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ABSTRACT

MULTI-OBJECTIVE GREEN HYBRID FLOWSHOP SCHEDULING
PROBLEMS

Oztop, Hande
Ph.D., Industrial Engineering
Advisor: Prof. Dr. Levent KANDILLER
Co-Advisor: Prof. Dr. Mehmet Fatih TASGETIREN
June 2020

The hybrid flowshop scheduling problem (HFSP) has been extensively studied in the
literature with various production-efficiency related objectives. Nevertheless, studies
that consider energy consumption and environmental impacts have rather been limited
for the HFSP in the literature. This thesis addresses the trade-off between makespan
and total energy consumption objectives in hybrid flowshops, where machines can
operate at varying speed levels. In this thesis, new bi-objective mixed-integer linear
programming (MILP) and bi-objective constraint programming (CP) models are
proposed for the energy-efficient HFSP employing a speed scaling method, where both
job-based and job-machine (matrix)-based versions of the speed scaling are
considered. Since the objectives of minimizing makespan and total energy
consumption are contradicting with each other, the augmented g-constraint method is
employed for obtaining the Pareto-optimal solutions. While close approximations for
the Pareto-optimal frontier are obtained for small instances, sets of non-dominated
solutions are found for large instances by solving the proposed MILP and CP models
under a time-limit. Since the studied problem is NP-hard, new bi-objective
metaheuristic algorithms are also proposed for both job-based and matrix-based
versions of the energy-efficient HFSP as well as a constructive heuristic. Namely, two
variants of the iterated greedy algorithm, a variable block insertion heuristic and four
variants of an ensemble of metaheuristic algorithms are proposed for the job-based
version of the problem. Furthermore, two variants of the iterated greedy algorithm, a
variable block insertion heuristic and an ensemble of metaheuristic algorithms are

proposed for the matrix-based version of the problem. This thesis also presents two






new heuristic fitness calculation approaches for the HFSP. The performances of the
proposed bi-objective metaheuristics are compared with each other as well as the
MILP and CP solutions on a well-known HFSP benchmark set in terms of cardinality,
diversity and closeness of the solutions. Initially, the performance of the metaheuristics
Is tested on small instances with regard to the Pareto-optimal solutions. Subsequently,
it is shown that the proposed metaheuristics are very effective for solving large

instances in terms of both solution quality and computational time.

Key Words: hybrid flowshop scheduling, energy-efficient scheduling, multi-objective
optimization, metaheuristics, mixed-integer linear programming, constraint

programming
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oz

COK-AMACLI ENERJI-VERIMLI HIBRID AKIS TiPi CiZELGELEME
PROBLEMLERI

Oztop, Hande
Doktora Tezi, Endiistri Miihendisligi
Danisman: Prof. Dr. Levent KANDILLER
Yardimci Danisman: Prof. Dr. Mehmet Fatih TASGETIREN
Haziran 2020

Literatiirde, hibrid akis tipi ¢izelgeleme problemi ¢esitli liretim verimliligi bazli amag
fonksiyonlar1 diisliniilerek yaygin bir sekilde ¢alisilmistir. Ancak, hibrid akis tipi
cizelgeleme problemi icin enerji tiketimi ve ¢evresel etkileri dikkate alan ¢aligmalar
literatlirde oldukg¢a azdir. Bu tez, makinelerin degisen hiz seviyelerinde ¢aligabildigi
hibrid akis tipi atdlyelerindeki, maksimum tamamlanma zamani ve toplam enerji
tilketimi amac fonksiyonlar1 arasindaki celigkiyi ele almaktadir. Bu tezde, enerji-
verimli hibrid akis tipi ¢izelgeleme problemi icin, hiz 6l¢eklendirme yontemi
kullanilarak, 6zgln iki-amagli karma-tamsayili dogrusal programlama ve iki-amagl
kisit programlama model formiilasyonlar1 onerilmistir. Bu tezde, hiz dl¢eklendirme
yonteminin hem is-bazli hem de is-tezgah (matris)-bazli versiyonlar1 ¢alisilmistir.
Maksimum tamamlanma zamanini ve toplam enerji tiketimini minimize etme amag
fonksiyonlar1 birbirleriyle ¢elistiklerinden dolayi, Pareto-optimal ¢ozimleri elde
etmek icin genisletilmis epsilon kisit yontemi kullanilmistir. Kiguk Ornekler igin
Pareto-optimal egriye olduk¢a yakin yaklagimlar elde edilirken, buyuk érnekler icin
ise Onerilen karma-tamsayili dogrusal programlama ve kisit programlama model
formiilasyonlart belirli bir siire limiti altinda g¢oziilerek baskin olmayan ¢oziim
kiimeleri elde edilmistir. Ayrica, ¢alisilan problemin NP-zor sinifina ait bir problem
olmasindan dolay1, enerji-verimli hibrid akis tipi ¢izelgeleme probleminin hem is-bazl
hem de matris-bazli versiyonlar ic¢in 6zglin iki-amagli metasezgisel algoritmalar
6zgun bir yapici sezgisel ile birlikte dnerilmistir. Problemin is-bazli versiyonu igin iKi
tip yinelemeli acg6zlu algoritma, bir degisken blok yerlestirme sezgiseli ve dort tip

biitiinlesik-metasezgisel algoritmalar 6nerilmistir. Ayrica, problemin matris-bazl






versiyonu icin iki tip yinelemeli aggozll algoritma, bir degisken blok yerlestirme
sezgiseli ve bir biitlinlesik-metasezgisel algoritma onerilmistir. Bunlarin yan1 sira, bu
tez, hibrid akis tipi ¢izelgeleme problemi i¢in iki 6zgiin sezgisel amag¢ fonksiyonu
degeri hesaplama yontemi de 6nermektedir. Literattirde oldukca bilinen hibrid akis tipi
cizelgeleme problemi Ornekleri kullanilarak, Onerilen iki-amaghh metasezgisellerin
performanslar1 birbirleriyle ve karma-tamsayili dogrusal programlama ve kisit
programlama model formiilasyonlarinin c¢oziimleri ile; ¢oziimlerin sayisalligi,
cesitliligi ve yakmligr agilarindan kiyaslanmustir.  Oncelikle, metasezgisellerin
performansi kiiciik 6rnekler iizerinde Pareto-optimal ¢oziimler ile kiyaslanarak test
edilmistir. Ardindan, 6nerilen metasezgisellerin biiyiik 6rnekleri ¢6zmek adina hem

¢Oziim kalitesi hem de ¢6zlim siiresi agisindan oldukga etkin oldugu gdsterilmistir.

Anahtar Kelimeler: hibrid akis tipi ¢izelgeleme, enerji-verimli ¢izelgeleme, cok-
amacli optimizasyon, metasezgiseller, karma-tamsayili dogrusal programlama, kisit

programlama
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CHAPTER 1
INTRODUCTION

Recently, green manufacturing with energy consumption consideration has gained
attention due to the scarce energy resources and a series of environmental effects. It is
commonly known that the rising amount of greenhouse gas emissions (CO2) caused
by fossil fuel consumption initiates environmental pollution and global warming.
Since energy is commonly generated through fossil fuels, effective usage of energy
will provide a considerable reduction in carbon dioxide emissions and slow down the

rapid exhaustion of fuel resources.

According to Fang et al. (2011), the energy consumption of the industrial sector is
almost 50% of the world’s total energy consumption. In the USA, the manufacturing
companies are responsible for approximately one-third of the energy consumption and
contributes to almost 28% of greenhouse gas emissions (Mouzon and Yildirim, 2008).
In Germany, the manufacturing enterprises consume approximately 47% of the total
national electricity usage, and the resultant amount of carbon dioxide emissions caused
by this electricity is 18-20% (Dai et al., 2013).

Due to increasing concerns related to environmental deterioration, the manufacturing
sector can be faced with additional taxes and regulations related to carbon footprints.
As manufacturing companies are responsible for the high energy consumption and
related carbon emissions, they are faced with pressure to reduce their energy
consumption (Fang et al., 2011; Mouzon and Yildirim, 2008). Consequently,
manufacturing enterprises have made attempts to develop energy efficient approaches

to reduce their energy consumption and carbon emissions.

One approach for minimizing energy consumption in manufacturing systems is to
install energy-efficient machines. However, the significant financial investment
needed makes it almost impracticable for most of the manufacturing sector,
particularly for small-sized companies. Instead, the current practice is to operate the

existing machinery by taking their energy consumption into consideration.



In this thesis, energy efficiency is studied from an operational planning perspective for
the hybrid flowshops, which arise in various manufacturing environments including
electronics (Wittrock, 1988; Liu and Chang, 2000; Jin et al., 2002), textile (Grabowski
and Pempera, 2000), steel (Pan et al., 2013) and paper (Sherali et al., 1990) industries.
Two comprehensive reviews on the hybrid flowshop scheduling problem (HFSP) can
be found in (Ruiz and Vazquez Rodriguez, 2010; Ribas et al., 2010). Due to its
practical relevance, the HFSP has been widely studied in the literature with the
objectives related to production efficiency. However, studies regarding energy

efficiency and environmental effects have been minimal.

The HFSP can be considered as a generalization of two classical scheduling problems:
the parallel machine scheduling problem and the flowshop scheduling problem. In the
HFSP, n jobs must be processed in a series of m(m > 1) stages, optimizing a given
objective function. All jobs must be sequentially processed following the same
production order: stage 1, stage 2,..., stage m. Each job requires a nonnegative
processing time in stage k, where each stage k has |I,,| = 1 identical parallel machines,
and in at least one of the stages |I;| > 1. Then, each job must be processed by one of
the machines in each stage. Since the HFSP considers both assignment and scheduling
of the jobs in each stage, the HFSP is harder to solve than the standard flowshop
scheduling problem. The HFSP has already been proven as NP-hard (Gupta, 1988) for
a hybrid flowshop with only two stages, where there is a single machine in one of the

stages.

This thesis addresses the trade-off between the makespan (C,,.4,) and the total energy
consumption (TEC) in a hybrid flowshop environment. Note that, makespan, well
known as maximum completion time, is the main performance criterion for increasing
the utilization of resources and obtaining a high throughput. However, the TEC
criterion is also critical to decrease fuel consumption and slow down environmental

deterioration.

In this thesis, a speed scaling strategy is proposed for the energy-efficient hybrid
flowshop scheduling problem (EHFSP), where the machines can operate at varying
speed levels. In this strategy, the speed levels create a contradiction between the
processing time and energy consumption, i.e., the energy consumption increases at

higher speed levels, while the processing time decreases. Hence, the studied EHFSP



in this thesis is a bi-objective optimization problem with two conflicting objectives of

minimizing makespan and minimizing TEC.

In this thesis, two variants of the speed scaling strategy are studied for the EHFSP: a
job-based speed scaling strategy (i.e., same speed level is employed for a job through
all stages) and a matrix-based speed scaling strategy (i.e., speed of a job can vary from
stages to stages). The EHFSP with job-based speed scaling strategy is denoted as
EHFSP-V1 and the EHFSP with matrix-based speed scaling strategy is denoted as
EHFSP-V2.

In this thesis, new bi-objective mixed-integer linear programming (MILP) and bi-
objective constraint programming (CP) models are proposed for the EHFSP-V1 and
EHFSP-V2. Benchmark instances are also developed by modifying the well-known
HFSP benchmarks from the literature (Carlier and Neron, 2000; Liao et al., 2012;
Oztop et al., 2019). For small instances, MILP and CP models are solved through the
augmented e-constraint method without a time limit to obtain the Pareto-optimal
solutions. Since the problem is NP-hard (Gupta, 1988) and the solution time grows
exponentially, the sets of non-dominated solutions are obtained with augmented -

constraint method under a time limit for larger instances.

New bi-objective metaheuristic algorithms are also proposed for the EHFSP-V1 and
EHFSP-V2. Namely, seven bi-objective metaheuristic algorithms are proposed for the
EHFSP-V1, which are two variants of iterated greedy (1G) algorithm (Ruiz and Stutzle,
2007), a variable block insertion heuristic (VBIH) and four variants of the ensemble
of metaheuristic algorithms (EM). Additionally, four bi-objective metaheuristic
algorithms are proposed for the EHFSP-V2, which are two variants of the 1G

algorithm, a VBIH algorithm and an ensemble of metaheuristic algorithms.

In this thesis, a new constructive heuristic is also presented for the HFSP with the
makespan criterion by extending the NEH heuristic (Nawaz et al., 1983). Furthermore,
two new heuristic fitness calculation approaches are proposed to compensate for the
inefficiency of the standard forward scheduling approach for fitness function

calculation in HFSP.

As mentioned in Chapter 3, the EHFSP with a speed scaling strategy is scarcely studied
in the scheduling literature. Hence, this thesis contributes to the energy-efficient

scheduling literature by applying the speed scaling strategy to the HFSP, presenting



new bi-objective MILP and CP models for the EHFSP, developing original seven
effective bi-objective metaheuristic algorithms for the EHFSP-V1 and developing
original four effective bi-objective metaheuristic algorithms for the EHFSP-V2. To the
best of our knowledge, this thesis presents a constraint programming approach to the
EHFSP for the first time in the literature. This thesis also contributes to the hybrid
flowshop scheduling literature by presenting a new constructive heuristic and two new

heuristic fitness calculation approaches for the HFSP.

The remainder of this thesis is organized as follows. In Chapter 2, the basic HFSP and
its common variants are explained. In Chapter 3, a comprehensive literature review is
provided and the motivation of this thesis is given. Chapter 4 formally defines the
EHFSP-V1 and EHFSP-V2, and presents the proposed bi-objective MILP and CP
models. Chapter 5 explains the commonly used multi-objective optimization
techniques as well as the related terminology. The augmented &-constraint method is

also explained in Chapter 5.

Chapter 6 presents the proposed heuristic fitness calculation approaches and bi-
objective metaheuristic algorithms for both EHFSP-V1 and EHFSP-V2, as well as the
constructive heuristic and the single-objective algorithms for the initial solution
generation. In Chapter 7, computational results are provided to evaluate the
performance of the proposed solution approaches. Finally, Chapter 8 addresses the

concluding remarks and future research directions.



CHAPTER 2
THE HYBRID FLOWSHOP SCHEDULING PROBLEM

In a shop scheduling problem, there is a set of n jobs where each job has m operations
corresponding to m machines. Processing times of the operations are assumed to be
known in advance. At any time, each machine can process at most one operation, and
each job can be processed on at most one machine. A job is said to be completed if all
its operations have been completed. There are three basic shop scheduling problems

due to the scheduling restrictions of operations:

e Flowshop (Fm): There are m machines in series. A set of n jobs must be processed
on these machines following the same order, i.e., each job has to be processed first
on machine 1, then on machine 2, and so on. If there is a restriction that each
machine must also process the jobs in the same order, the machine environment

Is named as permutation flowshop.

e Job Shop (Jm): It is a generalization of flowshop in which each job has its own

pre-specified order to follow.

e Open shop (Om): There are no restrictions on the order of each job through the

machine environment.

The hybrid flowshop is a generalization of the flowshop and the parallel machine
environments. Hybrid flowshop has also been referred to as a flexible flowshop, multi-
processor flowshop, or flowshop with parallel machines in the literature. Instead of m
machines in series, there are m (m > 1) stages in series where each stage consists of at
least one machine in parallel, and at least one of these stages has more than one
machine. All jobs must flow through every stage in the same order, i.e., each job has
to be processed first at stage 1, then at stage 2, and so on. A hybrid flowshop layout

is shown in Figure 2.1.
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Figure 2. 1. Hybrid Flowshop Layout

In the basic form of the hybrid flowshop scheduling problem (HFSP), there are
following assumptions: machines are identical in each stage; all jobs and machines are
available at time zero; a job is processed by only one machine at each stage; setup
times can be ignored; job preemption is not allowed; there is infinite intermediate
storage between stages, and problem data is deterministic. In most environments, the
HFSP is NP-hard, since the HFSP with only two stages is known to be NP-hard (Gupta,
1988).

In order to provide a better understanding, a feasible Gantt chart is illustrated in Figure
2.2 for a basic HFSP example that has 3 stages and 4 jobs. Both stages 1 and 3 have
two identical parallel machines, while stage 2 has one machine. The processing times

of the jobs are given as follows, where p,; is the processing time of job j at stage k:

3 4 3 2
Pij = [5 2 4 4]. As shown in Figure 2.2, the makespan (C,,q,) Value of this
3 4 3 5

example is 20, which is the maximum completion time of all jobs.
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Figure 2. 2. A Gantt Chart for an HFSP Example

Different HFSP variants can be described by modifying assumptions, objectives and/or
constraints of the basic problem. The notation proposed in Vignier et al. (1999) is
generally used to identify them, which follows the three-field notation (a|B|y) proposed
by Graham et al. (1979). The o field describes the shop configuration, and it includes
four parameters a; a5, (a3a4(")). a, indicates the general structure of the shop, a, is
the number of stages in the shop, a; and a, represent the characteristics of the
machines in each stage k. Particularly, a; defines the machine type and a, indicates
the number of machines in the stage (Ruiz and Vazquez Rodriguez, 2010). For
instance, FHm, ((PM®))™ Y denotes a hybrid flowshop (FH) with m stages, where

there is any number of identical parallel machines in each stage.

There are three basic machine types in shop scheduling: identical (P), uniform (Q) and
unrelated (R). In the HFSP with identical machines, all machines within each stage are
identical. Therefore, the processing time of a job in each stage does not vary from
machine to machine. In the case of uniform machines, machines have different speeds,
where each machine i has a speed v;, and job j requires py; / v; time units when it is
assigned to machine i of stage k. On the other hand, in the HFSP with unrelated
machines, each machine i has a speed v;; for each job j, and job j requires py; / v;;

time units when it is assigned to machine i of stage k. (Pinedo, 2002).

The p field describes the constraints and assumptions. The most common among these

constraints are listed below (Ruiz and VVazquez Rodriguez, 2010):



e Release dates (rj): job j cannot start to be processed before its release time ;.

e Sequence-dependent setup times (STsq): there exist sequence-dependent setup

times between jobs.
e Precedence constraints (prec): there are precedence relations between jobs.
¢ No-wait (no-wait): jobs are not permitted to wait between two consecutive stages.

¢ Blocking (block): there are limited buffers between consecutive stages. Therefore,

jobs can wait in the previous stage until an adequate area is released.

e Machine eligibility restrictions (M;): job j can be processed by only a subset of

machines M; at each stage.

e Preemption (prmp): job preemptions are allowed.

Finally, the y field contains the objective function. The most common among these
objectives are listed in Table 2.1 (Ruiz and Vazquez Rodriguez, 2010). The necessary

notation is explained accordingly. Let C; be the completion time of job j in the last

r.

stage. F; = C;j - 1

i is the flow time of job j, which is the time job j spends in the

system. The lateness of job j is denoted by L; = C; - d;, where d; is the due date of
jobj. T; = max(L;, 0) is the tardiness and E; = max(d; — C;,0) is the earliness of

job j. The weight w; is a priority factor for job j.

Table 2. 1. Common Obijective Functions for the HFSP

Objective Description
Makespan / Maximum completion time (Cmax) max; C;
Total completion time XG

Total weighted completion time 2 w;C;
Total flow time XF

Total weighted flow time X W;F;
Total tardiness XT;

Total weighted tardiness > w;T;
Total earliness Y E

Total weighted earliness » w;Ej




CHAPTER 3
LITERATURE REVIEW & MOTIVATION OF THE THESIS

3.1 Literature Review

The HFSP has been extensively studied in the literature considering different machine
environments, constraints and objectives. Numerous exact algorithms, heuristics and
metaheuristics have been proposed for the HFSP due to its complexity and practical
relevance. Two comprehensive reviews on HFSP can be found in Ribas et al. (2010)
and Ruiz and Vazquez Rodriguez (2010).

In the HFSP literature, most of the studies deal with a single objective related to
production efficiency, where the most common among these objectives is to minimize
the makespan, total/average completion time, flow time and tardiness. Relatively
fewer studies consider several of these objectives together (Ruiz and Vazquez
Rodriguez, 2010). For instance, Jungwattanakit et al. (2008, 2009) proposed heuristic
algorithms to minimize the weighted sum of makespan and the number of tardy jobs
in a hybrid flowshop environment. Behnamian and Fatemi (2011) proposed a
metaheuristic algorithm for the HFSP with sequence-dependent setup times, which

minimizes makespan and resource allocation costs.

Even though the objectives related to production efficiency have been widely studied
in the scheduling literature, studies that regard energy-efficient scheduling have rather
been limited. A recent review of the energy-efficient scheduling problems is provided
by Gahm et al. (2016).

One of the most well-known studies is the work by Mouzon et al. (2007). The authors
pointed out that a significant amount of energy can be saved by turning the machines
off during idle times. They proposed several dispatching rules for scheduling jobs on
a single CNC machine. These rules state that the machine can be shut down if the
energy consumption for turning it on/off is less than the idle energy consumption.
However, energy savings during machine operation are not considered. In a further

study, Mouzon and Yildirim (2008) extended this strategy to the single machine



scheduling problem with the objectives of TEC and total tardiness. Later, Dai et al.
(2013) extended the turn-off strategy to the multi-objective flexible flowshop
scheduling problem (FFSP) with unrelated parallel machines, considering two
conflicting objectives of minimizing makespan and total energy consumption.
Recently, Che et al. (2017) studied the single-machine scheduling problem with a
power-down mechanism to minimize both total energy consumption and maximum
tardiness. They proposed a mixed-integer programming (MIP) model and an e-
constraint method to obtain the Pareto frontier. They also developed a local search, a

preprocessing technique and valid inequalities to strengthen the e-constraint method.

Although the turn-off strategy can provide energy savings, it may not be applicable in
certain shop floors where the machines cannot be turned off entirely during production.
Moreover, frequent use of this strategy can significantly shorten the service life of
some machines. Hence, other energy saving strategies have also been proposed in the

literature.

From the energy consumption viewpoint, another direction is to consider time-of-use
(TOU) electricity prices for scheduling problems. Under the TOU tariff system,
electricity prices depend on the time of the day and can vary from hour to hour. Hence,
the demand can be decreased during hours of high prices by shifting some operations
to hours of lower prices. Luo et al. (2013) considered TOU electricity prices and
proposed an ant colony algorithm for the HFSP with uniform machines that minimizes
makespan and electric power cost. Moon et al. (2013) also proposed a genetic
algorithm (GA) for minimizing the weighted sum of makespan and time dependent
electricity costs in an unrelated parallel machine environment. Similarly, Shrouf et al.
(2014) proposed a turn on/off strategy considering fluctuating energy prices in a day.
They proposed a mathematical model and a GA to minimize energy consumption costs

for a single machine scheduling problem.

Zhang et al. (2014) also consider TOU electricity tariffs for the flowshop scheduling
problem by proposing a time-indexed integer programming formulation that
minimizes electricity cost and the carbon footprint. Recently, Ding et al. (2016a)
studied the unrelated parallel machine scheduling problem under a TOU pricing
scheme, where the objective is to minimize the total electricity cost with a restriction
on makespan. They proposed a time-interval-based MIP formulation and a Dantzig—

Wolfe decomposition approach for the problem. More recently, Zhang et al. (2018)
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proposed a greedy insertion heuristic for the energy efficient single machine
scheduling problem under the TOU tariff system. Wang et al. (2018) also presented a
MIP model, a constructive heuristic (CH) and an NSGA-I1 algorithm to solve the bi-

objective identical parallel machine scheduling problem under TOU electricity prices.

As another approach to improve energy efficiency, Fang et al. (2011) proposed a speed
scaling strategy for flowshop scheduling that minimizes peak power consumption,
carbon footprint, and makespan. They proposed a multi-objective formulation in
which operation speed is considered as an independent factor that can be changed to
affect the peak load and energy consumption. In the speed scaling strategy, it is
assumed that the machines can operate at multiple speed levels, in which the speed
levels of the machines can be tuned for the operations of the jobs. In this strategy,
speed levels create a contradiction between processing time and energy consumption,
I.e., the energy consumption increases at higher speed level, while the processing time
decreases. Thus, speed levels of the operations should be determined carefully to
improve both production and energy efficiency. As the machines can operate at
multiple speed levels in many real-life production environments, the speed-scaling
strategy has been widely adopted for scheduling problems in the energy-efficient
scheduling literature due to its practicability.

Fang et al. (2013) presented MIP formulations for the permutation flowshop
scheduling problem (PFSP) with peak power consumption constraints considering
both discrete and continuous processing speeds. Fang and Lin (2013) proposed an
integer programming formulation and several heuristics for the parallel machine
scheduling problem, where the processing speeds of the machines can be tuned during
operation. Ding et al. (2016b) also considered the same strategy for the carbon-
efficient PFSP and proposed a multi-objective NEH algorithm and a modified iterated
greedy algorithm. Furthermore, Mansouri et al. (2016) considered variable speed
levels for the two-machine sequence-dependent PFSP. They developed a multi-
objective MIP model and lower bounds with the objectives of minimizing makespan
and energy consumption. Later, Mansouri and Aktas (2016) extended the study of
Mansouri et al. (2016) by developing a heuristic algorithm and multi-objective genetic
algorithms (MOGA) for the same problem.

The energy-efficient PFSP with total flow time criterion was also studied by Oztop et

al. (2018) employing a speed scaling framework. The authors proposed a multi-

11



objective MILP model and a multi-objective IG (MOIG) algorithm to solve the
problem, where they evaluated the performance of these solution methods only on
small scale instances. Later, Oztop et al. (2020) extended the study of Oztop et al.
(2018) by presenting two new variants of the MOIG, a multi-objective VBIH
(MOVBIH) algorithm and a constructive heuristic for the same problem. In this study,
extensive computational experiments were performed to test the performance of the
MILP model, constructive heuristic and metaheuristics, employing both small and

large instances.

The speed scaling approach was also employed for the energy-efficient job shop
scheduling problems. Zhang and Chiong (2016) proposed a MOGA using a machine
speed scaling framework in order to minimize the total weighted tardiness and total
energy consumption in a job shop scheduling problem. Salido et al. (2016) also
developed an energy-efficient genetic algorithm for the job shop scheduling problem
and compared the performance of their genetic algorithm with a CP optimizer tool of

a commercial solver.

The speed scaling approach was also implemented to the energy-efficient single
machine scheduling problem with release dates and sequence-dependent setup times
by Tasgetiren et al. (2018a). Later, the energy-efficient single machine scheduling total
weighted tardiness problem with sequence-dependent setup times was also studied by
Tasgetiren et al. (2018b), where the authors proposed a MILP model, a multi-objective
block insertion heuristic (MOBIH) and a MOIG to solve the problem. Che et al. (2015)
also presented two MIP models to solve speed-scalable energy-efficient single

machine scheduling problems with bounded maximum tardiness.

Furthermore, Wu and Che (2019) presented a memetic differential evolution algorithm
for the energy-efficient unrelated parallel machine scheduling problem employing the
speed scaling strategy. Zheng and Wang (2018) also developed a collaborative multi-
objective fruit fly optimization algorithm (CMFOA\) for the energy-efficient unrelated
parallel machine scheduling problem with resource constraints. Recently, Jiang and
Wang (2019) proposed a mathematical model and a multi-objective evolutionary
algorithm to solve the energy-efficient PFSP with sequence-dependent setup times.
Additionally, Lu et al. (2017) considered the energy-efficient PFSP with sequence-
dependent setup and controllable transportation time and proposed a hybrid multi-

objective backtracking search algorithm.
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The speed scaling approach was also employed for other variants of the energy-
efficient scheduling problems. More recently, Tasgetiren et al. (2019) proposed a
multi-objective MILP model, and a multi-objective variable iterated local search
(MOVILS) algorithm and two variants of the MOGA for the energy-efficient no-idle
flowshop scheduling problem employing a speed scaling strategy. Yin et al. (2017)
also proposed a mathematical model and a MOGA for the flexible job-shop
environment that optimizes makespan, energy efficiency and noise reduction. In their
model, the machining spindle speed, which affects production time, power and noise,
Is treated as an independent decision variable. The speed scaling strategy was also
employed for the distributed energy efficient flowshop scheduling problems (Jiang et
al., 2017; Deng et al., 2016; Wang et al., 2017; Wang and Wang, 2018).

As seen in the above discussions, metaheuristics are widely employed for multi-
objective optimization problems due to their complexities. In recent years, many multi-
objective evolutionary algorithms (MOEA) have been developed, where the most
well-known ones are NSGA-II (Deb et al., 2002) and multi-objective evolutionary
algorithm based on decomposition (MOEA/D) (Zhang and Li, 2007). A
comprehensive review of different types of MOEASs can also be found in Zhou et al.
(2011).

Various approaches have been reported for the energy-efficient flexible or hybrid
flowshop scheduling problems in the literature (Dai et al., 2013; Liu et al., 2008;
Bruzonne et al., 2012; Luo et al., 2013; Tang et al., 2016; Yan et al., 2016; Li et al.,
2018; Meng et al., 2019; Wu et al., 2018; Zeng et al., 2018; Zhang et al., 2019a; Liu
and Huang, 2014; Chen et al., 2018; Zhang et al., 2019b; Lei et al., 2018; Li et al.,
2019; Shen et al., 2017).

Dai et al. (2013) applied a turn-off strategy to the multi-objective FFSP by presenting
an improved genetic-simulated annealing algorithm. Liu et al. (2008) proposed a
mixed-integer nonlinear programming (MINLP) model for the HFSP that minimizes
the energy consumption and limits the makespan. Bruzonne et al. (2012) proposed a
MIP formulation for the FFSP that minimizes the weighted sum of total tardiness and
the makespan. Luo et al. (2013) considered the time-of-use electricity prices and
proposed an ant colony algorithm for the HFSP with uniform machines in which the
price of electricity depends on the time of the day. Tang et al. (2016) proposed a

particle swarm optimization (PSO) for the energy-efficient FFSP with unrelated
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parallel machines considering dynamic factors. A multi-level approach optimization
(machine tool and shop floor levels) was proposed for the energy-efficient FFSP in
Yan et al. (2016), which integrates power models of single machine and cutting
parameters optimization into the energy-efficient scheduling problems. Recently, Li et
al. (2018) presented an energy-aware multi-objective optimization algorithm for
solving the HFSP with the objectives of makespan and energy consumption in the case
of sequence-dependent setup times. In their energy consumption calculation, they
considered three types of energy consumption, i.e., processing, standby and setup

energy consumptions.

Furthermore, Meng et al. (2019) proposed an improved genetic algorithm for the
energy-conscious HFSP with unrelated parallel machines employing a turn-off
strategy. Wu et al. (2018) presented a MIP model and a hybrid NSGA-I1 with a variable
local search to solve a multi-objective FFSP that considers variable processing time
due to renewable energy. In their study, there are several types of capacitated power
supply systems that lead to different processing times and different energy
consumptions. Zeng et al. (2018) proposed a MIP model and a hybrid NSGA-11 for the
multi-objective FFSP with batch processing that minimizes makespan, electricity
consumption and material waste. More recently, Zhang et al. (2019a) proposed a three-
stage multi-objective approach based on decomposition for the energy-efficient HFSP
with the consideration of machines with different energy usage ratios, sequence-

dependent setups, and machine-to-machine transportation operations.

To the best of our knowledge, the speed scaling approach has been employed for the
energy-efficient HFSP/FFSP in only a few studies (Liu and Huang, 2014; Chen et al.,
2018; Zhang et al., 2019b; Lei et al., 2018; Li et al., 2019; Shen et al., 2017). The
details of these studies and the differences of this thesis between the existing studies
are explained in the following subsection (Section 3.2) as well as the motivation of
this thesis.

Although the majority of studies on shop floor scheduling so far have not considered
energy related criteria, the aforementioned attempts form a basis for a study on energy-

efficient scheduling, especially from energy saving strategy and modeling viewpoints.

Finally, Table 3.1 describes the notation that has been used to define shop setting and

optimization criteria of scheduling problems. Then, Tables 3.2 and 3.3 summarize the
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literature review for the energy efficient scheduling problems. Table 3.2 presents the
literature review for the studies that employ other energy saving strategies (turn on/off
strategy, TOU electricity prices, etc.) except the speed scaling strategy. On the other
hand, Table 3.3 presents the literature review for the studies that employ speed scaling
strategy. In these tables, the second and third columns present the shop (machine)
setting and optimization criteria addressed in each paper. The fourth column represents
the energy saving strategy. The objective structure is also described according to two
categories (single/multi objective) in the fifth column. The category of single objective
primarily represents the approaches that consider one of the optimization criteria as a
constraint. The sixth column presents the proposed solution approaches.

