝑘)

h

)

24

𝑘=1

, ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑑 (41) 

According to the expected net load, we run algorithms for a year to argue more 

generally.  

After all work, we calculate the cost, which includes the additional grid decisions that 

we compensate for the deficit/surplus power between demand and supply side by the 

main grid buy/sell decisions. This total cost is much more realistic because we know 

the actual demand exactly anymore and we can pay the deviation of reality by taking 

additional grid decisions. The only thing that we should be aware of we have to meet 

the electricity demand to the customer, we can schedule the DERs and battery storage 
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units in advance, but we know these decisions depend on mostly probabilistic 

estimations. Therefore, we rectify the imbalance by taking additional grid judgments.  

To do that, we solve the optimization problem one more time for the actual net load. 

Thus, we can provide the optimum decisions since we know the exact demand. 

However, this is only to prove which method performs better. This approach supports 

the idea that the important point is not to find the minimum cost; instead, we should 

be close to the actual cost as possible. Now, we have already underlined the decision 

set of generators and battery units are constant, so we only counterbalance by using 

the main grid. We calculate the representation mentioned above by equation (42). 

CR(d, k) = ∑∑(∑Mi
G(d, k)

2

𝑖=1

+∑Mj
B(d, k)

2

𝑗=1

+MGR(𝑑, 𝑘))

24

𝑘=1

360

𝑑=1

, ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑑
 

(42) 

CR  is equal to 1330000, which means if there were no uncertainty in the problem 

through the year, we take the optimum decisions for each component and it 

corresponds to CR . However, the uncertainty of the real world do not let to know 

exactly, but we can perform better forecasts and take into consideration of probabilistic 

forecasting and historical information gives limited knowledge for the future. By using 

equation (43), we find the cost of scheduled microgrid components except for the grid, 

then after the realization of net load exactly, we detect the additional amount and reach 

the final cost for each method. 

C1(d, k) = ∑(∑Mi
G(d, k)

2

𝑖=1

+∑Mj
B(d, k)

2

𝑗=1

)

24

𝑘=1

, ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑑
 

(43) 

𝑃𝐷(𝑑, 𝑘) = ∑(∑Pi
G(d, k)

2

𝑖=1

+∑Pj
BC(d, k) − Pj

BD(𝑑, 𝑘)

2

𝑗=1

)

24

𝑘=1

, ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑑
 

(44) 

 PGR
R (d, k) = (Pact(d, k) − 𝑃𝐷(𝑑, 𝑘)), ∀𝑘, ∀𝑑 (45) 

C2(𝑑, 𝑘) = {
𝐶𝐺𝑅−𝑠𝑒𝑙𝑙(𝑑, 𝑘). PGR

R (d, k),  PGR
R (d, k) < 0, ∀𝑘, ∀𝑑

𝐶𝐺𝑅−𝑏𝑢𝑦(𝑑, 𝑘). PGR
R (d, k),  PGR

R (d, k) ≥ 0, ∀𝑘, ∀𝑑 (46) 
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CF(d, k) = ∑∑(C1(d, k) + C2(𝑑, 𝑘))

24

𝑘=1

360

𝑑=1

, ∀𝑘, ∀𝑑
 

(47) 

We present the yearly total cost comparison between the MPC methods in Table 6.1.  

Table 6.1. Yearly predicted and realized costs for each MPC method. 

 

Predicted 

 

Realized 

 

Variation (%) 

(𝑅 − 𝑃)/𝑃  

D-MPC 

 

Perfect Prediction  1,330,000  

Point Estimations 1,410,000 1,561,400 10.74% 

S-MPC 

Expected Value 1,429,100 1,387,800 -2.89% 

Chance Constraint 1,673,500 1,445,100 -13.65% 

Two-stage  1,556,000 1,362,400 -12.44% 

H-MPC 

Expected Value 1,410,600 1,558,800 10.51% 

Chance Constraint 1,537,700 1,561,100 1.52% 

Two-stage-I 1,495,400 1,353,700 -9.48% 

Two-stage-II 1,441,800 1,355,400 -5.99% 

 

It is clear that the minimum and the closest yearly cost of microgrid management 

belongs to the two-stage method; but to be more specific, the first approach of the H-

MPC two-stage method gives the best performance. As it was argued in the last part 

of the Chapter 4, we expect that the two-stage and H-MPC combinations will 

outperform and these results support our beliefs.   
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CHAPTER 7 

CONCLUSION AND FUTURE STUDIES  

7.1. Summary and Conclusion 

In this thesis, we have examined the various MPC approaches to control DERs and 

storage units in the microgrid by taking into consideration of uncertainties. These 

uncertainties based on renewable energy generation of the PV system and electricity 

load of the consumers. We take the net load as the amount of power that we should 

supply. The optimal control of the microgrid is possible with accurate and precise 

knowledge about these stochastic inputs. Thus, the role of realistic net load in the 

microgrid management system is very crucial to make the right decision set to 

minimize the operation cost. For this reason, we apply different forecasting methods 

for both load and PV power. By checking the forecasting performance that minimizes 

the average MSE of 360 days, we consider to the MLP model, which gives better 

performance than regression and SARIMA. After identifying forecaster and forecasts, 

we start to implement them for the MPC frameworks. 

