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ABSTRACT 

NOVEL SWARM INTELLIGENCE ALGORITHMS FOR STRUCTURE 

LEARNING OF BAYESIAN NETWORKS AND A COMPARATIVE 

EVALUATION 

Kareem, Shahab Wahhab 

Ph.D, Computer Engineering  

Advisor: Prof.Dr.Mehmet Cudi Okur 

January 2020 

Bayesian networks are useful analytical models for designing the structure of 

knowledge in machine learning which can represent probabilistic dependency 

relationships among the variables.  A Bayesian network depends on; 1.the parameters 

of the network and 2.the structure. Parameters represent conditional probabilities while 

the structure represents dependencies between the random variables. The structure of 

a Bayesian network is a directed acyclic graph (DAG). Learning the structure of a 

Bayesian network is NP-hard but still extensive work have been done to optimize 

approximate solutions. In this thesis, we have conducted research for structure learning 

to develop algorithms to find a solution to the problem. There are two approaches for 

learning the structure of Bayesian networks. The first is a constraint-based approach, 

and the second is a score and a search approach. One common type of method for 

Bayesian network structure learning is the score-based search. Score-based methods 

rely on a function to test how well the network model matches the data, and they search 

for a structure that produces high scores on this function. There are two types of 

scoring functions: Bayesian score and information-theoretic score. The Bayesian and 

information-theoretic scores have been implemented in several structure learning 

methods. In this thesis, we focused on the score based search for testing the structure 

learning of Bayesian network using heuristic methods for searching and BDeu as a 

score function. In this thesis we proposed five algorithms for the search part and used 

BDeu as a score function. We also proposed a sixth method which is also a nature 

inspired one. The first proposed algorithm used Pigeon Inspired Optimization as a 

search method and the above mentioned score function. The proposed method has 

shown a good result when compared with default methods like Simulated Annealing 
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and greedy search. This algorithm is a novel approach applied for structure learning of 

Bayesian network. The second proposed algorithm used Bee optimization and 

Simulated Annealing as a hybrid algorithm, which used Bee optimization as a local 

search and Simulated Annealing as a global search. The third proposed algorithm also 

used bee optimization and Simulated Annealing as a hybrid but used Bee optimization 

as a global search and Simulated Annealing as a local search. The fourth proposed 

algorithm used Bee optimization and Greedy search as a hybrid algorithm. It used Bee 

optimization as local search and Greedy as global search. The fifth algorithms also 

used bee optimization and Greedy as a hybrid algorithm, but it used Bee optimization 

as a global search and Greedy as a local search Our last proposed algorithm used 

Elephant Swarm Water Search Algorithm (ESWSA). The thesis presents the results of 

extensive evaluations of these algorithms based on common benchmark data sets. 

Applications of  ESWSA in Structure learning of Bayesian Network and comparisons 

with the Simulated Annealing and Greedy Search, show that this proposed method is 

better than the default Simulated Annealing and Greedy search methods. 

Keywords: Bayesian network, structure learning, Pigeon Inspired Optimization, Bee 

Optimization, greedy, Simulated Annealing, elephant swarm search, water search, 

global search, local search, search and score. 
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ÖZ 

BAYES AĞ YAPILARININ ÖĞRENİLMESİ İÇİN YENİ SÜRÜ ZEKASI 

ALGORİTMALARI VE KARŞILAŞTIRMALI BİR DEĞERLENDİRME 

KAREEM, SHAHAB WAHHAB 

Doktora Tezi, Bilgisayar Mühendisliği 

Danışman: Prof.Dr.Mehmet Cudi Okur 

Ocak 2020 

 

Bayes ağları, makina öğrenmesinde değişkenler arasındaki rassal ilişkileri temsil eden 

bilgi yapısının tasarımında kullanılan yararlı analitik modellerdir. Genel olarak Bayes 

ağı Ağın Parametreleri  ve Ağın yapısına bağlıdır.Parametreler şartlı olasılıkları,yapı 

ise  şans değişkenleri arasındaki bağımlılıkları temsil eder. Bir Bayes ağının yapısı 

yönlü çevrimsel olmayan bir çizgedir.Bayes ağının yapısını öğrenmek bir NP-zor 

problem olmasına ragmen,yaklaşık çözümlerin eniyilenmesi için çok sayıda geniş 

kapsamlı çalışmalar yapılmıştır.Bu tezde yapı öğrenme problemine çözüm bulmayı 

amaçlayan algoritmalar geliştirmek için araştırmalar yürütülmüştür.Bayes ağların 

yapısın öğrenmek için iki yaklaşım vardır.Birinci yaklaşım kısıtlamalı diğeri ise skor 

ve arama temellidir.Skor temelli yaklaşımlar  genel yaklaşımlardır.Bu  yaklaşımlar ağ 

modelinin verilere nasıl uyum gösterdiğni ölçen bir fonksiyonu esas alırlar ve bu 

fonıksiyonun değerini daha iyileştirecek yapıyı üretmeye çalışırlar.İki tür skor 

fonksiyonu vardır :Bayesçi skor ve bilgi teorisi skoru. Her iki skor da yapı öğrenme 

yöntemlerinde uygulanmıştır.Bu tezde Bayes ağın yapısını öğrenmede skor temelli 

arama için sezgisel yötemler kullanılmış ve skor fonksiyonu olarak BDeu metriği 

kullanılmıştır.Bu amaçla,BDeu yu kullanan altı algoritma önerimiştir.Önerilen ilk 

algoritma güvercinlerin yön bulmasından esinlenen eniyileme algoritmasıdır ve BDeu 

skorunu kullanmaktadır.Önerilen yöntemin yaygın kullanılan yöntemlerden daha iyi 

sonuçlar verdiği görülmüştür.Bu algoritma bu alanda ilk defa kullanılmaktadır.İkinci 

önerilen algoritma arı eniyilemesi algoritmasına ve benzetilmiş tavlama algoritmasına 

dayanmakta ve ilkini global ikincisini de yerel arama için kullanmaktadır.Üçüncü 

önerilen yöntem gene önceki ikisini esas almakta fakat bu defa arı eniyilemesi global, 
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benzetilmiş tavlama algoritması yerel arama için kullanılmıştır. Dördüncü önerilen 

yöntemde melez bir yöntem olup arı eniyilemesi ve açgözlü amayı esas almakta ve arı 

eniyilemesini yerel ve  açgözlüyü de global arama için kullnmaktadır.Beşinci yöntem 

de melezdir ve  arı eniyilemesini global,açgözlü yöntemi yerel arama için 

kullanmaktadır.Son önerimiz Fil sürülerinin su kaynağı arama algoritmasına 

dayanmaktadır.Tezde genel kıyaslama veri setleri kullanılarak BDeu metriği ve 

karışıklık matrislerine dayanan değerlendirmeler tartışılmış, sonuçta  güvercin yön 

bulma ve fil sürüleri su arama yöntemlerine dayanan algoritmaların diğerlerindan daha 

başarılı olduğu gösterimiştir. 

Anahtar sözcükler: Bayes ağı,yapı öğrenme,Güvercinden Esinlenen Algoritma,Arı 

Eniyilemesi,açgözlü,Benzetilmiş Tavlama,,Fil sürü araması,su araması,global 

arama,yerel arama, arama ve skor. 
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CHAPTER 1  

INTRODUCTION 

1.1. Motivation  

Machine Learning involves techniques for computers programming to learn. Machines 

used to achieve a universal variety concerning responsibilities, including the 

development of needed software for most computational tasks. Machine learning 

approaches deal with several of the related study topics such as the domains of data 

mining, artificial intelligence and statistics. Data mining explores models within some 

data which is recognizable by people. Statistics concentrates on explaining the events 

that are present in experimental or observational data sets [1] [2]. Majority of the 

researches use data mining methods to train observed data and to extract intelligence 

rules. With specific rules, it obtains a probabilistic graphics model, statistical models, 

Bayesian statistics, and machine learning. Graphics models combine probability and 

graph theory. It’s present a simplistic mechanism as dealing including difficulties that 

arise while coupling engineering and mathematics to reduce ambiguity and complexity. 

As such, they play a significant role in machine learning algorithms during steps design 

and analysis. The theory of probability presents methods to analyze how the 

components joined, guaranteeing that the system remains consistent. The combined 

results expected to be compatible and present new techniques to propose new interface 

models for observed data. Some graph-theoretic view of graphical models presents an 

attractive interface jointly for users that ability to create reactive collections about 

variables and a data structure that can be used in powerful public-objective 

algorithms[2]. One of the most important types for probabilistic graphical models is 

the Bayesian Network [3, 4]. They commonly used in the field of Knowledge from 

Data Discovery (KDD). A Bayesian network is a directed acyclic graph whose nodes 

(vertices) describe links and variables (or controlled arcs) show the statistical 

relationship among variables and a probability distribution defined across those 

variables. An essential difficulty of the modern study is Bayesian network learning 

from observed data. The development of principles can be performed both by utilising 

observed data or expertise. Several kinds of research have been conducted on this 

subject, deriving on various approaches: Techniques to the development regarding 

independence structure within data to rebuild for optimizing an actual function of the 
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graph, namely a score. Optimization techniques aim to the development of a 

representation of the local structure based on a destination variable to rebuild the 

network of the global structure. Most researches have restricted their work to static 

cases for learning the structure of Bayesian networks. The majority of these algorithms 

use a traditional approach which depended on scores.  

 In the rest of this thesis, we consider the combination of strategies, namely, 

global optimization and local search relating the static case. We remarked that the 

structure learning Bayesian network is a well-researched field. To our knowledge, the 

researcher about BN structure learning applies the benchmarks to evaluate the 

procedures. The difficulty in the Bayesian network structure learning instance is the 

search for discovering the excellent structure. But, this depends on the score and search 

method, which is computationally NP-hard. Furthermore, causal models can offer 

enough extra benefits for researchers. It can assist us in experiencing our situation and 

identifying “laws” of the environment in the Sciences: Chemistry, Biology, Physics, 

even Genetics. Growing developments under a related thread now can and make for 

example, scientists to limit the options of the analysis for infections. In that space, the 

building of patterns automatic or the semi-automatic can be valuable. In the 

dissertation, we preferred to concentrate on covering structure learning of Bayesian 

network depending on the score and search method. Different models can describe 

possible domains—as an example, artificial neural networks, decision trees, Markov 

networks, blend of essential roles, etc. The researcher in Bayesian Network describes 

and learn directed causal connections, which is also our final purpose. We attempt to 

explain the combinatorial difficulty of getting the most significant scoring from data 

in the Bayesian network structure. This can be view as the challenge of structured 

learning which is as an inference difficulty. The major combinatorial problem drives 

from the global constraint that the structure of the graph has to be acyclic. The problem 

of the structure learning may be called as a linear program covering the polytope 

described by logical acyclic structures.  To decrease the mentioned difficulties through 

applying a restricted external approach to the polytope which stretch it through 

exploring the validity constraints. In Case of finding the full solution, it has proven to 

be the optimal solution of the Bayesian network. Alternative approaches are; Pigeon 

Inspired Optimization, simulated annealing, the greedy method and Elephant Swarm 

Water Search algorithms. 



  3 

1.2. THESIS GOALS AND OVERVIEW 

A Bayesian network (BN) involves common useful theoretical principles to describe 

the possibility of learning from data in artificial intelligence. A graphical model used 

by Bayesian Network for representing the conditional dependency connections 

between arbitrary variables and those variables governed by the joint probability 

distribution [3]. Assume a Bayesian Network and observations for many variables are 

given, a probabilistic inference can then determine the fitness of the other unobserved 

variables. Systems accept this standard to design solutions to practical difficulties 

within various domains, such as biology, medical diagnosis, natural language 

processing, control, and forecasting [4]. 

Learning the structure automatically from the data, attracted researchers and several 

learning algorithms have become available [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. [15, 16, 

17, 18, 19, 20, 21, 22, 23, 24] [25, 26, 27, 28]. Those algorithms choose the score and 

search, or the dependency analysis approaches. Dependency analysis applies a 

statistical method for finding dependency and independence connections between 

variables and whereby constructs a Bayesian Network [10]. Applying a search 

technique in the score and search approaches to investigate Bayesian Network 

structures aims to find the highest score value achieved [18]. Both methods have severe 

disadvantages. Dependency analysis requires dealing with a massive number of cases 

that are difficult also unpredictable; moreover, it is challenging to guarantee the quality 

properties of learning. In contrast, Bayesian Network structure learning through the 

score and search is an NP-hard problem because of the number of variable increments 

[29]. Once the location of applicant networks grows high, exact search results may be 

unsuitable for structural learning in Bayesian Network. While some heuristic 

algorithms, like hill-climbing algorithms [30, 31], K2 [32], repeated local search [33, 

34], can mark the difficulty of significant search areas, they grow confined within local 

optima. 

To explore those difficulties, many stochastic algorithms have proposed for the 

Bayesian Network structure learning during the last years.  [35]. We Can classify those 

algorithms within two classes [33]:  

1. Swarm intelligence algorithms, which are nature-inspired optimization 

procedures that include bacterial foraging optimization (BFO) [5], artificial 
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Bee colony optimization (ABC) [7], ant colony optimization (ACO) [15, 36], 

particle swarm optimization (PSO) [16], artificial fish swarm algorithm [37]. 

They utilize a meta-heuristic search technique in search space of the Bayesian 

Network and use a scoring function for determining the best of the applied 

networks. 

2. The evolutionary algorithms which represent an inspiration of evolution 

including common genetics and also genetic programming, genetic algorithm, 

which involve evolutionary programming, and evolution strategy. Genetic 

algorithm [38] and evolutionary programming [31] are standard techniques 

which are useful approaches for Bayesian Network structure learning from data.  

 

1.3. THESIS ORGANIZATION 

This study concentrates on the structure learning of Bayesian network. First chapter 

includes a literature review of structure learning of Bayesian networks based on score 

and the search approach. The basic principles of Bayesian networks and structure 

learning of Bayesian networks explained in Chapter 2. The Pigeon Inspired 

optimization, Elephant Swarm Water Search Algorithm, Bees algorithm, Simulated 

Annealing, Greedy Search and proposed algorithms for structure learning of Bayesian 

networks explained in Chapter 3. Chapter 4 concentrates on the results obtained from 

the implementations of various algorithms that we proposed. Conclusions and 

recommendations for future studies presented in Chapter 5. 
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CHAPTER 2 

BAYESIAN NETWORK 

Knowledge description and thinking of these descriptions have caused the 

development of several models. Bayesian networks, and Probabilistic graphical 

models, have been established to be valuable instruments as a description of 

ambiguous knowledge. Then, many researchers such as [39, 40, 41, 42] proposed a 

Bayesian probabilistic reasoning formalism for knowledge extraction from incomplete 

information.   

Learning a Bayesian network is composed of two states: parameter learning and 

structure learning. In this thesis, our focus is on structure learning of Bayesian 

networks. There are three kinds of techniques in structure learning: techniques 

depending on a description of conditional independence, techniques depending on 

optimization like score also hybrid approaches. 

To illustrate the advantages of structure learning algorithms, these learning algorithms 

should tested using the achieved properties of the corresponding Bayesian networks. 

Some algorithms use several evaluation metrics in search and identify the network 

through an application of the score-based methods. Some others concentrate on the 

application of a source form. In our thesis, we concentrated on specific evaluation 

procedures utilising a score-based method. 

This chapter reviews fundamental descriptions and representations of traditional 

Bayesian networks, probability and conditional independence. 

2.1 STATISTICAL MODELLING 

Usually, statistical modelling strategies utilised within several systems to describe 

complicated multi-parametric structures. The probabilistic form shows an ontological 

framework; also, it represents the relationships with the model’s fundamental entities. 