Table 3. 1. Shop Setting and Optimization Criteria Notation

Shop Setting Optimization Criteria

Notation Description Notation Description

1 Single machine TEC Total energy consumption
Pm m parallel machines xG Total completion time
Qm m uniform parallel machines XT; Total tardiness

Rm m unrelated parallel machines X w;T; Total weighted tardiness
Fm Flowshop with m machines XF Total flow time

Jm Job shop with m machines Crnax Makespan

FFm Flexible flowshop with m stages  Pmax Peak power consumption
FHm Hybrid flowshop with m stages ~ Gmax Carbon footprint

FJm Flexible job shop with m stages  Ty,ax Maximum tardiness
prmu Permutation

STsq Sequence-dependent setup times

prec Precedence constraints

I Release dates

no-idle No-idle scheduling

no-wait No-wait scheduling

dyn Dynamic scheduling

M; Machine eligibility

batch Batch processing

dist Distributed flowshop
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Table 3. 2. Literature Review (Other Energy Saving Strategies)

Shop Setting _— Energy Saving Objective Solution
Reference (Comments) Criteria Strategy Structure Approach
Bruzonne et Objective:
al. (2012) FFm Crnax ), Tj,Pmax Other Craxt X T] MIP
' (Constraint:Pmax)
MIP, Valid
é%el% al. 1(ry) TEC and Ty TL;:Pa?en/Off Multi-objective Inequalities,
9y Cluster Analysis
MIP, Genetic-
Dai et al. Turn on/off Lo simulated
(2013) FFm (Rm) TEC and Crax strategy Multi-objective annealing
algorithm
. . — MILP
Ding et al. TOU electricity Objective: TEC :
Rm TEC and Cpax : L Dantzig— Wolfe
(2016a) prices (Constraint:Cax) Decomposition
I(_2|0eltsa)l. FHm (STsg)  TEC and Cax Other Multi-objective Heuristics
Liuetal. Objective: TEC MINLP, improved
(2008) R TEC and Crax Other  Constraint:Coa) GA
Luo et al. TOU electricity v . Ant colony
(2013) FHm (Qm) TEC and Cpax orices Multi-objective optimization
Meng et al. Turn on/off . e
(2019) FHm (Rm) TEC and Cpax strategy Single objective MIP, GA
Moon et al. TOU electricity Obijective:
(2013) Rm TEC and Crax prices TEC + Crax a
Mouzon et . Turn on/off L e b MIP, Dispatching
al. (2007) 1 TEC and ¥, G strateqy Multi-objective rules
Mouzon & Turn on/off
Yildirim 1 TECand X T; Multi-objective MINLP, GRASP
(2008) strategy
TOU electricity
(Szh(;i)z;‘ etal. 1 TEC prices & turn  Single objective MIP, GA
on/off strategy
g_za(;‘fe‘)*t A EEm®RmM,dyn) TEC and Cuax Other Multi-objective MIP, PSO
Wang et al. TOU electricity S MIP, CH, NSGA-
(2018) Pm TEC and Cpax orices Multi-objective I
Wu et al. L MIP, Hybrid
(2018) FFm Chax and Gmax Other Multi-objective NSGA-II
Multi-objective .
Yan et al. . Multi-level
(2016) FFm TEC and Crax Other (V\{elghted optimization, GA
objectives)
TEC, Cmax and .
Zeng et al. - S MIP, Hybrid
(2018) FFm (batch) \l)/lvztset(r;al Other Multi-objective NSGA-1|
- Time-indexed
Zhang etal. Fm TEC and Gax Tou e!ectrlcny Multi-objective integer
(2014) prices .
programming
Zhang et al. TOU electricity . .. MIP, Greedy
(2018) 1 TEC prices Single-objective Insertion Heuristic
MILP,
Zhana et al Decomposition
(201361) " FHm (STsg)  TEC and Cax Other Multi-objective based multi-
objective
approach
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Table 3. 3. Literature Review (Speed Scaling Strategy)

: Energy - .
Reference Shop Setting Criteria Saving Objective Solution
(Comments) Structure Approach
Strategy
Che et al. 1(ry) TECand T,,,,  Speedscaling Objective: TEC MIP
(2015) (Constraint: Ty, 4)
Chenetal. FHm (Rm, TEC and Crax Speed scaling  Multi-objective  MIP, MOGA
(2018) ST, 1y, M;, lot-
streaming)
Dengetal. Fm (prmu,dist) Cpnax and Gmax Speed scaling  Multi-objective  Competitive
(2016) memetic
algorithm
Dingetal. Fm (prmu) Cax and Gax Speed scaling  Multi-objective  MONEH,
(2016b) MOIG
Fangetal. Fm Crax, Pmax, Gmax ~ Speed scaling Multi-Objective MIP
(2011)
Fangetal. Fm (prmu) Chax and Ppmax Speed scaling  Objective: Cnax  MIPs, Valid
(2013) (Constraint:  inequalities
Pmax)
Fang and Pm TEC and Y w;T; Speed scaling Objective: IP, Heuristics,
Lin (2013) TEC+ Y w;T; PSO
Jiangetal. Fm (prmu,dist) Cmax and Gmax Speed scaling  Multi-objective  MOEA/D
(2017)
Jiang and Fm (prmu,STsg) TEC and Cpax Speed scaling  Multi-objective  MIP, MOEA/D
Wang & turn on/off
(2019) strategy
Lei et al. FHm (Rm) TECand ¥, T; Speed scaling  Multi-objective TLBO
(2018) (lexicographic  algorithm
optimization)
Lietal. FHm TEC, X T;and  Speedscaling Multi-objective Two-level
(2019) Crnax (different imperialist
importance of ~ competitive
objectives) algorithm
Liu & FH2 (batch) Pmax, Gmax, Speed scaling  Multi-objective NSGA-II,
Huang 2 wiT; adaptive MOGA
(2014)
Luetal. Fm (prmu,STsq) TEC and Cpax Speed scaling  Multi-objective MIP, MOGA
(2017) & turn on/off with
strategy backtracking
search
Mansouri et F2 (prmu, STsg) TEC and Crax Speed scaling  Multi-objective  MIP, Lower
al. (2016) bounds,
heuristic
Mansouri F2 (prmu, STsg) TEC and Cpax Speed scaling  Multi-objective  Heuristics,
and Aktas MOGA
(2016)
Oztopetal. Fm (prmu) TECand Y F; Speed scaling  Multi-objective MILP, MOIG
(2018)
Oztopetal. Fm (prmu) TEC and ¥ F; Speed scaling  Multi-objective  MILP, MOIG,
(2020) MOVBIH, CH
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Table 3. 3. (Cont’d) Literature Review (Speed Scaling Strategy)

Energy

Reference Shop Setting Criteria Savin Objective Solution
(Comments) g Structure Approach
Strategy
Salidoetal. Jm TECand Cnax ~ Speed scaling  Multi-objective GA
(2016) (weighted
objectives)
Shenetal. FHm Crnax and Pmax Speed scaling  Objective: Cmax  MIP, Discrete
(2017) (Constraint:  TLBO
Pmax)
Tasgetiren ~ 1(STsq, Ij) TEC and Cax Speed scaling  Multi-objective MILP,
etal. MOVBIH
(2018a)
Tasgetiren  1(STsq) TECand Y w;T; Speed scaling Multi-objective MILP, MOIG,
et al. MOBIH
(2018b)
Tasgetiren ~ Fm (prmu, no- TEC and Cpax Speed scaling  Multi-objective MILP, MOGA,
etal. (2019) idle) MOVILS
Wangetal. Fm (no-wait, TEC and Cpax Speed scaling  Multi-objective  Cooperative
(2017) dist) heuristic
algorithm
Wangand  Fm (prmu,dist) TEC and Cpax Speed scaling  Multi-objective  MIP,
Wang Knowledge-
(2018) based
cooperative
algorithm
Wu and Che Rm TECand Cnax ~ Speed scaling  Multi-objective  MIP, Memetic
(2019) Differential
Evolution
Algorithm
Yinetal. FJm TEC, Cmaxand ~ Speed scaling  Multi-objective  MIP, MOGA
(2017) noise emission
Zhang & Jm TEC and ¥ w;T; Speed scaling Multi-objective  MOGA
Chiong
(2016)
Zhang etal. FHm (STsq) TEC and Cnax ~ Speed scaling Multi-objective  MIP, MDABC
(2019b) based
Decomposition
Zhengand Rm Crnax and Gpax Speed scaling  Multi-objective MIP, CMFOA
Wang
(2018)

3.2 Motivation of the Thesis

This thesis addresses the trade-off between the makespan and the total energy
consumption (TEC) in the energy efficient HFSP (EHFSP) employing a speed-scaling
strategy. This problem is chosen as the thesis research subject for the following

motives.

From a practical viewpoint, hybrid flowshop setting is a common shop floor setting

and it can be seen in various real production environments, such as chemical (Deal et

18



al., 1994), ceramic tiles (Ruiz and Maroto, 2006), steel (Pan et al., 2013), paper
(Sherali et al., 1990), textile (Grabowski and Pempera, 2000) and electronics
(Wittrock, 1988; Liu and Chang, 2000; Jin et al., 2002) industries. As mentioned in
Chapter 1, makespan, is the main performance criterion for increasing the utilization
of resources and obtaining a high throughput. On the other hand, the TEC criterion is
important to decrease fuel consumption and slow down environmental deterioration.
Note that minimizing energy consumption is an important issue for manufacturing
companies due to a series of environmental effects and the increasing energy costs.
Therefore, the proposed energy-efficient scheduling techniques can be applied to

various real manufacturing environments.

The managers can make decisions considering both production and energy efficiency
by using the developed solution methods in this thesis. The proposed methods that
employ a speed scaling strategy do not require a significant financial investment from
a managerial perspective. Note that machines can operate at multiple speed levels in
many real-life production environments. Since there is no need for installing costly
energy-efficient machinery, they can also be employed by small and medium-sized
enterprises. Consequently, proposed energy-efficient scheduling approaches can
provide economic savings from energy resource consumptions as well as the

environmental benefits, without making a significant financial investment.

From an academic viewpoint, this thesis will fill the research gap that the multi-
objective energy efficient scheduling methods for the hybrid flowshop environment
have not been well explored from the perspective of speed scaling strategy. To the best
of our knowledge, the speed scaling approach has been employed for the energy-
efficient HFSP/FFSP in only a few studies (Liu and Huang, 2014; Chen et al., 2018;
Zhang et al., 2019b; Lei et al., 2018; Li et al., 2019; Shen et al., 2017), which are

explained as follows. These studies are also summarized in Table 3.4.

Liu & Huang (2014) proposed an NSGA-I1 and an adaptive MOGA for a very specific
two-stage hybrid flowshop, which includes a batch-processing machine followed by
two parallel-processing machines, to minimize the total weighted tardiness, carbon
footprint, and peak power. Chen et al. (2018) proposed a multi-objective MIP model
and a MOGA for the HFSP with lot streaming in order to minimize both makespan
and electric power consumption, considering sequence-dependent setup times, release

dates, unrelated machines, and machine eligibility restrictions. Recently, Zhang et al.
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(2019b) proposed a multi-objective discrete artificial bee colony algorithm (MDABC)
based on decomposition for the energy-efficient HFSP with sequence-dependent setup
times, where there are different numbers of speed levels for the machines at different
stages. Note that, in these aforementioned studies (Liu and Huang, 2014; Chen et al.,
2018; Zhang et al., 2019b), special variants of the energy-efficient HFSP were
considered such as a particular two-stage hybrid flowshop (Liu and Huang, 2014) and
hybrid flowshops with lot streaming and sequence-dependent setup operations (Chen
etal., 2018; Zhang et al., 2019b). In this thesis, a general m-stage HFSP with makespan

and TEC criteria is considered employing a speed-scaling strategy.

Table 3. 4. Literature Review for the EHFSP with Speed Scaling Strategy

] Energy y .
Reference (Sggrewsneetrt_:tr;? Criteria Saving 3?{?&32 iOIu:Ic?;ch
Strategy PP
Chenetal. FHm (Rm, TEC and Cpax Speed scaling Multi-objective MIP, MOGA
(2018) STsq, 1j, M;, lot-
streaming)
Lei et al. FHm (Rm) TEC and X T; Speed scaling Multi-objective TLBO
(2018) (lexicographic  algorithm
optimization)
Lietal. FHm TEC, X T; and Speed scaling Multi-objective  Two-level
(2019) Cinax (different imperialist
importance of ~ competitive
objectives) algorithm
Liu & FH2 (batch) Pmax, Gmax, 2 w;T; Speed scaling  Multi-objective  NSGA-I,
Huang adaptive
(2014) MOGA
Shenetal. FHm Cmax and Ppax Speed scaling Objective: Cnax MIP, Discrete
(2017) (Constraint:Pmax) TLBO

Zhang etal. FHm (STsq) TEC and Cpax Speed scaling Multi-objective MIP, MDABC
(2019b) based
Decomposition

Recently, Lei et al. (2018) presented a teaching-learning-based optimization (TLBO)
algorithm to solve the energy-efficient HFSP with unrelated machines employing a
speed scaling approach. They considered both total energy consumption and total
tardiness criteria and applied a lexicographical method to deal with the total tardiness
as a key objective. Li et al. (2019) also developed a two-level imperialist competitive
algorithm for the energy-efficient HFSP with total tardiness, makespan, and total
energy consumption criteria, where the energy consumption objective has lower
importance. Note that, in Lei et al. (2018) and Li et al. (2019), the tardiness objective

was considered together with a TEC criterion for the energy-efficient HFSP, where the
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studied objectives have different importance. In this thesis, the trade-off between the
makespan and TEC is addressed for the energy-efficient HFSP by assuming that both
objectives have equal importance. As mentioned before, both makespan and TEC are
very important performance criteria for hybrid flowshop environments. Shen et al.
(2017) also proposed a MIP model and a discrete teaching-learning-based optimization
algorithm for the single-objective HFSP with the makespan criterion under the peak
power consumption constraints. Note that, a single-objective HFSP was studied in
Shen et al. (2017), where the energy-efficiency was handled with peak power
consumption constraints. In this thesis, both makespan and TEC criteria are considered
for the HFSP in a multi-objective setting.

Based on these discussions, the motivation of this thesis is to develop effective
optimization methods to address the trade-off between the makespan and the total
energy consumption in the EHFSP employing a speed-scaling strategy, which has not
been investigated very well. Lack of a fundamental model and related solution
techniques for the EHFSP with the makespan and TEC criteria that employ speed
scaling strategy are remarkable gaps in the current literature that needs to be filled.
This thesis aims to fill this research gap by presenting new exact and heuristic solution
methods for the problem.

In this thesis, two variants of the speed scaling strategy are studied for the EHFSP,
namely, a job-based speed scaling strategy (EHFSP-V1) and a matrix-based speed
scaling strategy (EHFSP-V2). New bi-objective MILP models and new bi-objective
CP models are proposed for the EHFSP-V1 and EHFSP-V2. New bi-objective
metaheuristic algorithms are also proposed for the EHFSP-V1 and EHFSP-V2.
Namely, seven bi-objective metaheuristic algorithms are proposed for the EHFSP-V1,
which are two variants of the 1G, a VBIH and four variants of the ensemble of
metaheuristic algorithms. Additionally, four bi-objective metaheuristic algorithms are
proposed for the EHFSP-V2, which are two variants of the IG algorithm, a VBIH
algorithm and an ensemble of metaheuristic algorithms. In order to evaluate the
performance of the proposed methods, benchmark instances are also developed by
modifying the well-known HFSP benchmarks from the literature (Carlier and Neron,
2000; Liao et al., 2012; Oztop et al., 2019).

Furthermore, in this thesis, a new constructive heuristic is presented for the single-

objective HFSP with the makespan criterion. Two new heuristic fitness calculation
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approaches are also proposed to compensate for the inefficiency of the standard
forward scheduling approach for fitness function calculation in HFSP.

Consequently, this thesis contributes to the energy-efficient scheduling literature by
applying the speed scaling strategy to the HFSP, presenting new bi-objective MILP
and CP models for the EHFSP, developing original seven effective bi-objective
metaheuristic algorithms for the EHFSP-V1 and developing original four effective bi-
objective metaheuristic algorithms for the EHFSP-V2. Note that, the augmented &-
constraint method is also employed to solve the proposed bi-objective MILP and CP

models.

To the best of our knowledge, this thesis presents a constraint programming approach
to the EHFSP for the first time in the literature. As far as we know, CP is employed
for the HFSP only in the study of Jouglet et al. (2009), considering the multiprocessor
tasks. The authors presented a memetic algorithm for the HFSP with multiprocessor
tasks, where each job operation must be processed on several parallel machines
simultaneously in each stage. The authors employed a constraint programming based
branch & bound algorithm as the local search procedure of their memetic algorithm.
Consequently, this thesis also contributes to the HFSP literature by presenting a
constraint programming approach.

Furthermore, this thesis contributes to the hybrid flowshop scheduling literature by
presenting a new constructive heuristic and two new heuristic fitness calculation
approaches for the HFSP. Since the multi-objective studies on the hybrid flowshop
scheduling problem have also been limited (Ruiz and Vazquez Rodriguez, 2010), this

thesis also contributes to the literature on multi-objective hybrid flowshop scheduling.
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CHAPTER 4
PROBLEM DEFINITION & MODEL FORMULATIONS

The HFSP can be considered as a generalization of two classical scheduling problems:
the parallel machine scheduling problem and the flowshop scheduling problem. In the
HFSP, n jobs must be processed in a series of m(m > 1)stages, optimizing a given
objective function. All jobs must be sequentially processed following the same
production order: stage 1, stage 2,..., stage m. Each job j € J requires a nonnegative
and uninterrupted processing time py ; in stage k. Note that, processing of job j in stage
k is referred to the operation o, ;. Each stage k € M has |I;| = 1 identical parallel
machines, and in at least one of the stages |I;| > 1. As all machines are identical at

each stage k, a job can be assigned to any machine i € I,.

In this thesis, the EHFSP is studied by employing a speed scaling strategy. Unlike the
standard HFSP, the machines have variable speed levels in the EHFSP and the speed
of a machine can be easily adjusted between jobs. Therefore, the operation time of a
job may change based on the chosen speed level. It is assumed that there are three
processing speed levels for the machines: fast, normal, and slow. Increasing the speed
of a machine decreases processing time, but leads to higher energy consumption.
Hence, speed levels of the jobs should be determined carefully to improve both energy
and production efficiency. There are two conflicting objectives: minimizing the total
energy consumption (TEC) and minimizing the makespan (C,,q.). AS mentioned
before, the makespan criterion is important for increasing the utilization of resources
and obtaining a high throughput. On the other hand, the TEC criterion is also very

important in terms of energy-efficient scheduling.

In this thesis, two variants of speed scaling strategy are considered. In the first variant
of the EHFSP (EHFSP-V1), speed-scaling is assumed to be job-based due to its
simplicity and tractability, as proposed by Oztop et al. (2018), that is, a job must be
processed with the same speed level at all stages. Note that, in some flowshops, a single
processing speed level is defined for a job through its route for easily tracing and
managing the speed arrangements of the job on all stages/machines. Subsequently, the
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machines process each job based on its pre-defined speed level. This type of job-based
speed scaling strategy is practical, particularly for the flowshops with a higher number
of stages/machines. In such large systems, defining a different speed level for a job on
each stage/machine can be impractical in real-life practice. On the other hand, in the
second variant of the EHFSP (EHFSP-V2), the job-based speed scaling strategy
assumption is omitted, and it is assumed that the speed of a job can vary from stages
to stages. Note that the second version of the problem is relatively more complex than
the first version of the problem. For both versions of the EHFSP, MILP and CP models
are presented in the following subsections.

The problem notation is given in Table 4.1, and further assumptions are explained as
follows: All jobs and machines are available at time zero. No job can be processed on
more than one machine at a time, and a machine can process only one operation at a
time. Job pre-emption is not allowed. Jobs can wait between stages, and the capacity
of buffers is unlimited. Travel times between consecutive stages and setup times are
included in the processing times of jobs. Changing the speed of machines does not
affect machine quality. All parameters are deterministic and known in advance. Based
on the aforementioned assumptions and objectives, the studied bi-objective EHFSP is
denoted as FHm, ((PM®™ )™ Y)|| Cpax, TEC according to the notation proposed by
Vignier et al. (1999), which follows the three-field notation of Graham et al. (1979).

Table 4. 1. Problem Notation

Sets

M Set of stages {1,2,...,m}

J Set of jobs

L Set of processing speed levels {1,2,3}

Ik Set of machines at stage k € M
Parameters
Pk Processing time of job j € Jat stagek e M

Vi Speed factor of processing speed level | € L

Al Conversion factor for processing speed level | € L

axi  Conversion factor for idle time on the machine i € I, at stage k € M
p«i  Power of machine i € I, at stage k € M

Q A very large number
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4.1 Mixed-Integer Linear Programming Models for EHFSP-V1 and
EHFSP-V2

Decision variables are listed below for the MILP models of EHFSP-V1 and EHFSP-
V2:

sk;- Starting time of job j at stage k
x,l(ﬁ: 1if job j is processed by machine i at stage k with speed level I, 0 otherwise
yijr- 1 if job j precedes job r at stage k, 0 otherwise

0y, ldle time on machine i at stage k
Cnax. Maximum completion time (makespan)
TEC: Total energy consumption

The MILP model is given below for the EHFSP-V1.:

Minimize Cy gy (4-1)
Minimize TEC (4-2)
Subject to:

Yien Xkji = Dietgs, Xhv1i VG k+1 EM,jEJIEL (4-3)
Smj + Zietn Dier o Xmji < Cmax ~ Vj €J (4-4)
Yien, DierXkji =1 VjE€EJLkEM (4-5)
Sk+1,j — Skj = el ZlEL xk]l Vie],(kk+1)eM (4-6)

Pkr
= (i B 2Eod) 002+ By~ B ) 20

Vji,r€J:j<r,k €M,i€I, (4-7)

Skr (Sk] + Ve, xk]l) +Q(3 = Yijr — Tier Xkji — Zier Xkri) = 0

Vj,r€J:j<rk€M,ic€l, (4-8)

Oki = Crmax — Z]E] ZleL 'xll(jl Vk € M,i €I, (4-9)
Brip iPki

TEC = Z]E] ZkEM ZlEIk ZleL § k] l k]l + ZkEM ZlEIk 2 ﬁk ekl (4'10)

60v;
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skj 20 VkEM,jE], ypjr €{01} Vjr€LkEM
xbi €{01}VkEM,j€J i€, leL (4-11)

The objective functions (4-1) and (4-2) minimize the makespan (C,,q,) and the TEC,
respectively. Constraint set (4-3) imposes a single speed level for a job through the
stages. Constraint set (4-4) determines the maximum completion time. Constraint set
(4-5) ensures that each job passes through all stages and is assigned to exactly one
machine at every stage. Through constraint set (4-6), the next operation of a job can
be started after its preceding operation is completed. Constraint sets (4-7) and (4-8)
determine the sequence of the jobs on each machine, where Q is a large integer. For
two jobs assigned to the same machine, the next job can only be started after the
preceding job is processed. Constraint set (4-9) computes the idle time on each
machine, while constraint set (4-10) calculates the total energy consumption in
kilowatt-hours, as proposed in (Mansouri et al., 2016). Both the processing time and
the idle time energy consumption are reflected in the calculation of TEC. Finally, the

constraint set (4-11) defines the decision variables.

The MILP model of the EHFSP-V2, in which the speed of a job can change from stages
to stages, is given below. This model is identical to the above one except that the
constraint set (4-3), which imposes a single speed level for a job through the stages, is
omitted.

Minimize (4-1) and (4-2)
Subject to:

(4-4) - (4-11).

4.2 Constraint Programming Models for EHFSP-V1 and EHFSP-V2

In this subsection, the CP models are presented for the EHFSP-V1 and EHFSP-V2.
Before presenting the CP models, a brief introduction to the constraint programming
technique is provided in the following subsection (Section 4.2.1). Then, the CP models

are provided in Section 4.2.2.

4.2.1 Constraint Programming

Constraint programming is an efficient approach for modeling and solving

combinatorial optimization problems. CP employs global constraints as well as the
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traditional mathematical programming constraints. Global constraints are more
effective than the traditional constraints, as they express the relations between
variables more easily and employ specialized filtering algorithms due to the problem’s

structure.

The variables and global constraints used in this thesis are formally defined as below
(IBM ILOG CPLEX, 2017):

Variables:

Interval Variable: It denotes an interval of time whose position in a schedule is not
pre-determined. An interval is symbolized by a starting time, an ending time, and a
duration. Interval variables can be optional, meaning that the existence of them in the
final solution schedule is part of the decisions in the problem. The optional concept is

very useful when activities can be performed on several different resources.

Sequence Variable: A sequence variable indicates a sequence for a set of interval
variables. For a given set of interval variables {t;, t,, t3, t,}, the value of the sequence

variable can be (t;, t3, ty, ty).
Global Constraints:

alternative (a,{b,,.., b,}): This constraint selects an exclusive alternative from a set
of optional interval variables {b,,..,b,}. If interval a exists, then exactly one of
intervals {b4, .., b, } exists, and a starts and finishes together with the selected one. If
a does not exist, then all b intervals do not exist. This constraint is generally useful to
model the choice of one resource among a set of candidate resources and to model

alternative performing modes for activities.

noOverlap (p): This constraint is used to prevent overlapping of intervals in a
sequence variable p. It assures that the sequence is formed by a series of non-
overlapping intervals, i.e., any interval in the sequence is finished before the starting
time of the next interval in the sequence. This constraint is generally used for

formulating disjunctive resources.

endBeforeStart(predecessor, successor). This constraint ensures that, if both
interval variables predecessor and successor exist, then successor cannot start

before predecessor has been finished.
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4.2.2 CP Models for EHFSP-V1 and EHFSP-V2

The CP models are presented for the EHFSP-V1 and EHFSP-V2, using the OPL API
of CP Optimizer. Interval variables are defined for representing the operations of the
jobs in each stage. Furthermore, optional interval variables represent the performing
of job j in stage k on machine i € I, with speed level |. The model also declares several
sequence variables associated with each machine i in stage k. Each sequence constraint
gathers all the optional interval variables associated with a specific machine. Decision

variables are listed below for the proposed CP model:

ty; - Interval variable for the operation of job j in stage k

zl-ljk: Optional interval variable for the operation of job j in stage k on machine i € I,
with speed level | and duration of (pkj/vl)

ms;;,: Sequence variable for machine i € I, in stage k over {Ziljk |jeJ,lelL}

The calculations of C,,,,, TEC and 6,; (idle time on the machine i at stage k) are

handled by defining below expressions:
Cmax = maxje] (endOf (tmj))

_ Pkj l
Oki = Cmax = 2jej Zzav—ll presenceOf (z; )

TEC = Zje] Ykem Zielk 2leL

BriPrjti l AkiBri
P presenceOf (zj.) + Lem Dier, ~o Oki

Then, the CP model is given below for the EHFSP-V1:

Minimize C,,4 (4-12)
Minimize TEC (4-13)
Subject to:

alternative (tkj, all (iin I, lin L)Zl-ljk) Vie],keM (4-14)
noOverlap(ms;) Vk e M,i €I, (4-15)
endBeforeStart(ty;, ty+1,;) vie],(k,kk+1)eM (4-16)

l l
Zielk presenceof(zijk) = Ziezk+1 presenceOf(Zij,k+1)

vie],(kk+1)eM,leL (4-17)
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The objective functions (4-12) and (4-13) minimize the makespan (C,,4,) and the TEC,
respectively. Constraint set (4-14) ensures that each operation of job j is assigned to
exactly one machine at each stage, and one speed level is chosen for each operation.
Constraint set (4-15) states that each machine can perform only one operation at a time.
For two jobs assigned to the same machine, the next job can be started after the
preceding job is completed. Through constraint set (4-16), the next operation of a
certain job in stage k + 1 can be started after its preceding operation in stage k is

finished. Constraint set (4-17) imposes a single speed level for a job through the stages.

The CP model of the EHFSP-V2, in which the speed of a job can vary from stages to
stages, is given below. This model is identical to the above one except that the

constraint set (4-17) is omitted.
Minimize (4-12) and (4-13)
Subject to:

(4-14) - (4-16).

The processing times (py ;) are defined as integer values in this thesis. However, when
a processing time py; is divided by a speed factor v, the resulting duration can be a
floating number. As mentioned in Chapter 7, there are three processing speed levels
for the machines in this thesis, and the corresponding processing speed factors are
v; = {1.2,1.0,0.8}. In OPL API of CP Optimizer, interval variables cannot have a
duration with a floating value. Hence, a transformation procedure has been applied to
define integer processing times for interval variables. Note that the operations in Eq.
(4-18) are equivalent. Namely dividing the processing times (py;) by v, =
{1.2,1.0,0.8} is equivalent to multiply them by v, = {%%5} Hence, we can
obtain integer processing time values by multiplying the processing time (py;/v;)
expressions by a constant value 12, i.e., multiplying the processing times (py;) by the
ve; ={10, 12, 15}. Accordingly, each (py;/v;) expression in the above formulation is
replaced by an expression (py; * vcy).

Pkj 10 Pri 12 Pki 15
I=D"=py*s, (=2)T=p 5, (=3)T2=p*g (4-18)

Consequently, the resulting interval variable ziljk is defined as below:
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z}jk: Optional interval variable for the operation of job j in stage k on machine i € I,

with speed level I and duration of (py; * vc;)

Since the original processing time (py;/v;) expressions are multiplied by 12 during
the transformation procedure, the resulting C,,,,, and TEC values will be 12 times the
original C,,,, and TEC values. Therefore, the C,,,4x, TEC and 6,; expressions are also

modified by dividing them 12, as follows:

Cmax = (maxjej (endOf (tmj)))/lz

P j*vCl
12

Oki = Crnax - Zje] YleL presenceOf(Ziljk)

Briti(prj*ver)
60%12

ki Pri
5 Ok

presenceOf(Zl-ljk) + Xkem Diely, o

TEC = Yjej Xkem Liery, LieL

4.3 Conflicting Objectives

In order to show the conflict between minimizing C,,,, and TEC, the Pareto frontiers
are obtained for a small problem with five jobs and five stages. For the same instance,
Figure 4.1 demonstrates the Pareto frontier for the EHFSP-V1 and Figure 4.2 shows
the Pareto frontier for the EHFSP-V2. As seen from the figures, the number of Pareto-
optimal solutions in EHFSP-V2 is much more than the number of Pareto-optimal
solutions in EHFSP-V1. Therefore, the EHFSP-V2 is relatively more complex to solve
than the EHFSP-V1.
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Figure 4. 1. Pareto Frontier of a Small Problem (EHFSP-V1)
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As shown in Figures 4.1 and 4.2, the two objectives are conflicting, and they cannot
be optimized concurrently. Hence, multi-objective optimization techniques should be
employed to solve the bi-objective EHFSP. The multi-objective optimization

technique employed in this thesis is explained in Chapter 5 as well as the related

terminology.
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Figure 4. 2. Pareto Frontier of a Small Problem (EHFSP-V2)
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CHAPTER5
MULTI-OBJECTIVE OPTIMIZATION

In this section, common solution techniques to solve multi-objective optimization
problems are explained as well as the related terminology. Then, the multi-objective

optimization method used in this thesis is explained in detail.

5.1 Terminology

A multi-objective optimization problem (MOP) includes several conflicting objective
functions to be optimized simultaneously. As these objective functions conflict with
each other, i.e., improvement of one objective function may cause to worsening of
another, there is no single optimal solution for these problems. In this case, a set of
most preferred solutions, namely Pareto-optimal solutions, is important for the
decision-maker. Therefore, the optimality concept is replaced with the concept of
Pareto-optimality for the MOPs. The Pareto-optimality and the dominance relation

concepts are formally defined for a minimization MOP as follows (Okabe et al. 2003):
MOP: minimize F(x) = (f;(%), . . ., f-(X))¢
s.t. x €1,

Dominance: A solution x; dominates another solution x; if the two following

conditions are satisfied (denoted as x; < x;):
. Vc € 1,..,C;fc(xi)Sfc(xj)

e 3dc€el,.. Cf(x)< fc(xj)

Weakly Dominance: A solution x; weakly dominates another solution x; (denoted as

Xi < x]) if

. VCEL..,C;fC(xi)Sfc(xj)
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Pareto-Optimality: A solution x is named as Pareto-optimal (efficient) if A y € ); y <

X.

Pareto-Optimal Frontier (Pareto-Optimal Set): The union of all Pareto optimal

solutions x € (1 is called as Pareto-optimal frontier (Prue).

Pareto-Optimal Solution Set: A finite number of Pareto-optimal solutions that belong
to Piue, are named as Pareto Optimal Solution Set (P), where P S Prue. As it is

generally impossible to obtain Py.e, P is commonly used as an approximation to Prre.

Solution Set and Non-dominated Solution Set: The set of solutions obtained by an
algorithm is named as Solution Set (S). The solutions in S that are not dominated by
others in the set form the Non-dominated Solution Set (Sy). As only non-dominated

solutions are generated in S for most of the cases, Sy is usually defined with S.

Reference Set: In general, the Pareto optimal set is unknown for most of the cases. In
these cases, the desired reference set (R) is designed with pre-defined solutions. This
reference set is usually formed by combining the best-known solutions from several

algorithms.

5.2 Solution Methods

As mentioned in Chapter 4, the studied EHFSP in this thesis is a bi-objective
optimization problem. Hence, no single optimal solution exists due to the conflict
between TEC and C,,,, Objectives. Yet, a set of Pareto-optimal solutions can be found
by handling the trade-off between these objectives. As mentioned above, a Pareto-
optimal solution cannot be improved in one objective without deteriorating the other
one, and it is not dominated by any other feasible solution. Since the two objectives of
the EHFSP are conflicting and cannot be optimized concurrently, multi-objective

solution methods must be employed, which are explained as follows.

Generally, the solution methods for solving MOPs are divided into three main

categories due to the impact of the decision-maker (Mavrotas, 2009):
Priori methods:

At the beginning of the solution process, the decision-maker defines its preferences by
either determining goals or weights for the objective functions. In the former one, a

certain numeric goal is determined for each objective, and the (weighted) sum of
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deviations of the objective functions from their respective goals is minimized. In the
latter one, weights are defined for each objective, and the weighted combination of the
objectives is optimized. The drawback of these methods is that it is hard to define the

decision maker’s preferences precisely in terms of goals or weights in advance.
Interactive methods:

The decision-maker is involved in the whole solution process interactively, meaning
that he/she gradually lead the process with his/her preferences to the most preferred
solution. The disadvantage of this method is that the decision-maker never knows the
Pareto-optimal solution set and the most preferred solution is chosen among the

solutions obtained so far.
Posteriori (generation) methods:

The non-dominated solutions are obtained at the beginning, and then the decision-
maker selects the one solution among them. The disadvantage of these methods is that
they require high computational effort. Nevertheless, they also have advantages. They
are preferable whenever the decision-maker is not available, as they find all possible
alternatives in advance. Furthermore, the confidence of the decision-maker on these

methods is generally high, as they are able to find all potential solutions.

The most commonly used generation methods are the weighting method and the &-
constraint method. It is known that the e-constraint method has several advantages as
compared with the weighting method (Mavrotas, 2009). In this thesis, we use the
augmented e-constraint method to solve the proposed bi-objective MILP and CP
models. The augmented e-constraint method is an extension of the well-known &-
constraint method, and it avoids obtaining weakly Pareto-optimal solutions (Mavrotas,
2009). Note that, one main disadvantage of the traditional e-constraint method is about
the generation of the weakly Pareto-optimal solutions. In order to overcome this

shortcoming, the augmented e-constraint method was proposed by Mavrotas (2009).

Similar to the e-constraint method, one of the objective functions is optimized in the
augmented e-constraint method employing the other objective functions as constraints.
Then, a series of single-objective models are optimally solved by systematically
changing the right-hand side values of the objective function constraints. However, in
the augmented e-constraint method, the objective function constraints are transformed

into equalities by including the appropriate slack/surplus variables. Then, these
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slack/surplus variables are used as a second term in the objective function with lower
weights in a lexicographic manner, to ensure that only Pareto-optimal solutions are
generated. Consequently, the augmented e-constraint method can be used to obtain an
exact Pareto-optimal solution set by appropriately conducting a parametric search on
the right-hand side values of the objective function constraints, since it guarantees the
Pareto-optimality of the obtained solutions. The details of the weighting method, -
constraint method, and augmented e-constraint method are explained in the following

subsections.

5.3 Weighting Method

In the weighting method, a weight (w,) is assigned to each objective function ¢ and
the weighted sum of the objectives is minimized. Several objective functions are

combined into a single objective function as follows, where Y¢_, w, = 1:
minimize Y5_; w, f.(x) s.t. x €Q,

In this approach, non-dominated solutions are obtained by trying different weights for
the objectives. The weighting method is also extended as a weighting method with
normalization. In this case, the objective functions are normalized and they take values

between 0 and 1.

As pointed out by Mavrotas (2009), there can be many redundant runs in the weighting
method, as there can be a lot of combinations of weights that generate the same
efficient solution. Furthermore, in the weighting method, the scaling of the objective
functions may affect the results. Thus, the objective functions should be normalized
before defining the weighted sum. However, in the € -constraint method, this is not
required. Moreover, the number of generated Pareto-optimal solutions can be
controlled in the e-constraint method by defining a proper € level. On the other hand,

it is not easy to control this number in the weighting method.