We can list the contributions of this thesis as follows:  

i. We use point estimations of electrical load consumption and solar power 

generation in D-MPC to ensure that optimal dispatch of the microgrid control 

by including the unit commitment solutions of the power and energy set points.  

ii. We generate the scenarios from the reduced-order transformed data by using the 

SVD technique first time to accomplish model order reduction. 

iii. We execute the S-MPC method by using the historical data set. 

iv. We make the correction to the priorly generated scenario set during the S-MPC 

method by the integration of point estimations. 

v. The novel approach for scenario generation and reduction is employing the 

forecast errors and hybridize them with previously obtained point estimations. 

vi. Lastly, we compare and evaluate all these approaches with the solution of perfect 

knowledge that we used it as a theoretical benchmark. 

Specifically, the methods employed for the S-MPC and H-MPC that try to control 

microgrid, as well as minimizing the cost are Worst-Case, Expected Value, Chance-
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Constrained, and Two-Stage Methods. We consider Worst-Case as a benchmark 

method because we know it causes the maximum cost that is possible by choosing the 

highest demand and lowest generation for all hours. On the other hand, the Expected 

Value presents an average performance by focusing on the mean. Chance-Constraint 

is a highly valid method if the demand is not a critical load. For the last method, before 

generating scenarios we apply the SVD method to reduce the dimension. In this way, 

we explain the historical data less dimension instead of 24 hours. We generate many 

scenarios, and then select the most probable 100 scenarios, and find the decisions set 

that minimize the objective function. The critical difference between the two-stage 

methods of the stochastic and hybrid frames is the hybrid considers the forecasts with 

the awareness that they have probability and uncertainty. In the first approach, we 

focus on the already constituted scenario set in S-MPC and reorganize by shifting the 

values up and down it according to the difference between point forecasts and mean 

of the historical data at the same hour. The second approach has a slightly different 

structure, generate a scenario set of previous years forecast errors, and add 24 hour-

ahead point forecasting to every individual scenario. We compare the mentioned 

methods according to the yearly based in terms of operational costs of the generators, 

batteries, and grid decisions to meet realized net load.  

The conclusions derived from these studies illustrate that the integration of intermittent 

renewable energy sources such as solar PV systems to the main grid is quite an active 

area of research. To do this safely and cost-effectively is possible with microgrid and 

smart grid technologies. However, the control issue of the microgrid is another concern, 

we detect H-MPC perform better through the completed simulations in the MATLAB 

environment since the hybrid frame is less affected by the uncertainty of forecasting 

models with the contribution of historical net load distribution. Between the 

forecasting performances, we apply in the study we declare that MLP gives the 

minimum MSE results of a 5-fold cross-validation technique to enhance the 

generalization ability to get through the effect of limited data set. The best MLP 

network presents 6.07% and 17.05% SMAPE for the solar power output and electrical 

load demand, respectively. Furthermore, it is still possible to improve these forecasters 

by adding different features and increase the historical data for at least three years. At 

this point, we compensate for the uncertainty and misleading of our forecasts by 

implementing the scenario generation approach. Indeed, we reach only the 1.75% 
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variation between the realizations of perfect prediction by implementing the first two-

stage method in the H-MPC. This is quite good in comparison with the D-MPC 

performance, which shows a 10.74% variation. 

7.2. Future Work 

The control of microgrid is an active research area in the literature. In recent years, 

machine-learning methods are implemented in these systems for making realistic 

forecasts. Based on completed studies in this thesis, we recommend the following 

developments for future work. 

Since the microgrid that we describe has the only electrical part, it would be more 

realistic and challenging to integrate the thermal part. In this literature, CHP units are 

beneficial components to serve similar problems. Furthermore, the microgrid problem 

can be expanded with increasing the number of controllable generators, type of 

renewable generators and storage units, adding different types of load such as critical, 

reschedulable, and curtailable loads can be included.  

We have studied yearly examination for the forecasting errors for solar power and 

electrical load. We believe it is possible to decrease these errors by implementing 

various machine learning methods, especially recurrent networks seems appropriate to 

forecast these inputs. Hence, any improvement in forecasting models brings much 

more realistic stochastic processes; therefore, results in operational savings in the 

microgrid management system. 

During the implementation of the MPC approach in the problem, it should have an 

additional lower control loop that refers to the real system behavior. In this way, MPC 

gives a decision set for the following 24 hours, we implement the only the very first 

one, discard the rest, take the current measurements of the system, and run the MPC 

again by using the current situation. Thus, we can demonstrate the power of MPC in 

the close loop with real-time simulations. 

In the MPC part, the main grid is not an only way to compensate for the surplus/deficit 

amount of power of the net load. With a low-level optimization loop to be added, it 

can take the decision that will minimize the cost among all the components in the 

microgrid. 
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Instead of using historical data set to constitute histograms, the implementation of 

convenient distribution may give more general results for the S-MPC application. 

It is possible to integrate demand response and demand-side management programs to 

control microgrid precisely. 
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