Unlike deterministic models, where the links are explained by mathematical equations 

(either science-based or derived), in statistical models the connections among variables 

are probabilistic. In the subsequent sections, we present the principle of probability, 

conditional and marginal probability distributions and their use in the graphical models 

that underpin the Bayesian structure learning methods. 
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2.1.1 PROBABILITY 

A traditional frequency-based explanation of probability is the following: Probability 

of a disjoint event is the occurrence frequency of this event compared to the cumulative 

amount of times the events can happen. Suppose, for instance, the analysis conducted 

several times, and each time a result is one of three events A, B or C. If the number of 

their occurrences are  𝑛𝐴 , 𝑛𝐵  , 𝑛𝐶  the probability of event A is then  presented by the 

following Equation [43].      

 𝑃(X) = 
𝑛𝐴

(𝑛𝐴 +𝑛𝐵 + 𝑛𝐶)             Equation 2-1 

Bayesian or most frequent likelihood test based on  the three necessary assumptions of 

probability analysis [44]. First, a probability cannot be larger than one and smaller than 

zero (Equation 2-2). If that is one, the event will occur; zero means the event will never 

happen.  

    0 ≤ 𝑃(X) ≤ 1     Equation 2-2 

In a unit space S, comprising a measurable number of fundamental events there is a 

total likelihood that one of the fundamental events will happen   

     𝑃(𝑆) = 1     Equation 2-3 

Wherever events are disjoint, the cumulative probability of one or another of the events 

happening can be obtained by the sum of their specific probabilities   

    𝑃 (X ∪ Y) = 𝑃(X) + 𝑃(Y)   Equation 2-4 

If the events can both happen, the probability of both events happening can be obtained 

by the Equation:  

   𝑃 (X ∪ Y) = 𝑃(X) + 𝑃(Y) − 𝑃 (X ∩ Y)           Equation 2-5 

Where X∩Y denotes the intersection between X and Y, which is the event that both X 

and Y happen [43]. 

2.1.2 CONDITIONAL PROBABILITY 

Conditional probability interprets the occurrence probability of an event, given some 

other event has already occurred. The probability of the event X, given that Y has 

happened shown as 𝑃(X|Y) and described by:  

                        𝑃(X|Y) = 𝑃 (X ∩ Y) / 𝑃(Y)                             Equation 2-6 
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This is known as the primary rule of conditional probability. Equation 2-6 can express 

as 

    𝑃 (X ∩ Y) = 𝑃(Y).𝑃(X|Y)                Equation 2-7 

The conditional probability definition can extend to cover more joint events as in 

Equation 2-8. 

                    𝑃(X ∩ Y ∩ Z) = 𝑃(X|(Y ∩ Z) ⋅ 𝑃(Y ∩ Z)            Equation 2-8 

           = 𝑃(X|(Y∩ Z) ⋅ 𝑃(Y|Z) ∙ P(Z)       

The Equation 2-8 is the chain rule and expressed for n joint events in Equation 2-9. 

This rule is essential for factorizations in probability analysis of Bayesian Networks. 

    𝑃(∩𝑖=1
𝑛 𝑋𝑖) = ∏ P(𝑋𝑖| ∩𝑖=1

𝑛 𝑋𝑖)
𝑛
𝑖=1         Equation 2-9 

Bayesian probability declares that every probability is conditional upon specific 

situations under which determinations performed or operations executed [45]. 

2.1.3 BAYES RULE 

Considering, from the assumptions of probability 𝐴∩𝐵≡𝐵∩𝐴, also from the primary 

rule, the connection between conditional probabilities can express as in Equation 2-10. 

    𝑃(X|Y) = 
𝑃(𝑌|𝑋) ⋅ 𝑃(𝑋) 

P(Y)                    Equation 2-10 

The formula, identified as Bayes rule, defined posthumously in a historical form in 

1763. It provides a posterior probability, P(X|Y), given any extra information, Y, which 

is identified as the prior probability, 𝑃(X).  

 

2.1.4 INDEPENDENCE 

Independence of two events implies that the occurrence of one event is not influenced 

by the occurrence of another event. Thus the independence of the events X and Y are 

expressed by Equation 2-11. 

   𝑃(X|Y) = 𝑃(X)      Equation 2-11 

 

Using the fundamental conditional probability rule, Equation 2-12 follows. 
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   𝑃(X ∩ Y) = 𝑃(X) ⋅ 𝑃(Y)     Equation 2-12 

2.2 GRAPH THEORY AND BAYESIAN NETWORKS 

2.2.1. GRAPHS, NODES, AND ARCS 

A graph G = (V, A) composed from a non-empty collection V of vertices or nodes also 

a limited (however probably empty) collection A of edges, or links. Each edge X = (u, 

v) describes essentially a couple of neighboring nodes. The nodes are joined by an arc 

which represents a weight value. If in (u, v), order is important, they represent a 

directed arc or edge. The arc is assumed to direct the link of u to v also generally 

described by an arrowhead as (u→ v). It is an additional assumption that the arc moves 

or are outgoing from u and that it joins or is incoming for v. If (u, v) is unordered, u 

and v declared to be connected by an undirected edge. Undirected edges represented 

using a line (u − v).  

 A graph in which every edge is directed is called a directed graph which includes 

ordered pairs of vertices. A graph in which every edge is undirected is named the 

undirected graph. Mixed graph (partially directed) contains together undirected and 

directed arcs.    

 Some instances from the mentioned types of graphs shown in Figure 2.1 within the 

sequence. During the undirected graph, Figure 2.1: 
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Figure 2.1. Directed, undirected, and partially directed 
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• The node collection is V = {X1, X2, X3, X4, X5} also the edge (link) set is E = 

{(X1−X4), (X1−X2), (X1–X5), (X2–X4), (X3–X5), (X2–X3)}. 

• Undirected Arcs, so, i.e., X1–X2 and X2− X1 are similar and represent the same 

edge. 

• In a directed graph, Figure 2.1: 

• The collection of node is V = {X1, X2, X3, X4, X5} also identified graph 

through a set of arc A = {(X1→ X2), (X1→ X4), (X1 →X3), (X5→X4), (X3→ 

X5)}.  

• It directs Arcs, so, i.e., X1 → X2 and X2→ X1 recognized as different arcs. For 

instance, X1 → X2 ∈ X1 and X2→ X1 ∉ X1. Furthermore, it can not present 

of both arcs in the graph because for each couple of node one arc can be present 

between the nodes. 

• The mixed graph (partially directed), Figure 2.1, designated through the 

organization of a set of the edge E = {(X1−X2), (X1−X3), (X2−X3)} also an 

arc set A = {(X2→X4), (X2→X5)}.      

2.2.2. THE STRUCTURE OF A GRAPH 

A structure of a graph refers to the configuration of the arcs that appear in a graph. 

Assumed that the nodes v and u distinguished on each arc and also there is only one 

arc between them. 

The structure of a graph can expose impressive analytical characteristics. A common 

example is representing and understanding routes. Routes(paths) are a series of edges 

or arcs joining two nodes, described end-nodes or end-vertices. Routes are represented 

by a series of vertices (V1, V2, …, Vn) that define the series of arcs. The arcs joining 

the vertices (V1, V2, …, Vn) is an individual, which means a route moves over every 

arc just once. Within directed graphs, this is further appropriated that every arc within 

a route has the same direction, also the route guides from V1 (the end from the initial 

arc within the route) to Vn (the peak of the latest arc within a route). In mixed also 

undirected graphs (also within common while applying on a graph although of which 

set it refers to), arcs in a route can guide in either way or be undirected. Routes in 

which V1=Vn describe cycles and managed with a special interest in the theory of 

Bayesian network. If the graph is acyclic, the directed graph structure described it as 
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an incomplete organization of the nodes, which means when the structure does not 

include loop or cycle. This organization named a topological or acyclic organization 

and influenced by the orientation of the arcs: if a node Xi heads Xj, means no arc of 

Xj to Xi. Depending on this explanation, initial nodes are origin nodes, that should 

include no incoming arcs; also the leaf nodes are the latest, the leaf node with no 

outgoing arc, while the incoming at least one arc. If there has route beginning of Xi 

toward Xj, Xi heads Xj in the index of the organized nodes. During this event, Xi is 

named the parent of Xj also Xj is called the child of Xi. If the route formed by an 

individual arc, by similarity vi is a parent of Xi and Xj is a child of Xi [45].  

 

 

 

 

 

Figure. 2.2 Parents, neighbors, ancestors, children, and descendants, of a node within 

a directed graph 

Suppose, for example, within the DAG that shown in Figure 2.2. The X1 is a 

neighbourhood a combination of children with parents; the neighbouring nodes are 

within one of those pair sections. The nodes are just partly established; for example, 

they can build no organization with root (head) nodes or leaf (tail) nodes. Since an 

arrangement, in tradition, they describe the topological organization of a DAG ended 

over a collection of the unstructured set of nodes, expressed among Xi = {Xi1…, Xik}, 

defining a partition of X. 

2.3 PROBABILISTIC GRAPHICAL MODELS 

The combination of graph and probability theory produced the probabilistic graphical 

models(PGM). It presents the mechanism for dealing with a couple of crucial 

difficulties: complexity plus uncertainty. The combined structure by Graphical models 

which represent conditional dependence structures between random variables. They 

play a major role in analysis and designing for machine learning algorithms. 
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 Probabilistic graphical models are diagrams, wherever vertices express arbitrary 

variables; also links describe dependencies between pairs of variables. Certain forms 

produce a compressed description of joint probability distributions of random 

variables. PGMs has two essential types. First, the models of directed graphical, 

namely Bayesian Networks and second, the models of undirected graphical that 

identified as Markov Network or Random Fields (MRFs). Figure 2.3 presents those 

models [46]. 

  

S 
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D 

Graphical representation 

Directed 

graph 

Undirected 

graph 

 (F⊥H|S)      (A⊥C|B,D) 

(C⊥S|F,H)      (B⊥D|A,C) 

(M⊥H,C|F) 

(M⊥C|F) 

Independence 

P(S,F,H,C,M)=P(S)P(F|S)    P(A,B,C,D)=
1  

𝑍
∅1(𝐴, 𝐵) 

P(H|S)P(C|F,H)P(M|F)          ∅2(𝐵, 𝐶)∅3(𝐶, 𝐷)∅4(𝐴, 𝐷) 

 
Factorization 

b 

Figure 2.3 Conditional independence: (a) DAG as an example. (b) Markov random field (MRF) 

as an example [164]. 
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2.3.1 MARKOV NETWORKS 

The undirected graphical or Markov network model is this collection of arbitrary 

variables possessing the characteristic of Markov represented through undirected 

graphs. The model has the joint probability distribution that can express through 

factorization based on cliques from a graph (G) as: 

   P (X=x)= 
1

𝑍
 ∏ ∅ (𝐶)𝐶∈𝑑 (𝐺)     Equation  2-13 

where denoted a normalization factor by Z, the collection of cliques of G by d(G), and 

the maximal potential of the clique by function ∅(C) [46]. 

2.3.2 BAYESIAN NETWORKS 

Def. 1. (Bayesian network (BN)): The Bayesian network M=‹G, θ› is a DAG G= (V, 

E) and a collection from parameters θ. The set of vertices or nodes V is conformable 

to a collection of arbitrary variables {V1, V2, …, Vn} also dependencies among these 

variables represented through the collection of vertices E. A parameters θ express the 

probability distributions from any arbitrary variable given set of parents i: 

    θi=P (Xi | Pa (Xi)).    Equation 2-14 

 A BN is the compressed description of the joint probability distribution.   

  P (X1,…, Xn)=∏ 𝑃 (𝑋𝑖|𝑃𝑎(𝑋𝑖))𝑛
𝑖=1    Equation 2-15 

It needs to validate the Markov condition (definition 2). Fig. 2.4 gives an example of 

a BN representing the conditional relationships among four variables.  

Def. 2. (Markov Condition): The BN of G = (V, E) indicated by M if every element 

in V is independent of every group of non-descendant elements given its ancestors. 

   (X⊥Non Descendent (X) | Pa(X))    Equation 2-16 

Def. 3. (Faithfulness): P is a  probability distribution, and M is the Bayesian network 

model is dedicated from one another if each of the independence connections correct 

within P is the needed through the Markov theory upon M [46]. 
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Figure 2.4: The Model of Bayesian network; A DAG among parameters and nodes 

describing the probability distribution. 

 

2.3.3 SOME PRINCIPLES OF BAYESIAN NETWORKS 

2.3.3.1 D-SEPARATION GISRSMAMMAR@ 

To understand the flow of probabilistic control in the graph, we have to recognize how 

information moves from A into B to change the knowledge of C. Suppose three nodes 

are A, B and C, and also there is a route A—C—B. If the control flows from A to B 

via C so we can assume that the route A — C — B is active if it's not blocked [47]. It 

has three modes:  

Serial relationship: If C is not detected then the route from A to B shall be active it 

shall be blocked. Within this situation we have, A⊥B |C and A⏈B. 

 

 

 

Figure 2.5: Head-to-tail or Serial relation 

Converging link: If C is not detected or it should block each descendant of C we have, 

A⏈B |C and A⊥B. This is also called V — structure. 
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C B 



  14 

 

 

 

 

Figure 2.6: Head-to-head or Converging relation 

Diverging link: If C not detected then the route on A to B will be open in the other 

case it would be blocked. So we have A⊥B |C and A⏈B. 

 

 

 

 

Figure 2.7: Tail-to-tail connection or Diverging   

Def. 4. Directional separation (D-separation). Assume A, B are arbitrary variables also 

C is a collection of arbitrary variables, A plus B is d-separated through C if and only if 

C blocks each route of A to B [48].  

2.3.3.2 MARKOV EQUIVALENT CLASS 

G1& G2 are Two DAGs said to be Markov equivalent if both provide the equivalent 

conditional independencies. This means that the DAGs which have equal d-separation 

are Markov equivalent. It means d-separation are Markov equivalent if all DAGs share 

the same one based on Verma and Pearl’s theorem: 

Theorem 1. (Verma and Pearl: [49]) A Pair of DAGs (PDAG) are similar if and only 

if both own the equivalent frame also v-structures (head-to-head joint). 

As an instance in Figure 2.8, there are four separate DAGs by the equal number of 

variables, and owning equal frames. According to Theorem 1, regular Markov 

equivalent classes are DAGs (a), (b) and (c). However, the v-structure A→C←B in (d), 

and it is just a graph under its equivalence class [50]. 
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Figure 2.8: An example of Markov equivalent class, A, B, C, and 

four DAGs. The (a), (b) and (c) DAGs have a similar independence structure while 

(d) compares to a different set of independencies. 

 

2.3.4 QUERYING A DISTRIBUTION 

The P(V) is the Bayesian network standard description of a complete mutual 

probability distribution. It can utilised while explaining probabilistic queries regarding 

the subgroup from unperceived variables while it perceives other variables. A simple 

query model holds the conditional probability query. In this query model, the query 

requested for a mutual distribution including the goal is to estimate [47]:  

  

   𝑃(𝑉|𝐸 = 𝑒) =
𝑝(𝑉,𝑒)

𝑃(𝑒)     Equation 2-17 

The equation 2-17 holds two parts, 

– Variables (V) of the Query, V in the network is a subsection of arbitrary 

variables. 