5.4 ¢-Constraint and Augmented g-Constraint Methods

In the e-constraint method, one of the objectives is optimized and the other objective
functions are defined as constraints. Therefore, the aforementioned minimization MOP

is reformulated as follows:
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minimize f; (x)
s.t.

f2(x) e, fz(x) <es, ..., fe(X) < e
X EQ

Using this reformulation, solutions are obtained by parametrical changes on the right
side of the constrained objective functions (e.). To properly apply the e-constraint
method, the range of each objective function must be obtained. The most widely used
approach for obtaining these ranges is to use payoff tables that include the results from
the individual optimization of each objective function. In the construction of these
tables, it must be guaranteed that the obtained solutions from the individual
optimization of the objective functions are certainly Pareto-optimal solutions. In the
presence of alternative optimal solutions, the obtained solution may not be a Pareto-
optimal solution. In order to handle this issue, lexicographic optimization is commonly
employed for each objective function. In lexicographic optimization, objectives are
optimized lexicographically. Namely, the primary objective function is initially
optimized, and then among the alternative optimal solutions, the second important

objective is optimized with the optimal value of the primary objective, and so on.

However, in the standard e-constraint method, obtained solutions are usually not
Pareto-optimal solutions. In order to overcome this shortcoming of the standard e-
constraint method, the augmented e-constraint method is proposed by Mavrotas
(2009). The augmented g-constraint method is an extended version of the well-known
e-constraint method, and it avoids obtaining weakly Pareto-optimal solutions
(Mavrotas, 2009). Similar to the e-constraint method, one of the objective functions is
optimized using the other objective functions as constraints. However, in this method,
the objective function constraints are transformed into equalities by including the
appropriate slack/surplus variables. These slack/surplus variables are used as a second
term in the objective function with a lower weight in a lexicographic manner, to ensure
that only Pareto-optimal solutions are generated. In order to avoid any scaling
problems, slack/surplus variables are normalized in the objective function by dividing
them into the ranges of the respective objective functions. The details of this method
can be found in Mavrotas (2009). The formulation of the MOP based on this method
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is given below, where eps is a sufficiently small number and .. is range of the objective

function c.
. . . 52 53 SC
minimize f;(x)- eps (Z+ 2+ -+ =
2 T3 ¢
s.t.
£ + 5, = ey, f5(X) +55=es ..., LX) +5, = e,
x €0

The performances of the e-constraint and the augmented g-constraint methods (with
and without lexicographic optimization in construction of payoff tables) are shown
with an illustrative example below. In this bi-objective example (f; = x,, f, =
4x; — x,), the range of the second objective function is divided into six equal intervals
and a constant € level is determined. Then, the e,value is gradually decreased using
this constant ¢ level. In both Figures 5.1 and 5.2, Pareto-optimal points are marked

with a red square.

As shown in Figure 5.1, the e-constraint method finds 2 Pareto-optimal solutions
without lexicographic optimization, while it finds 4 Pareto-optimal solutions with
lexicographic optimization. In the former one, 5 points are dominated by other points
(B, C, D, and E), while in the latter one, 3 points are dominated by other points (B, C,
and D).

X, & X, A
80 80 A
70 4 70
01 g R [e]
50 T - 50 +
¢ C
40 4 40
D | 5
30 1 30 - I
—o—0 fo—
20 1 E 20 4 £
10 T 10 T
1'0 2'0 30 40 5'0 60 70 80 " X1 l'O 2'0 30 40 5'0 60 70 80 VX1
a) without lexicographic optimization b) with lexicographic optimization

Figure 5. 1. e-Constraint Method
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As shown in Figure 5.2, the augmented &-constraint method finds 6 Pareto-optimal
solutions without lexicographic optimization, while it finds 7 Pareto-optimal solutions
with lexicographic optimization. In the former one, point E is obtained twice, while in

the latter one, a different Pareto-optimal solution is obtained in each iteration.
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30 + D I£ 30 + D
— [o——
E

20 T 20 T
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v

»

10 20 30 40 50 60 70 80

o % % 4w o 0 @
a) without lexicographic optimization b) with lexicographic optimization
Figure 5. 2. Augmented e-Constraint Method

As shown in the above example, the augmented e-constraint method with
lexicographic optimization is an efficient way to generate only Pareto-optimal
solutions. Therefore, in this thesis, this combined method is employed to solve bi-
objective MILP and CP models for the EHFSP.

The general outline of the augmented e-constraint method with lexicographic
optimization is provided in Figure 5.3 for a bi-objective minimization problem. As
shown in Figure 5.3, minimizing f; is considered as the objective and the second
objective function £, is defined as a constraint. Initially, the lexicographic optimization
is used for each objective function in order to obtain the payoff table with only Pareto-
optimal solutions. Then, starting with an upper bound (f;"*) on f,, which is found
from the payoff table, the single-objective model is iteratively solved optimally by
systematically decreasing the right-hand side value (e,) of the constraint on f, with a

predetermined ¢ level, until the minimum value (£;*") of f, is reached.
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Construct the payoff table using lexicographic optimization for each objective function:
min max]

_ 1 2
Payoff Table= max  emin

where f{"™ = min{f; ()}, f;""" = min{f,(x)},
i = min{fl(x):fz(x) = fzmin}'fzmax = min{fz(x):fl(x) = f1min}-
Add (f™", £779%) to the Pareto-optimal solution set
Calculate the range r, of the second objective function from the payoff table
e, =f"" —¢
While (e, = f7™™)do
Solve the single-objective problem (SOP) optimally:
SOP: minimize f; (X)- eps (i—z)

s.t.

f2(x) +s; =€,

X EQ
Add the optimal solution value (f", f5°) of the SOP to the Pareto-optimal solution set
62 = ez — &

EndWhile
Report the Pareto-optimal solution set

Figure 5.3. General Outline of the Augmented g-Constraint Method
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CHAPTER 6
METAHEURISTIC ALGORITHMS

Since the HFSP is known to be NP-hard (Gupta, 1988) even for the single-objective,
the studied bi-objective EHFSP in this thesis is also NP-hard. Hence, energy-efficient
bi-objective metaheuristic algorithms are also proposed for the EHFSP in this thesis.

In this section, the proposed seven energy-efficient bi-objective metaheuristic
algorithms; namely, two variants of the IG algorithm (E_IG, E_IG,;y), a VBIH
algorithm (E_VBIH) and four variants of the ensemble of metaheuristic algorithms
(E_EM, E_EMypr, E_LEMygn, E_EMypry) are explained for the EHFSP-V1. Then, the
proposed four energy-efficient bi-objective metaheuristic algorithms; namely, two
variants of the IG algorithm (E_IG2, E_IG2,;;.), a VBIH algorithm (E_VBIH2), and an
ensemble of metaheuristic algorithms (E_EM?2) are explained for the EHFSP-V2.

6.1 Solution Representation & Fitness Value Calculation

In this thesis, permutation-based encoding is used for fitness value calculation by
employing a forward scheduling approach, which is commonly used in the HFSP
literature. Initially, the standard forward scheduling approach is explained for the
single-objective version of the problem with the makespan criterion in Section 6.1.1.
Then, the proposed heuristic fitness calculation approaches are presented in Section
6.1.2 to compensate for the inefficiency of the standard forward scheduling approach.
Afterward, the energy-efficient (bi-objective) extensions of the fitness calculation
approaches are explained in Sections 6.1.3 and 6.1.4, as well as the solution
representations for the EHFSP-V1 and EHFSP-V2.

6.1.1 Standard Forward Scheduling Approach

The permutation-based encoding is an indirect encoding scheme, where the jobs are
assigned to the most available machine at the first stage according to the initial
permutation . Then, for the remaining stages, the forward scheduling approach is used

to decode a solution, where the jobs are assigned to machines according to their earliest
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release times at the previous stage. Namely, in each following stage, the jobs are
ordered with respect to their release (completion) times from the previous stage and
assigned to the most available machine according to that order. In this way, a complete
schedule can be obtained for a given initial permutation.

Given an instance in which there are two machines in each stage with processing times

pij = (3332) and an initial permutation 7 = {1,2, 3,4, 5}, a complete schedule can
be generated as follows: At the first stage, the jobs are assigned to the machines
through the initial permutation 7. In the second stage, the jobs are ordered with respect
to their release times from the first stage, thus resulting in another permutation 7! =
{2,1,4,5,3}. Then, the jobs are assigned in this order to the machines in the second
stage. The Gantt chart for the initial permutation r is illustrated in Figure 6.1 with a

makespan (Cpax) = 14.

Stages Machines
2 1 3
2 4 9 14
! 2 |4 5
3 7 8 12
2
1 2 3
3 8
1
1 4 |5
4 6 7

Figure 6. 1. Gantt Chart with C,,,,, = 14

6.1.2 Heuristic Fitness Calculation Approaches

The aforementioned standard forward scheduling approach is generally an efficient
way to obtain a complete schedule. However, some solutions may be unexplored in
this approach due to its greedy fashion. In this thesis, two new swap move-based
heuristic fitness calculation approaches are proposed, to compensate for the
inefficiency of the standard forward scheduling approach and to further enhance the
performance of the algorithms. Namely, the standard forward scheduling approach is

modified by employing swap moves on the job permutations of some stages, in which
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jobs are ordered according to their completion times at the previous stage. The aim is
to explore the neighboring schedules for a given initial permutation 7. Note that,
employing a swap move on the job permutation of a stage can lead to a different

complete schedule with a different fitness function value.

43521

c1z14) @and an initial permutation 7 =

Consider the above example with py; = (

{1,2,3,4,5}. As mentioned above, after the jobs have been assigned to the most
available machine in the first stage, the resulting permutation is 7' = {2, 1,4, 5, 3}
when the jobs are sorted in increasing order of their release times from the first stage.
Consequently, by employing the standard forward scheduling approach, we obtain the
job sequences {2, 4, 5} and {1, 3} on machine 1 and 2, respectively. The complete
Gantt chart for the standard forward scheduling approach is shown in Figure 6.1 and

the makespan value is 14.

As can be seen from Figure 6.1, both jobs 3 and 5 are ready to be processed, when job
4 is completed on machine 1 of stage 2. The standard forward scheduling approach
chooses job 5, as its release time is shorter than job 3. However, job 3 can also be
selected without increasing the idle time of the machine. Thus, the positions of jobs 5
and 3 are swapped in the permutation ! = {2,1,4,5, 3} and a new permutation nl =
{2,1,4,3,5} is generated for stage 2. When the forward scheduling method is applied
to stage 2 according to this new permutation, the resulting complete schedule has a

smaller makespan, which is equal to 13 as shown in Figure 6.2.

Stages Machines

2

3]

[ 3]

Figure 6. 2. Gantt Chart with C,,,4,, = 13
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The drawback of the standard forward scheduling approach has also been addressed
by Pan et al. (2014), and a local search procedure has been proposed for a given
complete solution with the forward scheduling approach. In the local search procedure
of Pan et al. (2014), starting from the second stage, several exchange moves are
employed on the permutation of jobs at each stage. Namely, at each stage, each job in
the permutation is exchanged with all possible jobs that are ready to be processed,
where the complete schedule is computed with a forward scheduling approach for each
exchange move. Since the local search procedure of Pan et al. (2014) evaluates the
complete schedules for all exchange moves, it requires high computational time.
Hence, the authors only applied this local search procedure to the best solution found
by their discrete artificial bee colony algorithm. In this thesis, two simple heuristic
fitness calculation approaches are proposed by employing only a single swap move in
at most m — 1 stages. As the proposed heuristic fitness calculation approaches do not
evaluate the complete schedule at each iteration, they are very fast in terms of

computational time.

In the first heuristic fitness calculation approach, namely, heuristic fitness calculation
with random swap moves (HFR), a random stage number pt is chosen from the set of
stages {2, 3,..., m}. Note that, the first stage is not included in this selection as the
swap move is not applied to the first stage. For each stage k, which is greater than or
equal to pt (k = pt), a single swap operation is employed on the resulting permutation

k—l)
b

of jobs from stage k—1 (mw in which jobs are ordered according to their

completion times at stage k — 1. Namely, for each stage k (k = pt), after we swap

two jobs randomly in the resulting permutation 1

, we employ this new permutation
at stage k to apply the forward scheduling method. The outline of the HFR procedure

is given in Figure 6.3.

Heuristic Fitness Calculation with Random Swap Moves

Schedule the jobs at first stage according to the initial permutation
pt = random stage number from {2,3, ..., m}
for(k =2tom)do
Generate the sequence of jobs t%~! according to completion times of the jobs at stage k-1
if (pt <k)do
swap two jobs randomly in T~
end if
Schedule the jobs at stage k according to the order w*~
end for

1

1

Figure 6. 3. Heuristic Fitness Calculation with Random Swap Moves
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In the second heuristic fitness calculation approach, namely, heuristic fitness
calculation with neighbor swap moves (HFN), a swapping probability sp is defined to
decide whether or not to apply swap operation on the permutation. Then, if it is decided
to apply a swap operation, the swap operation is employed only on the neighboring
jobs in the permutation. Namely, for each stage k (k > 2), we employ a swap operation
on the resulting permutation of jobs from stage k — 1 (r*~1) according to the given
swapping probability sp. We generate a uniform random number r between 0 and 1,
and, if r < sp, we employ a swap operation on the permutation. Furthermore, in order
to apply the swap operation, we choose the two closest neighbor job pairs in the
permutation, based on their release times from the previous stage k — 1. Then, we
choose one of these pairs to apply swap operation with a probability np. That is, we
generate another uniform random number q between 0 and 1, and, if g < np, we
employ the swap operation on the job pair, which has the minimum difference between
the release times at stage k — 1. In the case of ¢ > np, we employ the swap operation
on the second closest job pair. After the swap operation on permutation 7%, we
employ the new permutation at stage k to apply a forward scheduling method. The

outline of the HFN procedure is provided in Figure 6.4.

Heuristic Fitness Calculation with Neighbour Swap Moves

Schedule the jobs at first stage according to the initial permutation
for (k =2tom)do
Generate the sequence of jobs m*~! according to completion times of the jobs at stage k-1
if r~U(0,1) < sp) thendo
choose the two closest neighbor job pairs in
if (q~U(0,1) < np) thendo
employ the swap operation on the closest job pair in

k-1

k-1

else
employ the swap operation on the second closest job pair inn
end if
end if
Schedule the jobs at stage k according to the order w*~
end for

k-1

1

Figure 6. 4. Heuristic Fitness Calculation with Neighbor Swap Moves

Suppose that, the job permutation for stage k is m*~1 ={3, 1, 2, 4, 5} with release
times {10, 12, 13, 16, 19} from stage k — 1. In HFR, two jobs are swapped randomly
in the current permutation, say jobs 2 and 4. Then, the resulting new permutation will
be k1 ={3, 1, 4, 2, 5}. On the other hand, in HFN, two closest neighbor job pairs

are defined for the permutation, based on release times, where the first closest pair is
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{1,2} and the second closest pair is {3,1}. Then, one of these pairs is selected
according to a given probability np, say the job pair {3,1} is chosen, and the jobs in
this pair are swapped. Consequently, the resulting job permutation will be 71 ={1,

3,2,4,5}.

6.1.3 Solution Representation & Fitness Value Calculation for the EHFSP-
V1

As mentioned in Chapter 4, a job-based speed scaling strategy is employed in the
EHFSP-V1, where the same speed level is used for a job in all stages. For this purpose,
a multi-chromosome structure is used for the proposed bi-objective metaheuristics for
the EHFSP-V1, which is composed of a permutation of n jobs (rr) and a speed vector
of three levels (y). Note that, the three speed levels refer to fast, normal and slow
speeds, respectively. The solution representation for an individual s is given in Figure

6.5, where ; € ] represents the job at position j and 1; € L represents the speed level

for the job at position j.

T TTq T, T3 TTy Ty . Ty
Y P Y Y3 P P Pn
Figure 6. 5. Solution Representation for the EHFSP-V1

s(m, )

Since the standard forward scheduling approach is also very effective, the standard
forward scheduling approach is employed in all proposed algorithms for the EHFSP-
V1. HFR and HFN approaches are only employed in E_EMygg, E_EMygpn, E_EMypry
algorithms in order to further improve the performance of the algorithms, as described

in Section 6.3 .4.

In the energy-efficient version of the HFSP, there are also speed levels for the jobs.
Hence, these speed levels should also be considered in the forward scheduling
approach. Namely, processing times of the jobs should be calculated according to their
speed levels; i.e., processing times of the jobs should be divided by their corresponding
speed factors. Furthermore, when the jobs are sorted based on their release times from
the previous stages, the corresponding speed levels of the jobs should also be sorted
accordingly. Similarly, in the heuristic fitness calculation approaches (HFR and HFN),

when two jobs are swapped with each other, their speed levels should also be swapped.

46



Finally, the TEC value should be computed for the complete schedule, as explained in

Chapter 4 as well as the makespan value.

6.1.4 Solution Representation & Fitness Value Calculation for the EHFSP-
V2

As mentioned in Chapter 4, a matrix-based speed scaling strategy is employed in the
EHFSP-V2, where the speed of a job can vary from stages to stages. Thus, a multi-
chromosome structure is used for the proposed bi-objective metaheuristic algorithms
for the EHFSP-V2, which is composed of a permutation of n jobs () and a speed
matrix of three levels (y). The solution representation for an individual s is given in

Figure 6.6, where m; € J represents the job at position j and i ; € L represents the

speed level for the operation of the job at position j in stage k € M.

T Ty T, T3 Ty Ts ... .
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lle l/)ZZ l/)23 ¢24 l/JZS lpZn

S U s s s o
11l’ml d’mz ¢m3 lpm4 1.lij - 1.ljmn

Figure 6. 6. Solution Representation for the EHFSP-V2

In the proposed bi-objective metaheuristic algorithms for the EHFSP-V2, the standard
forward scheduling approach is employed for the fitness value calculation. HFR and
HFN approaches are employed only as a local search to further improve the
performance of the algorithms, as described in Section 6.4.5. As mentioned in the
previous subsection, in the EHFSP, there are also speed levels for the jobs. Hence,
these speed levels should also be considered in the forward scheduling approach and
heuristic fitness calculation approaches (HFR and HFN), as explained in Section 6.1.3.
Finally, the TEC value should be computed for the complete schedule, as explained in

Chapter 4 as well as the makespan value.

6.2 Constructive Heuristic & Single-Objective Algorithms for the HFSP

with Makespan Criterion

In the proposed energy-efficient bi-objective metaheuristics for the EHFSP-V1 and
EHFSP-V2, single-objective versions of the IG, 1GaL., and VBIH algorithms with only
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makespan criterion are initially employed to obtain a good starting solution, i.e., a job
permutation. Then, the initial population is formed by assigning speed levels to each
job of the starting solution. Hence, in this section, the single-objective versions of the
IG, IGALL, and VBIH algorithms with only makespan criterion are explained as well

as a proposed constructive heuristic.

6.2.1 Constructive Heuristic for the HFSP with Makespan Criterion

In this thesis, a new constructive heuristic NEH_M(X), i.e., a modified NEH heuristic
with x solutions, is proposed for the HFSP with the makespan criterion, modifying the
well-known NEH heuristic (Nawaz et al., 1983). The pseudo-code of the NEH
heuristic is given in Figure 6.7. Initially, the sum of the processing times on all stages
(P;) is calculated for each job j € J and jobs are sorted in decreasing order of P;. Then,
the first job in p (p;) is chosen to obtain a partial solution with a size one.
Consequently, the remaining jobs in p are sequentially inserted into the partial solution

one by one until a complete solution with n jobs is obtained.

NEH Heuristic

Vi€, P = Z;cn:ﬂ’kj
Stepl. p = Sort the jobs in decreasing order of P;
Step2. T = {p,}
for (i =2ton)do
Take job p; from p
Test job p; in all of the i possible positions of solution
Insert job p; to the best position in solution m with the minimum fitness value
end for
return

Figure 6. 7. NEH Heuristic

The proposed NEH_M(x) procedure is given in Figure 6.8. Similar to the NEH, jobs
are initially sorted in decreasing order of P; to define the initial order (7°). As the first
job has an impact on the waiting time of other jobs and the total idle time, the first job
of the partial solution should be defined carefully. In NEH_M(x), x new solutions are
generated from the same initial order 7°, by choosing a different job as the first job.
Namely, in the h iteration, the job at position h is chosen as the first job of the initial
partial solution, and then, the NEH insertion procedure is applied to this initial partial
solution, where h = 1, ..., x. As shown in Figure 6.8, initially, the first job of the initial

order (m?) is defined as the first job, and the NEH insertion procedure is applied to
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generate a new solution (r1). Next, the second job of the initial order (r?) is defined
as the first job, and the NEH insertion procedure is employed to generate another new
solution (m2). This process is repeated x times to obtain x new solutions. Finally, the
best one of these x solutions is selected as the final solution. In this thesis, we define

X =n.

NEH_M(x) Heuristic
Vj €], P = Xk=1Pkj
Stepl. 7° = Sort the jobs in decreasing order of P;
Step2. for (h = 1to x) do
' =n°
take my, as the first job:
remove T, and insert it to the first position of ©'
' = Apply NEH insertion procedure, as follows:
n" = {m}
for (i =2ton)do
Take job ww; from '
Test job m; in all of the i possible positions of solution i’
Insert job 1] to the best position in "

end for
TL'h — T[”
end for

Step3. Return the best solution among {n*,n?, ..., n*}

Figure 6. 8. NEH_M(x) Heuristic

6.2.2 Single-Objective Algorithms with Makespan Criterion

In this section, the single-objective IG, 1GaLL, and VBIH algorithms with only
makespan minimization are explained. As mentioned before, these algorithms are

employed in the proposed bi-objective metaheuristics to obtain a good initial solution.

The IG algorithm is developed by Ruiz and Stiitzle (2007). The IG algorithm has four
main parts: the initial solution, destruction-construction (DC) procedure, local search,
and the acceptance criterion. The initial solution is generated by a constructive
heuristic. Then, the DC procedure is employed to generate new solutions. The
destruction phase removes k jobs randomly from the current solution. Then, these k
jobs are reinserted into partial solutions in the construction phase. A local search is
applied to the complete solution after the DC procedure. Consequently, an acceptance
criterion is used to accept the new solution after the local search. These steps are

repeated until a stopping criterion is met.
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The proposed IG algorithm in this thesis is outlined in Figure 6.9, where rand is a
uniform random number between 0 and 1. As shown in Figure 6.9, NEH_M(X) is
employed as a constructive heuristic in the proposed IG algorithm. Note that, the NEH
heuristic is used for this purpose in the original IG algorithm (Ruiz and Stiitzle, 2007).
Then, in the destruction step, k jobs are randomly chosen and removed from the
solution 7°. This procedure results in two partial solutions: the partial solution ¢ with
n - k jobs and the partial solution =@ with x jobs. Note that, 7¢ includes the jobs that
will be reinserted into 7¢, in the order in which they were removed from m°. The
construction process begins with a partial solution ¢ and applies x steps, in which the
jobs in =@ are reinserted into €. That is, it starts with ¢ and inserts the first job of
() into all possible n — x + 1 positions of €. Then, the best position for 7,
which has the minimum makespan, is chosen and 7 is inserted in that position of 7¢.
These steps are repeated for all jobs in ¢ until 7% is empty. The complete solution is
obtained once the last removed job is inserted into n positions, and the best insertion

is chosen.

Procedure IG Algorithm(k, tP)
n® = NEH_M(n), nPest =
while (time limit is not exceeded) do

¢, ¢ = Destruction (n°, k)

! = Construction (7%, )
n? = First — Improvement Insertion Neighborhood (1) %local search to the complete solution
if f(m?) < f(m°) then
0 = m?
if f(n?) < f(mPst) then
7.l.best — 7.l.2
end if
else if (rand < exp{—(f(n?) — f(n°))/T}) then
m® =m?
end if
end while

return st and f (mwPest)

Figure 6. 9. IG Algorithm

The first-improvement insertion neighborhood structure is used as a local search, after
the construction phase of the IG algorithm. As shown in Figure 6.10, job m;, at position
k is randomly chosen from the current solution = without repetition and inserted into
all possible positions of the solution. When the best insertion position is found by

improving the makespan, the job m, is inserted into that position. This procedure is
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repeated for all jobs. This insertion local search procedure is named as first-
improvement insertion neighborhood structure since it employs a first-improvement
type pivoting rule for updating the solution. According to this rule, after inserting the
removed job into the best position of the current solution that leads to the smallest
makespan, the current solution is replaced with the new one if there is an improvement,
without testing the other jobs at all possible positions. Then, this updated solution is
used for the next iteration to test another job. Namely, at any iteration, after performing
the best insertion for the chosen job, the current solution is updated if there is an

improvement, before testing the other jobs at all positions.

First — Improvement Insertion Neighborhood (1)
fori=1tondo
remove job m; from solution m randomly (without repetition)
n* = Insert job m, in best position of w
if (f(m*) < f(m)) then do
mT=m"
end if
end for
return  and f ()

Figure 6. 10. First-Improvement Insertion Neighborhood Structure

After the local search step, it is decided whether to accept the new solution as the
incumbent solution for the next iteration or not. If the new solution is better than the
current one, the IG algorithm always accepts the new solution as the incumbent
solution. However, if the new solution is worse than the current one, it accepts the new
solution with a probability. For this purpose, a simple simulated annealing-type
acceptance criterion is used with a constant temperature, which is suggested by Osman
and Potts (1989):

n m
_ Zj:l Zk=1 Dkj
10nm

T X TP, (6-1)

where n is the number of jobs, m is the number of stages and tP is a parameter to be

adjusted.

Recently, a new version of the 1G algorithm, namely 1GaLL, is presented in the
literature for the permutation flowshop with the makespan criterion (Dubois-Lacoste
et al.,, 2017). The difference between the two algorithms is that IGarLL applies an
additional local search to partial solutions after the destruction in order to enhance

solution quality. The proposed 1GarLL algorithm outlined in Figure 6.11 employs
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NEH_M(x) as a constructive heuristic. Note that, [Garr applies the first-improvement
neighborhood structure to the partial solutions with n - k jobs before the construction
phase, and if any improvement has been found, the local search is applied again until
a local optimum is obtained. The rest of the procedure is the same as the

aforementioned IG algorithm.

Procedure 1G,;; Algorithm(k, TP)

n® = NEH_M(n), n?®t =n°
while (time limit is not exceeded) do
%, m¢ = Destruction (n°, k)
¢ = First — Improvement Insertion Neighborhood (7€) %local search to the partial solution

! = Construction (n¢,n°)

w2 = First — Improvement Insertion Neighborhood (m') %local search to the complete solution

if f(m?) < f(m°) then
70 = 72
if f(m?) < f(mP%t) then

rhest = g2

end if

else if (rand < exp{—(f(n?) — f(n°))/T}) then
70 = ;2

end if

end while

return st and f (wPest)

Figure 6. 11. IGaLL Algorithm

A block move is proposed by Xu et al. (2014), where a block with bs consecutive jobs
is removed from the solution and inserted into another position. Based on this idea,
VBIH algorithms are proposed by Tasgetiren et al. (2016, 2017), where the block size
bs changes during the procedure. In this thesis, a similar VBIH algorithm is developed,
as outlined in Figure 6.12. Note that NEH_M(X) heuristic is used in the construction
of the initial solution, as in the proposed IG algorithms. As shown in Figure 6.12, a
block of jobs with size bs is initially removed from the current solution, where bs is set
in between a minimum block size (bs,,;,) and a maximum block size (bs;,4,)- Then,
as in 1GaLL, the first-improvement neighborhood structure is employed on the partial
solution with n - bs jobs; and if any improvement has been found, the local search is
applied again until a local optimum is reached. Afterward, the best block insertion is
performed by testing the removed block in all possible positions of the partial solution.
Then, the first-improvement neighborhood structure is employed on the obtained
complete solution. Finally, the acceptance criterion given in Eq. (6-1) is employed. This

process is iterated until the bs attains the bs,,; 4.
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Procedure VBIH (bSy4x, TP)

n® = NEH_M(n), n%®t = n°, bs,;, = 2
while (time limit is not exceeded) do
bs = bSyin
dof
! = Remove a block with size bs from ©°
n? = First — Improvement Insertion Neighborhood (m') %local search to the partial solution

w3 = Insert the block into the best position in >

n* = First — Improvement Insertion Neighborhood (m3) %local search to the complete solution

if (f(r*) < f(r®)) then do
o ——
if (f(@*) < f(m?*Y)) then do
hest = g4
endif
else
if (rand < exp{—(f(@*) — f())/T})
o ——
endif
endif
bs =bs +1
Ywhile(bs < bSpay)
endwhile

Figure 6. 12. Variable Block Insertion Algorithm

6.3 Energy-efficient Bi-Objective Metaheuristic Algorithms for the
EHFSP-V1

In this section, the proposed seven energy-efficient bi-objective metaheuristic
algorithms; namely, two variants of the 1G algorithm (E_IG, E_IG,;;), a VBIH
algorithm (E_VBIH) and four variants of the ensemble of metaheuristic algorithms
(E_EM, E_EMypr, E_LEMygn, E_EMypry) are explained for the EHFSP-V1.

6.3.1 Initial Population

As mentioned in Section 6.2, in the proposed energy-efficient bi-objective
metaheuristics for the EHFSP-V1, single-objective versions of the 1G, 1GaLL, and
VBIH algorithms with only makespan criterion are initially employed to obtain a good
starting solution, i.e., a job permutation. Then, the initial population is formed by
assigning a random speed level to each job of the starting solution. Namely, the initial
population with size PS is constructed as follows: Firstly, an initial solution is obtained
by the NEH_M(x) constructive heuristic, which is explained in Section 6.2.1. Then,

the resulting solution is taken as the initial solution for the single-objective IG, IGaLL,
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or VBIH algorithms for the makespan minimization, which is explained in Section
6.2.2. In order to start with a good job permutation, 25% of the total CPU time is
devoted to the following: the single-objective 1G in E_IG, E_EM, E_EMypg,
E_EMypn, E_LEMypry algorithms; the single-objective 1GaLL in E_IGg;, algorithm;
and the single-objective VBIH in the E_VBIH algorithm. Once the best solution
mPest is found by one of these single-objective algorithms, the first three individuals
in the population are generated by assigning fast, normal and slow speed levels to all
jobs in ¢St The rest of the individuals in the population are constructed by assigning
a random speed level to each job in £2¢¢, The archive set (AS) is initially empty and

filled with non-dominated solutions from the initial population.

6.3.2 E_IG and E_IG,;;, Algorithms

As mentioned in Section 6.3.1, the initial population is formed in E_IG using the good
starting solution found by the single-objective IG algorithm with only makespan
criterion, whereas the single-objective IGarL algorithm with makespan criterion is
used for the initial population generation in E_IG,y, algorithm. After the generation of
the initial population, in E_IG and E_IG,; ;. algorithms, destruction-construction and
local search procedures are applied to each individual in the population, while the time
limit is not exceeded. Note that, these procedures are similar to the procedures in
single-objective IG algorithms; except that, in E_IG and E_IG,;, algorithms, speed
levels are also regarded and the solutions are assessed according to the dominance
rules due to the bi-objective nature of the EHFSP. Namely, in the destruction step, k
jobs are randomly removed from the solution as well as their speed levels, and random
speed levels are assigned to these removed k jobs. Before the construction, in the
E_IGpp; algorithm, the energy-efficient first-improvement insertion neighborhood
structure (Figure 6.13) is applied to the partial solution regarding the speed levels,
while it is not applied in the E_IG algorithm. Then, these k jobs are reinserted into the
partial solution with their respective speed levels following the best insertion policy,
in the order they were removed, until a complete solution of n jobs is established. As
the problem is bi-objective, the dominance rule (<) is used when two solutions are

compared, where the partial solutions are assessed based on the partial dominance rule.

After the destruction-construction procedures, the energy-efficient first-improvement

insertion neighborhood structure is applied to the complete solution, as shown in
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Figure 6.13. Job mr; and speed 1; are removed from position i of solution s, and a new
speed level is randomly assigned to this job. Then, the local search inserts this job-
speed pair (1;, ;) into all possible positions of the incumbent solution s(m, ). After
the best insertion position is found, (7;,1;) is inserted into that position. If the new
solution s* dominates the incumbent solution s, then the current solution is updated.
This is repeated for all job-speed pairs. In the case of an improving solution, the local
search is repeated until no more improving solutions can be obtained. Note that, the
archive set AS is also updated during the procedure, whenever a new non-dominated

solution is found.

improve = true
while (improve = true) do
improve = false
fork=1tondo
() =
Remove job m; and its speed level Y; from solution s(m, ) randomly(without repetition)
Y; = assign a random speed level from {1,2,3}
s*(m*,yY*) = Insert job (m;, ;) into best position of s(m, )
if (s* <s)thendo
s=s"
improve = true
end if
end for
end while

Figure 6. 13. Energy-Efficient First-Improvement Insertion Neighborhood Structure
for the EHFSP-V1

6.3.3 E_VBIH Algorithm

As mentioned in Section 6.3.1, the initial population is generated for the E_VBIH
algorithm using the good starting solution found by the single-objective VBIH
algorithm with only a makespan criterion. After the generation of the initial population,
in the E_VBIH algorithm, block insertion and local search procedures are applied to
each individual in the population, while the time limit is not exceeded. Note that these
procedures are similar to the procedures in the single-objective VBIH algorithm,
except that, in the E_VBIH algorithm, speed levels are also considered and the solutions
are assessed according to the dominance rules. That is, a block of jobs with size bs is
randomly removed from the solution together with their speeds, where bs is in between
a minimum block size (bs,,;, = 2) and a maximum block size (bs,q,). Random

speed levels are assigned to these removed jobs. Then, the energy-efficient first-
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improvement insertion neighborhood structure (Figure 6.13) is applied to the partial
solution considering the speed levels. Afterward, the block of jobs with size bs is
inserted into all possible positions of the partial solution with their respective speeds,

and the best block insertion is realized.

After the block insertion procedure, the energy-efficient first-improvement insertion
neighborhood structure is applied to the complete solution, as shown in Figure 6.13.
The archive set AS is also updated during this procedure, in the case of a new non-
dominated solution is found. Note that, as in E_IG algorithms, the dominance rule is
used to evaluate solutions, where the partial solutions are evaluated based on the partial

dominance rule. This process is repeated until the bs reaches the bs,, 4y

6.3.4 Ensemble of Metaheuristic Algorithms
(E_EM, E_EMyg, E_EEMygy, E_.EMypgy)

In order to improve solution quality, the aforementioned E_IG, E_IG,;, and E_VBIH
algorithms are combined in an energy-efficient ensemble of metaheuristic algorithms
(E_EM). Note that, the ensemble idea in heuristic optimization, which combines
several heuristic procedures effectively, is initially presented in (Mallipedi et al., 2011,
Tasgetiren et al., 2010; Mallipedi and Suganthan, 2010). After the generation of the
initial population, in the E_EM algorithm, a random algorithm strategy is assigned to
each individual in the population. In this way, a different algorithm is applied to each
individual according to the assigned strategy, while the time limit is not exceeded.
There are four algorithmic strategies in the E_EM algorithm: E_IG algorithm, E_IG,;,
algorithm, E_VBIH algorithm, and crossover local search. Note that, the crossover local
search is also included in the E_EM algorithm as one of the strategies since it enhances
the solution quality (Oztop et al., 2018; Tasgetiren et al., 2018b).