– Evidence (E), a subgroup from arbitrary variables within a pattern also the 

instantiation e 

An extra query model is the maximum a posteriori probability (MAP). That calculates 

various responses to each of the variables if its non-evidence. [51]. If V and E are a 

collection to query variables and evidence in sequence, then.:    
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   MAP(V|e) arm𝑚𝑎𝑥𝑋𝑃(𝑉, 𝑒)   Equation 2-18 

It allows calculating the posterior distribution of variables by probabilistic inference 

[52], also confirmed NP-hard [40]. Several methods introduced within an article in 

probabilistic inference. It separates these algorithms within exact inference procedures, 

plus approximate inference procedures — the comprehensive review of inference 

methods presented in Guo and Hsu [53]. 

2.3.4.1 EXACT INFERENCE  

Pearl proposed a method for Bayesian Network tree-structure called the message 

propagation inference in [39]. The mentioned technique is a specific inference that also 

owns polynomial time complexity for all of the vertices. A different modern exact 

inference holds a joining tree or clique tree [54]. That recognized a clustering 

algorithm. The difficulty of the size from the biggest clique of the joining tree is 

exponential. Variable exclusion [55] stands further the Bayesian network exact 

inference algorithm. That reduces one by one of the variables through clearance out 

them. The number of mathematical multiplications and numerical summations it 

effects can adjust its complexity. 

2.3.4.2 APPROXIMATE INFERENCE 

Approximate inference algorithms are applied for complex structure more commonly 

than the exact inference. It depends on approximate inference methods of the Monte 

Carlo approaches. They produce the collection to pick random samples depending on 

the conditional probability tables within a form, approximate probabilities from query 

variables through repetitions from representation in the unit. Efficiency is base on the 

proportion of samples to represent the network structure [53]. A complexity of 

producing a unit also depends on network size.[56]. However, a problem among these 

algorithms is associated with a variety of the computed answers.   

The primary method which utilises Monte Carlo approaches is logic sampling 

produced in [57]. Any of the other methods are holding probability weighting [58, 59], 

self-consequence sampling [59], heuristic interest [59], adaptive consequence 

sampling [41] etc. 
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2.4 BAYESIAN NETWORK LEARNING 

In BNs, model picking and evaluation  identified as learning, a title which acquired 

from machine learning and artificial intelligence. BN learning implemented as two 

procedures:   

1. Structure learning: learning structure of the DAG; 

2. Parameter learning: A local distribution for structured learning of DAG 

corresponding to the BN, using the data. 

Learning can implement in two steps; as unsupervised learning, applying the 

information presented through a data set, or as supervised learning. Joining both 

procedures is the normal approach. Usually, the previous information accessible on the 

network is not suitable for an authority to define a BN. Furthermore, identifying the 

DAG structure is difficult, if it involves many variables. That is the case, for example, 

in gene network interpretation. 

The following workflow is Bayesian. Assume a data set D and a BN, B = (G, V). If we 

show the parameters of the global distribution of V with Θ, we can suppose using 

externally available information that Θ recognizes V in the parametric group of 

populations for modelling D and write B = (G, Θ). BN learning can then formalized 

as  

Pr(B | D) = Pr(G, Θ | D)   =    Pr(G | D).   Pr(Θ | G, D)  Equation 2-19 

 

 

The breakdown of Pr(G, Θ | D) shows the steps described above and holds the logic of 

the learning procedure. Structure learning can accomplish by searching the DAG, G 

that maximizes:  

Pr(G | D) ∝ Pr(G) Pr(D | G) = Pr(G)∫ Pr(D | G, Θ) Pr(Θ | G)dΘ Equation 2-20 

Disintegrate the posterior probability of the DAG by applying the Bayes theorem (i.e., 

Pr(G | D)) within the result of the previous distribution across the potential DAGs (i.e., 

Pr(G)) also the possibility of using the data (i.e., Pr(D | G)). Obviously, It is not 

probable to calculate the latter externally, including determining the parameters Θ of 

G [60]. 

learning structure learning parameter learning 
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The prior distribution Pr(G) produces an excellent plan to introduce any prior 

information possible on the conditional independence associations among the 

variables in V. For example; we want that some arcs should exist within or missing 

from the DAG, to estimate to the penetrations achieved. It may also have needed that 

some arcs, if present in the DAG, must locate specifically if this way is the exclusive 

one that makes sense under the light of the logic defining the appearance of the 

standing model.  

The usual regular selection for Pr(G) is a non-informative prior to the space of the 

DAGs, allowing the equivalent possibility to all DAG. It may refuse any DAGs for 

prior information, as explained before. Furthermore, complex priors (known as 

structural priors) are more probable, just unusually used in practice for a pair [60]. 

First, applying a normal probability distribution renders Pr(G) unnecessary in 

maximizing Pr (G | D). It makes it suitable for both computational and algebraic 

reasons. Second, the number regarding potential DAGs rises the number of nodes 

exponentially.   

Defining a prior distribution across such a huge number of DAGs is a challenging 

responsibility for regular small problems. 

Calculating Pr(D|G) is similarly uncertain from both an algebraic and computational 

point of representation. Beginning of the breakdown within local distributions, we can 

advance by factors of Pr(D|G) in the following way: [60] 

 Pr(D|G)=∫ ∏ [Pr(𝑋𝑖|Π𝑋𝑖 , Θ𝑋𝑖) Pr(Θ𝑋𝑖|Π𝑋𝑖)]𝑝
𝑖=1 dΘ                 

=  ∏ [∫ Pr(𝑋𝑖|Π𝑋𝑖, Θ𝑋𝑖) Pr (Θ𝑋𝑖|Π𝑋𝑖)dΘ𝑥𝑖]𝑝
𝑖=1 =∏ 𝐸Θ𝑋𝑖

𝑝
𝑖=1 [Pr (𝑋𝑖|Π𝑋𝑖]                      

        Equation 2-21 

Using this form, Pr(D|G) can be calculated in a sensible time also for massive datasets. 

This is reasonable both to the multinomial distribution considered for discrete BNs 

(via its conjugate Dirichlet posterior) and for the multivariate Gaussian distribution 

considered for continuous BNs (via its conjugate Inverse Wishart distribution). For 

discrete BNs, we can determine, Pr(D | G) in a Bayesian Dirichlet equivalent uniform 

(BDeu) score from [61]. Because it is the unique fragment of the BDe group of scores 

in normal usage, it is referred to as BDe.   
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BDe allows a flat score both over the parameter field of each node and the period of 

the DAGs: 

  Pr(G) ∝ 1 and Pr(ΘXi | ΠXi) = αij = 
α

|Θ𝑋𝑖|  Equation 2-22 

The exclusive parameter of BDe is the perfect representation size α compared among 

the Dirichlet prior, which concludes how much power it allocates to the prior as the 

size of an ideal description maintaining it. Following these hypotheses, BDe uses the 

following form [60]: 

BDe(G,D)=∏ 𝐵𝐷𝑒𝑝
𝑖=1 (Xi, ΠXi)=∏ ∏ {

Γ(αij)

Γ(αij + nij)
∏

Γ(αij + nijk)

Γ(αijk)

𝑟𝑖
𝑘=1 }𝑞𝑖

𝑗=1
𝑝
𝑖=1  Equation 2-23 

where: 

• p is the number of nodes in G; 

• ri is the number of classes concerning node Xi; 

• qi is the number of arrangements from the categories of Xi's parents; 

• nijk is the number for individuals who have the jth class for node Xi and the 

kth arrangement for its parents. 

It names the similar posterior probability to GBNs Bayesian Gaussian equivalent 

uniform (BGeu) from [62], which again commonly referred to as BGe. Likewise, to 

BDe, it implies a noninformative prior to both the parameter range of every node also 

the range of the DAGs; and its only parameter is the ideal representation size α. Its 

definition is complicated, and will not be described here. 

As a result of the problems described above, two options on the Pr(D|G) have been 

defined [60]. The first one is the use of the Bayesian Information Criterion (BIC) as 

an estimate of Pr (D | G), as   

 BIC (G, D) → log BDe (G, D) as the sample size n → ∞.   Equation 2-24 

BIC is analyzable and just based on the probability function, 

  BIC(G,D) =∑ [log Pr(𝑋𝑖|Π𝑋𝑖
) −

|Θ𝑋𝑖
|

2
log 𝑛]𝑝

𝑖=1   Equation 2-25 

Which, is relatively simple to calculate. The other option is to circumvent the 

requirement to establish a standard of goodness-of-fit to the DAG also to apply 
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conditional independence experiments for learning the DAG structure individual arc 

in time [60]. 

Once become learned the DAG structure can drive to parameter learning, for which 

we can determine the parameters for the set of nodes X. Considering that parameters 

relating to various local distributions are independent, really require determining just 

the parameters of individual local distributions in time. Following the Bayesian 

procedure described in Equation (2-19), this would need to get the value of the Θ which 

maximizes Pr (Θ|G, D) by its elements Pr (ΘXi|Xi, ΠXi). Additional approaches to 

parameter estimation exist, such as the highest likelihood regularized evaluation. 

Local distributions in tradition require just a small number of nodes, i.e., Xi and its 

parents ΠXi. Their dimension regularly does not balance among the number of nodes 

in the BN (and often considered being limited by a fixed number of nodes while 

determining the computational complexity of algorithms), therefore circumventing the 

nominal curse of dimensionality. That shows every local distribution owns the 

relatively few numbers from parameters for the test individually and also that estimates 

are specific in greater proportion within a size from ΘXi plus a sample size. 

 

2.4.1 LEARNING THE STRUCTURE OF BAYESIAN NETWORKS 

Suppose the following circumstances. Any means provide representations of states of 

a candidate BN (N) across the universe U, and the required building the BN of a 

problem. It is a common framework for Bayesian networks structural learning. 

Meanwhile, the actual environment unable to sure that can test the states of the network, 

but we will consider this case. Also, consider the sample is appropriate, and a set D 

from states shows a distribution PN(U) which enable via N. 

We think all connections within N are required; for example, if the connection is 

released, then a network producing unable to express P(U). It can explain as arises: if 

parents of X are pa(X) are, also Y represents each concerning them, next there are a 

couple of cases x1 and x2 of Y and an arrangement z of the different parents so that  

 P (X|x1, Z) ≠ P (X|x2, Z).  

To get an M, near to N in Bayesian network, can be accomplished through operating 

learning parameter during every potential structure also picking those types to which 



  21 

PM(U) near to (U). Aforementioned straightforward procedure challenged among 

three difficulties, that are necessary for Bayesian networks learning. First, the area 

from every Bayesian network structure is significant. In reality, the amount from 

various structures, f(n), raises even larger to exponentially during the amount of nodes 

n it can get (recent case estimations give in Table2.1): 

𝑓(𝑛) = ∑ (−1)𝑖+1 𝑛! 

(𝑛−𝑖)! 𝑛! 
2𝑖(𝑛−𝑖)𝑓(𝑛 − 1)𝑛

𝑖=1                  Equation 2-26 

Second, while seeking within the network structures, we may finish up by some 

uniformly excellent structures candidate. For over a whole graph in Bayesian network 

able to describe each configuration covering its universe, we comprehend that it will 

regularly own some candidates, although a BN over a comprehensive graph will barely 

be the accurate solution. If so, it is a limited solution. 

Third, it has a difficulty from over-fitting: a picked model is so familiar to 𝑃𝐷
#(U) least 

aberrations of PN(U), over, the comprehensive graph can describe   (U) correctly, still, 

D may have inspected an incompetent system. It has two approaches applied for 

Bayesian networks structure learning; score-based plus constraint-based. A score-

based approach provides a sequence of applicant Bayesian networks, compute a score 

during all applicant, also declare an applicant of the most significant score. The 

Table 2.1. The table presents the amount of various DAGs that can produce several 

nodes. For example, there are 1.4*1041 different DAGs with 14 nodes. 

NODES Number of DAG NODES Number of DAG 

1 1 8 7.8*1011 

2 3 9 1.2*1015 

3 35 10 4.2*1018 

4 543 11 3.2*1022 

5 29281 12 5.2*1026 

6 3.8*106 13 1.9*1031 

7 1.1*109 14 1.4*1041 
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constraint-based approaches organize a collection of conditional independence 

observations, including the data plus apply the set to construct a network among d-

separation attributes comparing the conditional restricted independence properties. 

To show a centre of structural learning, it should apply these following rule: A 

Bayesian network M = (S, θS) composed of the structured network, S, plus a collection 

of parameters, θS, where the conditional probabilities of the model defined by 

parameters. The S is a structure composed of a DAG, G = (U, E), mutually among a 

designation of the event period for every node per variable within a graph. 

 

2.4.1.1 THE SCHEMA FOR LEARNING STRUCTURE 

All DAG that contains the same node can be disjoint in the equivalence classes by 

Markov equivalence; also all DAG that produced Markov Equivalence class has equal 

distribution probability. Furthermore, the DAG pattern can build upon a graph called 

DAG that expresses the entire Markov equivalence class. We will use GP as a 

stochastic random variable whose potential values are DAG models, (gp). As far as 

they involve the genuine corresponding frequency distribution, a DAG model case (gp) 

is the case that (gp) is dedicated to the corresponding frequency distribution. In some 

circumstances, we may recognize DAG related problems. For instance, if an issue is a 

causal structure between the variables, then X1 → X2 expresses the case that X1 

causes X2, while X2 → X1 describes the different events that X2 causes X1. But unless 

declared, only check DAG model issues, including the notation ρ|G confirms the 

quantity function in the developed Bayesian network including the DAG (G). It seems 

not to require that the DAG (G) is an issue. 

We have the following explanation concerning learning structure: 

Definition 6 The following makes up a multinomial Bayesian network structure 

learning schema: 

1. n random variables X1, X2, ... Xn with mutual joint probability distribution P;          

2. an equivalent representation size N; 

3. for each DAG model (gp) including the n variables, a multinomial expanded 

Bayesian network (G, F(G), ρ|G) including equivalent sample size N, where G is any 
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part of the equivalence group expressed by (gp), such that P is the probability 

distribution in its secured Bayesian network. 

Note that even though a Bayesian network containing the DAG X1 → X2 can include 

a configuration in which X1 and X2 are independent, the case (gp)1 is the case they 

conditioned also, does not allow the case they are independent.  As usual, we do not 

immediately select a mutual probability distribution because the number of values in 

the mutual distribution increases exponentially with the number of variables. 

Preferably we select dependent distributions from the expanded Bayesian networks 

such that the probability distributions in all the fixed Bayesian networks are equivalent. 

For, a presented DAG model (gp), we first discover a DAG G in the equality group it 

represents. Then in the expanded Bayesian network corresponding to G for all i, j, and 

k we set: aijk =
𝑁

𝑟𝑖𝑞𝑖 

where ri is the number of potential values of Xi in G, and qi is the number of various 

instantiations of the parents of Xi [61] presents other techniques for testing priors.  

2.4.1.2 PROCEDURE FOR LEARNING STRUCTURE 

This part displays how we can learn structure using a multinomial Bayesian network 

structure learning schema. We begin with this explanation: 

Definition 7 The following forms a multinomial Bayesian network structure learning 

space: 

1. a multinomial Bayesian network structure learning schema, including the variables 

X1, X2,… Xn; 

2. A stochastic variable GP whose scope comprises every DAG models including the 

n variables, and for any value gp of GP a prior probability P(gp); 

3. A set D = {X(1), X(2), ... X(M)} of n-dimensional arbitrary vectors such that every 𝑋𝑖
(ℎ)

 

has the equivalent space as Xi for any value gp of GP, D is a multinomial Bayesian 

network sample of size M with parameter (G, F(G)), where (G, F(G)) is the multinomial 

expanded Bayesian network comparing to gp in the schema's specification. 

A scoring model for a DAG (or DAG model) is a role that selects a meaning to each 

DAG (or DAG model) depend on consideration based on the data. The formulation in 



  24 

Equation 2-23 is named as Bayesian scoring criterion score B and applied to score both 

DAGs and DAG models. 

   scoreB (d, gp) = scoreB(d, G) = P(d|G). 