The crossover local search initially employs a uniform crossover operator only on

speed levels while keeping the permutation the same. For an individual s, in the
population, another individual s, is selected from the population randomly. Then, a
new solution is generated by taking the speed levels either from s, or s,, depending
on the crossover probability CR. Namely, for each position j in s, a uniform random
number 7; is generated between 0 and 1, and if r; < CR, speed level at position j in s,

is kept the same. In the case of r; = CR, the speed level at position j in s, is replaced
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by the speed level at the same position in individual s,;. Note that, the crossover
probability CR is drawn from the uniform distribution between 0.4 and 0.6. After the
crossover, the energy-efficient first-improvement insertion neighborhood structure
(Figure 6.13) is applied to the solution on hand. The archive set AS is updated during

the procedure, whenever a new non-dominated solution is found.

In order to enhance the performance of the E_EM algorithm and to avoid the
shortcomings of the standard forward scheduling approach as mentioned in Section
6.1.2, HFR and HFN heuristic fitness calculation approaches are also employed on
each individual in the population. Namely, the complete schedule is re-computed for
each individual in the population by employing HFR and HFN approaches, in order to
explore the neighboring schedules. As mentioned in Section 6.1.2, HFR and HFN
approaches employ swap moves on the job permutations of some stages, during
forward scheduling procedure. Note that, employing a swap move on the job
permutation of a stage can lead to a different complete schedule with different fitness

function values.

Consequently, after implementing the E_EM algorithm, the HFR approach is
employed on each individual in the population in the E_EMygg algorithm, while the
HFN approach is employed in E_EMygy algorithm. Furthermore, as a fourth variant
of the E_EM algorithm, both HFR and HFN approaches are employed with an equal
probability in the E_EMyprn algorithm. Note that, HFR and HFN approaches are
applied |n/2]times to each individual in E_EMypr, E_EMypy and E_EMyprN
algorithms. As mentioned in Section 6.1.3, speed levels of the jobs are also regarded
in the heuristic fitness calculation approaches. The archive set AS is updated during

the procedure if a new non-dominated solution is found.

The general outline of the energy-efficient ensemble of metaheuristic algorithms
(E_EM, E_EMygprn, E_EMypr, E_EMygy) is provided in Figure 6.14, where r is a
uniform random number between 0 and 1. Note that, as mentioned in Section 6.3.1,
the initial population is generated for the ensemble of metaheuristic algorithms using
the good starting solution found by the single-objective 1G algorithm with only the

makespan criterion.
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Procedure E_EM,E_EMyggp, E_ EMypy, E_EM ygpry

Generate the initial population with size PS:
e Apply the single objective IG algorithm using NEH_M (x) constructive heuristic
for 25% of the total time budget to find mP°s*

e Form the initial population using wPest

forp=1toPS
Assign a random algorithm strategy str, to individual s,
end for

while (time limit is not exceeded) do
forp=1toPS
if (strp = 1) Apply E_IG to individual s, (Destruction-Construction & Local Search)
else if (strp = 2) Apply E_IGyy,, to individual s, (Destruction-Construction & Local Search)
else if (strp = 3) Apply E_VBIH to individual s, (Variable Block Insertion & Local Search)
else if (strp = 4) Apply crossover local search to individual s,
end if
% HFR & HFN approaches (only in E_EMypg, E_EMygpy, E_EMyrgy algorithms)
fork =1to|n/2]
(E_EMygg): recompute the complete schedule for individual s, using HFR approach
(E_EMygy): recompute the complete schedule for individual s, using HFN approach
(E_EMygrn):
if r~U(0,1) <0.5)
recompute the complete schedule for individual s, using HFR approach
else
recompute the complete schedule for individual s, using HFN approach
end if
end for
end for
end while

Figure 6. 14. General Outline of the Energy-Efficient Ensemble of Metaheuristic
Algorithms for the EHFSP-V1

6.4 Energy-efficient Bi-Objective Metaheuristic Algorithms for the
EHFSP-V2

In this section, the proposed four energy-efficient bi-objective metaheuristic
algorithms; namely, two variants of the IG algorithm (E_IG2, E_IG2,;.), a VBIH
algorithm (E_VBIH2), and an ensemble of metaheuristic algorithms (E_EM2) are
explained for the EHFSP-V2.

6.4.1 Initial Population

In the proposed bi-objective metaheuristic algorithms for the EHFSP-V2, the initial
population with size PS is constructed as follows: Firstly, an initial solution is obtained

by the NEH_M(x) constructive heuristic, which is explained in Section 6.2.1. Then,
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the resulting solution is taken as the initial solution for the single-objective 1G, IGaLL
or VBIH algorithms for makespan minimization, which is explained in Section 6.2.2.
In order to start with a good job permutation, Inp% of the total CPU time is devoted
to the following: the single-objective IG in E_IG2 and E_EM?2 algorithms; the single-
objective 1GaLL in the E_IG2,y;, algorithm; and the single-objective VBIH in the
E_VBIH2 algorithm, where Inp% is 20% for large instances and Inp% is 10% for

small and medium instances.

Once the best solution 25t is found by one of these single-objective algorithms, the
first individual in the population is generated by assigning fast speed levels to all
operations of the jobs in mP¢st. The rest of the individuals in the population are
constructed by assigning slow and normal speed levels randomly to the operations of
jobs in ?¢st. The archive set (AS) is initially empty and filled with non-dominated
solutions from the initial population. In order to start with more energy-efficient
solutions, a mutation strategy is also applied to each individual in the population.
Namely, for each individual s, (m,%) € PS, we mutate the speed level i, ; of each
operation of a job by assigning a slow or normal speed level randomly. Then, the
archive set AS is updated after mutating the speed level ¥y ; of each operation of a job,

in the case of a new non-dominated solution is found.

6.4.2 E_LIG2 and E_IG2,;; Algorithms

E_IG2 and E_IG24;;, algorithms are very similar to the E_IG and E_IGp; ;. algorithms
in Section 6.3.2. Namely, E_IG2 is the extended version of the E_IG and E_IG2,y, is
the extended version of the E_IG,y, to the matrix-based speed scaling strategy. Similar
to the E_IG and E_IGgy;, algorithms, after the generation of the initial population;
destruction, construction and local search procedures are applied to each individual in
E_IG2 and E_IG2,;;, algorithms. However, when applying these procedures, a job is
removed/inserted from/into the solution as well as its speed column (speed levels of
its all operations) in the E_IG2 and E_IG24;, algorithms due to the matrix-based speed
scaling structure. Additionally, when changing the speed levels of a removed job,
random speed levels are assigned to all operations. Namely, in the destruction phase,
K jobs are randomly removed from the solution as well as their speed levels, and
random speed levels are assigned to the operations of these removed k jobs. Before

the construction, in the E_IG2,;; algorithm, the energy-efficient first-improvement
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insertion neighborhood structure (Figure 6.15) is applied to the partial solution, while
itis not applied in the E_IG2 algorithm. Then, these k jobs are reinserted into the partial
solution with their respective speed levels following the best insertion policy, in the

order of removal.

improve = true
while (improve = true) do
improve = false
forg=1tondo
(mi ) =
Remove job m; and its speed column E from solution s(m, ) randomly (without repetition)
fork=1tomdo
E = assign a random speed level from {1,2,3} to each operation k of job m;
end for
s*(r*,Y*) = Insert job (7‘[1-,_1,[7;) into best position of s(m, )
if (s* <s)thendo
s=s"
improve = true
end if
end for
end while

Figure 6. 15. Energy-Efficient First-Improvement Insertion Neighborhood Structure
for the EHFSP-V2

After destruction-construction procedures, the energy-efficient first-improvement
insertion neighborhood structure is applied to the complete solution, as shown in
Figure 6.15. Note that, this local search (Figure 6.15) is the extended version of the

local search in Figure 6.13 to the matrix-based speed scaling strategy. Namely, job ;

and its speed column E (i.e., speed levels of all operations of the job ;) are removed
from position i of solution s, and new speed levels are randomly assigned to the
operations of this removed job. Then, the local search inserts this job-speed column
pair (ni, ﬁ) into all possible positions of the incumbent solution s(7, ), and chooses
the best insertion. If the new solution s* dominates the incumbent solution s, then the
current solution is updated. This is repeated for all job-speed column pairs. In the case
of an improving solution, the local search is restarted until no more improving
solutions can be obtained. The archive set AS is also updated during the procedure,

whenever a new non-dominated solution is found.
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Unlike the E_IG and E_IG . algorithms, after implementing the aforementioned E_IG2
and E_IG2,;;, procedures, a mutation strategy and heuristic fitness calculation

approaches are also employed on each individual, as explained in Section 6.4.5.

6.4.3 E_VBIH2 Algorithm

E_VBIH2 algorithm is very similar to the E_VBIH algorithm in Section 6.3.3. Namely,
E_VBIH2 is the extended version of the E_VBIH algorithm to the matrix-based speed
scaling strategy. Similar to the E_VBIH algorithm, after the generation of the initial
population, block insertion and local search procedures are applied to each individual
in the E_VBIH2 algorithm. However, when applying these procedures, a job is
removed/inserted from/into the solution as well as its speed column (speed levels of
its all operations) due to the matrix-based speed scaling structure. Furthermore, when
changing the speed levels of a removed job, random speed levels are assigned to its all
operations. Namely, a block of jobs with size bs is randomly removed from the
solution together with their speed levels, where bs,,;, < bs < bSp,ax, and random
speed levels are assigned to the operations of these removed jobs. Note that, we set
bs,in= 2. Then, the energy-efficient first-improvement insertion neighborhood
structure (Figure 6.15) is applied to the partial solution. Afterward, the removed block
of jobs is inserted into all possible positions of the partial solution with their respective
speeds, and the best block insertion is realized. After block insertion procedure, the
energy-efficient first-improvement insertion neighborhood structure is applied to the
complete solution, as shown in Figure 6.15. The archive set AS is also updated during
this procedure, in the case of a new non-dominated solution is found. This process is

repeated until the bs reaches the bs,,q-

Unlike the E_VBIH algorithm, after implementing the aforementioned E_VBIH2
procedures, a mutation strategy and heuristic fitness calculation approaches are also
employed on each individual, as explained in Section 6.4.5.

6.4.4. Ensemble of Metaheuristic Algorithms (E_LEM2)

As a fourth algorithm, the aforementioned E_IG2, E_IG24;;, and E_VBIH2 algorithms
are combined in an energy-efficient ensemble of metaheuristic algorithms (E_EM2).
After the generation of the initial population, in the E_EM2 algorithm, a random
algorithm strategy is assigned to each individual in the population. There are three
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algorithmic strategies in the E_EM?2 algorithm: E_IG2 algorithm, E_IG2 5y, algorithm
and E_VBIH2 algorithm. In this way, a different algorithm is applied to each individual
according to the assigned strategy similar to the E_EM algorithm described in Section
6.3.4. The general outline of the energy-efficient ensemble of metaheuristic algorithms
(E_EM2) is provided in Figure 6.16, where r is a uniform random number between 0
and 1. As shown in Figure 6.16, after implementing the E_LEM2 procedures, a mutation
strategy and heuristic fitness calculation approaches are also employed on each

individual, as explained in Section 6.4.5.

Procedure E_ EM2

Generate the initial population with size PS:

e Apply the single objective IG algorithm using NEH_M (x) constructive heuristic
for Inp% of the total time budget to find wPest
e Form the initial population using w?est

o Apply a mutation strategy on speed levels of the individuals in the initial population

forp=1toPS
Assign a random algorithm strategy str, to individual s,
end for

while (time limit is not exceeded) do

forp=1toPS

if (strp = 1) Apply E_IG2 to individual s, (Destruction-Construction & Local Search)

else if(strp = Z)Apply E_1G2,,, to individual s, (Destruction-Construction & Local Search)
else if(strp = 3)Apply E_VBIH?2 to individual s, (Variable Block Insertion & Local Search)
end if

Apply a mutation strategy on the speed levels of the individual s,
fork=1ton
if r~U(0,1) <0.5)
recompute the complete schedule for individual s, using HFR approach
else
recompute the complete schedule for individual s, using HFN approach
end if
end for
end for
end while

Figure 6. 16. General Outline of the Energy-Efficient Ensemble of Metaheuristic
Algorithms for the EHFSP-V2

6.4.5. Heuristic Fitness Calculation & Mutation Operators

As mentioned in Section 6.1.4, the standard forward scheduling approach is employed
in all proposed bi-objective metaheuristic algorithms for the EHFSP-V2, since the
standard forward scheduling approach is very effective. HFR and HFN approaches are

employed only as a local search to further improve the performance of the algorithms.
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So as to obtain more energy-efficient solutions, a mutation strategy is also applied to
each individual in the population, after the aforementioned E_IG2, E_IG24;;,
E_VBIHZ2, and E_EM2 algorithms. Namely, for each individual, we mutate the speed
level ¥, ; of each operation of a job by assigning a slow or normal speed level randomly.
Then, the archive set AS is updated after mutating the speed level 1 ; of each operation

of a job, in the case of a new non-dominated solution is found.

In order to enhance the performance of the aforementioned E_IG2, E_IG2 4., E_ZVBIH2
and E_EM2 algorithms further and to avoid the shortcomings of the standard forward
scheduling approach as mentioned in Section 6.1.2, HFR and HFN heuristic fitness
calculation approaches are also employed on each individual in the population, as a
local search. Namely, the complete schedule is re-computed for each individual in the
population by employing HFR and HFN approaches, in order to explore the
neighboring schedules. As mentioned in Section 6.1.2, HFR and HFN approaches
employ swap moves on the job permutations of some stages, during the forward
scheduling procedure. Consequently, after implementing the E_IG2, E_IG24;;,
E_VBIH2 or E_EM2 algorithm, both HFR and HFN approaches are employed on each
individual with an equal probability. Note that, HFR and HFN approaches are applied
n times to each individual. As mentioned in Section 6.1.4, speed levels of the jobs are
also regarded in the heuristic fitness calculation approaches. The archive set AS is

updated during the procedure if a new non-dominated solution is found.

6.5 Archive Set Update Procedure

In all aforementioned energy efficient bi-objective metaheuristic algorithms for both
EHFSP-V1 and EHFSP-V2, an archive set AS is used to store non-dominated
solutions. When a new non-dominated solution found, it is included in the archive set
AS and any member dominated by the new non-dominated solution is removed. In
order to update the archive set AS, an effective update procedure is employed, which

is proposed by Pan et al. (2009), as shown in Figure 6.17.

For including a new non-dominated solution x to the archive set AS, a straightforward
way is to compare it with each solution in the AS to check whether it is dominated by
any solution in the AS. Since this straightforward method makes comparisons with all
solutions in the set, it requires a high computational time. However, the update

procedure of Pan et al. (2009) employs a faster update procedure without evaluating
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all comparisons, using the storage structure of AS. Basically, it finds the most suitable
position for the new solution x to be inserted in a smarter way regarding the storage
structure of the AS. Note that, the non-dominated solutions in AS are stored in
increasing order of their first objective function values, where their second objective

function values will be in decreasing order.

As shown in Figure 6.17, when comparing f; (x) with fl(ﬁj), following cases may

arise:

Case 1. If f;(x) = f,(99;) and if £,(x) < f>(9;), X is a new non-dominated solution

and it dominates the solution 9;. Therefore, x should be inserted to position j (pos=j)
and ; should be replaced by x. Otherwise, if f; (x) = f;(¥9;) and if £,(x) = £,(9;), X

is dominated by ; or has the same objective function values as ¥;.

Case 2. If f,(x) < f1(9):

If j =1, xis a new non-dominated solution; it should be inserted to the first

position (pos=j) in AS and the archive size u should be incremented by one.

If j>1 and if £,(x) < f,(91), X is a new non-dominated solution; it
should be inserted to the position j (pos=j) and the archive size u should be incremented

by one. Otherwise, if j > 1 and if £,(x) = f,(9;—1), X is dominated by 9;_;.

Case 3. If f;(x) > £1(19;) and if £,(x) < f»(¥9;), X is @ new non-dominated solution;
it should be inserted to the position j+1 (pos=j+1) and the archive size u should be
incremented by one. Otherwise, if f,(x) > f;(9;) and if f,(x) = £5(9;), x is
dominated by ¥;.

If any of the above cases is met, the solution x is added to position pos and all solutions

dominated by x in AS are removed as explained in Figure 6.17.
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1. Archive size is u = |AS| and AS = {9,,9,,..,9,}. Initially, AS is empty and the first non-
dominated solution x will be added to the first position in AS. Let k = 1.
2. Find a most suitable position pos for the next individual x in the archive set AS as follows:
do{
j =1k +u)/2]
if (fl(x) = fl(ﬁj)) then j = j, break
elseif (fl(x) < fl(ﬁj)) thenu=j—1
else k=j+1
while(k < u)

3. When comparing f; (x) with f;(9;), following cases may arise:
Case 1. if (fl(x) = fl(ﬁj)) and if (fz(x) < fz(ﬁj)) then pos = j
Case 2. if (fl(x) < fl(ﬁj))
if j=1 thenpos=jandu=u+1
if j>1and if (fz(x) < fz(ﬁj_l)) thenpos =jandu=u+1
Case 3. if (fl(x) > fl(ﬁj)) and if (fz(x) < fz(ﬁj)) thenpos=j+landu=u+1

If any of the above cases is met, the solution x is added to position pos and all solutions dominated by
x in AS are removed. The below procedure removes the dominated solutions from AS:

Step 1. If (pos = u) then go to Step 4
Step 2. Let pos =pos+ 1. If f, (19,,05) > f,(x) then remove 9,,,; otherwise go to Step 4

Step 3. if(pos < u) then go to Step 2
Step 4. AS = report non — dominated solutions

Figure 6. 17. Archive Set Update Procedure
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CHAPTER 7
COMPUTATIONAL RESULTS

For evaluating the performance of the proposed solution approaches, the well-known
HFSP benchmark set (Carlier and Neron, 2000; Liao et al., 2012; Oztop et al., 2019)
is modified, where each instance is represented by the number of jobs, the number of

stages and the machine layout at the stages.
The machine layout is defined by the letters a, b, ¢, and d:

a: There is a single machine in the middle stage, and there are three machines in other

stages.
b: There is a single machine in the first stage, and there are 3 machines in other stages.
c: There are two machines in the middle stage, and three machines in other stages.
d: There are three machines in all stages.

For example, the notation j10c5b1 indicates a problem with 10 jobs (j10), 5 stages (c5)
and b type layout, where the last number 1 is the problem index for a specific type.
Originally, there are 77 instances in the benchmark set (Carlier and Neron, 2000),
where the number of jobs is either 10 or 15 and the number of stages is either 5 or 10.
Furthermore, additional 40 large instances with 30, 40, 50 and 60 jobs and 5 stages are
proposed in (Liao et al., 2012; Oztop et al., 2019), where the number of machines in
each stage is randomly generated between 3 and 5, and the processing times of jobs
are uniform in the range [1,100]. The instances for the bi-objective EHFSP are
generated by adding energy-related parameters to these benchmarks. Due to the
computationally challenging nature of the bi-objective EHFSP, additional small
instances with 5 jobs & 5 stages are also created by truncating the instances with 10
jobs & 5 stages and 15 jobs & 5 stages. Consequently, 47 small instances (j5¢5), 77
medium instances (23 j10c5 instances, 24 j15c5 instances, 18 j10c10 instances, 12
j15¢10 instances) and 40 large instances (10 j30c5e instances, 10 j40c5e instances, 10
J50c5e instances, 10 j60c5e instances) are generated for the EHFSP-V1 by adding

energy-related parameters to the HFSP benchmarks.
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Due to the complex nature of the EHFSP-V2, only 12 small instances with 5 jobs & 5
stages are used, which are created by truncating the instances with 10 jobs & 5 stages.
Actually, there are 23 instances with 10 jobs & 5 stages. However, the Pareto-optimal
solutions can be obtained for the EHFSP-V2 only for the truncated versions of the first
12 of these instances in reasonable computational time. Hence, only the truncated
versions of the first 12 of these 23 instances are employed for the EHFSP-V2.
Consequently, 12 small instances (j5¢5), 77 medium instances (23 j10c5 instances, 24
j15¢5 instances, 18 j10c10 instances, 12 j15¢10 instances) and 40 large instances (10
J30c5e instances, 10 j40c5e instances, 10 j50c5e instances, 10 j60c5e instances) are
generated for the EHFSP-V2 by adding energy-related parameters to the HFSP

benchmarks.

In the calculation of TEC, the speed and energy parameters proposed by Mansouri et
al. (2016) are used. As mentioned before, there are three processing speed levels for
the machines: fast, normal and slow, and the corresponding processing speed factors
arev; = {1.2,1.0,0.8}. The conversion factors, which are used to estimate the energy
consumption during processing are A; = {1.5, 1.0, 0.6} for fast, normal and slow
processing speeds, respectively. It is assumed that the machines have the same power
(Bri = 60kW Vi € I,k € M) with the same conversion factor for idle times
(ag; = 0.05Vi € I,k € M).

As mentioned in Section 5.4, the augmented e-constraint method is used to solve the
proposed bi-objective MILP and CP models. All instances are solved through the
augmented e-constraint method using IBM ILOG CPLEX 12.8 ona Core i5, 2.80 GHz,
8 GB RAM computer. Note that, CP Optimizer suite of IBM ILOG CPLEX 12.8 is
used to solve the CP model. Minimizing C,,,, is considered as the objective and TEC
as a constraint. The lexicographic optimization is used for each objective function in
order to obtain the payoff table with only Pareto-optimal solutions. Starting with an
upper bound on TEC, which is found from the payoff table, the single-objective model
is iteratively solved optimally by decreasing the constraint on TEC with a

predetermined ¢ level, until the minimum value of TEC is reached.

In general, it is impossible to find all solutions on the continuous Pareto-optimal
frontiers. Therefore, the Pareto-optimal frontiers are approximated for the small-sized
instances using a very small ¢ level (107%). These finite number of Pareto-optimal

solutions are referred to Pareto-optimal solution set (P). In order to avoid redundant
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iterations, the information about the objective space is used as soon as it is available.
At any iteration, when the slack variable is larger than the € level, it indicates that the
same solution will be found in the next iteration, with the only difference being the
slack variable. Therefore, a jump strategy is employed at each iteration by decreasing
the constraint on TEC to the TEC value of the optimal solution found in the previous
iteration. The Pareto-optimal solution sets are obtained for every small-sized instance

using the augmented e-constraint method with this acceleration strategy.

For medium instances, non-dominated solution sets are found by dividing the range of
TEC objective function to 20 equal intervals and using this value as € level. Due to the
exponentially increasing solution times of the single-objective model, a 9-minute time
limit is set for each iteration (3 hours time limit in total). Since the optimality of the
solution is not guaranteed in each iteration, the aforementioned acceleration strategy
Is not used during this search process.

The proposed algorithms are coded in C++ programming language on Microsoft
Visual Studio 2012 and all instances are solved on a Core i5, 2.80 GHz, 8 GB RAM
computer. For the EHFSP-V1, thirty replications are carried out for each instance. In
each replication, the algorithm is run for 25nm milliseconds for small instances,
50nm milliseconds for medium instances and 100nm milliseconds for large instances,
where n denotes the number of jobs and m represents the number of stages. For the
EHFSP-V2, twenty replications are carried out for each instance, where the algorithm
is run for 100nm milliseconds in each replication. The population size of PS=100 is
employed in all algorithms for the EHFSP-V1 (E_IG, E_IGp;;, E_VBIH,
E_EM, E_EMygg, E_EMypn, E_LEMypry)- The population size of PS=30 is employed in
all algorithms for the EHFSP-V2 (E_IG2, E_IG2,;;,, E_VBIH2, E_EM2).

According to Okabe et al. (2003), there are three main aspects to assess the quality of
a non-dominated solution set: the cardinality (i.e., the number of solutions), the
convergence (i.e., the closeness to the Pareto-optimal frontier) and the diversity (i.e.,
the distribution and spread of the solutions). The performances of the proposed
algorithms are evaluated with respect to these three main aspects in the following

subsections.

Since very close approximations to Pareto-optimal frontiers (P) are obtained for small

instances, the below performance metrics are used to assess the quality of the non-
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dominated solution set (S) found by a metaheuristic algorithm, together with the

cardinality metric (number of non-dominated solutions found).

¢ Ratio of the Pareto-optimal solutions found (Cp) =|SNP|/ |P|

Zvep d(,5)

¢ Inverted Generational Distance (IGD) = H

where d(v,S) denotes the minimum Euclidean distance between v and the points in
S. Lower IGD value is required to ensure that the set S is very close to the set P
(Coello et al., 2007).

¢ Distribution Spacing (DS) (Tan et al., 2006)

1 = 1/2
[mZiES(d_i_d)z] : Where Cz — ZiESdi
d N

DS(S) =

and di denotes the minimum Euclidean distance between solution i and its nearest
neighbor in S. The smaller value of spacing indicates that the solutions in S are more

evenly distributed.

For medium and large instances, the non-dominated solution sets of time-limited
MILP, time-limited CP and metaheuristic algorithms are compared with each other in
terms of the aforementioned cardinality, Cp, IGD and DS metrics. As the Pareto-
optimal solution sets (P) are not known for these instances, the reference sets (R) are
used in Cp and IGD metrics. Note that the reference set includes only the high-quality
non-dominated solutions, which are obtained by selecting all the non-dominated
solutions found by the metaheuristic algorithms, time-limited MILP and CP

approaches.
7.1 Parameter Calibration of the Algorithms

7.1.1 Parameter Calibration of the I1G, 1GaLL and VBIH Procedures

In order to calibrate the parameters of the algorithms, a design of experiment (DOE)
(Montgomery, 2008) is carried out for the IG, IGaLL and VBIH algorithms with the
makespan criterion. For this purpose, random instances with 5 stages are generated
using the same methodology proposed in (Liao et al., 2012; Oztop et al., 2019), where
the number of machines in each stage is randomly generated between 3 and 5 and the
processing times of the jobs are uniform in the range [1,100]. Consequently, instances

with 30, 40, 50 and 60 jobs are generated, each size having 5 instances, summing up
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to 20 instances. Both algorithms are coded in C++ programming language on
Microsoft Visual Studio 2012, and a full factorial design of experiments is carried out
for each algorithm on a Core i7, 2.60 GHz, 8 GB RAM computer.

The IG algorithm has two parameters; the destruction size (x) and the temperature
adjustment parameter (tP). After pilot experiments, we set k to three levels as k €
(2,3,4); and 7P to three levels as 7P € (0.1,0.3,0.5) resulting in 9 treatments. There
are 20 instances, and each instance is run for 9 treatments with a maximum CPU time
Tmax = 20 X n X m milliseconds. The relative percentage deviation (RPD) is
computed as a response variable of the experiment. Namely, we calculate the RPD for

each instance-treatment pair as follows:

RPD (Claz) = (%) +100 (7-1)

where C, ., is the C,,,, Value generated by a given heuristic in treatment i, and C7%% is

the minimum C,,,,,, found among 9 treatments for that instance.

An ANOVA procedure is performed after determining the RPD values for each
instance, and the results are given in Figure 7.1. As shown in Figure 7.1, different
levels for the k and TP parameters do not result in statistically significant differences
in the RPD values, as the p -values of these parameters are greater than the significance
level, a= 0.05. This indicates that the IG performs rather robustly with respect to
various levels of these parameters. Furthermore, no statistically significant interaction
effect exists between parameters as the p-value of the parameter interaction effect is
higher than the significance level.

Source DF SeqSS AdjSS AdjMS F — Ratio p —value

K 2 0.08558 0.08558 0.04279 0.53 0.588
tP 2 0.26988 0.26988 0.13494 1.68 0.189
kxtP 4 026735 0.26735 0.06684 0.83 0.506

Error 171 13.72465 13.72465 0.08026
Total 179 14.34746

Figure 7. 1. ANOVA Results for Parameters of the IG

As there is no significant interaction effect, the main effects plots of the parameters
are also provided in Figure 7.2. Even though there is no statistically significant
difference between various levels of k and TP parameters, the plots demonstrate that
settings of k=4 and =P = 0.5 provide better RPD value than others. As shown in the

figure, small =P levels result in worse RPD values and decreased algorithm
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performance, i.e., a higher setting of tP value provides better results. Note that,

according to the detailed design of the experiments of Ruiz and Stitzle (2007) for the

original 1G algorithm, k=4 setting was also provided better performance than the other

k values between 2 and 8. Consequently, we set k=4 for the IG, E_IG, and E_IG2

algorithms; and P=0.5 in 1G.

Main Effects Plot for IG
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Figure 7. 2. Main Effects Plot for Parameters of the IG

Similar to the IG, a full factorial design is conducted for the parameter settings of

IGaLL. The IGaLL algorithm has two parameters; the destruction size (k) and the

temperature adjustment parameter (tP). We set k to three levels as k € (2,3,4); and

TP to three levels as TP € (0.1,0.3,0.5) resulting in 9 treatments, similar to the IG.

The RPD values are determined by employing the same method mentioned above, and

the ANOVA results are given in Figure 7.3.

Source DF SeqSS AdjSS AdjMS F — Ratio p —value
K 2 0.05038 0.05038 0.02519 0.39 0.675
tP 2 0.02959 0.02959 0.0148 0.23 0.794

k+tP 4 0.06477 0.06477 0.01619 0.25 0.907

Error 171 10.9311 10.9311 0.06392

Total 179 11.07584

Figure 7. 3. ANOVA Results for Parameters of the 1GaLL

As shown in Figure 7.3, different levels for the x and TP parameters do not result in

statistically significant differences in the RPD values for the IGaLL, as the p -values of

these parameters are greater than the significance level o= 0.05. This states that the

IGaLL performs rather robustly with respect to various levels of these parameters.
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Additionally, no statistically significant interaction effect exists between parameters
as the p-value of the parameter interaction effect is higher than the significance level.

Main Effects Plot for IGALL
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Figure 7. 4. Main Effects Plot for Parameters of the IGaLL

Since there is no significant interaction effect, the main effects plots of the parameters
for the 1GaLL are also provided in Figure 7.4. Even though there is no statistically
significant difference between various levels of k and TP parameters, the plots
demonstrate that settings of k=2 and =P = 0.5 provide better RPD value than others.
As shown in the figure, a higher setting of =P value provides better results, similar to
the IG. Furthermore, as shown in the figure, high x levels result in worse RPD values
and decreased algorithm performance. Note that, according to the comprehensive
experimental parameter tunings of Dubois-Lacoste et al. (2017) for the original 1GaLL
algorithm, k=2 setting also provided better performance than the other x values.
Consequently, we set k=2 for the 1GaLL, E_IGay;, and E_IG2,;,, algorithms; and
TP=0.51in IGALL.

Similarly, a full factorial design is also conducted for the parameter settings of VBIH.
The VBIH algorithm has two parameters; the maximum block size (bs;,,,) and the
temperature adjustment parameter (tP). We set bs,,4, t0 three levels as bs,,,, €
(2,3,4); and P to three levels as TP € (0.1, 0.3,0.5) resulting in 9 treatments. The
RPD values are determined by employing the same method mentioned above, and the
ANOVA results are given in Figure 7.5.
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Source DF SeqSS AdjSS AdjMS F — Ratio p —value

bSmax 2 0.03153 0.03153 0.01576 0.16 0.849
tP 2 039535 0.39535 0.19767 2.05 0.131
bspar *tP 4 0.09013 0.09013 0.02253 0.23 0.919

Error 171 16.46368 16.46368 0.09628
Total 179 16.98068

Figure 7. 5. ANOVA Results for Parameters of the VBIH

As shown in Figure 7.5, different levels for the bs,,,, and TP parameters do not result
in statistically significant differences in the RPD values for the VBIH, as the p -values
of these parameters are greater than the significance level, a= 0.05. This indicates that
the VBIH performs rather robustly with respect to various levels of these parameters.

Furthermore, no statistically significant interaction effect exists between parameters.

Since there is no significant interaction effect, the main effects plots of the parameters
for the VBIH are also provided in Figure 7.6. Even though there is no statistically
significant difference between various levels of bs,,,, and TP parameters, the plots
demonstrate that settings of bs,,,,= 3 and TP = 0.5 provide better RPD value than
others. As shown in the figure, a higher setting of TP value provides better results,
similar to the IG and IGacLL algorithms. Consequently, we set bs,,,,,= 3 for the VBIH,
E_VBIH and E_VBIH2 algorithms; and 7P=0.5 in VBIH.
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Figure 7. 6. Main Effects Plot for Parameters of the VBIH

7.1.2 Parameter Calibration of the HFN Approach

The HFN approach is employed in only two extensions of the E_EM algorithm for the
EHFSP-V1, i.e., E_EMypy and E_EMypry algorithms. Therefore, according to the
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preliminary experiments, we set the following parameters for the HFN approach of the
E_EMygpny and E_LEMygry algorithms: sp = 0.60 and np = 0.60 for small and

medium instances, sp = 0.40 and np = 0.60 for large instances.

On the other hand, the HFN approach is employed in all algorithms for the EHFSP-
V2 due to the more complex nature of the problem. Consequently, in order to calibrate
the sp and np parameters of the algorithms for the EHFSP-V2, a design of experiment
(DOE) is carried out for the E_IG2, E_IG24;;, and E_VBIH2 algorithms. For this
purpose, random instances with 5 stages are generated using the same methodology
proposed in (Liao et al., 2012; Oztop et al., 2019), where the number of machines in
each stage is randomly generated between 3 and 5 and the processing times of the jobs
are uniform in the range [1,100]. Consequently, instances with 30, 40, 50 and 60 jobs
are generated, each size having 4 instances, summing up to 16 instances. Both
algorithms are coded in C++ programming language on Microsoft Visual Studio 2012,
and a full factorial design of experiments is carried out for each algorithm on a Core
i7, 2.60 GHz, 8 GB RAM compulter.

The HFN approach has two parameters; the swapping probability sp and the neighbor
selection probability np. After pilot experiments, we set sp to three levels as sp €
(0.4,0.6,08); and np to three levels as np € (0.4,0.6,08) resulting in 9 treatments.
Each instance is run for 9 treatments with a maximum CPU time T4, = 100 X n X m
milliseconds. The IGD metric is computed as a response variable of the experiment.

Namely, we calculate the IGD for each instance-treatment pair as follows:

IGD (5;) = Zxeed®S) (7-2)

|P|

where S; is the non-dominated solution set generated by a given heuristic in treatment
I, Pis the reference set obtained from 9 treatments for that instance, and d(v, S;)
denotes the minimum Euclidean distance between v and the points in S;. Note that, the
reference set includes only the high-quality non-dominated solutions, which are
obtained by selecting all the non-dominated solutions found by the heuristic under all
9 treatments. A full factorial design of experiments is carried out for each algorithm

using this methodology.

ANOVA results are given for the E_IG2 algorithm in Figure 7.7. As shown in Figure
7.7, different levels for the sp and np parameters do not result in statistically
significant differences in the IGD values, as the p -values of these parameters are
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greater than the significance level, a= 0.05. It can be said that the E_IG2 performs
rather robustly with respect to various levels of these parameters. Furthermore, no
statistically significant interaction effect exists between parameters as the p-value of

the parameter interaction effect is higher than the significance level.

Source DF SeqSS AdjSS AdjMS F — Ratio p —value

sp 2 92.3 92.3 46.2 0.37 0.691
np 2 4443 4443 2221 1.78 0.172
sp*np 4 3531 3531 88.3 0.71 0.587

Error 135 16816.8 16816.8 124.6
Total 143 17706.4

Figure 7. 7. ANOVA Results for Parameters of the E_IG2

Since there is no significant interaction effect, the main effects plots of the parameters
are also provided in Figure 7.8. Even though there is no statistically significant
difference between various levels of sp and np parameters, the plots demonstrate that
settings of sp=0.6 and np = 0.6 provide better IGD value than others. As shown in the
figure, np=0.4 and np=0.8 settings have similar IGD values, but, the np=0.6 setting
provides better IGD value than these settings. Consequently, we set sp=0.6 and np =
0.6 for the HFN procedure of the E_IG2 algorithm.

Main Effects Plot for EIG2
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Figure 7. 8. Main Effects Plot for Parameters of the E_IG2

ANOVA results are given for the E_IG2 5y, algorithm in Figure 7.9. The results show
that the sp parameter is very significant at the significance level, a=0.05. However,
different levels for the np parameter do not result in statistically significant differences
in the IGD values, as the p-value of this parameter is greater than the significance level,

a= 0.05. It can be said that the E_IG2,;; performs rather robustly with respect to
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various levels of the np parameter. Furthermore, no statistically significant interaction
effect exists between parameters as the p-value of the parameter interaction effect is
higher than the significance level.

Source DF SeqSS AdjSS AdjMS F — Ratio p —value

sp 2 1434 1434 717 5.15 0.007
np 2 4013 4013  200.6 1.44 0.240
spxnp 4 5476 5476 1369 0.98 0.418

Error 135 18776.9 18776.9 139.1
Total 143 21159.8

Figure 7. 9. ANOVA Results for Parameters of the E_[G2,;,,

Since there is no significant interaction effect, the main effects plots of the parameters
are provided in Figure 7.10. As shown in the figure, sp=0.6 setting has the minimum
IGD value, where sp=0.8 setting has the worst IGD value. Even though there is no
statistically significant difference between various levels of the np parameter, the plot
demonstrates that settings of np = 0.4 and np = 0.6 provide better IGD value than the
other one. Consequently, we set sp=0.6 and np = 0.6 for the HFN procedure of the
E_IG2 4y, algorithm.

Main Effects Plot for EIG2ALL
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Figure 7. 10. Main Effects Plot for Parameters of the E_IG2y,,

ANOVA results are given for the E_VBIH2 algorithm in Figure 7.11. As shown in
Figure 7.11, different levels for the sp and np parameters do not result in statistically
significant differences in the IGD values, as the p-values of these parameters are
greater than the significance level, a = 0.05. It can be said that the E_VBIH2 performs

rather robustly with respect to various levels of these parameters. Furthermore, no
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statistically significant interaction effect exists between parameters as the p-value of
the parameter interaction effect is higher than the significance level.

Source DF SeqSS AdjSS AdjMS F — Ratio p —value

sp 2 2984 2984 1492 057 0.569
np 2 5194 5194 2597 0.99 0.376
spxnp 4 2143 2143 536 0.20 0.936

Error 135 35535.4 355354 263.2
Total 143 36567.4

Figure 7. 11. ANOVA Results for Parameters of the E_VBIH?2

As there is no significant interaction effect, the main effects plots of the parameters
are also provided in Figure 7.12. Even though there is no statistically significant
difference between various levels of sp and np parameters, the plots demonstrate that
settings of sp=0.6 and np = 0.6 provide better IGD value than others. Consequently,
we set sp=0.6 and np = 0.6 for the HFN procedure of the E_VBIH2 algorithm. Since
the E_EM2 algorithm is the combined version of E_IG2, E_IG24;; and E_VBIH2
algorithms, we also set sp=0.6 and np = 0.6 for the HFN procedure of the E_LEM2

algorithm.

Main Effects Plot for E_VBIH2
sp np

364

354

34

8

334

324

31- T T T T T T

0.4 0.6 0.8 0.4 0.6 0.8

Figure 7. 12. Main Effects Plot for Parameters of the E_VBIH?2

7.2 Comparison of Constructive Heuristics based on Cmax Criterion

Before proceeding to the computational results for the bi-objective EHFSP, the impact
of the proposed NEH_M(x) heuristic is initially analyzed on the solution quality. As
mentioned before, all proposed algorithms in this thesis employ NEH_M(x) to generate

the initial solution. In this section, the performance of NEH_M(x) is compared with
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the well-known NEH heuristic in order to demonstrate its efficiency. For evaluating
the performances of these two constructive heuristics, the large instances proposed by
(Liao et al., 2012; Oztop et al., 2019) with 30, 40, 50 and 60 jobs and 5 stages are used.
All constructive heuristics are run for these instances on a Core i7, 2.60 GHz, 8 GB

RAM computer. Note that, the comparisons are made considering only the makespan

objective.
Table 7. 1. Comparison of Constructive Heuristics
NEH NEH_M(x) NEH NEH_M(x)

INStaNce oo () ((:r::; RPD (%) (C::)J INStaNce oop () E:g RPD (%) ((:mPSL)J
j30c5el  6.28 0 3.90 63  j50c5el  2.37 0 1.34 234
j30c5e2  6.49 0 2.27 47  j50c5e2  2.41 15 0.40 219
j30c5e3  8.94 0 4.22 31  j50c5e3  6.03 0 1.94 234
j30c5e4  9.41 0 5.15 31  j50c5e4  2.20 16 0.77 250
j30c5e5  4.67 0 1.83 47 j50c5e5  3.80 0 2.24 235
j30c5e6  9.67 0 3.83 31  j50c5e6  8.81 0 2.38 250
j30c5e7  7.67 0 3.51 32 j50c5e7  4.74 15 0.75 235
j30c5e8  12.31 0 5.49 31  j50c5e8  2.80 0 1.17 250
j30c5e9  5.14 15 4.52 31  j50c5e9  8.73 16 4.44 250
j30c5e10 17.28 0 7.68 31  j50c5e10  6.19 0 2.48 266
j40c5el  3.63 0 1.31 110  j60c5el  6.16 16 1.23 500
j40c5e2  3.52 0 2.48 109  j60c5e2  5.65 0 3.26 531
j40c5e3  8.24 0 2.25 109  j60c5e3  4.92 15 1.99 516
j40c5e4  7.36 0 3.81 110  j60c5e4  5.58 0 3.30 562
j40c5e5  10.52 16 3.93 109  j60c5e5  3.48 16 2.45 516
j40c5e6  3.20 0 0.77 94  j60c5e6  5.92 16 1.91 547
j40c5e7  2.86 0 0.95 109  j60c5e7  0.90 0 0.57 484
j40c5e8  4.36 0 0.75 110  j60c5e8  1.26 15 0.00 500
j40c5e9  3.10 16 0.95 93  j60c5e9  0.61 0 0.17 485
j40c5e10  6.59 0 3.49 94  j60c5e10 3.91 16 0.87 515

Average 5.69 5.08 2.42 225.03

Table 7.1 reports the results for each constructive heuristic. In the table, the relative
percentage deviation (RPD) between the solution C,,,, and BCp, 1S cOmputed as

follows:

RPD = “mex—tMax, 1, (7-3)

Max

where BCjq, is the best-known solution reported by Oztop et al. (2019). For each
constructive heuristic, the total CPU time is also reported for each instance. Note that

zero values in CPU times indicate negligible solution times.

As shown in Table 7.1, NEH is very fast, with a 5.08 ms average CPU time. However,
its average RPD is 5.69%. Although NEH_M(x) takes 225.03 ms on average, its
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average RPD is 2.42% from the best-known solutions reported in Oztop et al. (2019).
It is clear from Table 7.1 that NEH_M(x) significantly outperforms the NEH heuristic.

In order to further analyze the effect of the proposed NEH_M(x) constructive heuristic
on the solution quality, we also run the single-objective algorithms (IG, IGa.L and
VBIH) for the two different versions depending on the initial solution generation.
Namely, the initial solution is generated with the standard NEH in the first version of
the algorithms, whereas the proposed NEH_M(x) is used for the initial solution
generation in the second version of the algorithms. For evaluating the performances of
these two versions of the single-objective algorithms, the aforementioned 40 large
instances are used. All single-objective algorithms are run for these instances on a Core
i7,2.60 GHz, 8 GB RAM computer considering only the makespan criterion. For each
algorithm, 15 independent replications are carried out for each instance. All algorithms
are run for 20nm milliseconds in each replication, where n denotes the number of jobs

and m represents the number of stages.

Table 7.2 reports the RPD results for each version of the algorithms, where RPD values
are computed for each instance with respect to the best-known solutions as in Eq. (7-
3). The average RPD values over 15 replications are reported for each algorithm, as

well as the maximum and the minimum values.

As shown in Table 7.2, the second version of each algorithm (with NEH_M(x))
outperforms the first version of that algorithm (with NEH) in terms of both the average,
minimum and maximum RPDs. Particularly, in terms of average RPDs, using the
NEH_M(x) heuristic to generate the initial solution instead of NEH, improves the
performance of the IG, IGaLL and VBIH algorithms by 0.07%, 0.09% and 0.09%
respectively, on the overall average.

In terms of minimum RPDs, IG_NEH_M(x) (0.15%), IGaLL._NEH_M(x) (0.19%) and
VBIH_NEH_M(x) (0.17%) perform much better than IG_NEH (0.28%), 1GaLL_NEH
(0.29%) and VBIH_NEH (0.27%). Similarly, in terms of maximum RPDs,
IG_NEH_M(x) (0.40%), 1GaLL_NEH_M(x) (0.43%) and VBIH_ NEH_M(x) (0.43%)
perform much better than IG_NEH (0.54%), 1Ga.._NEH (0.62%) and VBIH_NEH
(0.67%). Consequently, it can be said that employing NEH_M(x) as a constructive

heuristic significantly improves the performance of the algorithms.
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Table 7. 2. Comparison of Single-Objective Algorithms

IG_NEH IG.NEH M(x)  1Ga_NEH IGa. NEH M(x) VBIH_NEH  VBIH_NEH_M(x)

Instance  ppp (95) RPD (%) RPD (%) RPD (%) RPD (%) RPD (%)

Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
j30c5el 1.46 1.30 1.73 1.10 0.87 130 124108 152 120 0.87 130 1.341.08 1.73 1.00 065 1.30
j30c5e2 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j30c5e3 093 0.84 1.01 0.87 051 1.01 0930.84 101 0.89 0.67 1.01 0.97 0.84 1.18 0.83 051 101
j30c5e4 118 0.89 1.42 1.05 0.71 124 1.291.07 160 1.09 089 124 1.09 0.89 142 094 053 124
j30c5e5 0.62 0.50 0.83 0.56 0.33 0.67 0.67 0.50 0.83 0.59 0.50 0.83 0.74 0.50 1.00 0.64 050 0.83
j30c5e6 0.70 0.50 1.00 0.52 0.17 0.83 0.790.50 1.17 051 0.17 083 0.83 050 1.17 056 0.17 0.83
j30c5e7 0.09 0.00 0.16 0.04 0.00 0.16 0.11 0.00 0.32 0.05 0.00 0.16 0.11 0.00 0.32 0.03 0.00 0.16
j30c5e8 0.36 0.15 0.74 0.22 0.00 0.30 0.400.30 0.59 0.28 0.00 045 0.40 0.15 0.59 0.17 0.00 045
j30c5e9 0.54 0.47 0.78 0.57 0.16 0.78 0.62 047 0.78 0.52 0.16 0.78 0.63 0.47 0.93 0.58 047 0.78
j30c5e10 1.70 1.57 1.92 140 052 1.75 1.68 157 209 155 122 192 159 1.22 2.09 137 105 157
j40c5el 0.150.15 0.15 0.14 0.00 0.15 0.150.15 0.15 0.14 000 0.15 0.150.15 0.15 0.15 0.15 0.15
j40c5e2 0.19 0.13 0.39 0.10 0.00 0.13 0.190.13 0.52 0.10 0.00 0.26 0.16 0.13 0.26 0.10 0.00 0.26
j40c5e3 0.05 0.00 0.25 0.00 0.00 0.00 0.07 0.00 0.25 0.00 0.00 0.00 0.050.00 0.25 0.03 0.00 0.25
j40c5e4 0.450.27 0.68 0.37 0.14 0.68 0.48 0.27 0.68 0.37 0.14 054 0.39 0.14 0.68 0.27 0.00 0.54
j40c5e5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j40c5e6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j40c5e7 0.14 0.14 0.14 0.14 0.14 0.14 0.140.14 0.14 0.14 014 014 015014 041 0.14 014 0.14
j40c5e8 0.19 0.12 0.25 0.16 0.00 0.25 0.21 0.12 0.25 0.22 0.12 025 0.22 0.12 0.25 020 0.12 0.25
j40c5e9 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.12 0.00 0.00 0.00 0.02 0.00 0.12 0.00 0.00 0.00
j40c5e10 0.48 0.39 0.65 0.40 0.26 0.52 0.490.39 0.65 044 0.13 065 0.54 0.39 0.78 053 0.26 0.65
j50c5el 0.24 0.10 0.31 0.21 0.00 0.31 0.26 0.21 0.31 0.20 0.10 031 0.32 0.21 0.62 0.19 0.00 0.31
j50c5e2 0.07 0.00 0.20 0.02 0.00 0.10 0.16 0.00 0.40 0.05 0.00 0.20 0.14 0.00 0.20 0.11 0.00 0.20
j50c5e3 0.43 0.29 0.68 0.37 0.19 049 0430.29 087 041 029 058 052 0.29 1.07 036 0.19 049
j50c5e4 0.01 0.00 0.11 0.00 0.00 0.00 0.04 0.00 0.22 0.00 0.00 0.00 0.010.00 0.22 0.01 0.00 0.11
j50c5e5 0.40 0.29 0.58 0.18 0.10 0.29 0.480.19 0.88 0.25 0.10 0.39 0.45 0.19 0.78 0.25 0.00 0.39
j50c5e6 0.36 0.36 0.36 0.36 0.36 0.36 0.39 0.36 0.60 0.37 0.36 048 0.49 0.36 0.71 0.43 0.36 0.60
j50c5e7 0.11 0.11 0.11 0.10 0.00 0.11 0.140.11 043 0.09 0.00 0.11 0.14 0.11 054 0.10 0.00 0.11
j50c5e8 0.03 0.00 0.12 0.00 0.00 0.00 0.02 0.00 0.12 0.03 0.00 0.12 0.02 0.00 0.12 0.02 0.00 0.12
j50c5e9 0.86 0.61 1.23 0.71 0.31 1.07 0.980.77 1.23 0.64 031 092 1.050.77 1.68 0.66 031 0.92
j50c5e10 0.21 0.00 0.41 0.10 0.00 0.31 0.37 0.10 1.14 0.15 0.00 031 0.33 0.10 1.34 0.09 0.00 0.21
j60c5el 0.11 0.09 0.18 0.09 0.09 0.09 0.120.09 0.26 0.09 0.09 0.09 0.13 0.09 0.18 0.07 0.00 0.09
j60c5e2 1.010.76 1.30 0.81 043 0.98 0.96 0.76 1.20 0.77 054 098 0.83 0.65 1.09 0.75 0.43 0.98
j60c5e3 0.00 0.00 0.00 0.00 0.00 0.00 0.150.00 0.69 0.06 0.00 035 0.34 0.00 1.47 0.14 0.00 0.35
j60c5e4 0.850.51 2.03 0.60 0.38 0.89 0.90 0.63 1.27 0.58 0.38 0.76 0.84 0.63 1.40 0.62 0.38 0.76
j60c5e5 0.30 0.19 0.47 0.12 0.00 0.28 0.350.09 0.56 0.19 0.00 0.38 0.310.19 047 021 0.00 047
j60c5e6 0.41 0.29 0.67 0.38 0.19 057 0.450.29 095 040 0.29 048 043 0.29 0.76 045 019 057
j60c5e7 0.00 0.00 0.00 0.00 0.00 0.00 0.030.00 0.24 0.00 0.00 0.00 0.030.00 0.24 0.00 0.00 0.00
j60c5e8 0.02 0.00 0.10 0.00 0.00 0.00 0.050.00 0.10 0.00 0.00 0.00 0.050.00 0.10 0.00 0.00 0.00
j60c5e9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
j60c5e10 0.30 0.22 0.65 0.22 0.22 022 0.250.22 065 0.22 0.22 0.22 0.28 0.22 0.65 022 022 0.22
Average 0.37 0.28 054 0.30 0.15 040 0400.29 0.62 0.31 0.19 043 040 0.27 0.67 031 0.17 043
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7.3 Small Instances for the EHFSP-V1

In the following tables, Eyrrn, Enrr: Enyrn, E, 1G, 1G4, and VBIH represent
E_EMyrryn, E_EMppr, E_LEMypn, E_EM, E_IG, E_IG,;; and E_VBIH algorithms,
respectively. Table 7.3 reports the results of C,, IGD and DS performance metrics for
each metaheuristic algorithm on the first set of small instances, which are obtained by
truncating the instances with 10 jobs and 5 stages. E_EMygry finds 85%; E_EMyggr
finds 83%; E_EMygy finds 80%; E_EM, E_IG, E_IG4;;, and E_VBIH find 64% of the
Pareto-optimal solutions on the overall average. Note that, E_EMygry and E_EMygy
find all Pareto-optimal solutions for 10 out of 23 instances, where E_EMygg finds all
Pareto-optimal solutions for 9 instances; E_EM, E_IG, E_IG4;;, and E_VBIH find all
Pareto-optimal solutions for 5 instances. In terms of convergence, E_EMypgry IS the
best performer with 0.23 IGD value in overall average whereas E_EMygg also has a
very small (0.27) IGD value. However, it can be said that all algorithms provide very
close approximations to the Pareto-optimal solution set P, as the maximum of their
average IGD values is 0.85. In terms of distribution spacing, solutions obtained by the
metaheuristic algorithms are evenly distributed due to their low DS values.

Table 7.4 reports the results of Cp, IGD and DS performance metrics for each
metaheuristic algorithm on the second set of small instances, which are obtained by
truncating the instances with 15 jobs and 5 stages. As shown in the table, E_EMyprn
finds 88%; E_EMygg finds 87%; E_EMygn finds 82%; E_EM,E_IG, E_IG,p; and
E_VBIH find 70% of the Pareto-optimal solutions in the overall average. E_EMygrn
finds all Pareto-optimal solutions for 14 out of 24 instances, where E_EMygg finds all
Pareto-optimal solutions for 13 instances; E_EMygy finds all Pareto-optimal solutions
for 8 instances; E_EM, E_IG, E_IG4;;, and E_VBIH find all Pareto-optimal solutions for
7 instances. In terms of IGD values, E_EMypgry (0.21) and E_EMygg (0.23) are the best
performer ones on the overall average, whereas E_EMygy also has a very small (0.33)
IGD value. All algorithms provide very close approximations to the Pareto-optimal
solution set P, as the maximum of their average IGD values is 0.58. In terms of the
spread of the solutions, solutions obtained by the metaheuristic algorithms are evenly

distributed, as they have very low DS values.

Finally, as the ensembles of metaheuristic algorithms with HFR/HFN approaches have

higher Cp and lower IGD values, it can be said that HFR and HFN approaches
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substantially improve the solution quality for these small instances. When the
ensembles of metaheuristic algorithms are compared with each other, it can be said

that E_LEMygry and E_EMyggr perform slightly better.

In order to visualize the performance of the algorithms, the Pareto frontiers obtained
by the algorithms are provided for an instance with five jobs and five stages in Figure
7.13. As shown in Figure 7.13, the ensembles of metaheuristic algorithms with
HFR/HFN approaches (E_EMyprn, E_EMypr, E_EMypy) outperform the other
metaheuristics (E_EM,E_IG, E_IG,;;, and E_VBIH), as they provide better
approximations to the Pareto-optimal frontier. Note that, E_EMypry and E_EMypr

perform slightly better than the E_LEMygy algorithm, as seen in Figure 7.13.

Pareto-Frontiers of Algorithms
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Figure 7. 13. Comparison of Algorithms for an Instance with 5 Jobs
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Table 7. 3. Performance Comparison of Algorithms on Small Instances (Set 1) for
the EHFSP-V1

Cardinality Ratio of Pareto-optimal Solutions Found (Cp)

Instance|Enrrn EHFR EHen' E IG 1GALL VBIH| Evrrn EHFR EHen E IG 1Gae VBIH

1j5c5a2| 24 24 25 24 24 24 24 | 055 059 050 0.23 0.23 0.23 0.23
1j5c5a3 26 25 23 21 21 21 21 | 048 048 048 0.38 0.38 0.33 0.38
1 j5c5a4| 18 19 14 18 18 18 18 | 047 053 035 035035 035 0.35
1 jbcsa5 17 17 21 15 15 15 15 | 0.68 0.74 0.21 0.00 0.00 0.00 0.00
1 j5cha6l 25 25 25 24 24 24 24 | 096 096 1.00 0.88 0.88 0.83 0.88
1.j5¢5b1 25 25 25 24 24 24 24 | 100 1.00 1.00 0.96 0.96 0.96 0.96
1j5c5b2) 18 18 18 17 17 17 17 | 1.00 1.00 1.00 094 0.94 094 094
1.j5¢5p3 23 23 23 23 23 23 23 | 100 1.00 1.00 1.00 1.00 1.00 1.00
1.j5c5b4 20 20 20 22 22 22 22 | 1.00 095 1.00 0.90 0.90 0.90 0.90
1.j5¢5b5 29 29 29 29 29 29 29| 100 100 1.00 1.00 1.00 1.00 1.00
1 j5c5b6| 14 14 14 14 14 14 14 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 j5c¢5cy 17 17 17 15 15 15 15 | 0.88 0.88 0.88 0.82 0.82 0.82 0.82
1.j5¢5c2 22 21 20 22 22 22 22| 067 0.63 063 021 0.21 021 0.21
1j5c5¢3 15 15 14 16 16 16 16 | 093 0.93 0.87 0.60 0.60 0.60 0.60
1 j5c5c4/ 13 13 13 13 13 13 13 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 j5c5c5 16 16 17 20 20 20 20 | 0.61 050 0.44 0.17 0.17 0.17 0.17
1 j5c5c6| 13 14 14 16 16 16 16 | 0.83 058 0.75 042 042 042 042
1 j5¢5d1 13 13 13 12 12 12 12 | 1.00 1.00 1.00 0.69 0.69 0.69 0.69
1 j5c5d2 18 17 18 15 15 15 15 | 095 0.79 0.84 0.53 0.53 0.53 0.3
1j5c5d3 16 17 16 16 16 16 16 | 0.67 0.72 0.72 0.61 0.61 0.61 061
1.j5c5d4 21 20 24 21 21 21 21 | 091 0.87 0.78 0.65 0.65 0.65 0.65
1j5c¢5d5 21 21 19 19 19 19 19 | 1.00 100 0.90 0.38 0.38 0.38 0.38

1 j5c5d6f 13 13 13 13 13 13 13 | 1.00 100 1.00 1.00 1.00 1.00 1.00

Average| 19.00 18.9618.9118.6518.65 18.65 18.65| 0.85 0.83 0.80 0.64 0.64 0.64 0.64
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Table 7. 3. (Cont’d) Performance Comparison of Algorithms on Small Instances
(Set 1) for the EHFSP-V1

IGD Distribution Spacing (DS)

Instance |Exrrn EnFrR Evrn' E IG 1GALL VBIH |ExFrny ExFrR Even E IG 1GALL VBIH

1 j5cba2 | 0.88 0.78 1.06 2.012.01 201 201 | 0.63 0.78 0.49 0.56 0.56 0.56 0.56
1 j5c5a3 | 0.69 0.69 0.67 092092 092 092 | 127 135 1.18 1.15115 115 115
1 j5cba4 | 0.95 0.87 1.17 1.881.88 1.88 1.88 | 0.93 0.99 0.66 0.930.93 0.93 0.93
1 j5chab | 0.60 0.62 2.69 593593 593 593 | 055 0.48 0.76 0.66 0.66 0.66 0.66
1 j5c5a6 | 0.01 0.01 0.00 0.14 0.14 0.14 0.14 | 0.52 0.52 0.52 0.530.53 0.53 0.53
1 j5c5b1 | 0.00 0.00 0.00 0.01 0.01 0.01 0.01 | 1.07 1.07 1.07 0.97 0.97 0.97 0.97
1 j5c5b2 | 0.00 0.00 0.00 0.04 0.04 0.04 0.04 | 1.07 1.07 1.07 0.950.95 095 0.95
1 j5c5b3 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.83 0.83 0.83 0.83 0.83 0.83 0.83
1 j5c5b4 | 0.00 0.07 0.00 0.14 0.14 0.14 0.14 | 0.80 0.79 0.80 1.021.02 1.02 1.02
1 j5c5b5 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1_j5c5b6 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.71 0.71 0.71 0.710.71 0.71 0.71
1 j5c5c1 | 0.09 0.09 0.09 0.150.15 0.15 0.5 | 1.17 1.17 1.17 095095 0.95 0.95
1 j5cbc2 | 041 040 044 117117 117 117 | 1.00 1.03 1.00 1.06 1.06 1.06 1.06
1 j5¢5¢3 | 0.02 0.02 0.19 0.37 0.37 0.37 0.37 | 0.59 0.59 0.57 0.64 0.64 0.64 0.64
1 j5c5c4 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.54 0.54 0.54 0.54 054 054 0.54
1 j5c5¢5 | 0.30 0.49 0.60 1.891.89 189 189 | 0.86 097 1.01 1.15115 115 115
1 j5c5c6 | 0.66 091 053 1.22122 122 122 | 040 0.40 0.38 0.46 0.46 0.46 0.46
1 j5c5d1 | 0.00 0.00 0.00 0.19 0.19 0.19 0.19 | 0.85 0.85 0.85 0.76 0.76 0.76 0.76
1 j5c5d2 | 0.11 0.40 0.28 1.091.09 1.09 1.09 | 0.71 0.71 0.68 0.61 0.61 0.61 0.61
1 j5c5d3 | 0.58 0.38 0.40 0.61 0.61 0.61 0.61 | 0.94 092 0.83 0.930.93 093 0.93
1 j5c5d4 | 0.04 0.43 0.39 0.790.79 0.79 0.79 | 0.73 0.73 0.87 0.86 0.86 0.86 0.86
1 j5c5d5 | 0.00 0.00 0.22 0.96 0.96 0.96 0.96 | 0.97 0.97 0.91 0.90 0.90 0.90 0.90

1 j5c5d6 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.59 0.59 0.59 0.59 0.59 0.59 0.59

Average | 0.23 0.27 0.38 0.850.85 0.85 0.85 | 0.81 0.82 0.80 0.810.81 0.81 0.81
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Table 7. 4. Performance Comparison of Algorithms on Small Instances (Set 2) for
the EHFSP-V1

Cardinality Ratio of Pareto-optimal Solutions Found (Cp)

Instance|Exrrn EHFrR EHen E IG 1GALLVBIH| EHFrny EHFrR EHen' E IG 1GaALL VBIH

2_j5cbal] 14 14 13 15 15 15 15 | 0.87 0.87 0.87 0.73 0.73 0.73 0.73
2 j5cka2l 20 20 20 20 20 20 20 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 j5c5a3 20 20 23 19 19 19 19 | 040 0.40 0.27 0.00 0.00 0.00 0.00
2 j5cba4 28 25 27 23 23 23 23| 014 0.21 0.03 0.00 0.00 0.00 0.00
2_jbcbab| 37 38 37 3% 35 35 35| 083 067 064 028 028 028 0.28
2_j5c5a6| 16 16 16 16 16 16 16 | 062 0.57 0.29 019 019 019 0.19
2 j5cbhl 30 30 31 29 29 29 29| 100 100 0.97 0.77 0.77 0.77 0.77
2_j5c5h2) 23 23 23 24 24 24 24 | 100 1.00 0.96 0.87 0.87 0.87 0.87
2.j5c5h3 21 21 21 21 21 21 21| 100 100 1.00 1.00 1.00 1.00 1.00
2 jbcbh4 18 18 18 18 18 18 18 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2_j5c5h5 47 47 47 47 47 47 47 | 100 1.00 1.00 1.00 1.00 1.00 1.00
2 jbcbhg 28 28 28 28 28 28 28 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2_j5c¢5c1 18 18 17 17 17v 17 17 | 1.00 100 094 0.78 0.78 0.78 0.78
2_j5c5c2| 18 17 16 16 16 16 16 | 0.89 0.84 0.84 0.58 0.58 0.58 0.58
2.j5c5c3l 20 20 20 21 21 21 21 | 090 0.90 090 0.86 0.86 0.86 0.86
2_j5c5c4| 17 17 19 18 18 18 18 | 0.67 0.67 0.61 0.50 050 0.50 0.50
2_j5cbey| 12 12 12 11 11 11 11 | 092 0.92 092 0.77 0.77 0.77 0.77
2_j5c5c6| 16 16 16 16 16 16 16 | 1.00 1.00 094 0.75 0.75 0.75 0.75
2_j5¢5d1 19 19 19 19 19 19 19 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2_jbcbd2 13 13 13 13 13 13 13 | 1.00 100 1.00 1.00 1.00 1.00 1.00
2_j5¢5d3 15 15 14 15 15 15 15 | 0.88 0.81 0.63 0.31 0.31 0.31 031
2_jbcbd4 19 19 18 17 17 17 17 | 1.00 095 0.84 0.74 0.74 0.74 0.74
2 jbcbdy 15 15 15 16 16 16 16 | 1.00 1.00 0.93 0.73 0.73 0.73 0.73

2_j5cbd6l 23 23 23 23 23 23 23 | 100 1.00 1.00 0.96 096 096 0.96

Average|21.13 21.0021.0820.7120.71 20.71 20.71| 0.88 0.87 0.82 0.70 0.70 0.70 0.70
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Table 7. 4. (Cont’d) Performance Comparison of Algorithms on Small Instances
(Set 2) for the EHFSP-V1

IGD Distribution Spacing (DS)

Instance |Exrrn EnFrR Evrn' E IG 1GALL VBIH |ExFrny ExFrR Even E IG 1GALL VBIH

2_j5cbal | 0.10 0.10 0.12 0.24 0.24 0.24 0.24 | 0.92 0.92 0.75 0.96 0.96 0.96 0.96
2_j5c5a2 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.93 0.93 0.93 0.930.93 0.93 0.93
2 j5cka3 | 1.15 1.15 1.38 3.123.12 3.12 312 | 0.71 0.72 0.73 0.69 0.69 0.69 0.69
2_j5chad | 2.32 217 292 3,57 357 357 357 | 0.83 0.77 0.90 0.59 0.59 0.59 0.59
2_j5c5a5 | 0.22 047 044 135135 135 135 | 0.89 095 092 1.131.13 1.13 1.13
2_j5cha6 | 0.48 0.59 0.86 1.691.69 1.69 1.69 | 0.84 0.86 0.86 0.82 0.82 0.82 0.82
2_j5c5b1 | 0.00 0.00 0.02 0.230.23 0.23 0.23 | 1.38 138 144 132132 132 132
2_j5c5b2 | 0.00 0.00 0.02 0.10 0.10 0.10 0.10 | 1.00 1.00 0.97 1.00 1.00 1.00 1.00
2_j5c5h3 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.27 1.27 1.27 1.271.27 127 1.27
2_j5c5b4 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.08 1.08 1.08 1.08 1.08 1.08 1.08
2_j5c5b5| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.17 1.17 1.17 117117 117 117
2_j5c5h6 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.73 0.73 0.73 0.730.73 0.73 0.73
2_j5c5cl | 0.00 0.00 0.01 0.16 0.16 0.16 0.16 | 0.96 0.96 0.86 0.87 0.87 0.87 0.87
2_j5c5c2 | 0.19 0.27 0.32 0.64 0.64 0.64 0.64 | 0.86 0.83 0.79 0.86 0.86 0.86 0.86
2_j5c5¢3 | 0.03 0.03 0.03 0.06 0.06 0.06 0.06 | 0.81 0.81 0.81 0.83 0.83 0.83 0.83
2_j5c5c4 | 0.29 0.32 0.34 0.60 0.60 0.60 0.60 | 0.99 091 1.21 1.081.08 1.08 1.08
2_j5c5¢5 | 0.08 0.08 0.08 0.17 0.17 0.17 0.17 | 041 0.41 0.41 0.050.05 0.05 0.05
2_j5c5c6 | 0.00 0.00 0.01 0.28 0.28 0.28 0.28 | 0.72 0.72 0.72 0.77 0.77 0.77 0.77
2_j5c5d1| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.24 124 124 124124 124 124
2_j5c¢5d2 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.41 041 041 041041 041 041
2_j5c5d3| 0.27 0.28 1.18 1.17 117 117 117 | 0.60 0.68 0.53 0.56 0.56 0.56 0.56
2_j5c5d4 | 0.00 0.03 0.19 0.26 0.26 0.26 0.26 | 0.94 0.94 0.97 0.92 0.92 0.92 0.92
2_j5c¢5d5| 0.00 0.00 0.01 0.17 0.17 0.17 0.17 | 0.74 0.74 0.75 0.80 0.80 0.80 0.80

2_j5c5d6 | 0.00 0.00 0.00 0.07 0.07 0.07 0.07 | 1.34 134 134 128128 128 1.28

Average | 0.21 0.23 0.33 0.58 0.58 0.58 0.58 | 0.91 0.91 0.91 0.89 0.89 0.89 0.89
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7.4 Medium & Large Instances for the EHFSP-V1

As mentioned in the beginning of Section 7, for medium and large instances, the non-
dominated solution sets of time-limited MILP, time-limited CP and metaheuristic
algorithms are compared with each other in terms of the aforementioned cardinality,
Cp, IGD and DS metrics. As the Pareto-optimal solution sets (P) are not known for
these instances, the reference sets (R) are used in Cp and IGD metrics. Note that the
reference set includes only the high-quality non-dominated solutions, which are
obtained by selecting all the non-dominated solutions found by the seven metaheuristic

algorithms, time-limited MILP and CP approaches.