Note that in Equation 2-23, we used a DAG pattern to calculate the probability that D 

= d. Therefore, this structure was part of the prior experience learning to evolve in our 

definition space, also since we did not train on it. Consider, the conditional probability 

individually explained that is, a basis on a selection of DAGs for (G, F(G), ρ|G). 

Presented a multinomial Bayesian network structure learning data and space, model 

collection decomposed of picking and determining the DAG models, including highest 

probability conditional on the data. The goal of the model collection is to learn a DAG 

pattern subject to its parameter values (a model) that can apply to decision making and 

inference. We could enhance a Bayesian network, whose DAG is in the equality group 

described by gp1, to prepare inference including X1 and X2. Note that we grow the 

DAG model that is the one including the dependency because in the data the variables 

are deterministically correlated. Learning from a Mixture of Observational and 

Experimental Data. 

The Bayesian scoring criterion (Equation2-23) regarding every case concerned and 

whose value corresponds to the equal probability distribution can be used to learn and 

test the structure just when all the data is observational. That is if no values are 

available for every variable by conducting a randomized control experiment (RCE). 

As usual, we can own both observational data also temporary data (data collected of 

an RCE) for a presented collection of variables. For instance, in the medical area, it 

involves a large deal of observational data in routinely handled electronic medical 

records. For specific variables of high clinical importance, we sometimes own data 

collected from an RCE. Cooper and Yoo enhanced an approach for using Equation 2-

23 to score DAGs by using a hybrid of observational, and experimental data [63]. The 

scoring method presented is applied  in several algorithms and investigations ( [64], 

[65]). Cooper and Yoo present managing the situation in which the guidance is 

stochastic [63]. Cooper represents learning from a composite of observational, 

experimental, and case-control (biased sample) data [66].  
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2.4.1.3 THE COMPLEXITY OF STRUCTURE LEARNING 

If there are just a few variables, we can exhaustively calculate the probability of all 

DAG models as produced. We then pick the values of (gp) that maximize P(d|gp) (Note 

that there should be higher than one maximizing model.) If the number of variables is 

not few, to get the maximizing DAG models by considering every DAG models is 

computationally inconvenient. [67] has shown the quantity of DAGs including n nodes 

provided by the following repetition: 

 

  𝑓(𝑛) = ∑ (−1)𝑖+1𝑛
𝑖=1 (

𝑛
𝑖

) 2𝑖(𝑛−𝑖)𝑓(𝑛 − 𝑖)         n>2              Equation 2-27    

         f(0) = 1 

         f(1) = 1. 

 

They transmit it as an activity to show f(2) = 3, f(3) = 25, f(5) = 29, 000, and f(10) = 

4.2 × 1018. There are smaller DAG models than there are DAGs, but this number 

further is forbiddingly high [68]. Chickering has proven that for certain classes of prior 

distributions, the difficulty of getting the usual probable DAG patterns is NP-complete 

[29]. One way to manipulate a problem like this is to improve heuristic search 

algorithms.  

 

2.4.1.4 CONSTRAINT-BASED METHODS 

Constraint-based algorithms depended on the original work of Pearl on maps and its 

importance to causal graphical patterns. His Inductive Causation (IC) algorithm [69] 

presents a structure for learning the DAG structure of BNs applying conditional 

independence tests.   

The structure of the IC algorithm is given in Algorithm 2.1. The initial step recognizes 

which two variables joined through an arc, despite its direction. These variables cannot 

be independent, given some different variables, because they cannot be d-separated. 

This action can further view as a backward collection method beginning with the full 

pattern with a comprehensive graph and pruning depended on analytical tests for 

conditional independence. The next step deals with including a description from the v-
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structures between two non-adjacent nodes A and B with a general neighbor C. By 

description, v-structures hold just the major joint in which the two non-adjacent nodes 

are not independent conditional on the third one. If there is a group of nodes that 

contains C and d-separates A and B, the three nodes are an element for a v-structure 

joined on C. The condition can be confirmed by conducting a conditional 

independence analysis for A and B into each potential subgroup of their normal 

neighbors that covers C. 

By a completion to the other round, both the v-structures and the skeleton of the 

network identifier, so the equality type the BN refers to recognized network. The last 

round of the IC algorithm recognizes constrained arcs and direction them recursively 

to get the CPDAG representing the equality type recognized by the previous rounds. 

An essential problem of the IC algorithm is that they can use the first pair of rounds in 

the method illustrated in Algorithm 2.1 on several real-world problems because of the 

exponential number of potentially conditional independence connections.   

This has driven into the enhancements to developed algorithms such as 

• PC: the primary practical utilization of the IC algorithm [70]; 

• Grow-Shrink (GS): depended on the Grow-Shrink Markov blanket algorithm 

[8], an easy forward collection Markov blanket disclosure approach; 

• Incremental Association (IAMB): depending on the Incremental Association 

Markov blanket algorithm [71], a pair-phase pick scheme;  
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• Fast Incremental Association (Fast-IAMB): a modification to IAMB which 

applies the uncertain stepwise foremost preference to decrease the number of 

conditional independence analyses [72]; 

• Interleaved Incremental Association (Inter-IAMB): extra modification of 

IAMB,  uses the foremost stepwise choice [71] to bypass false positives in the 

Markov blanket exposure stately [71]. 

All those algorithms, and PC, learn the Markov blanket of every node. This 

introductory round considerably analyzes the association to neighbors. It produces a 

meaningful decrease in the number of conditional independence analyses, and 

accordingly of the overall computational complexity of the learning algorithm. 

Potential enhancements are possible by leveraging the equivalence of Markov blankets. 

While it involves the property of the learned CPDAGs, in general, Inter-IAMB 

provides some false positives than GS, IAMB or Fast-IAMB, while producing a 

relative number of false negatives. The PC algorithm as enlarged in [73], [74] and [42] 

are further aggressive. In case of high dimensional data sets, the guaranteed pick is 

reasonably the Semi-Interleaved Hiton-PC from [75], which can balance thousands of 

variables. 

Algorithm 2.1 Inductive Causation Algorithm 

1.For each pair of nodes A and B in V search for set SAB ⊂ V such that A and B are 

independent given SAB and A, B /∈ SAB. If there is no such a set, place an undirected 

arc between A and B. 

2.For each pair of non-adjacent nodes A and B with a common neighbor C, check 

whether C ∈ SAB. If this is not true, set the direction of the arcs A−C and C−B to A→C 

and C←B. 

3.Set the direction of arcs which are still undirected by applying recursively the 

following two rules: 

(a) if A is adjacent to B and there is a strictly directed path from A to B then set 

the direction of A−B to A→B; 

(b) if A and B are not adjacent but A→C and C−B, then change the latter to C→B. 

4.Return the resulting CPDAG. 



  28 

Conditional independence analysis is applied to learn discrete BNs are functions of the 

observed frequencies {nijk, i = 1,..., R, j = 1, ..., C, k = 1,..., L} for the random variables 

X and Y also for every arrangement of the conditioning variables Z. 

•The mutual information analysis, an information-theoretic range measure is described 

as 

  𝑀𝐼(𝑋, 𝑌|𝑍) = ∑ ∑ ∑
𝑛𝑖𝑗𝑘

𝑛
𝑙𝑜𝑔

𝑛𝑖𝑗𝑘𝑛++𝑘

𝑛𝑖+𝑘𝑛+𝑗𝑘

𝐿
𝑘=1

𝐶
𝑗=1

𝑅
𝑖=1           Equation 2-28 

and comparable to the log-likelihood proportion analysis G2 (they differ by a 2n factor, 

wherever n is the representation size) [76] 

• The standard Pearson’s X2 analysis for contingency tables computes:: 

𝑋2(𝑋, 𝑌|𝑍) = ∑ ∑ ∑
(𝑛𝑖𝑗𝑘−𝑚𝑖𝑗𝑘)2

𝑚𝑖𝑗𝑘

𝐿
𝑘=1

𝐶
𝑗=1

𝑅
𝑖=1        Equation 2-29 

where 𝑚𝑖𝑗𝑘 =
𝑛𝑖+𝑘𝑛+𝑗𝑘

𝑛++𝑘
   

A different possibility denotes the shrinkage estimator for the shared information 

defined [76] and considered in BNs in [77]. 

2.4.1.5 SCORE-AND-SEARCH BASED METHODS 

Score-based learning algorithms describe the utilization of heuristic optimization 

procedures to the difficulty of learning the structure of a BN. Every applicant BN has 

shown a network score following its success of fit, which the algorithm later tries to 

maximize. Among these algorithms are: 

• Greedy search algorithms such as hill-climbing among random restarts or tabu search 

[78]. Specific algorithms examine a search area beginning of a network structure 

(normally with no arc) including reversing, adding, and deleting single arc in time till 

they can update a score (see Algorithm 2.2); 

• Genetic algorithms, which mimic real development within a repeated pick from a 

“most appropriate” types plus the mixing from their properties [79]. In this state, it 

investigates the search space for the crossover (that joins a structure of pair networks) 

plus mutation (which includes arbitrary modifications) stochastic executives; 
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• Simulated annealing [78]. The algorithm implements a stochastic local search via 

providing adjustments that improve the score of a network plus, concurrently, 

according to modifications that decrease it, including a probability inversely related to 

reduce the score. 

 A general survey of certain heuristics and complementary methods from artificial 

intelligence presented in [80]. The exploration for the network that optimizes the BIC 

score begins, by default, from the clear DAG. The process that improves the BIC score 

the maximum is, at every step, the expanding of one arc that will show in the final 

DAG (see Figure 2.9).     

Neither (hc) nor (tabu) are capable of learning the true DAG. There are several causes 

for such a performance. For example, it is possible to both algorithms, to held at a local 

maximum because of an unsuitable selection at the beginning point of the exploration. 

The algorithms depended on the scoring function effort for finding the graph that a 

picked higher score, which normally established mostly standard from fitness among 

a data plus a graph. All of them apply a scoring function within the organization and 

an exploration method to estimate the honesty of all examined structures from the area 

of solutions. They take various learning algorithms based on the exploration procedure 

applied, and at the descriptions from a scoring function plus a search area. They depend 

on the scoring functions in many policies, so as the minimum description length [81]; 

Algorithm 2.2 Hill-Climbing Algorithm 

1. Pick the structure of the network G covering V, normally (however not significantly) empty. 

2. Calculate a score of G, expressed as ScoreG = Score(G). 

3. Valued maxscore = ScoreG. 

4. Iterate the next rounds as long as maxscore improvements: 

(a) during each potential arc reversal, addition, or deletion not happening within the 

cyclic network: 

i. calculates the score of the adjusted network G*, ScoreG_ = Score(G*): 

ii. if ScoreG_ > ScoreG, set G = G* also ScoreG = ScoreG_ 

(b) update maxscore with the current state from ScoreG. 

5. Return the DAG G. 
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[82]; [83], [78]; [84], information and entropy [85]; [86], or Bayesian approaches ( [87]; 

[88]; [89]; [90]. We will explain later the normal scoring functions in-depth detail. 

They involve a search, frequently used ones are local search processes [91]; [88]; [87]; 

[61]) because of the exponentially great size of the there is an increasing concern in 

different heuristic exploration techniques such as tabu search  [92]; simulated 

annealing [91]),  branch and bound [93], [78]), Markov chain Monte Carlo [94], 

evolutionary programming and genetic algorithms [95]; [96], ant colony optimization 

[14]), variable neighborhood search [97], estimation of distribution algorithms [98] 

and greedy randomized adaptive search procedures (GRASP) [14]. Utmost learning 

algorithms apply various search techniques just an equivalent search area: a DAG area. 

Potential options are an area regarding the organizations of a variables [99]; [100]; 

[14]; [97]; [20]), including a subsequent search within a DAG area cooperative among 

the regulation; an area from primary graphs [69] (further called completed or patterns 

PDAGs), which partly DAG or PDAGs that canonically describe identity groups 

regarding DAGs [101]; [51]; [102]; [50]; [103]; also a specific area of RPDAGs 

(limited PDAGs), which further describe sameness groups of DAGs [104]; [92]). Each 

learning techniques explore a DAG area among the local search-depended procedure, 

able to enhance effectiveness if a scoring function applied owns the characteristic of 

decomposability. The scoring function (g) is decomposable if the mark selected into 

any structure can represent the whole (within a logarithmic range) of local states which 

are based just on every node including its parents: [46] 

  g(G: D) = ∑ 𝑔(𝑋𝑖, 𝑃𝑎𝐺(𝑋𝑖): 𝐷)𝑋𝑖𝜖𝑈𝑛                             Equation 2-30                         

g(Xi,PaG(Xi): D) = g(Xi, PaG(Xi): 𝑁𝑋𝑖,𝑃𝑎𝐺(𝑋𝑖)
𝐷

 

where 𝑁𝑋𝑖,𝑃𝑎𝐺(𝑋𝑖)
𝐷

 is the adequate statistics for each group of variables {Xi} U PaG(Xi) 

within D,  that is a number from situations in D conformable to all potential 

arrangements of {Xi} U PaG(Xi). For instance, an exploration process that just 

changes individual arc by any transit can estimate the growth achieved through this 

exchange. It can reuse the largest from earlier computations also just a statistic to 

variables they must change whose parent organizations need to recompute. While the 

process, the deletion or insertion of an arc Xj → Xi in a DAG G can estimate by 

measuring just individual fresh local score, g (Xi, Pa G(Xi)U{Xj}: D) or g (Xi, Pa 

G(Xi) \{Xj}: D), sequentially; the reversal of an arc (Xj →Xi) challenges the valuation 

to pair fresh local scores, g (Xi, Pa G(Xi)\{Xj}: D) and g (Xj, Pa G(Xj)U{Xi}: D) 
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The different attribute that is especially impressive if the exploration of the learning 

algorithm in a space of identity classes of DAGs are named the score equivalence: the 

scoring function g is score equivalent if it selects the corresponding value to each 

DAGs that is described through the equivalent fundamental graph.  

In this way, the outcome regarding estimating the identity group shall be equal for 

which they pick DAG of the type. Several methods to calculate the consistency of a 

DAG regarding a data set. They can be classify into two levels: Information and 

Bayesian criteria.  

A- Bayesian Scoring Functions 

Beginning with a prior probability distribution for a potential network, the common 

approach is calculating a posterior probability conditioned on every accessible data D, 

p(G|D). The greatest network holds an organization which maximizes a posterior 

probability. That not needed for calculating p(G|D) also during related goals, 

calculating p (G, D) holds adequate for an expression p(D) is equivalent to each of 

potential networks. While that was comfortable to operate within a logarithmic range, 

during tradition, scoring functions practice a value log (p (G, D)) preferably of p (G, 

D)[87] introduced one from initial scoring functions in Bayesian, named K2. It can 

represent multinomial distributions, parameter modularity, reduction of missing values, 

parameter confidence, the regularity of the prior distribution provided in the network 

structure:  

gK2(G: D)=log(p(G))∑ [∑ [log (
(𝑟𝑖−1)! 

(𝑁𝑖𝑗+𝑟𝑖−1)! 
) + ∑ log (𝑁𝑖𝑗𝑘!)