In order to make the computational results statistically convincing, a series of
Wilcoxon signed-rank tests is also conducted at the significance level of @ = 0.05.
Note that, Wilcoxon signed-rank test is a non-parametric test to compare two related
groups, which is based on the differences between paired observations. This test is
employed to decide whether there is a statistically significant difference between the
two solution approaches in terms of a certain performance metric. Let m denotes the
median of the difference between two different algorithms for a certain metric, the null
hypothesis is defined by H,: m, = 0 indicating that there is no difference between
the two algorithms in terms of that metric, whereas the alternative hypothesis is defined
by H;: mp # 0 indicating that there is a difference between the two algorithms. For
each pair of the algorithms, the p-value results of the Wilcoxon signed-rank tests are
reported for all performance metrics. Note that there is a statistically significant
difference between the two algorithms in terms of a certain performance metric if the

corresponding p-value is smaller than « = 0.05.

Table 7.5 reports the performances of the time-limited MILP (MILP), time-limited CP
(CP), E_EMygrn (Exnrrn): E_EMugr (Enrr), E_EMpgn (Enpn), EZEM(E), E_IG (IG),
E_1Ga11 (IG4.) and E_VBIH (VBIH) algorithms on medium instances with 10 jobs.
Furthermore, Table 7.6 reports the p-value results of the Wilcoxon signed-rank tests
for these instances. As shown in Table 7.5, each metaheuristic algorithm finds
approximately three times as many non-dominated solutions as the time-limited MILP
and CP, in exceptionally fewer computation times. The statistical results reported in
Table 7.6 also confirm that all metaheuristics perform significantly better than the

MILP and CP in terms of the cardinality metric. Note that there is no statistically
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significant difference between the metaheuristics in terms of cardinality. As shown in
Table 7.5, E_EMygry and E_EMygy find 69%, E_EMyggr finds 67%; E_EM, E_IGay,
and E_VBIH find 62%; E_IG finds 61%; time-limited CP finds 27%, and time-limited
MILP finds 14% of the reference solutions on the overall average. Note that, E_EMygy
finds all reference solutions for 12 out of 41 instances, where E_VBIH finds all
reference solutions for 7 instances; E_EMygrn, E_EMygr, E_LEM, E_IG,;;, and E_IG
find all reference solutions for 8 instances. According to the p-value results reported
in Table 7.6, all metaheuristics perform significantly and statistically better than the
MILP and CP in terms of C, metric. Note that, E_EEMypgry and E_EMygy algorithms
are statistically equivalent in terms of C, metric and they perform statistically better
than the other metaheuristics. There is no statistically significant difference between
E_EM, E_IG, E_IG,y;, and E_VBIH algorithms in terms of C,, metric.

In terms of convergence, E_EMygry (0.48), E_EMyggr (0.50) and E_EMygy (0.49)
are the best performer ones on the overall average, whereas other metaheuristic
algorithms also have small IGD values around 0.59. In terms of IGD metric, all
metaheuristic algorithms outperform the time-limited MILP and CP, while ensembles
of metaheuristic algorithms with HFR/HFN approaches slightly outperform the other
metaheuristic algorithms. This statement is also consistent with the Wilcoxon signed-
rank test results reported in Table 7.6. As shown in Table 7.6, E_EMyprn, E_LEMygr
and E_EMygy algorithms are statistically equivalent in terms of IGD metric, and they
perform statistically better than the other solution approaches. Note that, there is no
statistically significant difference between E_EM, E_IG, E_IG,;; and E_VBIH
algorithms in terms of IGD metric, except the E_IG vs. E_VBIH pair.

For the comparison of distribution spacing metric, time-limited MILP and CP
approaches have smaller DS values than the metaheuristic algorithms, which implies
that the solutions generated by MILP and CP approaches are spread more uniformly
in their own discovered frontiers. This statement is also consistent with the Wilcoxon
signed-rank test results reported in Table 7.6. This result is expected, as a constant €
level is used through the augmented e-constraint method in the time-limited MILP and
CP approaches. Nevertheless, the metaheuristic algorithms also have low DS values,

indicating even dispersions.
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Table 7. 5. Performance Comparison of Algorithms on Medium Instances with 10
Jobs for the EHFSP-V1

Cardinality Ratio of Reference Solutions Found (Cp)
InstanceMILP CP EnrrnEnFrREnen E - IG 1GALLVBIHMILP CP EnrrNEHFREHFN E 1G 1GALLVBIH
jl0cba2| 21 21 79 79 79 79 79 79 79 |0.27 0.27 0.99 0.99 1.001.001.00 1.00 1.00
jl0c5a3| 21 21 88 89 89 89 89 89 87 |0.24 0.24 0.99 1.00 1.001.001.00 1.00 0.98
jlOcba4| 21 21 98 98 98 98 98 98 98 |0.21 0.21 1.00 1.00 1.001.001.00 1.00 1.00
jl0cba5| 21 21 118 118 118 118 118 118 118 |0.18 0.18 1.00 1.00 1.001.001.00 1.00 1.00
jl0cba6| 21 21 85 82 87 81 82 83 83 |0.24 0.24 0.84 0.75 0.780.660.62 0.74 0.62
j0cdbbl| 21 21 77 77 77 77 77 77 77 |0.27 0.27 1.00 1.00 1.001.001.00 1.00 1.00
jl0cbb2| 21 21 72 72 73 72 72 72 72 |0.29 0.29 0.99 0.99 1.000.990.99 0.99 0.99
j10c5b3| 21 21 91 91 91 93 93 93 93 |0.21 0.23 0.99 0.99 0.990.930.93 0.93 0.93
jl0cbb4| 21 21 89 89 89 89 89 89 89 |0.24 0.24 1.00 1.00 1.000.980.98 0.98 0.98
j10chb5| 21 21 96 96 96 96 96 96 96 |0.22 0.22 1.00 1.00 1.001.001.00 1.00 1.00
jl0cbb6| 21 21 97 97 97 97 97 97 97 |0.22 0.22 1.00 1.00 1.001.001.00 1.00 1.00
j10c5cl| 20 21 68 71 71 68 76 62 71 |0.10 0.36 0.51 0.36 0.490.410.24 0.32 0.36
j10c5c2| 19 21 78 72 71 82 69 73 66 |0.09 0.36 0.31 0.34 0.380.340.33 0.29 0.38
j10cbe3| 19 21 75 75 81 71 73 76 75 |0.10 0.51 0.34 0.32 0.390.270.22 0.24 0.27
j10cbc4| 20 18 55 61 56 59 60 59 60 |0.02 0.20 0.67 0.60 0.700.620.50 0.47 0.48
j10cbc5| 19 20 71 75 67 75 71 78 70 | 0.07 0.33 0.46 0.41 0.480.300.28 0.36 0.34
j10c5c6| 15 21 67 71 69 64 69 64 69 |0.07 0.30 0.57 0.52 0.580.480.39 0.48 0.43
j10cbdl| 21 21 54 55 57 60 54 59 67 |0.09 0.30 0.48 0.45 0.410.450.35 0.42 0.33
j10cbd2| 17 21 64 58 65 70 54 68 64 |0.03 0.19 0.48 0.58 0.500.410.39 0.39 0.45
j10c5d3| 18 21 66 68 63 68 63 73 71 |0.03 0.11 0.49 0.51 0.530.360.47 0.40 0.36
j10c5d4| 19 19 63 68 66 70 71 65 66 |0.00 0.08 0.40 0.45 0.500.320.36 0.33 0.37
j10cbd5| 19 19 61 58 65 55 58 56 53 |0.02 0.11 0.43 0.46 0.520.410.29 0.25 0.43
j10c5d6| 20 21 57 54 54 61 57 52 53 |0.04 0.24 0.56 0.49 0.560.360.40 0.47 0.44
j10cl0al| 18 21 63 52 55 58 56 59 61 |0.26 0.42 0.42 0.48 0.340.440.42 0.44 0.44
j10c10a2) 21 21 81 81 88 76 77 86 82 |0.12 0.36 0.33 0.31 0.260.170.28 0.17 0.21
j10c10a3) 21 21 68 68 74 76 76 76 73 |0.19 0.29 0.55 0.54 0.580.520.46 0.54 0.49
j10cl0a4| 20 21 51 49 48 40 46 37 48 |0.350.81 0.27 0.27 0.270.270.31 0.27 0.23
j10c10a5| 19 21 58 67 60 56 63 59 54 |0.22 0.46 0.46 0.52 0.500.390.46 0.52 0.57
j10c10a6| 19 21 57 64 58 53 59 61 54 |0.39 0.51 0.59 0.56 0.610.510.49 0.56 0.56
j10cioblf 21 21 8 86 86 86 86 86 86 |0.24 0.24 1.00 1.00 1.001.001.00 1.00 1.00
j10c10b2| 21 21 59 59 59 60 60 60 60 |0.27 0.38 0.96 0.91 0.950.890.89 0.89 0.89
j10c10b3l 21 21 96 95 96 95 95 95 95 |0.15 0.22 0.99 0.99 1.000.990.99 0.99 0.99
j10ciob4l 20 20 78 81 78 81 81 81 81 |0.06 0.23 0.99 0.950.990.950.95 0.95 0.95
j10ci0b5 20 21 81 80 80 82 82 82 82 |0.13 0.26 0.97 0.92 0.960.920.92 0.92 0.92
j10c10b6| 21 21 64 64 64 64 64 64 64 |0.23 0.33 1.00 0.98 1.000.980.98 0.97 0.98
j10c10c1| 17 20 57 60 57 56 52 57 59 |0.00 0.13 0.59 0.49 0.560.310.36 0.43 0.46
j10c10c2| 16 18 59 62 56 65 75 64 63 |0.02 0.25 0.41 0.34 0.410.340.23 0.25 0.27
j10c10c3] 19 19 54 54 56 57 59 55 65 |0.00 0.12 0.57 0.48 0.480.530.32 0.42 0.42
j10c10c4| 16 18 50 54 56 49 49 53 55 |0.00 0.07 0.46 0.41 0.480.210.30 0.31 0.33
j10c10c5| 19 18 57 54 58 54 58 60 53 |0.03 0.19 0.53 0.43 0.400.290.40 0.41 0.29
j10c10c6| 14 20 49 52 49 53 55 56 55 |0.02 0.15 0.56 0.50 0.580.440.50 0.48 0.38
Average|19.51 20.46 71.63 72.1072.1272.0272.15 72.37 72.29| 0.14 0.27 0.69 0.67 0.69 0.620.61 0.62 0.62
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Table 7. 5. (Cont’d) Performance Comparison of Algorithms on Medium Instances
with 10 Jobs for the EHFSP-V1

IGD Distribution Spacing (DS)

Instance|MILP CP EnrrnEHFREHFN E 1G 1GALL VBIH|MILP CP EnrrnEHFREHFN E - 1G 1GALL VBIH

j10c5a2 | 2.05 2.05 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.20 0.20 1.01 1.01 1.011.011.01 1.01 1.01
j10c5a3 | 1.80 1.80 0.02 0.00 0.00 0.000.00 0.00 0.05| 0.21 0.21 1.24 1.23 1.231.231.23 1.23 1.31
j10cba4 | 2.50 2.57 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.12 0.12 1.17 1.17 1.171.171.17 1.17 1.17
j10c5a5 | 2.38 2.38 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.11 0.11 1.44 1.44 144144144 144 144
j10cba6 | 2.57 2.52 0.11 0.16 0.17 0.280.27 0.23 0.26 | 0.18 0.16 1.07 1.03 1.07 1.011.05 1.05 1.02
j10c5bl | 2.32 2.32 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.08 0.08 1.09 1.09 1.09 1.091.09 1.09 1.09
j10c5b2 | 2.06 2.06 0.03 0.03 0.00 0.030.03 0.03 0.03 | 0.11 0.11 1.29 1.29 1.271.291.29 1.29 1.29
j10c5b3 | 2.03 1.98 0.01 0.01 0.01 0.020.02 0.02 0.02 | 0.14 0.20 1.05 1.05 1.051.041.04 1.04 1.04
j10c5b4 | 2.62 2.59 0.00 0.00 0.000.010.01 0.01 0.01 | 0.24 0.20 1.00 1.00 1.00 1.001.00 1.00 1.00
j10c5b5 | 2.53 2.53 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.13 0.13 1.14 1.14 1.141.141.14 1.14 1.14
j10c5b6 | 2.20 2.20 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.10 0.10 1.55 1.55 1.551.551.55 1.55 1.55
j10c5c¢l | 2.99 1.91 0.47 0.60 0.47 0.560.80 0.65 0.61 | 0.54 0.27 1.10 1.09 1.101.271.37 1.08 1.33
j10c5¢2 | 3.50 1.15 0.52 0.60 0.51 0.660.67 0.65 0.59 | 0.34 0.09 1.49 1.68 1.46 1.461.56 1.55 1.37
j10c5¢3 | 2.80 1.53 0.78 0.81 0.76 1.161.09 1.16 1.10 | 0.36 0.33 1.00 0.99 1.07 0.891.04 0.89 0.93
j10c5¢c4 | 3.50 3.29 0.40 0.34 0.390.420.44 0.51 0.59 | 0.47 0.47 0.83 0.79 0.890.840.79 0.85 0.82
j10c5¢5 | 3.35 1.85 0.42 0.51 0.550.650.71 0.64 0.64 | 0.15 0.13 0.75 0.79 0.850.811.09 0.97 0.88
j10c5¢6 | 4.75 1.88 0.43 0.35 0.430.490.62 0.58 0.55 | 0.42 0.26 0.86 1.00 0.89 0.741.06 0.96 0.98
j10c5d1 | 2.74 2.06 0.54 0.53 0.90 0.820.99 0.62 0.68 | 0.32 0.23 0.83 0.72 1.100.921.16 1.04 1.02
j10c5d2 | 4.91 3.12 0.59 0.59 0.64 0.560.87 0.93 0.65 | 0.52 0.28 1.18 1.23 1.221.281.04 1.35 1.31
j10c5d3 | 4.00 2.92 0.52 0.41 0.44 0.530.61 0.53 0.51 | 0.30 0.45 1.02 1.05 1.04 0.961.43 1.08 1.07
j10c5d4 | 4.28 3.28 0.68 0.54 0.510.590.58 0.70 0.62 | 0.19 0.37 1.51 1.05 1.611.231.21 1.71 0.97
j10c5d5 | 4.07 3.62 0.67 0.62 0.60 0.830.84 0.97 0.65| 0.29 0.29 1.44 1.54 1.611.481.60 1.50 1.16
j10c5d6 | 3.61 2.76 0.45 0.59 0.530.620.69 0.70 0.62 | 0.40 0.46 0.98 1.23 1.191.271.29 1.29 1.20
j10cl0al| 6.12 2.96 1.18 1.27 1.66 1.601.64 1.38 1.27 | 0.34 0.24 1.00 0.99 0.901.011.11 1.14 0.99
j10c10a2| 4.14 4.19 1.76 1.84 1.891.981.89 1.96 2.12 | 0.14 0.10 0.97 0.99 1.250.890.99 1.10 1.11
j10c10a3| 4.37 3.83 0.90 0.99 0.77 0.901.04 0.91 0.96 | 0.13 0.16 0.96 1.00 0.950.941.01 1.04 0.95
j10c10a4| 4.25 0.74 3.06 2.59 2.78 2.843.04 2.94 3.12 | 0.33 0.31 1.53 1.55 1.551.241.55 1.21 151
j10c10a5| 4.45 2.15 1.10 0.86 0.891.131.13 1.02 0.84 | 0.25 0.25 1.28 1.40 1.231.391.44 136 1.34
j10c10a6| 2.89 1.98 1.14 1.34 1.181.251.50 1.57 1.34 | 0.23 0.20 0.95 1.05 1.081.121.00 1.15 1.21
j10c10b1| 3.67 3.62 0.00 0.00 0.00 0.000.00 0.00 0.00 | 0.31 0.30 1.78 1.78 1.781.781.78 1.78 1.78
j10c10b2| 3.54 2.68 0.07 0.13 0.08 0.150.15 0.15 0.15| 0.27 0.20 1.32 1.32 1.341.351.35 1.35 1.35
j10c10b3| 5.16 3.23 0.00 0.01 0.00 0.010.01 0.01 0.01 | 0.29 0.18 1.68 1.68 1.68 1.681.68 1.68 1.68
j10c10b4| 7.21 3.71 0.01 0.04 0.010.040.04 0.04 0.04 | 0.34 0.27 2.05 2.12 2.052.122.12 2.12 2.12
j10c10b5| 5.81 2.80 0.03 0.08 0.050.090.09 0.09 0.09 | 0.27 0.30 1.93 1.90 1.931.941.94 1.94 1.94
j10c10b6| 4.30 3.68 0.00 0.02 0.00 0.030.03 0.04 0.03 | 0.29 040 1.14 1.14 1.141.141.14 1.13 114
j10c10c1| 8.08 6.43 0.50 0.64 0.531.040.79 0.69 0.61 | 0.29 0.56 1.34 1.38 1.371.391.30 1.32 1.38
j10c10c2|10.81 4.70 1.08 1.26 1.121.421.31 1.26 1.41|0.72 0.42 1.50 1.47 1.501.391.65 1.46 1.68
j10c10c3| 7.85 6.25 0.58 0.92 0.71 0.670.82 0.95 0.75| 0.23 0.50 1.33 1.81 1.631.391.50 1.85 1.48
j10c10c4| 8.90 8.16 0.56 0.64 0.430.850.77 0.68 0.69 | 0.29 0.71 1.61 1.74 1.751.581.62 1.67 1.64
j10c10c5| 6.85 6.76 0.59 0.72 0.710.840.80 0.88 0.86 | 0.30 0.28 1.53 1.64 1.581.551.65 1.74 1.48
j10c10c6| 9.28 3.26 0.48 0.62 0.42 0.730.57 0.58 0.72 | 0.30 0.11 1.53 1.66 1.591.531.65 1.77 1.69

Average| 4.32 3.06 0.48 0.50 0.490.580.61 0.59 0.57 | 0.27 0.26 1.26 1.29 1.301.261.32 1.32 1.28
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Table 7. 6. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 10
Jobs for the EHFSP-V1

Pairs of Algorithms Cardinality C, IGD DS

Pairs of Algorithms Cardinality Cp, IGD DS

MILP vs CP 0.00 0.00 0.00 0.33 Enrrn VS IG 0.59 0.00 0.00 0.00
MILP vs Enrrn 0.00 0.00 0.00 0.00 Emnrrn Vs IGALL 0.15 0.00 0.00 0.00
MILP vs Enrr 0.00 0.00 0.00 0.00 Enrrn vs VBIH 0.27 0.00 0.00 0.04
MILP vs Enrn 0.00 0.00 0.00 0.00 Enrr Vs Enrn 0.98 0.01 0.19 1.00
MILP vs E 0.00 0.00 0.00 0.00 ExrrVSE 0.89 0.00 0.00 0.16
MILP vs IG 0.00 0.00 0.00 0.00 EnrrVvsIG 0.83 0.00 0.00 0.12
MILP vs IGaLL 0.00 0.00 0.00 0.00 Emrr Vs IGALL 0.55 0.00 0.00 0.12
MILP vs VBIH 0.00 0.00 0.00 0.00 Enrrvs VBIH 0.78 0.00 0.00 0.99
CP vs Enrrn 0.00 0.00 0.00 0.00 EnrnVsE 0.99 0.00 0.00 0.05
CP vs Enrr 0.00 0.00 0.00 0.00 EnrnvsIG 0.94 0.00 0.00 0.35
CP vs Enrn 0.00 0.00 0.00 0.00 Emrn Vs IGALL 0.56 0.00 0.00 0.18
CPvsE 0.00 0.00 0.00 0.00 Enenvs VBIH 0.77 0.00 0.00 0.91
CPvsIG 0.00 0.00 0.00 0.00 EvsIG 0.54 0.44 0.16 0.00
CP vs IGaLL 0.00 0.00 0.00 0.00 EvsIGaLL 0.48 0.65 0.86 0.00
CP vs VBIH 0.00 0.00 0.00 0.00 EvsVBIH 0.42 0.97 0.86 0.09
EHrrn VS Exrr 0.28 0.01 0.05 0.02 IG vs IGaLL 0.76 0.08 0.33 0.85
EHrrn VS ExFn 0.30 0.53 0.76 0.00 IGvsVBIH 0.78 0.15 0.04 0.06
Enrrn VS E 0.44 0.00 0.00 0.73 1GaLL vs VBIH 0.70 0.82 0.23 0.13

Table 7.7 reports the results for each solution approach on the medium instances with
15 jobs. Table 7.8 also reports the p-value results of the Wilcoxon signed-rank tests
for these instances. As shown in Table 7.7, each metaheuristic algorithm finds
approximately seven times as many non-dominated solutions as the time-limited MILP
and CP, in very short computation times. The p-value results reported in Table 7.8 also
verify that all metaheuristics perform significantly better than the MILP and CP in
terms of the cardinality metric. Note that, there is no statistically significant difference
between the E_EMygrrn, E_LEMyrr and E_EMygy algorithms in terms of cardinality.
As shown in Table 7.7, E_IG finds 49%; E_EMygg finds 46%; E_EMygy finds 45%;
E_EMygry finds 44%; E_EM finds 37%; E_VBIH finds 35%; E_IG4; . finds 30%; time-
limited CP finds 9% and time-limited MILP finds 3% of the reference solutions on the
overall average. As it can be seen in Table 7.8, all metaheuristics perform significantly
and statistically better than the MILP and CP in terms of C, metric, where E_IG,
E_EMygpgr, E_LEMypy and E_EMygry algorithms outperform the other metaheuristics.
Note that, all the pairwise differences are statistically significant at the « = 0.05 level

in terms of cardinality and C,, metrics, except E_ EMypgry VS E_LEMygpr, E_EMyggry VS

E_EMyugy, E_EMygg Vs E_LEMypy and E_EM vs. E_VBIH pairs.
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In terms of proximity to the reference frontier, E_IG (0.64), E_EMygy (0.67), E_LEMygr
(0.67) and E_EMygprn (0.69) are the closest ones in overall average, whereas other
metaheuristic algorithms also have small IGD values. Similar to the results on
instances with 10 jobs, all metaheuristic algorithms outperform the time-limited MILP
and CP approaches in terms of IGD metric. These statements are also consistent with
the Wilcoxon signed-rank test results reported in Table 7.8. Note that, there is no
statistically significant difference between E_EMygrn, E_EMypr, E_LEMypy and E_IG
algorithms in terms of IGD metric, except the E_EMygrn VS. E_IG pair. In terms of the
spread of the solutions, even though metaheuristic algorithms have low DS values,
time-limited MILP and CP approaches have smaller DS values than these algorithms
due to the usage of a constant € level, which is also confirmed by the Wilcoxon signed-
rank test results reported in Table 7.8. In order to visualize the performance of the
algorithms, the Pareto frontiers obtained by the algorithms are provided for an instance
with 15 jobs and 5 stages in Figure 7.14. As seen in Figure 7.14, the metaheuristic
algorithms outperform the time-limited MILP and CP approaches in terms of both
cardinality and convergence, where the time-limited CP performs better than the time-
limited MILP.

Pareto-Frontiers of Algorithms

900+ —e— Time-limited MILP
. EHFRN
EHFR
—a— EHFN
E
1G
IGALL
——————— VBIH
—=e— Time-limited CP
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800

750+
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700+
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600+

550

70 80 90 100 110

Cmax

Figure 7. 14. Comparison of Algorithms for an Instance with 15 Jobs

Consequently, it is clear from Tables 7.5 and 7.7, ensembles of metaheuristic
algorithms with HFR/HFN approaches perform better than the other metaheuristic
algorithms for the medium instances, due to their higher C, and lower IGD values.

Note that, E_IG also performs very well for the instances with 15 jobs. Nevertheless,
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all metaheuristic algorithms perform much better than the time-limited MILP and CP

approaches, in terms of both cardinality and proximity to the reference set.

Table 7. 7. Performance Comparison of Algorithms on Medium Instances with 15
Jobs for the EHFSP-V1

Cardinality Ratio of Reference Solutions Found (C,)

Instance IMILP CP Enrrn Ener  Exen E IG 1GaLL VBIH|MILP CP Enrrn Ener Exen E I1G 1GaL VBIH

jibcbal| 21 21 201 202 174 192 199 180 195 |0.03 0.090.29 0.320.36 0.23 0.32 0.25 0.22
j15cha2| 19 21 206 214 221 207 217 181 212 |0.03 0.08 0.56 0.580.57 0.41 0.73 0.35 0.51
j15cha3| 20 21 149 156 160 147 160 134 146 |0.08 0.12 0.40 0.470.50 0.39 0.550.33 0.33
jlbc5a4| 19 21 158 156 171 147 171 146 146 |0.04 0.100.55 0.410.52 0.35 0.58 0.27 0.33
jlbc5a5| 21 21 167 164 159 164 184 160 151 |0.07 0.110.48 0.520.45 0.40 0.63 0.35 0.42
jlbc5a6| 21 21 187 198 207 189 207 177 191 |0.04 0.100.58 0.560.48 0.43 0.66 0.32 0.44
j15c5b1| 20 21 243 256 255 232 244 218 227 |0.050.070.86 0.870.86 0.79 0.91 0.57 0.74
j15c5b2| 17 21 247 247 241 239 245 227 223 |0.06 0.080.85 0.890.86 0.83 0.88 0.54 0.64
j15¢5b3| 21 21 197 200 201 203 198 190 195 |0.08 0.100.89 0.910.90 0.85 0.90 0.68 0.86
j15c5b4| 18 21 140 142 138 143 137 134 141 |0.04 0.140.94 0.920.90 0.73 0.850.78 0.67
j15c5b5| 19 21 223 222 218 216 221 204 212 |0.010.090.87 0.800.88 0.67 0.92 0.57 0.62
j15c5b6| 21 21 239 236 230 224 241 232 236 |0.06 0.070.87 0.890.89 0.71 0.88 0.56 0.66
jibebel| 17 19 93 77 99 91 83 79 93 [0.000.130.14 0.210.19 0.17 0.20 0.17 0.13
jlbcbc2| 19 22 8 90 78 87 86 95 84 |0.000.220.12 0.140.19 0.14 0.17 0.12 0.23
j1bc5¢3| 17 20 95 98 97 90 107 87 93 |0.000.090.19 0.180.21 0.11 0.100.14 0.18
jlbcbc4| 18 21 82 90 83 101 102 86 80 |0.000.120.15 0.160.15 0.08 0.130.13 0.19
jibcbe5| 19 17 75 66 68 74 68 80 75 |0.000.040.28 0.170.23 0.15 0.21 0.11 0.19
jlbcbc6| 18 20 87 83 95 93 93 96 93 |0.010.120.24 0.220.14 0.11 0.24 0.10 0.19
j15c5d1| 20 21 179 187 196 183 184 184 176 |0.06 0.09 0.62 0.720.67 0.55 0.81 0.43 0.43
j15¢cbd2| 15 19 79 85 83 83 82 84 84 |0.000.040.17 0.210.20 0.19 0.16 0.18 0.12
j15¢c5d3| 16 17 79 73 81 81 81 84 71 |0.000.040.17 0.200.19 0.14 0.140.18 0.17
jlbcbd4| 14 17 76 78 79 85 82 89 83 |0.000.060.11 0.220.19 0.14 0.130.18 0.17
jlbcbd5| 16 21 74 81 86 87 78 83 83 |0.000.060.18 0.190.19 0.13 0.27 0.19 0.14
j15cbd6| 15 18 87 74 75 77 8 84 84 |0.000.040.07 0.160.17 0.21 0.150.12 0.20
j15c10al] 20 21 252 254 243 237 262 214 243 |0.050.080.81 0.790.75 0.63 0.78 0.41 0.55
j15c10a2] 19 21 138 144 134 140 154 133 131 |0.02 0.130.38 0.370.45 0.35 0.510.23 0.26
j15c10a3 18 21 176 176 183 166 191 174 177 |0.02 0.080.43 0.370.32 0.27 0.510.25 0.20
j15cl10a4| 21 21 217 219 207 192 229 170 190 |0.02 0.07 0.49 0.540.48 0.43 0.63 0.31 0.31
j15c10a5| 17 21 124 123 117 112 122 118 117 |0.02 0.120.37 0.430.45 0.27 0.42 0.26 0.23
j15c10a6| 17 21 147 136 140 137 133 130 132 |0.03 0.120.42 0.580.50 0.38 0.61 0.30 0.30
ji5c10bl) 19 21 172 150 150 134 152 146 148 |0.04 0.050.34 0.340.33 0.28 0.390.25 0.28
ji5c10b2l 20 21 114 127 114 104 120 103 116 |0.02 0.110.55 0.440.45 0.38 0.44 0.23 0.30
j15c10b3 18 21 146 131 148 129 152 121 118 |0.03 0.11 0.48 0.430.48 0.40 0.60 0.39 0.43
j15c10b4 20 21 149 168 155 149 175 133 156 |0.04 0.09 0.46 0.570.48 0.31 0.510.28 0.33
j15c10b5 20 20 150 138 132 140 132 126 139 |0.01 0.050.30 0.290.23 0.26 0.30 0.20 0.18
j15c10b6 21 21 143 148 134 136 153 135 133 |0.02 0.080.37 0.310.33 0.29 0.390.19 0.34
Average|18.64 20.42149.36 149.69148.94144.89153.78139.36 143.72| 0.03 0.09 0.44 0.46 0.45 0.37 0.49 0.30 0.35
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Table 7. 7. (Cont’d) Performance Comparison of Algorithms on Medium Instances
with 15 Jobs for the EHFSP-V1

IGD Distribution Spacing (DS)

Instance|MILP CP EnrrnEHFREHFN E 1G 1GALL VBIH|MILP CP EnrrnEHFREHFN E - 1G 1GALL VBIH

j15c5al | 4.46 4.28 0.55 0.53 0.49 0.630.49 0.67 0.64 | 0.15 0.17 1.15 1.07 1.121.141.06 1.10 1.11
j15cha2 | 4.68 3.68 0.23 0.21 0.21 0.330.14 0.37 0.28 | 0.32 0.20 1.17 1.29 1.271.251.20 1.17 1.28
j15cba3 | 4.22 3.52 0.44 0.37 0.330.490.30 0.54 0.55|0.25 0.25 1.06 1.13 1.151.111.13 1.08 1.05
j15c5a4 | 453 3.92 0.29 0.46 0.440.560.32 0.73 0.53 | 0.32 0.20 0.98 1.02 1.030.921.02 0.95 0.97
j15cba5 | 4.39 4.38 0.47 0.39 0.46 0.530.28 0.54 0.55| 0.16 0.19 1.15 1.13 1.181.281.26 1.13 1.20
j15cha6 | 4.47 4.10 0.23 0.23 0.30 0.340.18 0.52 0.35| 0.16 0.14 1.08 1.14 1.141.071.24 1.05 1.05
j15c5b1 | 4.53 4.08 0.08 0.06 0.06 0.110.06 0.23 0.13 | 0.19 0.16 1.32 1.42 1.291.271.36 1.26 1.25
j15c5b2 | 5.39 3.46 0.05 0.04 0.07 0.070.04 0.19 0.14 | 0.31 0.17 1.47 1.48 1.501.421.50 1.46 1.40
j15¢c5bh3 | 3.89 3.85 0.05 0.03 0.050.070.03 0.17 0.09 | 0.19 0.18 1.38 1.41 1.401.441.39 1.30 1.43
j15c5b4 | 5.09 4.12 0.04 0.05 0.06 0.180.06 0.13 0.22 | 0.32 0.20 1.21 1.24 1.241.241.15 1.16 1.22
j15c5b5 | 5.48 3.62 0.06 0.07 0.050.150.03 0.25 0.19 | 0.22 0.14 1.41 1.41 1.351.311.36 1.30 1.32
j15c5b6 | 4.09 4.03 0.05 0.05 0.050.150.05 0.24 0.18 | 0.23 0.26 1.43 1.43 1.461.421.45 1.48 1.44
j15c5¢l | 9.13 4.51 1.31 1.25 1.071.191.38 1.51 1.35| 0.43 0.22 0.99 0.89 1.001.111.11 1.01 0.95
j15c5¢c2 | 7.36 3.81 1.77 1.77 1.621.701.66 1.75 1.45|0.27 0.24 1.17 1.05 1.07 1.071.11 0.98 1.07
j15¢5¢c3 | 9.31 4.10 1.13 1.03 1.181.261.23 1.61 1.18 | 0.28 0.39 1.22 1.02 1.241.071.14 1.13 1.01
j15c5c4 | 5.65 3.58 1.32 1.29 1.631.561.46 1.63 1.47 | 0.30 0.15 0.62 0.93 0.89 1.140.83 0.75 0.77
j15c5¢5 | 8.01 5.76 1.12 1.43 1.161.231.27 1.62 1.35| 0.44 0.44 1.03 1.00 0.96 0.910.93 1.21 1.03
j15c5¢6 | 6.05 3.95 1.09 1.21 1.251.320.95 1.24 1.20 | 0.27 0.32 1.12 1.17 1.191.131.16 1.09 1.24
j15c5d1 | 4.44 3.85 0.25 0.17 0.210.250.12 0.34 0.35 | 0.12 0.10 0.97 1.03 1.01 0.940.95 0.94 0.94
j15c5d2 | 9.69 5.74 1.33 1.15 1.111.241.45 1.19 1.33 | 0.66 0.32 0.94 0.99 0.911.090.95 1.11 0.99
j15c5d3 | 9.39 5.89 1.38 1.51 1.231.971.44 155 1.74|0.31 0.32 1.09 1.03 0.931.110.97 0.97 0.85
j15c5d4 |10.155.56 1.63 1.54 1.231.651.53 1.46 1.51| 0.33 0.25 0.80 1.10 0.851.130.96 1.00 1.08
j15¢5d5 |10.354.10 1.50 1.36 1.111.421.27 1.42 1.54 | 0.88 0.17 0.84 0.90 0.99 0.860.82 1.09 0.88
j15c5d6 | 9.97 5.24 1.19 1.28 142 1.421.02 1.47 1.13 | 0.52 0.34 0.84 1.00 1.000.880.97 1.05 1.10
j15c10al| 9.04 7.53 0.11 0.22 0.19 0.280.16 0.51 0.35| 0.25 0.19 1.66 1.70 1.621.641.71 1.64 1.81
j15c10a2|10.96 7.47 0.86 0.68 0.69 0.870.54 1.18 1.03 | 0.24 0.24 1.67 1.58 1.541.421.71 1.55 1.48
j15c10a3|12.50 7.53 0.70 0.73 0.790.880.51 1.11 1.17 | 0.34 0.15 1.35 1.27 1.251.331.35 1.24 1.23
j15c10a4| 7.94 7.08 0.45 0.38 0.390.400.28 0.57 0.65 | 0.24 0.18 1.78 1.69 1.631.461.79 1.48 1.49
j15¢10a5|17.59 7.50 1.17 0.75 0.751.210.94 1.26 1.39 | 0.55 0.24 1.45 1.42 1.351.291.58 1.42 1.26
j15c10a6|12.02 7.12 0.47 0.43 0.50 0.590.41 0.78 0.77 | 0.42 0.23 1.68 1.65 1.731.761.62 1.59 1.59
j15c10b1| 9.10 7.15 0.59 0.64 0.72 0.780.60 0.99 0.80 | 0.31 0.17 1.64 1.64 1.581.521.68 1.82 1.58
j15c10b2|10.58 6.82 0.31 0.44 0.41 0.530.46 0.76 0.69 | 0.33 0.24 1.71 193 1.901.771.88 1.80 1.91
j15c¢10b3(10.79 7.88 0.53 0.59 0.650.750.43 0.79 0.69 | 0.19 0.20 1.60 1.65 1.791.601.75 1.69 1.54
j15c10b4/10.38 7.61 0.47 0.27 0.42 0.620.42 0.70 0.57 | 0.22 0.23 1.49 1.83 1.601.571.67 1.31 1.61
j15c10b5/10.38 9.53 0.97 0.95 0.96 1.290.92 1.31 1.17 | 0.34 0.19 1.58 1.60 1.421.481.51 140 1.49
j15c10b6| 8.69 6.99 0.64 0.59 0.77 0.900.55 0.96 0.77 | 0.19 0.18 1.40 1.39 1.311.411.46 1.37 1.38