𝑟𝑖
𝑘=1 ]

𝑞1
𝑗=1 ]𝑛

𝑖=1  Equation 2-31                        

where p(G) denotes the prior probability of the DAG G. later, the so-called BD 

(Bayesian Dirichlet) score introduced by [61] as a popularization of K2: 

gDB(G: D)=log(p(G)+∑ [∑ [log (
Γ(ŋ𝑖𝑗)

Γ(𝑁𝑖𝑗+ŋ𝑖𝑗)
) + ∑ log (

Γ(𝑁𝑖𝑗𝑘+ŋ𝑖𝑗𝑘)

Γ(ŋ𝑖𝑗𝑘)
)

𝑟𝑖
𝑘=1 ]𝑞1

𝑗=1 ]𝑛
𝑖=1                         

               Equation 2-32 

where the rates ŋijk are the hyper-parameters involving the Dirichlet prior distributions 

from parameters provided by network structure, also  ŋ𝑖𝑗 = ∑ ŋ𝑖𝑗𝑘
𝑟𝑖
𝑘=1  . Γ(. ) is the 

function Gamma, Γ(𝑐) ∫ 𝑒−𝑢𝑢𝑐−1𝑑𝑢
∞

0 . It should be noted that if c is an integer, Γ(𝑐) 

= (c-1)!. If values about every hyper-parameter occur ŋijk=1, reach the K2 score being 

a particular instance of BD. Within working terms, the designation to a hyper-
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parameters ŋijk implies hard (but while apply non-informative tasks, like the ones used 

via K2). In other words, we can edit the BD scores as: 

 si()=∑ (𝑙𝑜𝑔
Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗+𝑛𝑖𝑗)
+ ∑ 𝑙𝑜𝑔

Γ(𝛼𝑖𝑗𝑘+𝑛𝑖𝑗𝑘)

Γ(𝛼𝑖𝑗𝑘)𝑘∈𝐾𝑖𝑗
)𝑗∈𝐽𝑖      Equation 2-33 

where Ji≐ 𝐽𝑖
∏ 𝑖 ≐ {1 ≤ 𝑗 ≤ 𝑟≐: 𝑛𝑖𝑗 ≠ 0} because nij = 0 shows that all phases cancel 

each other. Equivalently, nijk = 0 shows that the terms of the regional summation drop 

out, so let Kij≐ 𝐾𝑖𝑗
∏ 𝑖𝑖 ≐ {1 ≤ 𝑗 ≤ 𝑟≐: 𝑛𝑖𝑗 ≠ 0}, be the contents of the classes of Xi 

such that nijk ≠ 0. Let Kij≐ ⋃ 𝐾𝑖𝑗
∏ 𝑖𝑗

 be a vector among each content comparing to non-

zero numbers for Ji  (Note that the representation needs regarding as a concatenation 

of vectors, as we allow 𝐾𝑖
∏ 𝑖𝑖

 to have repetitions). The counts nijk (and consequently nij 

= ∑ 𝑛𝑖𝑗𝑘𝑘 ) fully determined if we comprehend the parent collection Πi.  

Rewrite the score: 

 𝑠𝑖(𝛱𝑖) = ∑ (𝑓(𝐾𝑖𝑗, (∀𝑘)∀𝑘) + 𝑔 ((𝑛𝑖𝑗𝑘)∀𝑘, (𝛼𝑖𝑗𝑘)∀𝑘))𝑗∈𝐽𝑖       Equation 2-34 

With  𝑓(𝐾𝑖𝑗 , (∀𝑘)∀𝑘) = 𝑙𝑜𝑔Γ(𝛼𝑖𝑗) − ∑ 𝑙𝑜𝑔Γ(𝛼𝑖𝑗)𝑘∈𝐾𝑖𝑗  

𝑔 ((𝑛𝑖𝑗𝑘)∀𝑘, (𝛼𝑖𝑗𝑘)∀𝑘) = −𝑙𝑜𝑔Γ(𝛼𝑖𝑗 + 𝑛𝑖𝑗) + ∑ 𝑙𝑜𝑔Γ(𝛼𝑖𝑗𝑘 + 𝑛𝑖𝑗𝑘)

𝑘∈𝐾𝑖𝑗

 

By studying the other hypothesis of likelihood identity [90]; [64], it is probable to 

designate the hyper-parameters comparatively. While each effect means a scoring 

function named BDe (and its representation is like on BD one under Equation 2-30), a 

hyper-parameter can calculate within the due process: 

     ŋ𝑖𝑗𝑘 = ŋ *p(xik, wij|G0)       Equation 2-35                         

where p(.|G0) describes a probability distribution connected with a prior Bayesian 

network G0 and ŋ is a parameter describing the similar representation size. A suitable 

case of BDe that the prior network selects a legal option to any choice of {Xi} U 

PaG(Xi). It names the resulting score BDeu, which was formally introduced by [88]. 

This score is just based on an individual parameter, the comparable representation size 

h, and represented as: 

gBDeu(G: D) = log(p(G))+
 ∑ [∑ [log (

Γ(
ŋ

𝑞𝑖
)

Γ(𝑁𝑖𝑗+
ŋ

𝑞𝑖
)
) + ∑ log (

Γ(𝑁𝑖𝑗𝑘+
ŋ

𝑟𝑖𝑞𝑖
)

Γ(
ŋ

𝑟𝑖𝑞𝑖
)

)
𝑟𝑖
𝑘=1 ]𝑞1

𝑗=1 ]𝑛
𝑖=1  



  33 

          Equation 2-36                         

Concerning the expression log(p(G)) that occur within a previous expression, this is 

simple in imagining the normal distribution (but when own knowledge on the highest 

advantage from individual structures), so that fits a fixed and able to reject. 

B- Scoring Functions based on Information Theory 

Certain scoring functions express different alternatives to estimating a level from 

fitness regarding the DAG on data set plus depending covering information plus 

codification approaches. Coding tries to decrease as much as several components they 

require to describe a message (based on its probability). The minimum description 

length (MDL) principle chooses some coding which needs the tiniest range for 

describing messages. The different standard formulation from an identical concept 

proves that to describe the data set with an individual type of special kind; the valid 

form is one that reduces an amount from description length from a model also a 

description length from a data given the model. Difficult forms regularly need 

comprehensive description lengths only decrease a description length of a data given 

a form. On the other side, pure models need smaller description lengths, just the 

description length from a data provided model increments. The minimum description 

length postulate sets a suitable trade-off between precision and complexity. In the 

definitions, the data set to express holds D, plus a picked group to representations are 

Bayesian networks. The description length covers the length needed for describing a 

network and a length specified for describing a data given a network ( [83], [78]; [84]; 

[82]; [81]). To describe the network, we need to collect its probability states, and this 

needs a period comparable on several free parameters from a factorized mutual 

probability distribution. This value is named network complexity also expressed as:

    𝐶(𝐺) = ∑ (𝑟𝑖 − 1)𝑞𝑖
𝑛
𝑖=1      Equation 2-37                         

The general proportionality factor is 
1

2
  log(N) [105]. The description length of the 

network is: 

  
1

2
 C(G)log(N)     Equation 2-38                         

Concerning a detail from a data showed this model, via utilising Huffman codes it is 

fieldsets deny is denote the negative from a log-likelihood, a logarithm from the 

probability function from a data concerning a network. The value mentioned above 

means a least to the rigid network structure while determining the network parameters 
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of a data set itself through utilising highest probability. They can display a log-

likelihood under the procedure as following [78]: 

LLD(G) =∑ ∑ ∑ 𝑁𝑖𝑗𝑘log (
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗
)

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=1    Equation 2-39                        

The scoring function (MDL) through improving marks to offer among the 

maximization difficulty) is: 

   gMDL(G: D) =∑ ∑ ∑ 𝑁𝑖𝑗𝑘 log (
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗
) −  

1

2
 C(G)log(𝑁)

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=1   Equation 2-40                        

The different process for estimating the status of a Bayesian network apply criteria 

depended on information theory, including any from certain compared among a past 

one. The fundamental approach stands to pick a network structure that strongly 

matches the data, punished with several parameters that are important to define the 

mutual distribution. It drives to a popularization from a scoring function within 

Equation 2-46: 

g(G:D) =∑ ∑ ∑ 𝑁𝑖𝑗𝑘 log (
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗
) −  C(G)𝑓(𝑁)

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=1   Equation 2-41                       

where f (N) holds a positive penalization function. When f (N) = 1, it depends on a 

score at the Akaike information criterion (AIC) [106]. If (f (N) =   
1

2
 log(N)), formerly 

a score, named BIC, implies depended on a Schwarz information criterion [107], that 

corresponds among the MDL score. If f (N) = 0, it holds the highest probability score, 

although that does not make beneficial while the valid network applying the principle 

regularly means a perfect network that incorporates whole a potential arc. It is 

fascinating to remark that a different way of signifying the log-likelihood under 

Equation 2-34 is: 

LLD(G) = -N∑ 𝐻𝐷(𝑋𝑖|𝑃𝑎𝐺(𝑋𝑖)
𝑛
𝑖=1 )                 Equation 2-42                       

where 𝐻𝐷(𝑋𝑖|𝑃𝑎𝐺(𝑋𝑖))  denotes the dependent entropy of the variable Xi given its 

parent set PaG(Xi), as the probability distribution PD: 

𝐻𝐷(𝑋𝑖|𝑃𝑎𝐺(𝑋𝑖)) = ∑ 𝑝𝐷(𝑤𝑖𝑗)(− ∑ 𝑝𝐷(𝑥𝑖𝑗|𝑤𝑖𝑗)log (𝑝𝐷(𝑥𝑖𝑘|𝑤𝑖𝑗))
𝑟𝑖
𝑘=1 )

𝑞𝑖
𝑗=1  Equation 2-43                       

and PD is the mutual probability distribution compared among the data set D, taken of 

the data by the highest likelihood. The log-likelihood LLD(G) can additionally express 

as  [78]: 

     LLD(G) = -NHD(G)      Equation 2-44                       
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where HD(G) expresses the entropy of the mutual probability distribution compared 

for the graph G if they measure the network parameters of D by highest likelihood:  

𝐻𝐷(𝐺) = − ∑ ((∏ 𝑝𝐷(𝑥𝑖|𝑃𝑎𝐺(𝑋𝑖))𝑛
𝑖=1 )log (∏ 𝑃𝐷(𝑥𝑖|𝑝𝑎𝐺(𝑥𝑖))𝑛

𝑖=1 ))𝑥1,…,𝑥𝑛   

                Equation 2-45                       

The different understanding of the scoring functions depended on information is that 

they try to decrease the conditional entropy of all variables presents its parents, and 

then they explore the parent collection of all variable that provides as much 

information as probable on this variable (or which most restricts the distribution). It is 

essential to append a penalization term considering the smallest conditional entropy 

captured by calculating a total value for the potential variables given the parent set. 

Herskovits and Cooper [85]  introduced an approach to bypass this over-fitting without 

applying a penalization formula. They applied the best score, but the method of adding 

arcs in the network use the averages of a statistical test which determined diversity in 

entropy between the existing network and that achieved by adding a new arc was 

statistically meaningful. Regarding the properties of the various scoring functions, 

each is decomposable and include the exclusion of K2 and BD; they are further score-

equivalent [91]. 
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2.4.1.6 HYBRID METHOD 

Local search algorithms are hybrid BN structure learning techniques offering with 

local structure description and global representation optimization constrained for local 

information various local structure descriptions have introduced. They are  applied to 

discover the applicant Parent-Children (PC) attitude of a destination node such as the 

Markov Blanket (MB)  i.e. children, parents, and spouses, of the destination [71, 108] 

or the Max-Min Parent Children (MMPC) algorithm [48]. If the global structure 

description is the final purpose, Parent-Child 's description is enough in succession to 

produce a global undirected graph that can apply as a set of constraints in the global 

pattern identification. For example, the original Max-Min Hill-Climbing algorithm 

(MMHC) (algorithm 2.3) introduced by Tsamardinos [109] joins the local association 

presented by a global greedy search (GS) and Max-Min Parent Children (MMPC) 

algorithm where the neighborhood of an assigned graph produced by the  following 

executives: append edge assigned to edges in the local search description form (if the 

edge refers to a collection of constraints also if the resulting is acyclic DAG) (see 

algorithms 2.3), remove edge and exchange edge (if the resulting is acyclic DAG). 

They divide the MMPC local structure description, defined in Algorithm 2.4, into a 

Algorithm 2.3 MMHC(D) 

Require: Data (D) 

Ensure: BN structure (DAG) 

1: Gc ←∅ ,  G ←∅ 

2: S ← 0   % Local identification 

3: for all X ∈ X do 

4:  CPCX=MMPC(X, D) 

5: end for 

6: for all X ∈ X And Y ∈ CPCX do 

7:  Gc ← Gc ∪ (X,Y) 

8: end for         % Greedy search (GS) optimizing score function in DAG space 

9: G ← GS(Gc) 

10: return the DAG G found 
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couple of responsibilities, the neighborhood description itself (MMPC), achieved by a 

proportional correction (X refers to the neighborhood of T if the reverse is likewise 

true). The neighborhood association (MMPC), described in Algorithm 2.5, uses the 

Max-Min Heuristic illustrated in Algorithm 2.6 in sequence repeatedly append 

(forward phase) in the applicant Parent-Children collection (neighborhood) of a 

destination variable T the variable the various directly subordinate on T probably to its 

current neighborhood (line 1 in algorithm 2.6). This method can append any false 

positives, which later removed in the backward stage.  

Algorithm 2.4 MMPC(T, D) 

Require: target variable (T); Data (D) 

Ensure: neighborhood of T (CPC) 

1: ListC =X \{T} 

2: CPC = MMPC(T, D, ListC)  % Symmetrical correction 

3: for all X ∈ CPC do 

4:  if T ∉ MMPC(X, D,X \{X}) then 

5:   CPC = CPC \ {X} 

6:  end if 

7: end for 

Algorithm 2.5 MMPC(T, D, ListC) 

Require: target variable (T); Data (D); List of potential candidates (ListC) 

Ensure: neighborhood of T (CPC) 

1: CPC = ∅ % Phase I: Forward 

2: repeat 

3: < F, assocF >= MaxMinHeuristic(T,CPC, ListC) 

4: if assocF , 0 then 

5: CPC = CPC∪{F} 

6: ListC = ListC \ {F} 

7: end if 

8: until CPC has not changed or assocF = 0 or ListC = ∅ % Phase II: Backward 

9: for all X ∈ CPC do 

10: if ∃S ⊆ CPC and assoc(X; T|S ) = 0 then 

11: CPC \ {X} 

12: end if 

13: end for 
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 They estimate dependency with an organization determination function Assoc like X2, 

mutual information or G2. The famous examples of this family are the Sparse 

Candidate algorithm (SC) by Friedman and Nachman [110]  and the Max-Min Hill-

Climbing (MMHC) algorithm by Tsamardinos, Brown, Constantin, and Aliferies  

[109]. They base both of these algorithms on a few rounds named maximize and limit. 

In the initial round, the applicant produced for the parents of any node Xi decreased 

the entire node set V to a lesser set Ci ⊂ V of nodes whose operation proved to 

associate to that of Xi. This results in a less also extra normal search space. The second 

round explores the network that maximizes a presented score function, directed to the 

constraints required by the Ci collections. In the Sparse Candidate algorithm, these 

couple of rounds implemented until there is no replacement in the network or no 

network upgrades the network score; the selection to the heuristics applied to perform 

it transmits them to the implementation. On the opposite round, in the MMHC 

algorithm, limit and maximize performed only once; they apply the Max-Min Parents 

and Children (MMPC) to learn the applicant sets Ci and a hill-climbing greedy search 

to get the optimal network. 

2.5 EVALUATION OF STRUCTURAL ACCURACY  

2.5.1. EVALUATION METRICS 

In this part, we introduce techniques that estimate the status of the Bayesian network 

achieved through the structure learning algorithms. There are two procedures for the 

estimation of the structure from a learning algorithm: 

– Presented a theoretical BN, B0 = (G0, θ0) and data D produced by the BN, the 

measures estimate the status from the algorithm through associating the status of the 

learned graph B = (G, θ) and that of the original network B0 including the utility to data. 

Algorithm 2.6 MaxMinHeuristic(T,CPC, ListC) 
Require: target variable (T); current neighborhood (CPC); List of potential candidates 

(ListC) 

Ensure: the candidate the most directly dependent to T given CPC (F) and its association 

measurement 

(AssocF) 

1: assocF = maxX∈ListCMinS⊆CPCAssoc(X; T|S ) 

2: F = argmaxX∈ListCMinS⊆CPCAssoc(X; T|S ) 
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– The test estimates the quality of the algorithm by analyzing the structure G0 of the 

theoretical graph and the structure G of the learned graph. To this point, we mark it 

would be useful to differentiate the equality classes provided by the learned and 

primary BN. A BN received from the data identified through its sameness group. They 

concern the best BN if we discover that the CPDAG of the produced network is similar 

to the learned BN. So, all estimation metrics need to apply the sameness group to 

associate with the BNs for vast estimation. 

There are many models offered in the literature for the evaluation of  structure learning 

algorithms [111].  

2.5.2. CONFUSION MATRIX 

In the level of the pair potential during supervised learning, it dased on the four 

characters for evaluation of the goal by using the classifier for the analysis collection. 

Predictive analytics, a table of confusion, further identified as a confusion matrix, is a 

table in its simplest form, having a couple of rows and a couple of columns that 

provides the estimates of true positives, false positives, false negatives, and true 

negatives. Every row in the confusion matrix describes a recognized class, every 

column describes a forecasting class, and all cell includes the number of units in the 

crossing of those couple of classes. The Confusion matrix structure is presented as 

follows in Table 2.2. 

Table 2.2: Confusion Matrix 

 

 

 

Actual Class 

Predicted Class 

 Yes No 

Yes True Positive (TP) False Negative (FN) 

No False Positive (FP) True Negative  (TN) 

The records in the confusion matrix hold integer numbers. The sum of the four records 

TP + TN + FP + FN = n, corresponds to the total quantity of analysis. Classifications 

that constitute the principal diagonal of the confusion matrix are the accurate 

classifications i.e., true negatives and true positives. Additional fields mean 
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classification errors. Several achievement metrics can obtain from the confusion 

matrix. 

2.5.2.1. ACCURACY AND ERROR RATE 

Accuracy is the rate of rightly classified cases to all cases in the examination collection, 

i.e. (TP + TN)/ (TP + TN + FP + FN). The error rate is defined as (1-Accuracy). This 

metric analyzed by writers as having a weakness to distinguish between classes it 

considers. Accuracy doesn’t display the accurate classifier’s appearance below the 

skewed class population. In actuality, classifiers regularly challenge a higher number 

of negative cases associated with positive cases. [112]; [113]; [114], [115]; [116])  

Accuracy estimates the classifier’s achievement including one number to both of the 

groups also to the individual setting of destination situations. Extra weakness about 

the accuracy metric is the interchangeable achievement evaluation of a couple of 

separate situations. The accuracy is the equivalent of both of the situations just, for 

instance, classifying nearly all positives in the original one includes the faulty 

classification of nearly every negative. At the opposite side, classifying nearly each 

positive inside the other situation includes around just half of the false positives. 

2.5.2.2. SENSITIVITY AND SPECIFICITY 

Sensitivity and specificity are the mathematical models of achievement of binary 

classification analyses. Sensitivity and specificity expressed as a percentage. In 

clinical examinations, the sensitivity of medical analysis is the possibility of its 

producing a ‘positive’ result if the case is positive and specificity is the possibility of 

getting a negative outcome if the case is negative. A general optimal forecast effect 

can produce 100% sensitive (i.e. forecast every case of a diseased population as sick) 

and 100% specificity (i.e. not forecast any member of the healthy population as sick). 

Visualize a scenario, where cases examined for an illness. The examination result may 

be positive (sick) or negative (healthy), while the real health situation of a case may 

be different. Four situations may occur:  

• The sick case diagnosed sick termed as   “True positive” 

• The healthy case classified as sick–“False positive” 

• The healthy case recognized as healthy–“True negative” 

• The sick case classified as healthy–“False negative” 
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Of the above circumstances, in two cases, a fault has happened, if a healthy 

case recognized as sick and the other case where a sick case classified as healthy.  

System examination produce analytical conclusions about the distribution on the 

source of trial data. They further recognize its Statistical Significance Examination. In 

system testing, there is a “Null hypothesis” which compares to a supposed default 

“State of reality” (e.g. that a person is available of infection). Comparing to the null 

system is an “alternative hypothesis” which compares different situations. The purpose 

is to define if the null hypothesis can reject in approval of the option. The outcome of 

the analysis may be positive (it may mean infection) or it may be negative (i.e. it 

appears to no-show infection). If the outcome of the examination seems negative 

match including the original states of reality, a failure has happened. There are two 

kinds of error categorized as “Type I and Type II errors” based on which system has 

recognized as the reality. Type I error identified as “false positive”, or “α” error, the 

error of denying the null system if it is true. A false positive shows that an examination 

demands something to be positive if that is not the case. For instance, an examination 

assuming that a woman is pregnant if she is not pregnant. Type II error classified as 

“error of the second kind” or a “false negative” or “β” error, the error of allowing the 

null system when the choice system is true. Table 2.3 represents the condition: 

 

Sensitivity is defined as:   

 Sensitivity =
Number of true positives 

Number of true positives + Number of false negatives  Equation 2-46 

An individual Sensitivity value seems not to show how good the examination 

distinguishes the different types (i.e. about negative events). In the binary classification, 

Table 2.3 Test Result in the Confusion matrix 

 

 

 

 

Test 

Result 

 Actual Condition 

Present Absent 

Positive 
 Condition Present + Positive Result = 

True Positive 
Condition absent + Positive result = 

False Positive (Type I error) 

Negative 
Condition Present + Negative Result 

= False negative (Type II error) 

Condition absent + Negative result 

= True negative 
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this corresponds to the identical specificity examination or equivalently the sensitivity 

for the different types.  

Specificity is the proportion of true negatives to the number of true negatives plus false 

positives. 

Specificity =
Number of true negatives 

Number of true negatives + Number of false positives   Equation 2-47 

Sensitivity and specificity are helpful in providing explanations of different treatments 

in the medical domain being associated with conventional therapy and including 

different scaling of testing the increase in cases as distinguished upon old, well 

installed also applied principles [117]. 

2.5.2.3 PRECISION, RECALL AND F-SCORE 

In this section, we concentrate on three conventional achievement metrics; precision, 

recall, and F-score. For instance, the experimental result may produce the numbers in 

a confusion matrix. Of these numbers, one can calculate the precision (p) also recall 

(r) as follows: 

     𝑝 =
𝑇𝑝

𝑇𝑃+𝐹𝑃
     Equation 2-48    

        𝑟 =
𝑇𝑝

𝑇𝑃+𝐹𝑁
      Equation 2-49 

The (weighted) harmonic mean of precision and recall produces the F-score [118] 

   𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟

𝑟+𝛽2𝑝
=

(1+𝛽2)𝑇𝑃

(1+𝛽2)𝑇𝑃+𝛽2𝐹𝑁+𝐹𝑃  Equation 2-50 

Table 2. 4 Sensitivity and  Specificity in the Confusion matrix 

 
Condition as determined by Gold Standard 

 

Positive  Negative 
 

Test 

result 

Positive  True Positive  False Positive 

(Type I error) 

→ Positive 

Predictive value 

Negative 
False Negative 

(Type II error) 

True Negative →Negative 

Predictive value 

  

Sensitivity 

 

Specificity 
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Both recall and precision become an actual argument in expressions of probability. 

Precision may display, while the system restores the possibility that a target is essential 

given that, while the recall is the likelihood they deliver a suitable target.  
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CHAPTER 3 

PROPOSED ALGORITHMS 

Optimization performs a pivotal character in engineering and science. In particular, 

there are such common instances of relationships, including optimization that a record 

of applicability is limited and incomplete. Even in the highest powerful statements 

from optimization, there are limitations, i.e. boundaries about the applicable area 

involving variables and parameters. In particular, planners may ask questions such as 

“Given that we have access to certain resources (such as a construction material, time, 

financial resources.), what is the best we can do?” Several difficulties can be expressed 

since the problem is decreasing (or increasing) a scientific objective, namely, specific 

objective function [119].  

Several approaches describe possibilities for traditional optimization, and they are 

well-developed for a class of optimization problems related to the increased 

optimization difficulties, which are described in the next chapter. Traditional 

optimization approaches further possess weaknesses, including those that not 

applicable to every optimization problem. There have been many substitutions 

approaches, during the last few decades and some of them are under improvement 

[120]. 

In this chapter, we combine some heuristic searches like Pigeon inspired optimization, 

Elephant Swarm Water Search, Bee optimization, Simulated Annealing, and Greedy 

search. Later we explain the proposed algorithms based on the mentioned algorithms. 

In the first algorithm, we proposed the Bayesian network structure learning based on 

pigeon inspired optimization. The second and third algorithms are a hybrid between 

Bee and Simulated Annealing. The fourth and the fifth algorithm are a hybrid between 

Bee and greedy search.  The final algorithm based on the Elephant swarm water search 

algorithm. 

   

3.1 PIGEON INSPIRED OPTIMIZATION 

In this part, we present the introduction of the pigeon, its behavior and a concept and 

formulation of the pigeon inspired optimization. 



  45 

Pigeons are parts of the society Columbiformes which covers doves and pigeons [121]. 

Pigeons were used for transmitting information by the Egyptians, including transpired 

during various fighting operations. Homing pigeons can get their places by using three 

homing mechanisms: magnetic field, sun, and landmarks [122]. 

3.1.1 OVERVIEW OF PIGEON INSPIRED OPTIMIZATION  

Extensive swarm intelligence analyses have shown how some animals, like mammals 

or fishes, communicate between them in the natural environments in swarm [123]. The 

range of these swarms in size start form small numbers living in natural places to 

organized colonies that held huge areas and contain millions of individuals. The skills 

of the group in swarms show a good rubustness and flexibility [124] like preparation 

of routing [125], constraction of nest [126], managing the task [89] and different 

additional complex behaviors combined in some swarms presented in [127, 128, 129]. 

The abilities may be very poor for individuals in the swarm, while behaviors of the 

group can appear in the complete swarm, like a flock of bird migration, exploring in 

Bee and ant colonies. To complete the task by individuals is hard, while it easily 

achieved by a swarm of animals. The researcher observed that the smart skills group 

are materialize by sets of individuals with normal skills through information 

transmission and swarm intelligence.  

In general, swarm intelligence offers among models from some common responses of 

simple tools combining with themselves, including its circumstances’, that drives into 

every evolution from a logical operative global model[34] [130]. Information passing 

between representatives is obscure and little. They actualize the interaction between 

representatives within a dispersed way without a centralized restriction mechanism. In 

other terms, the whole swarm intelligence form is uncomplicated in real life [131].  

The group colony-level performance of the swarm that originate from the 

communications becomes helpful during performing complicated purposes [132]. 

Through World Wars (First and Second), pigeons served essentially to the UK, 

American, German, French and Australian forces. The significant ability of homing by 

pigeons to utilize the mixing of the magnetic area, the sun, and find their route around 

in the landmarks. Pigeons reasonably use various navigational tools through various 

elements presented by Guilford argues [133]. The mathematical model developed by 

Guilford and his partners for predicting when pigeons order the change of the route 
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from one to another. If pigeons begin the journey, they rely on extra tools. If during 

the campaign, they should turn on using landmarks if it needs to reassess the way and 

perform improvements. 

Investigations show that the ability of a pigeon can detect various magnetic area proves 

that the pigeons’ compelling experiences of homing based on little magnetic bits in its 

beak. The beak of pigeons has iron crystals; they provide a nose of the birds to the 

north. Investigations explain that this appears to produce a mode within flags of 

magnetite bits transmitted into the mind through particular trigeminal nerves [134]. 

Additionally, the pigeon navigation is based also to the sun either entirely or partly, the 

highest of the sun help the pigeon to recognize the current location and home base 

[135]. Modern investigations about the behaviour of the pigeon further confirm the 

ability of the pigeon to recognize any landmarks, principal ways, rivers, and routes to 

the target straight. 

3.1.2 MATHEMATICAL MODEL OF PIO 

About pigeons homing, a pair of processes have proposed using several rules [132]: 

A. The operator of the Compass and Map: the ability of pigeons to sense the 

range of earth by utilizing magneto response to configure a map in their 

minds. It considers elevation from the sun and a compass for adjusting the 

path. Since they fly to their target, this operation less depended on the 

magnetic bit and sun. 

B. The operator of the landmark:  if the pigeons fly nearest to the target, they 

should depend on the landmarks near them. While it's common among 

landmarks, they must fly into the target straightly. While it’s far in the goal 

also unfamiliar of the landmarks, they must keep track of the closer pigeons 

among those landmarks. 

3.1.2.1 MAP AND COMPASS OPERATOR 

Within the operator of the compass and map, the location Pi and the speed Vi of pigeon 

i are set and updated in D-dimension of search range within every iteration. The 

following formula can measure the new location Pi and speed Vi of pigeon i in the tth 

repetition: 



  47 

                               𝑉𝑖(𝑡) = 𝑉𝑖(𝑡 − 1). 𝑒−𝑅𝑡 +rand.(Pg-Pi(t-1))             Equation 3-1       

                         𝑃𝑖(𝑡) = 𝑃𝑖(𝑡 − 1) + 𝑉𝑖(𝑡)                                  Equation 3-2    

 where R is the factor of compass and map, default random number is a rand, in the 

current location  Pg is the best global, and which can achieve by associating each 

location with every pigeon. Figure 3.1 shows the process of compass and map form of 

PIO [132]. 

As presented in Figure 3.2, the better locations of every pigeon produced by using a 

compass and map. Through analysing all the locations of pigeons, that means the best  

 
Figure 3.1. Map and compass operator model of PIO [132] 

 

 

 
 

 

Figure 3.2 Lamndmark operator model [132] 
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location of the pigeon that is the right-centred. Adjusting the fly direction for every 

pigeon is through following this particular pigeon’s direction, which is based on 

Equation (3-2).  

 

3.1.2.2 LANDMARK OPERATOR 

Within the operator of the landmark, the number of pigeons decreased by half through 

Np within each iteration. Still, the target is not near the pigeons; also it's unknown 

among this landmark. Let the middle at a tth repetition of some pigeon is Pc(t), also 

assume each pigeon can fly to the target straightly. The location can update the pigeon 

i at a tth iteration as: [132] 

                      𝑁𝑝 = 𝑐𝑒𝑖𝑙
𝑁𝑝(𝑡−1)

2
             Equation 3-3 

                 𝑃𝑖(𝑡) = 𝑃𝑖(𝑡 − 1) + 𝑟𝑎𝑛𝑑(𝑃𝑐(𝑡) − 𝑃𝑖(𝑡 − 1))                           Equation 3-4 

where Pc(t) denotes the center position at the tth iteration, defined as 

  𝑃𝑐(𝑡) =
∑ 𝑃𝑖(𝑡).𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖(𝑡))

𝑁𝑝 ∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖(𝑡))
                  Equation 3-5 

To decrease the optimization difficulties into minimum, we select the fitness Pi (t)) = 

1/(fmin(Pi (t)) + ε). For increasing the optimization into maximum, we select (Pi (t)) = 

fmax(Pi (t)). For any individual pigeon, the optimal location of the Ncth repetition is 

identified among Pp, and Pp=min (Pi1, Pi2, …, PiNc). 