Average| 7.91 5.37 0.69 0.67 0.670.800.64 0.90 0.82 | 0.31 0.22 1.26 1.30 1.271.271.30 1.25 1.25
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Table 7. 8. p-values of Wilcoxon Signed-Rank Tests for Medium Instances with 15
Jobs for the EHFSP-V1

Pairs of Algorithms Cardinality C, IGD DS

Pairs of Algorithms Cardinality C, IGD DS

MILP vs CP 0.00  0.00 0.00 0.00 Eprrn Vs IG 0.01  0.00 0.02 0.05
MILP vs Enern 0.00  0.00 0.00 0.00 Enrrn VS 1GALL 0.00  0.00 0.00 0.41
MILP vs Ener 0.00  0.00 0.00 0.00 Enern Vs VBIH 0.00  0.00 0.00 0.47
MILP vs Epen 0.00  0.00 0.00 0.00 EnerVS Enen 0.68  0.37 0.63 0.16
MILP vs E 0.00  0.00 0.00 0.00 EnrVsE 0.01  0.00 0.00 0.09
MILP vs IG 0.00  0.00 0.00 0.00 EnrrVsIG 0.01  0.02 0.06 0.96
MILP vs 1GaLL 0.00  0.00 0.00 0.00 Enrr Vs IGALL 0.00  0.00 0.00 0.06
MILP vs VBIH 0.00  0.00 0.00 0.00 Eprr Vs VBIH 0.00  0.00 0.00 0.01
CP vs Enrrn 0.00  0.00 0.00 0.00 EnenVsE 0.03  0.00 0.00 0.35
CP vs Enrr 0.00  0.00 0.00 0.00 Enen Vs IG 0.02  0.01 0.24 0.15
CP vs Epen 0.00  0.00 0.00 0.00 Enen Vs 1GALL 0.00  0.00 0.00 0.09
CPVvsE 0.00  0.00 0.00 0.00 Enen vs VBIH 0.01  0.00 0.00 0.09
CPvsIG 0.00  0.00 0.00 0.00 EvsIG 0.00  0.00 0.00 0.11
CP vs IGaLL 0.00  0.00 0.00 0.00 E vsIGaL 0.00  0.00 0.00 0.40
CPvs VBIH 0.00  0.00 0.00 0.00 EvsVBIH 0.43  0.13 0.38 0.48
Erern VS Enrr 057  0.24 0.28 0.20 IG vs IGaLL 0.00  0.00 0.00 0.01
Erern VS Enen 0.90  0.57 0.76 0.64 1G vs VBIH 0.00  0.00 0.00 0.04
Enrrn VS E 0.02  0.00 0.00 0.86 IGaLL vs VBIH 0.04  0.00 0.00 0.97
Table 7.9 reports the results for E_EMyprn (Exrry): E_EMypr  (Enrpr),

E_EMgrn (Egrn), E_EM (E), E_IG (IG), E_1Ga1;(IGay) and E_VBIH (VBIH)
algorithms on large instances. Table 7.10 also reports the p-value results of the
Wilcoxon signed-rank tests for these instances. As shown in Table 7.9, ensembles of
metaheuristic algorithms generate more non-dominated solutions than E_IG, E_[Gay,
and E_VBIH algorithms, which is also confirmed by the Wilcoxon signed-rank test
results reported in Table 7.10. Furthermore, E_EMypryn finds 18%; E_EMpygn,
E_EMygr and E_IG find 17%; E_VBIH finds 15%; E_EM finds 13%; and E_IG4y;, finds
10% of the reference solutions on the overall average. According to the p-value results
reported in Table 7.10, there is no statistically significant difference between the

E_EMypgrn, E_LEMygr , E_.EMygy and E_IG algorithms in terms of C,, metric and they
perform statistically better than the E_LEM and E_IG,;, algorithms.

In terms of convergence, E_LEMygrrn has the lowest IGD value in overall average,
whereas E_EMygg, E_LEMygn, and E_EM also have small IGD values. It can be said
that ensembles of metaheuristic algorithms with HFR/HFN approaches outperform the

other metaheuristic algorithms in terms of IGD metric. This statement is also
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consistent with the Wilcoxon signed-rank test results reported in Table 7.10. Note that,
E_EMyrrn, E_LEMyrr and E_EMygy algorithms are statistically equivalent in terms of
IGD metric. For the comparison between E_IG and E_EM algorithms on C, and IGD
metrics, the results are quite interesting. The E_IG algorithm outperforms the E_EM
algorithm in the C, metric while the E_EM algorithm outperforms E_IG in the IGD
metric. This result indicates that the solution set of E_EM is closer to the reference
frontier while the E_IG algorithm has more reference solutions in its own frontier. In
terms of distribution spacing metric, all metaheuristic algorithms have low DS values,
which indicates even dispersions. Note that, in terms of DS metric, there is a
statistically significant difference between only E_EMyprn VS. E_IG, E_EMyprN VS.
E_IGar, E_LEMypg VS. E_IG, E_.EMygy Vs. E_LEM, E_LEMygy Vs. E_IG and E_EMygy Vs.

E_IGpy, pairs.
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Table 7. 9. Performance Comparison of Algorithms on Large Instances for the
EHFSP-V1

Cardinality Ratio of Reference Solutions Found (C,)

Instance| EnFrn EHFR EnFn E IG 1GaLL VBIH|EnrrN EHFREHFN E - IG 1GALL VBIH

j30cbel| 129 124 124 119 99 107 103 | 0.12 0.14 0.07 0.170.24 0.13 0.12
j30c5e2| 123 119 124 114 94 91 123 | 0.10 0.17 0.16 0.07 0.20 0.05 0.29
j30c5e3| 128 137 137 111 115 115 127 | 0.18 0.15 0.14 0.140.21 0.15 0.15
j30cbe4| 143 131 131 150 134 96 123 | 0.13 0.14 0.18 0.240.10 0.11 0.12
j30cbe5| 140 133 130 117 119 122 130 | 0.12 0.17 0.16 0.130.24 0.19 0.07
j30c5e6| 156 162 152 158 149 150 149 | 0.16 0.19 0.13 0.24 0.11 0.09 0.15
j30c5e7| 147 152 111 117 139 142 151 | 0.11 0.09 0.34 0.150.17 0.02 0.19
j30cbe8| 138 141 150 147 151 147 148 | 0.24 0.16 0.19 0.150.13 0.05 0.15
j30cbe9| 136 144 159 140 137 119 144 | 0.11 0.15 0.12 0.130.24 0.12 0.12
j30c5e10 106 92 109 108 119 93 95 | 0.17 0.24 0.150.150.16 0.09 0.14
j40cbel| 152 141 150 137 147 131 130 | 0.15 0.12 0.12 0.13 0.21 0.08 0.26
j40c5e2| 168 164 168 168 146 119 156 | 0.33 0.12 0.16 0.11 0.10 0.10 0.18
j40c5e3| 148 165 150 154 124 112 140 | 0.23 0.13 0.22 0.20 0.07 0.09 0.12
j40cbed4| 163 152 134 134 145 128 136 | 0.12 0.10 0.19 0.12 0.22 0.08 0.20
j40cbe5| 157 118 153 147 130 100 142 | 0.18 0.22 0.11 0.120.22 0.11 0.12
j40c5e6| 169 157 134 110 135 125 138 | 0.11 0.17 0.150.100.25 0.04 0.24
j40c5e7| 147 164 139 157 137 102 138 | 0.17 0.13 0.11 0.120.12 0.08 0.32
j40c5e8| 180 177 168 179 156 136 153 | 0.25 0.06 0.19 0.08 0.31 0.05 0.15
j40c5e9| 214 220 185 205 194 180 182 | 0.21 0.19 0.21 0.06 0.16 0.06 0.19
j40c5e10 170 185 178 164 153 146 158 | 0.19 0.17 0.13 0.110.10 0.15 0.17
j50c5el| 194 200 237 214 167 166 160 | 0.15 0.40 0.22 0.08 0.07 0.09 0.07
j50cbe2| 227 231 229 206 156 158 170 | 0.15 0.15 0.29 0.050.11 0.27 0.05
j50c5e3| 218 223 229 206 186 174 191 | 0.21 0.16 0.18 0.09 0.20 0.08 0.11
j50c5e4| 220 214 212 205 155 157 148 | 0.26 0.19 0.16 0.02 0.13 0.14 0.16
j50c5e5| 194 177 197 164 165 123 151 | 0.23 0.20 0.22 0.08 0.17 0.11 0.08
j50cbe6| 203 204 213 209 196 141 160 | 0.14 0.19 0.26 0.050.25 0.14 0.06
j50c5e7| 171 185 168 150 131 127 131 | 0.22 0.29 0.18 0.17 0.06 0.09 0.14
j50c5e8| 155 174 173 165 155 108 172 | 0.21 0.21 0.20 0.10 0.23 0.13 0.05
j50c5e9| 185 166 140 142 139 99 116 | 0.18 0.15 0.31 0.100.13 0.13 0.10
j50c5e10 154 136 145 127 135 125 117 | 0.30 0.30 0.17 0.19 0.03 0.10 0.08
j60c5el| 243 203 206 203 136 145 164 | 0.20 0.19 0.21 0.150.17 0.05 0.18
j60c5e2| 213 206 194 226 150 150 159 | 0.16 0.20 0.11 0.22 0.14 0.07 0.25
j60c5e3| 169 185 154 190 154 114 123 | 0.19 0.13 0.27 0.140.08 0.05 0.23
j60cbe4| 172 169 184 153 128 127 144 | 0.10 0.06 0.19 0.120.21 0.07 0.26
j60c5e5| 205 198 211 206 192 148 152 | 0.19 0.12 0.11 0.11 0.25 0.13 0.15
j60c5e6| 170 174 156 181 124 140 126 | 0.29 0.20 0.10 0.10 0.19 0.01 0.20
j60cbe7| 210 200 194 202 171 182 169 | 0.14 0.14 0.16 0.28 0.15 0.07 0.07
j60cbe8| 159 172 165 168 122 122 125 | 0.18 0.20 0.12 0.190.19 0.04 0.22
j60c5e9| 185 169 171 200 175 109 141 | 0.16 0.16 0.12 0.140.24 0.11 0.13
j60c5e10 210 200 199 208 176 137 164 | 0.07 0.24 0.14 0.170.19 0.07 0.15

Average|171.78 169.10 166.58 164.03 145.90130.33143.73 0.18 0.17 0.17 0.13 0.17 0.10 0.15
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Table 7. 9. (Cont’d) Performance Comparison of Algorithms on Large Instances for
the EHFSP-V1

IGD Distribution Spacing (DS)

Instance | Evrrn EnFR EnPn E IG 1GaL VBIH | Enrrny EHFR EHrn E IG 1GaLL VBIH

j30c5el | 11.07 12.94 12.23 12.85 17.15 2249 27.78| 095 094 0.84 1.03 095 1.04 157
j30c5e2 | 12.50 13.69 12.63 1590 19.28 20.65 1219 | 099 1.05 1.12 0.84 1.31 0.94 0.88
j30c5e3 | 12.20 11.08 13.82 15.11 13.85 2381 16.23| 1.04 0.99 1.09 0.80 1.09 1.23 141
j30c5e4 | 9.99 10.96 10.62 10.13 20.04 2434 1586 | 1.05 0.92 0.74 0.96 095 120 0.95
j30c5e5 | 11.64 12.15 11.65 14.14 1193 1412 1788 | 0.86 1.02 0.87 0.96 098 0.99 1.04
j30che6 | 8.58 8.15 10.31 7.70 10.52 1365 9.10 | 0.88 0.95 0.90 0.89 1.15 0.99 115
j30c5e7 | 10.98 10.30 9.18 11.85 11.86 22.61 10.04| 0.94 090 0.85 0.91 095 1.23 1.07
j30c5e8 | 854 11.21 10.76 10.58 10.52 15.63 16.81| 0.90 1.08 0.94 0.94 1.07 098 111
j30c5e9 | 11.12 11.26 11.16 12.02 897 2200 13.07| 093 0.85 1.09 1.10 1.09 0.98 0.92
j30c5e10| 14.58 16.48 16.49 18.68 16.69 29.51 29.03 | 090 124 1.06 142 1.32 1.08 1.02
j40c5el | 12.32 13.07 13.04 1790 2743 5586 4643 | 1.05 0.89 0.84 1.36 143 115 185
j40c5e2 | 11.11 16.02 11.63 15.21 20.83 67.88 4117 | 1.01 0.96 0.93 0.98 1.39 098 1.08
j40c5e3 | 17.68 18.21 17.71 14.26 50.68 7446 36.52 | 1.09 1.31 1.13 1.09 1.30 1.02 1.13
j40c5e4 | 12.44 16.74 1755 16.31 4562 5226 3237 | 090 1.08 1.14 091 1.38 1.08 0.98
j40c5e5 | 16.05 17.63 14.10 16.02 25.85 51.32 42.65| 1.18 0.88 0.95 1.02 0.97 1.30 1.04
j40c5e6 | 16.33 21.34 17.89 28.66 40.63 7131 3833 | 0.87 1.10 0.85 1.15 1.03 098 2.53
j40c5e7 | 20.83 14.24 17.15 1834 4221 7172 2855| 091 1.11 1.01 1.12 1.08 092 0.93
j40c5e8 | 12.97 14.21 14.35 13.74 2854 70.71 48.05| 1.11 1.14 1.10 1.01 1.02 1.14 1.02
j40c5e9 | 8.74 1040 9.93 1225 2293 5920 3553 | 094 1.05 0.90 097 1.12 107 1.16
j40c5e10| 11.41 12.22 11.24 16.13 23.76 5287 3288 | 1.02 1.07 099 151 1.15 0.96 0.95
j50c5el | 13.99 9.58 1559 20.33 95.16 85.08 8235| 1.02 1.07 1.16 1.20 099 1.10 1.02
j50c5e2 | 18.42 13.39 20.67 29.67 137.75 96.39 102.49| 1.12 0.99 1.21 1.07 1.01 1.36 0.90
j50c5e3 | 19.93 14.76 14.80 31.44 65.90 114.85 6821 | 1.09 0.98 1.05 1.19 1.02 121 094
j50c5e4 | 14.15 14.28 18.39 21.63 72.88 103.27 87.69| 1.15 1.11 1.03 1.03 1.33 1.00 1.16
j50c5e5 | 19.41 13.01 20.27 23.93 61.70 110.27 85.25| 1.02 0.89 1.00 153 1.25 1.31 111
j50c5e6 | 26.69 18.77 11.26 16.88 72.09 121.70 55.06 | 1.09 0.95 1.04 0.93 1.01 090 1.61
j50c5e7 | 19.70 15.01 25.48 16.34 90.44 114.15 107.11| 1.01 1.02 096 1.01 1.02 112 0.98
j50c5e8 | 19.50 13.52 20.22 30.42 43.24 11551 8342 | 1.07 0.83 1.01 1.11 1.08 1.64 1.01
j50c5e9 | 13.67 17.91 13.29 28.28 100.02 115.39 121.56| 1.19 1.05 1.07 1.70 1.13 1.35 1.03
j50c5e10 | 14.89 24.18 24.37 26.12 93.84 111.61 120.49| 112 098 131 1.38 1.12 1.06 0.99
j60c5el | 18.57 26.54 19.95 38.96 152.46 146.75 123.07| 0.88 0.95 0.94 095 1.27 118 1.10
j60c5e2 | 16.60 23.76 36.67 24.57 143.06 155.25 160.80| 1.13 0.96 1.33 1.15 1.15 1.72 104
j60c5e3 | 38.24 27.19 39.02 28.43 139.23 250.27 225.73| 0.90 1.40 0.87 1.09 1.26 0.76 1.00
j60c5e4 | 20.54 43.49 29.58 29.37 138.26 175.03 114.48| 1.09 1.20 0.99 1.09 0.93 1.70 0.94
j60c5e5 | 16.56 22.46 22.85 26.17 107.62 17291 157.29| 1.13 1.03 098 122 099 112 1.03
j60c5e6 | 35.60 28.28 29.98 33.97 146.84 175.70 136.55| 1.08 1.15 1.10 0.96 1.46 0.93 0.89
j60c5e7 | 25.25 20.14 26.18 24.24 139.38 188.07 168.53| 1.03 0.92 1.02 1.00 1.41 1.15 1.09
j60c5e8 | 48.14 24.08 42.17 29.49 157.37 202.05 136.32| 1.04 1.49 1.17 140 091 1.14 1.03
j60c5e9 | 28.89 54.61 26.65 27.60 87.17 211.01 176.90| 1.78 1.12 1.07 1.02 1.21 0.95 138
j60c5e10| 25.00 22.88 22.80 27.78 153.75 21897 182.05| 1.60 173 1.24 113 1.10 097 221

Average | 17.62 18.00 18.59 20.84 66.69 9552 76.15| 1.05 106 1.02 1.10 1.13 1.12 1.16
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Table 7. 10. p-values of Wilcoxon Signed-Rank Tests for Large Instances for the

EHFSP-V1

Pairs of Algorithms Cardinality C, IGD DS Pairs of Algorithms Cardinality Cp, IGD DS
Errrn VS Enrr 0.34 0.56 0.79 0.86 EnenVSE 0.30 0.01 0.01 0.05
Errrn VS Eren 0.07 0.69 0.08 0.53 Enrn Vs IG 0.00 0.89 0.00 0.00
Erern VS E 0.02 0.00 0.00 0.14 Enen Vs 1GALL 0.00 0.00 0.00 0.01
Enern VS IG 0.00 0.86 0.00 0.02 Enen vs VBIH 0.00 0.28 0.00 0.10
Enrrn VS 1GALL 0.00 0.00 0.00 0.01 EwvsIG 0.00 0.03 0.00 0.51
Enrrn Vs VBIH 0.00 0.11 0.00 0.25 Evs IGaLL 0.00 0.00 0.00 0.81
Enrr VS Enen 0.39 0.89 0.61 0.29 EvsVBIH 0.00 0.10 0.00 0.87
Ever VS E 0.07 0.01 0.00 0.44 1G vs IGaLL 0.00 0.00 0.00 0.61
Enrr VS IG 0.00 0.79 0.00 0.01 I1GvsVBIH 0.64 0.40 0.04 0.31
Evier VS 1IGALL 0.00 0.00 0.00 0.17 1GaLLVs VBIH 0.00 0.00 0.00 0.67
Evrrvs VBIH 0.00 0.33 0.00 0.23

7.5 Small Instances for the EHFSP-V2

Table 7.11 reports the results of Cp, IGD and DS performance metrics for each
metaheuristic algorithm on the small-sized instances, where E2, IG2, 1G24, and
VBIH?2 represent E_LEM2, E_IG2, E_IG2,;;, and E_VBIH2 algorithms, respectively. As
shown in the table, E_IG2,;; finds 48%; E_VBIH2 finds 47%; E_EM2 finds 46%
and E_IG2 finds 43% of the Pareto-optimal solutions on the overall average. In terms
of convergence, E_IG24; . is the best performer with 0.64 IGD value in overall average
whereas E_VBIH2 and E_EMZ2 also have very small (around 0.69) IGD values.
However, it can be said that all algorithms provide very close approximations to the
Pareto-optimal solution set P, as the maximum of their average IGD values is 0.78. In
terms of distribution spacing, solutions obtained by the metaheuristic algorithms are
evenly distributed due to their low DS values. Note that, E_VBIH2 has a slightly lower
DS value than the other algorithms. Finally, as the E_IG2,y;, algorithm has higher C,
and lower IGD values, it can be said that E_IG24;;, performs slightly better than the

other algorithms for these small instances.
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Table 7. 11. Performance Comparison of Algorithms on Small Instances for the
EHFSP-V2
Ratio of Pareto-Optimal
Solutions Found (Cp,)
E2 1G22 1G2,.L VBIH2| E2 1G2 1G25.. VBIH2| E2 1G2 1G24 VBIH2| E2 1G2 1G24 VBIH2
j5c5a2 | 74 73 74 76 |0.16 017 0.21 0.18 |0.901.03 1.08 0098 |4.19 3.05 526 3.53
j5c5a3| 88 90 96 105 |0.58 0.49 0.62 0.67 |0.490.46 0.40 0.49 [1.62 1.88 322 1.17
j5c5a4 | 102 99 103 108 |0.56 0.55 0.57 0.59 [0.450.56 0.45 0.43 [1.26 2.36 0.89 0.56
j5c5a5| 70 71 64 53 |0.00 001 0.01 001 [3.02296 2.64 280 [1.10 1.64 1.06 1.22
j5c5a6 | 103 96 101 96 |0.80 0.77 0.81 0.74 |0.170.25 0.15 025 [0.59 1.43 122 1.06
j5csbl| 128 125 139 114 |0.55 0.54 058 0.54 [0.450.59 0.40 055 |0.72 0.82 1.14 1.07
j5c5b2 | 114 104 107 105 |0.54 0.48 055 0.52 [0.50 0.66 0.38 0.48 |2.42 1.10 1.25 0.85
j5c5b3| 103 113 104 101 (0.350.31 0.36 0.36 [0.69 0.82 0.54 0.71 |3.34 354 242 3.00
j5c5b4 | 104 96 103 108 |0.48 0.47 0.48 0.52 [0.480.58 0.46 0.44 |0.91 0.93 079 091
joesb5 | 123 113 123 121 [0.76 0.69 0.78 0.73 [0.30 0.43 0.23 0.31 |0.87 0.83 0.97 1.06
j5c5b6 | 115 103 123 117 |0.46 0.42 0.46 0.47 [0.480.67 0.47 0.47 |0.94 1.24 1.35 0.90
j5c5cl| 86 84 85 85 [0.32028 031 0.28 |0.44040 044 037 [1.55 0.76 136 1.88
Average|100.83 97.25 101.83 99.08 |0.46 0.43 048 0.47 |0.70 0.78 064 0.69 |[163 1.63 174 143

Cardinality IGD Distribution Spacing (DS)

Instance

7.6 Medium & Large Instances for the EHFSP-V2

As mentioned in the beginning of Section 7, for medium and large instances, the non-
dominated solution sets of time-limited MILP, time-limited CP and metaheuristic
algorithms are compared with each other in terms of the aforementioned cardinality,
Cp, IGD and DS metrics. As the Pareto-optimal solution sets (P) are not known for
these instances, the reference sets (R) are used in Cp, and IGD metrics. Note that the
reference set includes only the high-quality non-dominated solutions, which are
obtained by selecting all the non-dominated solutions found by the four metaheuristic

algorithms, time-limited MILP and CP approaches.

In order to make the computational results statistically convincing, a series of Kruskal
Wallis tests is also conducted at the significance level of @ = 0.05. The Kruskal Wallis
test is a non-parametric test to determine if there are statistically significant differences
between two or more groups, i.e., there is a statistically significant difference between
at least one pair of groups. This test is employed to decide whether there is a
statistically significant difference between at least two solution approaches in terms of
a certain performance metric. Following a Kruskal Wallis test, the Dunn test is also
carried out on each pair of algorithms as a post-hoc analysis procedure. Namely, the
Dunn test is employed to make multiple pairwise comparisons, if there is a statistically
significant Kruskal Wallis result. For each pair of the algorithms, the results of the
Kruskal Wallis and Dunn tests are reported for all performance metrics.
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Table 7.12 reports the results for the time-limited MILP (MILP), time-limited CP (CP),
E_EM2(E2), E_IG2 (IG2), E_1G24;1, (IG24;;) and E_VBIH2 (VBIH?2) algorithms on
medium instances with 10 jobs. Furthermore, Table 7.13 reports the results of
statistical tests for these instances. As shown in Table 7.12, each metaheuristic
algorithm finds approximately six times as many non-dominated solutions than the
time-limited MILP and CP, in exceptionally fewer computation times. The results of
statistical tests reported in Table 7.13 also confirm that all metaheuristics perform
significantly better than the MILP and CP in terms of the cardinality metric. Note that
there is no statistically significant difference between the metaheuristics in terms of

cardinality.

As shown in Table 7.12, E_IG2 1, finds 41%; E_IG2 finds 35%; E_EM2 and E_VBIH2
find 33%; time-limited CP finds 22%, and the time limited MILP finds 16% of the
reference solutions on the overall average. Note that, E_IG2,;;, finds more than 80%
of the reference solutions for 10 out of 41 instances, where E_VBIH2 and E_EM2 find
at least 80% of the reference solutions for 8 instances; E_IG2 finds more than 80% of
the reference solutions for 5 instances. According to the results of statistical tests
reported in Table 7.13, there is a statistically significant difference between only pairs
of MILP-E_EM2, MILP-E_IG2 and MILP-E_IG2 ,,, in terms of C, metric.

In terms of convergence, E_IG2 (3.43) and E_LEM2 (3.47) are the best performer ones
on the overall average, whereas other metaheuristic algorithms also have small IGD
values around 3.57. According to the results of the statistical tests reported in Table
7.13, there is no statistically significant difference between the solution methods in
terms of IGD metric for these instances with 10 jobs. For the comparison of
distribution spacing metric, time-limited MILP and CP approaches have smaller DS
values than the metaheuristic algorithms, which implies that the solutions generated
by MILP and CP approaches are spread more uniformly in their own discovered
frontiers. This statement is also consistent with the results of the statistical tests
reported in Table 7.13. This result is expected, as a constant € level is used through the
augmented e-constraint method in the time-limited MILP and CP approaches.
Nevertheless, the metaheuristic algorithms also have low DS values, indicating even

dispersions.
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Table 7. 12. Performance Comparison of Algorithms on Medium Instances with 10
Jobs for the EHFSP-V2

Cardinality Ratio of Reference Solutions Found (Cp)

Instance | MILP CP E2 IG2 1G2aL VBIH2 | MILP CP E2 1G2 1G2aL VBIH2

j10c5a2 18 19 139 120 130 117 009 017 080 077 0.80 0.81
j10c5a3 7 19 159 157 158 173 005 013 083 083 083 0.87
j10cba4 21 20 158 164 166 168 014 013 082 079 088 0.86
j10c5a5 4 18 165 163 179 163 002 011 086 083 092 0.83
j10c5a6 21 19 141 140 144 146 016 015 084 082 0.86 0.85
j10c5b1 21 19 176 178 187 178 012 011 088 086 0.92 0.81
j10c5b2 5 21 143 144 151 148 004 017 079 078 0.82 0.86
j10c5b3 8 18 157 146 157 159 005 013 080 0.77 0.80 0.78
j10c5b4 19 21 147 149 155 150 013 015 076 068 0.75 0.68
j10c5b5 21 21 195 200 210 186 011 011 0.88 087 0.92 0.85
j10c5h6 20 20 155 160 159 160 013 013 079 079 083 0.76

j10c5c¢l 15 17 90 85 73 96 007 019 033 035 0.38 0.36
j10c5¢2 14 15 85 88 87 86 006 015 023 021 032 0.37
j10c5¢3 17 18 93 88 93 88 010 022 019 010 0.33 0.24
j10c5c4 16 16 74 80 65 73 006 017 030 030 047 0.36
j10c5¢5 15 14 78 85 95 89 009 012 031 029 046 0.31
j10c5¢6 15 16 83 90 78 69 008 017 016 019 041 0.30
j10c5d1 15 15 78 79 84 69 012 016 025 024 0.28 0.22
j10c5d2 16 16 68 82 67 69 013 018 015 0.17 0.27 0.27
j10c5d3 16 15 82 85 81 83 009 015 016 035 0.8 0.19
j10c5d4 16 20 92 97 83 87 008 023 030 044 021 0.17
j10c5d5 15 14 81 85 72 89 011 017 033 036 041 0.28
j10c5d6 16 15 76 74 73 75 006 015 021 032 0.37 0.26
j10c10al | 13 7 43 57 53 47 055 020 010 0.15 0.00 0.05
j10c10a2 | 14 11 70 66 63 63 0.41 059 0.00 0.00 0.00 0.00
j10c10a3 | 12 6 63 64 55 60 038 017 0.00 0.08 0.17 0.25
j10c10a4 | 11 8 40 49 50 59 033 017 0.04 021 025 0.04
j10c10a5 6 9 50 44 42 38 012 036 008 016 0.12 0.20
j10c10a6 | 16 5 54 53 42 60 065 013 017 0.09 0.00 0.00
j10c10bl | 16 15 59 62 62 55 036 054 0.00 004 011 0.04
j10c10b2 9 14 74 83 83 65 006 040 0.00 011 031 0.17
j10c10b3 | 11 12 55 63 66 65 032 050 0.00 0.00 0.18 0.05
j10c10b4 9 11 72 83 56 71 0.08 042 017 025 0.08 0.00
j10c10b5 9 16 91 86 72 73 011 043 0.03 000 043 0.03
j10c10b6 | 15 10 61 79 7 65 039 039 017 004 0.00 0.04
j10c10cl | 14 17 106 100 114 108 0.08 017 019 027 0.04 0.27
j10c10c2 | 15 15 94 88 71 92 002 026 004 015 045 0.08

j10c10c3 | 14 14 102 99 103 109 011 012 0.09 033 031 0.10
j10c10c4 | 15 16 116 106 92 101 008 013 027 020 0.27 0.05
j10c10c5 | 16 17 104 100 100 92 010 011 021 025 032 0.02
j10c10c6 | 18 19 87 105 100 93 015 030 015 0.09 0.26 0.04

Average | 14.24 1532 98.93 100.63 98.73 9846 | 0.16 022 033 035 041 0.33

103



Table 7. 12. (Cont’d) Performance Comparison of Algorithms on Medium Instances
with 10 Jobs for the EHFSP-V2

IGD Distribution Spacing (DS)

Instance | MILP CP E2 1G2 1G2a. VBIH2 | MILP CP E2 1G2 1G2a..  VBIH2

j10c5a2 118 128 049 0.50 0.47 0.41 044 068 398 228 1.03 0.91
j10c5a3 | 3.84 119 0.35 0.39 0.32 0.35 071 049 816 280 156 1.24
j10c5a4 | 0.98 122 0.34 043 0.35 0.32 0.35 051 286 800 1.86 3.18
j10cba5 | 6.25 1.62 0.23 0.30 0.19 0.27 031 0.75 2.89 439 200 1.66
j10cba6 | 096 155 055 0.72 0.55 0.50 038 0.68 109 150 154 1.75
j10c5bl | 096 1.60 0.27 0.26 0.24 0.33 0.30 0.70 1.40 6.40 852 3.48
j10c5b2 | 6.01 1.05 0.58 0.62 0.48 0.59 0.53 042 261 3.02 313 2.74
j10c5b3 | 555 196 0.68 0.68 0.65 0.68 0.60 051 237 313 2.09 3.85
j10csb4 | 190 184 116 134 1.17 1.14 047 046 215 215 233 1.96
j10c5b5 | 113 1.13 030 0.33 0.28 0.30 029 029 826 206 1.07 7.49
j10c5b6 | 1.08 132 0.74 0.85 0.71 0.94 040 0.67 3.06 2.71 216 2.57
j10c5cl | 341 271 131 150 2.52 1.13 132 045 180 142 120 1.59
j10c5c2 | 455 268 152 1.37 1.60 1.40 135 037 085 1.26 154 0.89
j10c5c3 | 431 259 225 196 2.77 2.65 1.01 047 114 101 111 1.24
j10c5c4 | 5.04 417 141 184 2.86 1.96 095 038 1.26 097 0.84 1.02
j10c5¢5 | 4.08 291 0.97 1.01 1.06 0.98 040 043 1.09 146 181 1.13
j10c5c6 | 3.39 356 150 1.80 1.72 2.00 046 051 149 101 135 1.30
j10c5dl | 3.28 355 250 217 2.75 2.42 0.10 042 0.82 098 148 1.07
j10c5d2 | 439 338 361 181 2.58 2.50 113 074 112 183 1.01 0.94
j10c5d3 | 417 256 172 161 1.81 1.91 1.09 054 125 081 1.86 1.13
j10c5d4 | 585 233 224 171 2.30 1.78 1.02 047 081 0.89 1.73 1.76
j10c5d5 | 4.64 459 154 149 2.69 211 0.80 011 1.14 099 112 1.08
j10cbd6 | 4.14 345 142 124 1.60 1.68 1.07 060 1.31 1.82 144 121
j10cl0al | 1.69 6.28 6.02 6.11 7.63 6.40 032 0.77 2.60 261 155 1.53
j10cl0a2 | 2.21 3.08 11.21 11.63 11.92 11.46 0.87 0.87 1.10 0.82 1.50 2.03
j10cl0a3 | 440 875 739 6.32 6.28 6.04 081 138 235 145 135 0.98
j10cl0a4 | 6.56 791 7.12 6.16 6.38 6.99 131 116 1.06 1.75 1.19 1.18
j10c10a5 | 6.54 5.84 585 6.29 5.92 541 066 1.09 140 207 1.27 1.10
j10c10a6 | 0.70 8.61 9.26 10.07 9.90 9.88 079 128 147 117 197 2.19
j10c10bl | 1.91 290 1097 10.87 10.02 11.17 0.68 153 1.71 219 180 1.57
j10c10b2 | 9.73 550 492 515 5.01 521 0.75 0.95 1.88 217 204 1.52
j10c10b3 | 359 3.01 7.86 8.17 7.98 7.80 034 071 1.62 268 1.66 221
j10c10b4 | 6.25 496 493 4.38 5.01 5.27 028 050 1.84 175 157 1.86
j10c10b5 | 5.89 514 588 5.56 4.81 5.47 025 0.73 213 206 194 1.60
j10c10b6 | 2.69 3.79 760 7.82 8.36 8.05 0.68 0.60 2.28 1.77 1.93 1.90
j10c10cl | 1325 6.11 291 3.03 4.29 3.42 092 074 137 132 127 1.24
j10c10c2 | 10.39 7,50 5.18 4.16 3.60 4.75 119 041 138 2.08 1.47 1.60
j10c10c3 | 11.17 1015 3.79 3.61 5.43 5.45 0.98 086 141 158 1.01 1.00
j10c10c4 | 1433 749 316 2.86 3.46 3.97 087 086 150 139 1.39 1.22
j10c10c5 | 11.36 7.70 440 3.27 2.86 3.59 129 070 112 2.00 1.58 2.33
j10c10c6 | 838 312 6.17 9.43 7.49 6.31 1.01 038 230 113 1.62 1.29

Average | 493 395 347 343 3.61 3.54 0.72 0.66 2.03 207 1.75 1.79

104



Table 7. 13. Results of Statistical Tests for Medium Instances with 10 Jobs for the

EHFSP-V2

Cardinality Cp IGD DS
p-value of Kruskal Wallis Test 0.00 0.00 0.09 0.00
Pairwise Comparisons
MILP vs CP N N N
MILP vs E2 Y Y Y
MILP vs 1G2 Y Y Y
MILP vs 1G2aL Y Y Y
MILP vs VBIH2 Y N Y
CPvs E2 Y N Y
CPvs IG2 Y N Y
CP vs IG2a1L Y N Y
CP vs VBIH2 Y N Y
E2 vs 1G2 N N N
E2 vs |GZA|_|_ N N N
E2 vs VBIH2 N N N
1G2 vs |62A|_|_ N N N
IG2 vs VBIH2 N N - N
1G2aLL Vs VBIH2 N N - N
Y: significant (p-value < 0.05) N: not significant (p-value > 0.05)

Table 7.14 reports the results for each solution approach on the medium instances with
15 jobs. Furthermore, Table 7.15 reports the results of statistical tests for these
instances. As shown in Table 7.14, each metaheuristic algorithm finds approximately
eight times as many non-dominated solutions than the time-limited MILP and CP, in
very short computation times. The statistical results reported in Table 7.15 also
confirm that all metaheuristics perform significantly better than the MILP and CP in

terms of the cardinality metric.