As presented in Figure 3.2, the midpoint from all pigeons (The pigeon in the center of 

the range) is the goal in every repetition. Half from whole those pigeons (those pigeons 

outside from the circle) that are far away of the target should keep track of the pigeons 

near to the goal. The pigeons near the target (the pigeons inside the circle) should be 

able to fly to the destination fast. 
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3.2 SIMULATED ANNEALING 

3.2.1 INTRODUCTION OF SIMULATED ANNEALING 

The simulated annealing methods depend on thermodynamics with an analogy, 

especially with the form that crystallizes and freezing of liquids, or annealing and 

cooling of metals. When temperatures are higher, in the liquids, the molecules 

move from one to another freely. While the liquid is slowly cooled, thermal 

mobility is lost. A meaning of optimization, SA tries to follow the rule [36]. From 

a higher temperature, the SA starts wherever the initial values released to expect a 

large domain of adaptation. They restrict the permitting for mutating input. This 

process drives the method on a better solution, only the actual process for annealing 

that provides a structure of a crystal to achieve a better. It shows they should 

harmonize the algorithm within an organization for maximizing the performance. 

They describe the SA algorithm with a specific flowchart from Figure 3.3. The 

principal characteristic of SA experiences for leaving from the local optimum 

depending on the permission control from a candidate solution [36]. While the 

popular solution (fnew) becomes the actual purpose benefit smaller (assuming 

minimization) than one from the previous solution (fold), later a solution to they 

 

Figure 3.3 Flowchart of the Simulated Annealing algorithm [36]. 
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accept the current state. Unless they may admit the current solution while the value 

provided through the Boltzmann population: 

𝑒−
𝑓𝑛𝑒𝑤−𝑓𝑜𝑙𝑑

𝑇                              Equation 3-6 

is greater than a uniform random number in [0,1], where T is the ‘temperature’ 

control parameter.  

3.2.2 SIMULATED ANNEALING ALGORITHM  

In this section, the formulation of  the Simulated Annealing procedures and algorithms 

presented. 

3.2.2.1 INITIAL POPULATION 

Each iterative process needs a specific description from the beginning of the inference 

of the parameters’ values. Any algorithms needs utility from different starting solutions. 

Selecting random initial values of parameters within range is a technique used by SA. 

Nearest choice of the starting approximation to the global optimum shall make quicker 

the process of optimization [36]. 

3.2.2.2 INITIAL TEMPERATURE 

The parameter adjusting ‘temperature’ should be justified by the principle described in 

section (3.2.2.5). T  should be very big for enabling the algorithm to leave off from a 

local minimum while it is not enough to transfer to a global minimum. In the 

application, the value of T should set within the form depended on approach 

considering that associated with admitting a size from the values of the aim function. 

It could establish within the literature [136] any experimental procedures that are able 

to be useful not only for picking the ‘optimum’ value of T but also at least a suitable 

start assessment that can harmonize. 

3.2.2.3 PERTURBATION MECHANISM 

The disturbance technique is a procedure for generating new solutions within a 

proposed solution. The process for searching the neighborhood from a current solution 

generating a little modification into the current solution. SA used in combinatorial 

problems for optimizing the parameters when they are integer numbers. While the 

change of parameters in any application, the investigation for solutions in a 
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neighborhood can perform. If (s) is a solution and can be expressed as a vector s = 

(X1, ..., Xn) describing a point within a domain of search. The generated of a new 

solution from standard deviations by using a vector σ = (𝜎1 , ..., 𝜎𝑛 ) for creating a 

disturbance to the current solution. Producing the neighbor solution from the current 

solution by: 

   𝑥𝑖+1 = 𝑥𝑖 + 𝑁(0, 𝜎𝑖)     Equation 3-7 

where the standard deviation denoted as σi and N(0, σi) is a random Gaussian number 

with zero mean.  

3.2.2.4 OBJECTIVE FUNCTION 

The goal of function or cost is a representation that, within several applications, 

associates some characteristic (range, cost, etc.) with the parameters that are required 

to be maximized or minimized. The strategy depends on determining the goals of 

function which compare the results of simulation experimentally. Then, the algorithm 

must work for finding the collection to parameters that decrease the error between 

experimental and simulated results. Using a normalized total of sum the squared errors, 

the goals of function is expressed by: 

   𝑓𝑜𝑏𝑗 = √∑ ∑ (
𝑔𝑠(𝑥𝑖)−𝑔𝑒(𝑥𝑖)

𝑔𝑒(𝑥𝑖)
)

2

𝑖𝑐    Equation 3-8 

Where the experimental data indicated as ge(xi), simulate data denoted as gs(xi), and 

the number of curves comprising optimization is c [36]. 

3.2.2.5 COOLING SCHEDULE 

The largest schedule of cooling is the change of temperature: 

      Ti+1=sTi   Equation 3-9 

while (s < 1) A new report in [137] show that when the value of s in domain [0.8-0.99] 

the result is excellent.  

The iteration numbers within each temperature is another parameter, which is 

associated with the range of space in the search or with the neighborhood size. The 

iteration number may be constant or depended on the process feedback or function of 

the temperature. 
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3.2.2.6 TERMINATING CRITERION 

There are various techniques for controlling the termination from each algorithm. 

Standard models are: 

a) the maximum value for iteration; 

b) the minimum value of temperature; 

c) the minimum value of gaol functions; 

d) the minimum value of acceptance rate. 

3.2.3 IMPLEMENTATION OF THE SA ALGORITHM 

The combinatorial optimization problem can solved through an S.A. algorithm, that 

can make several decisions. Table 3.1 shows those decisions within two separate 

organizations. First, the universal elements which are necessary to produce during each 

implementation of S.A. also designated for that cooling or annealing scheme (process, 

schedule, etc.). The paper [138] represents a comprehensive program about alternative 

plans for fixing those values. Second, the difficulty involves special arrangements 

associated with a real individual challenge to solve. In this relationship, it recognized 

that some performance of S.A. based on the plan which created the neighbours. The 

design from an S.A. algorithm requires both a fitting from all this knowledge (practical 

and theoretical) possible at the original difficulty including an appropriate planned 

collection of attempts for finding the suitable group of parameters i.e., the “tuning” of 

the algorithm.  

 

 
Table 3.1 Designing the S.A. Algorithm 

 Decisions 

Generic (Cooling Scheme) Problems Specific 

• To (initial temperature)  

• Lk (number of iterations) 

•Tk (temperature function) 

• Stopping criteria  

•  io (initial solution)  

•  Neighbour generation 

• Evaluation of ΔCij 
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3.3 GREEDY ALGORITHMS 

One of the simple designs methods is the greedy method; It presented in this section 

that can apply to a large category of problems. It describes each small group that 

operates on those constraints as a feasible solution. The challenge is finding a 

reasonable solution that minimizes or maximizes a presented goal of the function. It is 

called the optimal solution that is created by this technique. There a simple process for 

determining a feasible solution; however, not an optimal solution. The greedy method 

proposes an algorithm that can operate in steps, regarding the individual input in time. 

Through every level, they present a decision concerning whether  specific information 

means within the optimal solution. This is prepared arranging inputs into an index 

through any chosen technique. If a modulation to the input for the next step within the 

former optimal solution determination appears among the infeasible solutions, it does 

not append it into a sub-solution. The choice technique itself depends on any 

optimization criteria. The criteria may not  or may be goal function. Many standards 

of optimization may be probable for a presented problem. However, most of these 

algorithms produce sub-optimal solutions [139]. During combinatorial optimization, 

several algorithms produce a solution space, while at every step, a unique space 

collection component is appended on the partial solution in the construction. They 

achieve the requested element available also expressed with ƒ the set from each 

available component each time. For each collection from the candidate components ƒ 

shall have higher than individual component, the algorithm produced ƒ for building a 

solution shall have a process for picking the next space regarding on a developed 

solution F in the construction stage. Between all feasible elements that yet not selected, 

a greedy algorithm picks the least cost for minimization. Figure 3.4 presents a greedy 

algorithm pseudo-code. The solution ᶘ built by  admitting its cost f(ᶘ) are beginning 

from ∅ and 0 serially, during steps 1 and 2. While step 3, initializes applicant elements 

between all elements in the space. A development to the solution prepares within the 

loop of while in steps 4 to 9, finishing if ƒ is empty. In step 5, it picks the least cost 

form the ground collection component i∗. After that, in steps 6 and 7, each solution in 

the construction stage, including the cost of updates from the statement as the 

embodiment of i∗ in the solution under construction. In step 8, update the collection 

of elements in ƒ, observing in i∗, and it’s now a member of solution S. In step 10 it 

returns the cost and solution S. The minimization of the problem presented in Figure 
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3.4. The argmin within step 5 replaced to argmax in case of maximization, which 

chooses a candidate component of maximum cost. The following display instances of 

greedy algorithms during any combinatorial optimization problems.  

 The greedy method used in optimization problems which include searching through 

the collection of arrangements for getting an individual which maximizes or minimizes 

the objective function represented at those arrangements. In progression for solving a 

presented optimization problem, solution progresses through a series of opportunities. 

This series begins with any well-defined beginning arrangement and later performs 

choices which looks the greatest which are achievable by the greedy method not driven 

on the optimal solution. However, there are various difficulties which it takes the trial 

to, including so they suppose problems to hold the greedy-pick quality. That is the 

quality that an optimal global arrangement able to achieve through a list of optimal 

decisions (that is, decisions which are the greatest from between the opportunities 

possible to the point), beginning of a well-comprehend arrangement [140].  

3.3.1 ELEMENTS OF THE GREEDY STRATEGY 

Generating the series of options of the problem that obtains an optimal solution is a 

technique used by Greedy search. The execution of the selection part at each 

opportunity picks a better alternative in the current state. The optimal solution is not 

obtained always by a heuristic approach. In this part, we present several characteristics 

from greedy methods. 

The technique for developing a greedy algorithm can expresse within the following 

levels: 

 
 

Begin Greedy: 

1 ᶘ ←∅; 
2 f(ᶘ)←0; 

3 ƒ← {i ϵ E: ᶘ U {i} is not infeasible}; 

4 while ƒ≠ ∅ do  
5       i*← argmin {ci: i ϵ ƒ}; 

6      ᶘ ← ᶘ U {i*}; 

7     f(ᶘ)← f(ᶘ)+ci*; 

8     ƒ← {i ϵ ƒ\{i*}: ᶘ U {i} is not infeasible}; 

9 end while; 

10 return ᶘ, f(ᶘ); 

End Greedy. 

Figure 3. 4 Pseudo-code of a greedy algorithm for a 

minimization problem 
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1. Define some optimal substructure of the problem. 

2. Enhance the recursive solution.  

3. While presenting the greedy selection, after that only individual sub-problem 

remains. 

4. Show that this selection preserved for making the greedy decision. (Steps 3 and 4 

can happen during each series.) 

5. Enhance a recursive algorithm which performs the greedy approach. 

6. Switch this recursive algorithm into the solution  algorithm. 

For instance, during the activity-selection problem, first set that Sij is a part of the 

problem, wherever both i and j are diverse. After having discovered which performed 

the greedy selection, they could check those parts of difficulties to the act of the frame 

Sk . Optionally, they could hold the optimal substructure among a greedy range in 

memory, after that the selection moves just single sub-problem for solving. Later, they 

should own established that a greedy selection (the initial activity Si to the end in Sk), 

joined among an optimal solution. Further, usually, greedy algorithms approving on 

the subsequent steps: 

1. Calculate the optimization problem within which they get a selection also 

moved by individual subproblem for solving. 

2. Explain that there is permanently the optimal solution for that original problem 

that produces the greedy selection so that the greedy selection is forever 

protected.  

3. Express optimal sub-structure through explaining that, should have present 

the greedy selection, anything remains is a subproblem including the 

characteristic that if they join an optimal solution on the sub-problem including 

the greedy range that has performed, the report through an optimal solution on 

the initial problem. 

The primary component is the greedy-selection characteristic: that ability to construct 

a globally optimal solution through producing locally optimal (greedy) selections. In 

another term, if they regard that selection for creating, the choice which seems best for 

the current problem, without concerning the effects of sub-problems. Here is where 

greedy algorithms differ from dynamic programming. In dynamic programming, they 
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get a selection in every round, just some selection regularly based on the solutions to 

subproblems. In a greedy algorithm, they execute whatever collection looks greatest 

at the time also later determine the subproblem which remains. The selection produced 

through a greedy algorithm shall base on choices so far, just it not able to based on 

several prospective preferences or at the clarifications to subproblems.  

3.3.2 OPTIMAL SUBSTRUCTURE 

A problem presents optimal substructure while the optimal solution to the problem 

includes inside the optimal solutions through subproblems. The characteristic does a 

principal component during testing the applicability to dynamic programming 

considering greedy algorithms. While an instance from the optimal substructure, 

remember what we showed in the previous section which an optimal solution to 

subproblem Sij involves action ak, later that should also include optimal solutions on 

the subproblems Sik and Skj. Presented the optimal substructure, it explained that when 

they knew which the action that uses as ak, they could build the optimal solution on Sij 

through picking ak including every step into optimal solutions on the subproblems Sik 

and Skj.  

An extra straightforward strategy can be applied concerning optimal substructure if 

using it on greedy algorithms. While discussed earlier, it has the benefit of considering 

sub-problems becoming established as the greedy selection in the initial problem. Each 

requirement shows that an optimal solution on the subproblem joined among the 

greedy choice executed, results in an optimal solution for the original problem. The 

design uses inference upon those subproblems to show that presenting the greedy 

opportunity in each step provides an optimal solution [141]. 

3.4 BEE ALGORITHMS 

Real systems inform us that the individual organisms which elementary systems are 

ready to execute tasks which are complex through dynamic connections. The Bees’ 

Algorithm (BA) simulates some food foraging presented by  colonies from honey Bees. 

The simulated Bee colony performs partly alike, also partly oppositely from Bee 

colonies within life. BA used for explaining and simulating deterministic 

combinatorial and practical optimization problems. 
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3.4.1 BEES IN NATURE 

Behavior of colonies of insects like ants and bees are recognized to be swarm 

intelligence [142, 143]. This extremely coordinated operation allows those colonies of 

insects for solving problems exceeding the capability from different fragments through 

running collectively, including communicating primitively amongst elements of the 

group. In a honey bee colony, for instance, this model provides bees for investigating 

the situation in exploration from flower groups (source of food). This exploration 

includes next designating the specific conditions of food discovered by different bees 

of the colony. Such a colony described with self-organization, robustness, and 

adaptiveness [144]. Bees depend on self-organization on comparatively simple habits 

of a singular insect’s role. Continuation for a vast number of various standard insect 

classes and change within their behavioural models that is reasonable for expressing 

singular insects’ as intelligent from implementing the modification to complicated jobs 

[122]. The excellent instance holds the nectar operating [145, 143]. 

3.4.1.1 BEHAVIOUR OF REAL BEES 

A colony of honey bees can spread itself across large ranges (larger than 10 km) also 

within various ways concurrently for appropriating a vast number of food sources [105, 

146]. The benefits of the colony by expanding its foragers to desirable areas [130]. 

The Honey Bee colony picks from the range of search which is useful with several 

nectar references possible. Earlier investigations should explain that the colony 

immediately also accurately sets the model for searching within space and time the 

following development of nectar references. They depend on the bees self-organization 

on several comparatively easy habits from different insect performance [147]. It is 

reasonable for supposing a colony, primarily the system of reacting individuals-

foraging Bees [148]. During the light, this is reasonable for a first check some 

important performance from the individuals also later shared this information between 

those individuals into the organization for achieving general knowledge. "Collective - 

Swarm intelligence" forms the developing characteristics from the colony about 

individuals. The information exchange between individuals is the most significant 

experience during the development of accumulated knowledge. During searching a 

whole hive, this is reasonable for distinguishing any components which usually exist 

within every hive. The most significant element from the hive, including regard for 
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interchanging knowledge, is the dancing period. Contact between Bees associated with 

the food sources quality happens during the dancing period. It is called the waggle 

dance [149]. 