As shown in Table 7.14, E_1G2,;,, finds 48%; E_IG2 finds 47%; E_EM2 finds 44%;
E_VBIH2 finds 34%; time-limited CP finds 17%, and the time limited MILP finds 6%
of the reference solutions on the overall average. Note that, E_1G2,;;, E_LIG2 and
E_EM2 find more than 80% of the reference solutions for 12 out of 36 instances, where
E_VBIH2 finds at least 80% of the reference solutions for 9 instances. According to
the results of statistical tests reported in Table 7.15, all metaheuristics perform
significantly and statistically better than the MILP in terms of C,, metric. Note that,
E_IG2,1,, and E_IG2 algorithms are statistically equivalent in terms of C,, metric and

they perform statistically better than the MILP, CP and E_VBIH2.
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In terms of proximity to the reference frontier, E_IG2 (3.01), E_LEM2 (3.15) and
E_1G241;. (3.26) are the closest ones in overall average, whereas E_VBIH2 also has
small IGD value (3.73). According to the results of statistical tests reported in Table
7.15, all metaheuristic algorithms outperform the time limited MILP and CP
approaches statistically in terms of IGD metric. Note that all metaheuristic algorithms
are statistically equivalent in terms of IGD metric for these instances with 15 jobs. In
terms of the spread of the solutions, even though metaheuristic algorithms have low
DS values, time-limited MILP and CP approaches have smaller DS values than these
algorithms due to the usage of a constant € level. This statement is also consistent with

the results of statistical tests reported in Table 7.15.

Consequently, it is clear from Tables 7.12 and 7.14, E_IG2,;;, and E_IG2 perform
better than the other metaheuristic algorithms for these medium instances, due to their
higher C, and lower IGD values. Nevertheless, all metaheuristic algorithms perform
much better than the time-limited MILP and CP approaches, in terms of both

cardinality and proximity to the reference set, as expected.
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Table 7. 14. Performance Comparison of Algorithms on Medium Instances with 15
Jobs for the EHFSP-V2

Cardinality Ratio of Reference Solutions Found (C,)

Instance | vy p cp E2  1IG2  1G2aL VBIH2| MILP CP  E2 IG2 1G2aL VBIH2

j15cbhal 20 18 229 224 226 214 0.09 008 082 079 0.82 0.79
j15c5a2 20 18 214 219 222 219 008 0.09 088 0.88 0.90 0.87
j15c5a3 21 16 181 171 178 168 011 010 083 083 0.84 0.77
j15cbha4 15 17 201 201 207 200 005 009 086 083 0.83 0.77
j15c5a5 22 19 215 219 213 216 0.11 0.09 087 086 0.92 0.85
j15c5a6 4 20 227 215 233 222 001 009 086 088 0.92 0.83
j15c5b1 20 21 222 229 220 214 007 010 085 0.86 0.89 0.82
j15¢5h2 20 20 192 205 205 200 0.08 011 085 0.84 0.86 0.84
j15¢5b3 6 21 206 207 203 203 0.03 012 083 0.80 0.88 0.80
j15c5b4 11 8 179 189 186 188 005 005 081 084 0.84 0.82
j15c5b5 14 20 203 207 212 194 004 012 080 0.81 0.87 0.83
j15c5h6 20 21 215 226 219 219 009 010 085 085 0.88 0.84

j15c¢5¢l 15 15 102 101 94 83 005 019 044 021 0.13 0.11
j15¢5¢2 15 13 88 100 95 94 0.04 019 000 026 054 0.00
j15¢5¢3 13 14 98 102 98 91 0.00 0.14 048 021 0.25 0.10
j15c5¢c4 14 14 100 90 109 81 0.08 0.09 014 032 034 0.14
j15¢5¢5 16 16 94 98 79 91 0.00 017 024 028 0.28 0.28

j15¢c5¢6 16 18 106 125 111 109 009 023 033 023 031 0.18
j15c5d1 18 16 223 239 233 220 006 005 076 081 0.77 0.75

j15c5d2 14 15 94 104 96 87 003 017 023 037 0.23 0.11
j15c5d3 13 19 89 79 95 7 0.00 015 032 045 0.01 0.13
j15c5d4 16 17 101 107 83 92 003 015 023 015 0.39 0.13
j15c5d5 16 17 102 105 87 89 000 018 028 033 0.31 0.08
j15c5d6 16 18 84 85 88 86 003 015 014 035 0.30 0.07
j15c10al | 10 10 67 57 47 52 015 0.77 0.00 0.00 0.08 0.00
j15c10a2 7 9 72 85 74 79 005 041 000 032 0.23 0.00
j15c10a3 | 10 8 67 72 70 64 005 036 0.09 023 0.14 0.14
j15c10a4 6 4 53 69 67 73 000 019 014 019 048 0.00
j15c10a5 6 7 76 63 81 74 005 015 015 035 0.30 0.03
j15¢10a6 9 5 74 78 73 76 0.00 024 005 024 0.52 0.00
j15c10b1 8 6 47 46 53 49 015 019 026 022 0.19 0.00
j15¢10b2 7 5 59 52 43 30 0.07 018 029 029 0.14 0.07
j15c10b3 5 3 40 42 40 37 0.06 0.09 016 038 0.22 0.13
j15c10b4 6 3 42 44 53 39 011 0.07 015 026 041 0.04
j15¢10b5 6 6 55 61 63 62 005 016 054 008 0.19 0.00
j15c100b6 6 5 52 53 60 53 009 015 024 045 0.06 0.00

Average | 12.81 13.39 124.14 126.92 12544 12069 | 0.06 0.17 044 047 0.48 0.34
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Table 7. 14. (Cont’d) Performance Comparison of Algorithms on Medium Instances
with 15 Jobs for the EHFSP-V2

IGD Distribution Spacing (DS)

Instance | \iip cP E2  1G2 1G2a VBIH2 |MILP CP E2 1G2 1G2a VBIH2

j15c5hal 18 261 0.78 0.3 0.83 0.77 036 0.71 294 227 225 1.65
j15c5a2 155 234 035 0.39 0.33 0.33 028 0.75 1.87 133 233 1.13
j15c5a3 101 288 055 0.61 0.54 0.51 037 0.79 237 184 248 1.70
j15cha4 | 2.46 352 056 0.61 0.57 0.58 0.71 1.07 329 208 222 3.68
j15c5a5 123 206 039 045 0.33 0.42 038 0.70 223 245 193 2.22
j15c5a6 | 9.85 166 035 0.33 0.34 0.40 034 046 211 247 215 2.35
j15¢5b1 | 150 1.32 0.62 0.63 0.53 0.64 039 0.32 267 253 241 2.76
j15¢5b2 | 1.73 173 083 0.85 0.75 0.85 050 055 3.09 209 239 2.92
j15c5h3 | 879 150 0.76 0.81 0.69 0.82 0.90 040 268 811 235 2.40
j15c5b4 | 3.18 574 054 055 0.54 0.54 1.06 069 194 3.44 256 2.73
j15c5b5 | 2.41 258 094 0.95 0.86 0.87 036 0.63 3.14 277 265 1.70
j15c5b6 | 156 141 081 0.87 0.72 0.78 035 035 418 237 3.00 2.35
j15c5cl | 8.84 446 2.01 3.35 3.16 3.39 0.68 058 1.53 1.34 0.80 112
j15c5c2 | 875 589 343 318 2.72 3.31 094 074 131 094 118 1.22
j15c5¢3 | 10.62 487 242 137 211 1.62 145 147 158 141 1.05 1.59
j15c5c4 | 9.92 448 270 257 2.84 2.76 068 127 123 101 134 1.53
j15c5¢5 | 8.32 485 146 1.16 1.91 1.46 0.80 1.04 1.05 098 1.09 1.42
j15c5¢6 | 5.79 4.07 351 434 3.16 4.90 093 119 100 112 163 1.24
j15c5d1 | 1.68 6.28 0.45 0.44 0.45 0.39 033 151 1.79 129 230 191
j15¢5d2 | 9.41 512 224 1.66 2.96 2.72 079 097 1.14 200 113 0.65
j15c5d3 | 11.83 4.01 201 213 2.88 2.32 076 0.77 144 105 131 1.54
j15c5d4 | 1043 434 196 1.80 1.89 2.39 129 0.75 0.86 110 1.39 0.88
j15c¢5d5 | 10.67 3.83 2.07 1.85 2.35 2.80 125 070 1.09 153 114 0.73
j15c5d6 | 1026 4.20 279 281 231 2.20 127 087 126 121 0.9 0.99
j15cl10al | 6.86 1.80 2210 21.74 20.31 22.95 050 1.74 157 163 129 1.50
j15cl0a2 | 17.46 7.79 934 841 7.76 10.66 162 048 136 151 174 2.03
j15cl0a3 | 14.92 8.66 6.94 6.32 7.30 8.26 181 048 158 127 199 1.58
j15cl0a4 | 1346 1346 569 4.60 4.12 7.55 177 031 146 164 1.63 1.55
j15c10a5 | 1453 873 3.83 3.20 3.09 5.43 143 056 1.77 173 2.26 1.64
j15c10a6 | 20.45 1335 471 4.28 3.76 5.67 1.03 030 1.61 121 159 1.78
j15c10bl | 11.04 16.27 5.70 4.94 7.34 7.85 064 069 128 125 154 1.15
j15c10b2 | 18.92 17.06 3.71 3.84 5.61 6.10 0.73 056 1.13 262 229 0.97
j15c10b3 | 18.61 24.18 3.02 3.07 3.04 4.62 063 0.79 120 118 1.19 2.33
j15c10b4 | 1461 21.28 3.64 3.27 2.65 4.42 138 064 098 170 1.24 1.04
j15c10b5 | 19.19 23.13 6.46 6.52 10.65 6.91 079 143 166 219 112 2.27
j15c10b6 | 20.29 1497 3.83 3.68 5.99 6.04 149 044 156 224 144 0.80

Average | 9.28 7.12 315 3.01 3.26 3.73 086 0.77 180 191 176 1.70
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Table 7. 15. Results of Statistical Tests for Medium Instances with 15 Jobs for the

EHFSP-V2

Cardinality Cp IGD DS
p-value of Kruskal Wallis Test 0.00 0.00 0.00 0.00
Pairwise Comparisons
MILP vs CP N Y N N
MILP vs E2 Y Y Y Y
MILP vs 1G2 Y Y Y Y
MILP vs 1G2aL Y Y Y Y
MILP vs VBIH2 Y Y Y Y
CPvs E2 Y Y Y Y
CPvs IG2 Y Y Y Y
CP vs IG2a1L Y Y Y Y
CP vs VBIH2 Y N Y Y
E2 vs 1G2 N N N N
E2 vs |GZA|_|_ N N N N
E2 vs VBIH2 N N N N
1G2 vs |62A|_|_ N N N N
IG2 vs VBIH2 N Y N N
1G2aLL Vs VBIH2 N Y N N
Y: significant (p-value < 0.05) N: not significant (p-value > 0.05)

Table 7.16 reports the results for E_EM2 (E2), E_IG2 (IG2), E_1G21,1,(IG24;;) and
E_VBIH2 (VBIH?2) algorithms on large instances. Furthermore, Table 7.17 reports the
results of statistical tests for these instances. As shown in Table 7.16, E_IG2 and
E_EM2 algorithms generate more non-dominated solutions than E_IG2,;; and
E_VBIH2 algorithms. According to the results of statistical tests reported in Table 7.17,
E_IG2 outperforms the E_IG2,;;, and E_VBIH2 algorithms statistically in terms of
cardinality. Furthermore, E_IG2 finds 48%; E_IG2,;,, finds 20%; E_EM2 finds 17%,
and E_VBIH2 finds 16% of the reference solutions on the overall average. According
to the results of statistical tests reported in Table 7.17, E_IG2 outperforms the other

metaheuristics statistically in terms of C,, metric.

In terms of convergence, E_IG2 has the lowest IGD value in overall average, whereas
E_IG2,;; and E_LEM2 also have small IGD values. As shown in Table 7.17, all the
pairwise differences are statistically significant at the « = 0.05 level in terms of IGD
metric, except the E_1G24;;, - E_LEM2 pair. It can be said that the E_IG2 algorithm
outperforms the other metaheuristic algorithms in terms of both Cp and 1GD metrics.
In terms of distribution spacing metric, all metaheuristic algorithms have low DS
values, which indicates even dispersions. This statement is also consistent with the

results of the statistical tests reported in Table 7.17.
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Table 7. 16. Performance Comparison of Algorithms on Large Instances for the
EHFSP-V2

Cardinality Ratio of Reference Solutions Found (Cp)
Instance E2 1G2 1IG2aLL VBIH2 E2 1G2 1G2aLL VBIH2
j30c5el 123 124 124 121 0.18 0.72 0.07 0.04
j30c5e2 99 111 103 94 0.17 0.54 0.24 0.05
j30c5e3 111 130 116 111 0.08 0.36 0.48 0.08
j30c5e4 134 141 136 136 0.08 0.57 0.15 0.22
j30c5e5 113 145 106 93 0.11 0.65 0.15 0.13
j30c5e6 144 151 133 117 0.19 0.72 0.02 0.06
j30cbe7 127 140 142 132 0.19 0.44 0.20 0.19
j30c5e8 135 151 133 110 0.19 0.61 0.12 0.11
j30c5e9 147 161 149 135 0.12 0.62 0.14 0.12
j30c5e10 151 158 121 127 0.15 0.59 0.17 0.10
j40c5el 123 139 120 100 0.12 0.55 0.26 0.08
j40c5e2 117 149 135 126 0.15 0.39 0.26 0.21
j40c5e3 89 120 119 108 0.19 0.51 0.20 0.12
j40cbe4 145 154 119 136 0.11 0.44 0.35 0.11
j40c5e5 132 147 101 106 0.07 0.64 0.21 0.07
j40c5e6 123 157 142 119 0.28 0.39 0.22 0.11
j40c5e7 145 147 152 145 0.05 0.79 0.06 0.10
j40c5e8 138 164 139 140 0.09 0.55 0.21 0.16
j40c5e9 157 176 146 140 0.10 0.68 0.14 0.12
j40c5e10 136 169 118 131 0.23 0.55 0.07 0.14
j50c5el 199 197 182 174 0.12 0.58 0.11 0.20
j50c5e2 183 158 160 181 0.21 0.41 0.25 0.15
j50c5e3 196 202 211 172 0.12 0.45 0.35 0.09
j50c5e4 193 187 156 159 0.07 0.32 0.41 0.20
j50c5e5 128 166 133 137 0.23 0.42 0.17 0.18
j50c5e6 160 186 145 140 0.16 0.34 0.23 0.28
j50c5e7 148 154 142 122 0.18 0.31 0.32 0.20
j50c5e8 128 155 114 135 0.26 0.46 0.24 0.07
j50c5e9 144 140 133 142 0.25 0.46 0.27 0.05
j50c5e10 101 122 112 106 0.15 0.26 0.36 0.25
j60c5el 135 124 116 136 0.36 0.42 0.08 0.14
j60c5e2 189 212 196 201 0.21 0.63 0.09 0.08
j60c5e3 116 135 106 112 0.28 0.20 0.27 0.28
j60c5e4 146 200 158 173 0.13 0.50 0.18 0.19
j60c5e5 195 159 153 147 0.08 0.55 0.24 0.15
j60c5e6 106 117 128 138 0.14 0.23 0.14 0.50
j60c5e7 127 140 143 100 0.41 0.30 0.15 0.15
j60c5e8 145 134 134 130 0.30 0.24 0.10 0.36
j60c5e9 134 139 130 123 0.11 0.55 0.13 0.21
j60c5e10 194 182 180 169 0.14 0.31 0.22 0.33
Average | 14140 15358 137.15  133.10 0.17 0.48 0.20 0.16
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Table 7. 16. (Cont’d) Performance Comparison of Algorithms on Large Instances
for the EHFSP-V2

IGD Distribution Spacing (DS)
Instance E2 1G2 1G2ALL VBIH2 E2 1G2 1G2ALL VBIH2
j30c5el 12.28 5.36 15.83 22.45 1.09 1.10 1.50 1.57
j30c5e2 16.77 9.89 10.94 22.18 1.24 1.90 1.18 0.92
j30c5e3 20.45 13.37 10.44 25.70 1.33 1.18 0.97 1.19
j30c5e4 12.77 11.39 19.05 10.40 1.43 1.10 1.58 1.25
j30c5e5 19.46 7.80 16.07 27.05 1.37 1.30 1.40 1.16
j30c5e6 11.25 5.31 16.68 18.52 1.40 1.20 1.69 1.50
j30c5e7 12.38 10.04 11.46 20.32 1.22 2.04 1.40 1.33
j30c5e8 14.32 5.10 15.27 23.11 1.01 1.58 1.01 1.30
j30c5e9 11.52 7.17 12.46 15.43 1.05 1.26 1.83 1.32
j30c5e10 13.68 7.74 17.44 18.11 1.61 1.92 1.97 1.25
j40c5el 19.11 8.45 14.06 33.67 1.35 1.67 1.38 1.14
j40c5e2 15.11 11.27 11.85 16.14 1.01 1.15 0.97 1.49
j40c5e3 28.19 8.90 22.13 28.32 1.63 1.47 1.80 1.33
j40cbe4 29.40 11.15 29.16 24.82 1.29 1.30 1.40 1.54
j40c5e5 20.57 5.45 25.36 32.98 1.59 1.37 1.19 1.20
j40c5e6 12.26 7.67 13.15 19.02 1.22 1.46 1.22 1.13
j40c5e7 22.72 4.86 19.73 26.28 1.08 1.52 1.22 1.22
j40c5e8 20.87 8.73 17.71 30.57 1.12 1.25 1.27 1.45
j40c5e9 20.61 6.62 34.76 30.17 1.27 1.25 1.49 1.21
j40c5e10 15.65 8.76 24.15 28.22 1.04 1.20 0.93 111
j50c5el 19.72 3.91 21.81 21.50 1.07 1.13 1.23 1.08
j50c5e2 12.85 13.66 22.69 18.89 1.03 1.93 0.97 1.24
j50c5e3 18.56 16.71 11.39 28.85 1.33 0.96 1.18 1.07
j50c5e4 15.69 13.94 16.56 23.27 0.93 1.12 1.44 1.42
j50c5e5 31.49 16.07 24.35 39.41 1.05 1.48 1.42 0.93
j50c5e6 21.98 11.81 21.38 25.90 1.60 1.34 0.95 0.87
j50c5e7 23.55 16.51 19.12 49.40 1.22 1.58 0.99 1.03
j50c5e8 19.35 10.45 19.65 24.49 1.05 1.30 1.34 1.15
j50c5e9 16.37 11.52 19.23 29.32 1.33 1.15 1.30 1.34
j50c5e10 19.86 16.29 36.87 42.95 1.36 1.21 0.85 1.09
j60c5el 24.98 12.91 32.24 36.28 0.97 1.36 1.82 1.13
j60c5e2 21.54 5.60 16.88 25.22 1.34 1.05 1.00 1.35
j60c5e3 17.86 22.54 19.99 24.57 1.28 0.93 1.17 0.95
j60c5e4 29.99 9.13 16.24 24.37 1.02 1.32 1.03 1.10
j60c5e5 21.25 9.14 15.28 25.92 1.03 1.24 1.28 1.03
j60c5e6 36.09 28.42 22.98 18.15 0.92 1.00 1.14 191
j60c5e7 13.14 15.86 18.98 49.27 1.25 1.23 1.27 1.15
j60c5e8 27.18 20.78 23.80 32.69 1.26 1.15 1.04 1.27
j60c5e9 27.15 9.02 24.59 57.56 1.21 1.11 1.12 1.09
j60c5e10 18.72 14.92 18.06 21.48 1.11 1.12 1.30 1.29
Average 19.67 11.11 19.49 27.32 1.22 1.32 1.28 1.23
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Table 7. 17. Results of Statistical Tests for Large Instances for the EHFSP-V2

Cardinality Co IGD DS
p-value of Kruskal Wallis Test 0.00 0.00 0.00 0.38
Pairwise Comparisons
E2 vs IG2 N Y Y -
E2 vs IG2aLL N N N -
E2 vs VBIH2 N N Y -
IG2 vs 1G24 Y Y Y -
IG2 vs VBIH2 Y Y Y -
1G24aLL vs VBIH2 N N Y -
Y: significant (p-value < 0.05) N: not significant (p-value > 0.05)
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CHAPTER 8
CONCLUSION

Hybrid flowshop is a well-known extension of the basic flowshop layout, where there
exist several parallel machines in certain stages. Hybrid flowshop layout is widely used
in real-life production environments since it increases the total manufacturing capacity
by decreasing the impact of bottleneck stages. For hybrid flowshops, makespan is the
most common and main performance criterion to increase the utilization of resources
and obtain high throughput. However, minimizing energy consumption is also an
important issue for manufacturing companies due to a series of environmental effects
and increasing energy costs. Hence, in this thesis, the energy-efficient hybrid flowshop
scheduling problem was addressed to minimize the makespan and the total energy

consumption.

In this thesis, energy efficiency was studied from an operational planning perspective
for the hybrid flowshops by employing a speed-scaling strategy. In many real-life
production environments, machines can operate at multiple speed levels. Hence, the
speed-scaling strategy operates the existing machinery regarding their energy
consumption by simply adjusting the machine speeds for job operations. Since there
is no need for installing additional expensive energy-efficient machinery, the speed
scaling strategy is applicable to many real-life production environments, including
small and medium-sized enterprises. Incorporating energy efficiency into the hybrid
flowshop scheduling in such a way can directly help to decrease the total energy
consumption during the manufacturing process and reduce the resulting environmental

effects.

Consequently, the motivation of this thesis is to develop effective optimization
methods to address the trade-off between the two important performance criteria, i.e.,
the makespan and the total energy consumption, in the hybrid flowshop environments
by employing a practical speed-scaling strategy. Lack of fundamental mathematical
models and related solution methods for the problem are remarkable gaps in the current

literature that needs to be filled. This thesis aims to fill this research gap by presenting
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new exact and heuristic solution methods for the EHFSP with the makespan and TEC

criteria that employs speed scaling strategy.

In this thesis, two practical variants of the speed scaling strategy were considered. In
the first variant of the EHFSP (EHFSP-V1), speed-scaling is taken to be job-based due
to its simplicity and tractability; that is, the same speed level is employed for a certain
job through all stages. On the other hand, in the second variant of the EHFSP (EHFSP-
V2), the job-based speed scaling strategy assumption is relaxed, and it is assumed that
the speed of a job can vary from stages to stages. Since the speed levels create a
contradiction between the makespan and energy consumption criteria, bi-objective
exact and heuristic solution methods were proposed for these two variants of the
problem in this thesis. Namely, a new bi-objective MILP model, a new bi-objective
CP model and seven new bi-objective metaheuristics were proposed for the EHFSP-
V1 that employs a job-based speed scaling strategy. Then, these solution methods were
extended with several modifications for the EHFSP-V2 that employs a matrix-based
speed scaling strategy. Subsequently, a new bi-objective MILP model, a new bi-
objective CP model and four new bi-objective metaheuristics were proposed for the
EHFSP-V2.

In this thesis, new benchmark instances were also developed for the EHFSP by
modifying the well-known HFSP benchmark set from the literature (Carlier and Neron,
2000; Liao et al., 2012; Oztop et al., 2019). Then, the performance evaluation of the
proposed solution methods was made using this extensive set of benchmarks in terms
of cardinality, diversity and closeness of the generated solutions.

As mentioned above, this thesis introduced new bi-objective MILP and CP models for
both EHFSP-V1 and EHFSP-V2 to provide fundamental mathematical models for the
studied problem. Then, the augmented e-constraint method was used to solve the
proposed bi-objective MILP and CP models, as an exact solution methodology.
Namely, for small instances, the proposed MILP and CP models were solved through
the augmented e-constraint method without a time limit to obtain the Pareto-optimal
solutions. Since the problem is NP-hard and the solution time grows exponentially, the
sets of non-dominated solutions were obtained with augmented e-constraint method
under a time limit for larger instances. The computational results in Chapter 7

demonstrated that the exact Pareto-optimal solution sets could be obtained for small
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instances in reasonable computational times, by employing the proposed bi-objective
MILP and CP models, especially for the EHFSP-V1.

To the best of our knowledge, this thesis presented a constraint programming approach
to the EHFSP for the first time in the literature. In the literature, CP has been
successfully applied to various single-objective scheduling problems, and it has
become an important competitor to the state-of-the-art MILP technique. This thesis
further applied the CP technique to the HFSP in a multi-objective optimization
framework. The results in Chapter 7 showed that the CP performs much better than
the MILP for both EHFSP-V1 and EHFSP-V2 in terms of the solution quality. Hence,
this thesis also revealed the effectiveness of CP for solving such a complex bi-

objective hybrid flowshop scheduling problem.

As mentioned above, due to the NP-hard nature of the problem, seven bi-objective
metaheuristics were proposed for the EHFSP-V1, which are two variants of the IG
algorithm (E_IG, E_IGary), @ VBIH algorithm (E_VBIH) and four variants of the
ensemble of metaheuristic algorithms (E_EM, E_EMygg, E_EMygn, E_LEMyprn)-
Similarly, four bi-objective metaheuristics were also proposed for the EHFSP-V2,
which are two variants of the IG algorithm (E_IG2, E_IG2,;1), @ VBIH algorithm
(E_VBIH2), and an ensemble of metaheuristic algorithms (E_EM2).

Furthermore, in this thesis, a new constructive heuristic NEH_M(x) was presented for
the HFSP with the makespan criterion by modifying the well-known NEH heuristic.
As mentioned in Chapter 6, all proposed bi-objective metaheuristics in this thesis
employ NEH_M(x) to generate the initial solution. Consequently, the results in Section
7.2 showed that the proposed NEH_M(x) heuristic significantly outperforms the well-
known NEH heuristic for the HFSP with the makespan criterion, since the average
RPD of the NEH_M(x) is 2.42% from the best-known solutions reported in Oztop et
al. (2019). Additionally, the results showed that employing NEH_M(x), as a
constructive heuristic instead of NEH, significantly improves the performance of the

single-objective (IG, IGaLL and VBIH) algorithms with the makespan criterion.

In this thesis, two new heuristic fitness calculation approaches were also proposed to
compensate for the inefficiency of the standard forward scheduling approach for
fitness function calculation in HFSP. Then, these heuristic fitness calculation

approaches, i.e., HFR and HFN, were employed in the proposed bi-objective
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metaheuristics (E_EMygr, E_LEMygn, E_LEMygrn, E_LIG2, E_1G2,1;, E_VBIH2 and
E_EM2). The computational results in Chapter 7 revealed that the HFR and HFN
approaches substantially improve the solution quality of the proposed metaheuristic
algorithms.

Extensive computational experiments were also conducted for both EHFSP-V1 and
EHFSP-V2. Initially, the performance of the proposed bi-objective metaheuristics was
assessed on small instances using the Pareto-optimal solution sets. Then, the
performances of the proposed bi-objective metaheuristics were compared with each
other as well as the time-limited MILP and CP solutions for larger instances.
Comprehensive statistical analyses were also performed to verify the computational

results statistically.

The computational results of the EHFSP-V1 showed that all proposed metaheuristic
algorithms are able to find more than 67% of the Pareto-optimal solutions on the
average over 47 instances. Especially, E_LEMypryn and E_EMygg algorithms are able to
find approximately 86% of the Pareto-optimal solutions, which indicates an
outstanding performance for small instances. The results on medium instances also
showed that all of the metaheuristic algorithms outperform the time-limited MILP and
CP in terms of quality and cardinality of the Pareto frontier. It can also be said that
ensembles of metaheuristic algorithms with the HFR/HFN approach perform superbly
for all instances of the EHFSP-V1 in terms of high ratio of reference solutions found

and closeness to the reference set, as compared the other solution approaches.

The computational results of the EHFSP-V2 showed that all proposed metaheuristic
algorithms are able to find more than 43% of the Pareto-optimal solutions on the
average over 12 instances. The results on medium instances also showed that all of the
proposed metaheuristic algorithms outperform the time-limited MILP and CP in terms
of quality and cardinality of the Pareto frontier. Furthermore, it can be said that the
E_IG2 algorithm performs superbly for all instances of the EHFSP-V2 in terms of high
ratio of reference solutions found and closeness to the reference set, as compared to

the other solution methods.

Consequently, by using the proposed bi-objective metaheuristics in this thesis, good
quality solutions can be obtained for both EHFSP-V1 and EHFSP-V2 in very
reasonable computational times. The results demonstrated that the proposed bi-
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objective metaheuristics are compatible with the exact solution methods for small
instances, and significantly outperforms them for larger instances.

In conclusion, this thesis contributes to the literature on energy-efficient scheduling

and hybrid flowshop scheduling by:

(1) applying the job-based (EHFSP-V1) and matrix-based (EHFSP-V2) speed scaling
strategy to the HFSP,

(2) applying constraint programming to the HFSP,
(3) presenting new bi-objective MILP and CP models for the EHFSP,

(4) applying the augmented e-constraint method to solve proposed bi-objective MILP
and CP models,

(5) presenting a new benchmark set for the EHFSP,
(6) presenting a new constructive heuristic for the HFSP,
(7) proposing two new heuristic fitness calculation approaches for the HFSP,

(8) developing seven original effective bi-objective metaheuristic algorithms for the
EHFSP-VI,

(9) developing four original effective bi-objective metaheuristic algorithms for the
EHFSP-V2.

From a practical viewpoint, the managers can make decisions considering both
production and energy efficiency by using the developed solution methods in this
thesis. The proposed methods do not require a significant financial investment from a
managerial perspective. Since there is no need for installing costly energy-efficient
machinery, they can also be employed by small and medium-sized enterprises.
Consequently, proposed energy-efficient scheduling methods can provide economic
savings from energy resource consumptions in addition to the environmental benefits,

without making a significant financial investment.

Furthermore, the generated Pareto frontiers, by employing the proposed solution
methods, can serve as visual tools for managers to make informed decisions
considering both energy and production efficiency in hybrid flowshops. Utilizing an

extensive set of compromises produced by the Pareto frontiers, managers can make
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comprehensive trade-off analyses and explore all the outcomes of a decision regarding
both performance criteria.

This thesis can serve as a reference for the researchers and experts working on the
energy-efficient HFSP with speed scaling strategy, which is scarcely studied in the
current literature. In further studies, different bi-objective metaheuristics and/or
matheuristics can be developed for the EHFSP. Especially, developing matheuristics,
i.e., the mathematical model-based heuristics, is a very promising research direction,
since it utilizes the advantages of both mathematical modeling and heuristic
techniques. In future research, an effective matheuristic can be developed for the
problem by combining the proposed bi-objective models and metaheuristics in this

thesis.

Furthermore, valid inequalities can be developed for the problem in order to strengthen
the proposed bi-objective MILP and CP models. Employing effective valid
inequalities can decrease the solution time of the proposed models by narrowing the
search space of the problem. Lower bounds can also be developed for the studied
problem. Especially, an effective lower bound can accelerate the optimality proof

process of the CP technique.

Studying different objectives such as total tardiness or total flow time with an energy-
related objective in a hybrid flowshop environment is another research direction to
follow. As pointed out by Oztop et al. (2019), the total flow time criterion is very
important to reduce the total in-process inventory and time, since it affects the total
capacity utilization. The tardiness criterion is also very critical to improve the customer
service level. Hence, in future research, these two important production efficiency
related objectives can be incorporated with the total energy consumption criterion for
the hybrid flowshops. The proposed models and metaheuristics in this thesis can be

easily extended for these two versions of the EHFSP.

Additionally, machine-based speed scaling can be studied for the EHFSP as another
realistic extension. This variant can be very practical, especially for the hybrid
flowshops, where there exists setup time for the machines during the speed
adjustments. For such hybrid flowshops, a single speed level can be defined for each
machine, instead of determining the speed levels of the machines for each job

operation.
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Furthermore, considering the existing literature, energy-efficient scheduling with
sequence-dependent setup times has attracted relatively lower attention, most likely
because of the complexity of the problems. However, recent studies on hybrid
flowshop scheduling have focused on more realistic problems such as problems with
sequence-dependent setup times, machine eligibilities, and job precedence constraints
(Ribas et al., 2010). Therefore, based on the fundamental energy-efficient hybrid
flowshop scheduling models and solution methods presented in this thesis, more
complex models, such as EHFSP models with sequence-dependent setup times and/or
machine eligibility constraints, can also be developed as well as the related solution
methods.
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