Usually, in a typical insect colony, individuals typically do not accomplish every task. 

An individual concentrates on a collection of functions according to chance, 

morphology, or age [121]. An essential component of the whole bee colony is the 

foragers [149].  

3.4.2 ARTIFICIAL BEES 

To simulate the communication between the bees, a definition of the performance of 

the artificial Bees (agents) is needed. In the process above, several scenarios, including 

several outlines, can be defined for simulation [153]. In social insects, the most 

activities are about seeking the source of food. It is known that honey Bees "normally 

spend the last part of their life collecting food" [149]. They "consume a substantial part 

of their life span knowledge and developing their foraging experiences"[149]. Each 

Bee colony holds scouts who are the colony's founders [149]. 

The Bees are searching for food source without any guidance. They are interested in 

finding different types of the food source. While a consequence of performance, any 

scouts recognize through the expenses of search and the quality of food source. 

Infrequently, some scouts may find the food source accidentally, outside food sources. 

Some scouts trying to solve the challenging combinatorial optimization problems have 

the  task of  quick identification from some set of solutions. Any of these solutions on 

specific challenging combinatorial optimization problems could later confirm to get 

answers of good quality [153]. 

The association among the insects reduces the cost of foragers while getting a new 

source of food. It implies that the association among artificial Bees should further 

provide quick detection of some solution [153]. The quality of the food source that 

was found by foragers can be increased by the cooperation of the Bees. This signifies 

that this help should further assist us in getting better solutions from the hard 

combinatorial optimization problems. 
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3.4.3 BEE ALGORITHM  

One of the optimization algorithms is a Bee algorithm that relies on the natural 

behavior of a Bee-inspired population to find the optimal solution [149]. A pseudo-

code of Bee algorithm shown in Figure 3.5 in the simple style and Figure 3.9 show the 

flowchart of the algorithm. The algorithm needs several variables to set, specifically: 

•    The  scout Bees number is (n) 

•    The picked sites (m) out of the visit site (n) 

•    The most significant site (e)  out of selected sites (m) 

•    From the most excellent site (e) the number of recruited Bee (nep) 

•    From the picked site (nsp) the number of Bees that recruited from other (m-e) sites. 

•    Set the initial size of patches (ngh) that include site and its stopping criterion and 

neighbourhood. 

 

Input: n= scout bee, m= selected sites, e= best of m, nep = bees 

recruited for e, nsp= bees recruited for m-e, ngh= patch size and stop criterion 

Output: optimal solution(s) 

1. Start a population n with arbitrary solutions. 

2. Estimate the fitness of the population n. 

3. Loop (stopping criterion not met) //Creating new population. 

4. Picked sites to neighborhood exploration m. 

5. Recruit bees for picked sites nsp (more bees nep for greatest e sites) and 

estimate the fitnesses. 

6. Pick the appropriate bee from each patch ngh. 

7. Allow remaining bees (n-m) to explore randomly and estimate their 

fitnesses. 

8. End loop. 

 

Figure 3.5 Pseudo code of the basic bees algorithm 
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Starting the algorithm by scout Bees  (n) located randomly within the search area. The 

suitability of the positions sensed through scout Bees estimated in step 2. During step 

4, Bees that produce the greatest fitnesses accepted necessarily “picked Bees” also site 

detected by them continue picked during neighbourhood exploration. Next, in steps 5 

and 6, the algorithm manages explorations into a neighbourhood from the picked 

localities, allowing extra Bees to explore neighbourhood on some most significant (e) 

localities. Alternatively, the fitness advantages used to restrict the possibility of the 

Bees are picked. It presents explorations into a neighbourhood from the valid e site 

that describes encouraging solutions further described with raising extra Bees to 

support them than some other picked Bees. Concurrently among scouting, this 

differential recruitment is a fundamental process of the Bees Algorithm. In step 6, to 

any patch, just the Bee among that greatest fitness determination picked to make the 

subsequent Bee population. In reality, there is never such a limitation. The limitation 

 

Figure 3.6 The Bees Algorithm Flowchart 
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means here to decrease some amount of investigated circumstances to happen. In step 

7, it selects the Bee remaining within the population randomly nearby the search area 

scouting to different solutions. It iterates those levels until they satisfy a termination 

criterion. By the completion from every repetition, the colony mind has a couple of 

pieces on its new population–delegates of each chosen piece and another scout Bees 

allowed to transfer arbitrary searches [161]. One method for multi-aim optimization is 

the Bee algorithm, the purpose of the algorithms to optimize multi-dimensional 

combinatorial functions. Every function described by a particular collection of 

parameters that each want to remain encoded under this “Bee” [154].  

 

3.5 NATURE INSPIRED ELEPHANT SWARM WATER SEARCH 

ALGORITHM 

3.5.1 ELEPHANT IN NATURE 

We comprehend that elephants signify the biggest mammal at on earth. They continue 

within a group that really enormously improves also require a high level of 

communication between the individuals. They live in a community that identifies since 

"fluid-fission-fusion" community. They need an excellent level for cooperation, within 

the complicated connections they develop among different individuals. They describe 

a collective group between the elephants through some closeness and familiarity. A 

family-unit is one of the common important group that includes two mentioned 

females at least in the family (See Figure 3.7 below). It does not allow the Males to be 

a part of the family, except the Male connect to the female of a live individual. The 

typical family based on 10-50 elephants also the connection between it well-

established even coordination habits. The communication incorporates family care, 

cooperation, support retrieval, and group protection, plus everything involves 

decision-making that created with the powerful “matriarch”. The matriarch is the 

principal female lead of the group who is the smartest and the oldest and therefore the 

multiple qualified.  She performs each choice that covers protection, mobility, plus 

support recovery [155]. 
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3.5.1.1  ALTRUISM 

 Inside the group of families, there is a high level of generosity plus collaboration 

that associates each family member. Based on the analysis that a member of the family 

will support another family member for increasing its lifetime, raise the number 

progeny, and they support for maximizing the member’s of the family gene present the 

generation, however, only they make this in charge of their durability.  Elephants sense 

the right attention on everything in the group about the members. Also, they are raising 

one emotional, and sensitive response is that combining familial caring [155]. 

3.5.1.2  INTERACTION 

 The elephants have several socio styles, one of the essential forms is the 

interaction, and it’s a similar thing through using the skills of the sense. The 

communication is most famous for it makes a bunch for staying the eye set on 

protective regions, for managing and understanding their families also establishing 

their proactive events and make females for going among a young staff previous to 

weaning [155].  

 

           
 

Figure 3.7 Group exhibitions in Elephants clan 



  63 

3.5.2 SOCIAL BEHAVIOR AND INTERACTION IN ELEPHANTS 

3.5.2.1  ACOUSTIC INTERACTION  

It identifies a communication that as audio or acoustic interaction. Elephants release a 

sound extending a broad area in different intensities organizing an activity, knowing 

their requirements, bringing the friends, etc. 

3.5.2.2  ANGRY ELEPHANTS TRUMPETING & RUMBLING  

Some scientists observe that elephants provide the sound from 1 to 20 HZ infrasonic 

sound which is the out of a range of hearing capacity for human, also able to move 

across long-distances. Moreover, seismic flags, such as a tiny earthquake, releases 

every elephant to place themselves in association on their private place [156]. 

3.5.2.3  CHEMICAL INTERACTION  

Some chemical interaction is including one of the significant interactions into the 

elephant; it is a qualified procedure plus includes the flow of chemical flags that are 

long-lasting. They provide a universal smell flag, including the smells that are carried 

through transferring various sources, similar generative region, surface glands, expired 

air and face. 

3.5.2.4  TACTILE INTERACTION 

Touching is another interaction that is used by elephants as the form of interaction 

among them within trunks; also, this acknowledged like physical interaction. It uses 

the elephant’s trunks during different celebrations the same smelling, drinking, tearing 

vegetation of trees, just for extra physical sense. The trunks used by elephants to study 

new things and replacing the touches among unknown ones crossing into the forest, in 

respect on the replication method all communicate through twisting their trunks. 

 

3.5.2.5  MEMORY AND RECOGNITION  

 In a community under which live elephants, requires a great mind also excellent 

identification skills. Because they are a regular group and they reach different 

individuals of the group at a regular basis.  So, they need to distinguish the family from 
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the non-family; two individuals who left during 23 years rejoined after 23 years also 

observed by Carol Buckley, presented in [156]. Elephants also hold a great mind 

including an improved cerebral cortex that allows them for achieving a high potential 

to detect and keep such knowledge to the highest continuance of time, asserted by 

Granli, Poole in [157].  

The essential part of discovery and remembrance within elephants means to stay apart 

from inbreeding desperation of proceeding. Elephants can change among hereditary 

kin of non-kin using a phenotype comparable on their smelling sense, while the 

procedure is yet undiscovered. 

Elephants own a great feeling of smelling they only able to stay the record from the 

group organs through just smelling their urine also it permits them to construct rational 

plans of their specific situation, explained in [158]. 

Not just their feeling produces identification also an excellent memory without a group 

section plus instructs the newborn family in the group. The less family sees their 

former one's parents and sisters, receive of them how to get food and water. They 

practice their bodies and recognize it within the land to discover the water.  

See the response from the adult also their response concerning several individuals. 

Through their adulthood, they keep their knowledge as a guide. The list in their youth 

which explains that they own prepared great minds. 

Their communicative group will not be as large as now including interest on their 

communication if they don’t hold an important sensing method of smell, touch, etc. 

they also receive through communicating among the various individuals and hold the 

capacity to receive and identify important ideas to a long-time season which continues 

to their intelligence and communicative group. 

3.5.3 ELEPHANT SWARM WATER SEARCH ALGORITHM  

Metaheuristics are nature-inspired algorithms for finding approximate solutions to 

some computationally hard optimization problems. Swarming behaviours of animals 

including; Firefly-BAT, Cuckoo, ant, pigeon, fish, Bee, ...etc, have been used in 

metaheuristics [159]. Some properties behind the metaheuristics include; homogeneity, 

adaptability, illation-free tools plus local optima eschewal ability [160]. An interesting 

example is the swarm behaviour of the biggest terrestrial mammals, elephants. The 
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trunk is the typical representative characteristic of an elephant which is multi-objective, 

like respiration, following things and uplift water [161]. Swarm properties of water 

search of elephant herds have been utilized to define metaheuristic algorithms [161]. 

The following four idealizing assumptions employed for describing the proposed 

method [162]. (i) Elephants walk nearby in exploration for water through dryness 

within various groups; this act is named elephant swarm. Every group operates 

concurrently for obtaining water. The leader from every organization (elderly elephant, 

matriarch) is qualified for using a choice for searching the most significant water 

source. (ii) While the elephant group discovers any resource of water, the matriarch 

shares with the nearby groups, the information about the quality and quantity of the 

resource. Good water level indicates the next valid move. (iii) Elephants hold pretty 

strong memory. Several elephant groups can retain information about some correct 

positions of the water supply that existed and recognized through its private group 

(local best solution). They can also remember the exact location of the best water 

source, that found out through the entire flock of groups (global best solution). (iv) 

Local and global water exploration choices represented through a probabilistic 

constant P. Based on this value, the matriarch opts actions for switching between global 

and local search options. Because of certain physical and natural factors, water 

exploration in local may have a higher P value [162]. The elephant can distinguish and 

learn among several visual also some acoustic signals of discrimination. Several 

techniques including; acoustic, seismic, and chemical communications are used for 

communication among elephant groups in long-distance up to 10–12 km away. 

The d-dimensional optimization problem can formulate using the location and velocity 

of the ith elephant group from a swarm (Composed of N members). In tth iteration, the 

location can represent by 𝑋𝑖,𝑑
𝑡

 = (Xi1, Xi2, …, Xid). Similarly, the velocity can express 

using 𝑉𝑖,𝑑
𝑡

= (Vi1, Vi2, …, Vid). Based on these, the best local solution for ith elephant 

group at the current iteration expressed as 𝑃𝑏𝑒𝑠𝑡 𝑖,𝑑
𝑡

  = (Pi1, Pi2, …, Pid) and Gbest 

expresses the best global solution 𝐺𝑏𝑒𝑠𝑡 𝑖,𝑑
𝑡

= (G1, G2, …, Gd). The starting velocity 

and position of elephant groups are arbitrarily assigned within the exploration area. 

During iteration, the positions and velocities of the elephants renewed.  Optimal water 

search decision actions should occur in both global and local scales. While iteration 

proceeds, the velocities from the members are renewed based on several techniques 



  66 

during local and global search according to the equations (3-10) and (3-11) below. The 

value of switching probability p determines the type of search: 

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 𝑤𝑡 + 𝑟𝑎𝑛𝑑(1, 𝑑). (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 −  𝑋𝑖,𝑑

𝑡 )          Equation 3-10 

                   If rand>p   [ global search] 

𝑉𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡 𝑤𝑡 + 𝑟𝑎𝑛𝑑(1, 𝑑). (𝑃𝑏𝑒𝑠𝑡,𝑑
𝑡 −  𝑋𝑖,𝑑

𝑡 )       Equation 3-11 

                  If rand ≤ p   [local search] 

In Equations (3-10 and 3-11), rand is a value that produces a d-dimensional array of 

random values in [0,1].  ( . ) Expresses element by element multiplication and wt is the 

weight of inertia for compromising exploitation and exploration throughout the current 

iteration.  Next, the location of the elephant group is adjusted as specified by the 

following formula.  

  𝑋𝑖,𝑑
𝑡+1 = 𝑉𝑖,𝑑

𝑡+1 + 𝑋𝑖,𝑑
𝑡

         Equation 3-12 

In Equation 3-12, tmax, Xmax, and Xmin indicate the maximum iteration number, lower 

and upper limits regarding positions. A search route is affected by three elements 

specifically: current velocity (𝑉𝑖,𝑑
𝑡

 ), current particle memory commands (𝑃𝑏𝑒𝑠𝑡,𝑑
𝑡 ) and 

swarm memory commands (𝐺𝑏𝑒𝑠𝑡,𝑑
𝑡 ) [162]. Nevertheless, in ESWSA, the new search 

route is determined through both current speed and current elephant memory and 

swarm memory effects. In the global search, the velocity update based on the 

elephant's best position, and the search continues to obtain the best global solution. In 

the case of Random Inertia Weight (RIW) [163], the weight of inertia values is chosen 

randomly, which is extremely valuable for a dynamic system that tries to obtain the 

optima. The following formula is used to select the weight of inertia in RIW:  

𝑤𝑡 = 0.5 + (𝑟𝑎𝑛𝑑 ∗ 0.5)                   Equation 3-13 

In Equation 3-13, rand is a uniform random number in [0,1]. A successful procedure 

is the Linearly Decreasing Inertia Weight (LDIW) [161]. This procedure can be used 

in developing some good tuning properties concerning the optimization. In LDIW, the 

weight of inertia values depends on the value (wmax) and an ultimate small value (wmin), 

according to the following Equation [163]: 

𝑤𝑡 = 𝑤𝑚𝑎𝑥 − {
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
} ∗ 𝑡        Equation 3-14 

where the index of iteration is t, and the maximum number of iterations is tmax. 
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It should note that the PSO approach uses the random repair technique, which involves 

jumping randomly within the search space, while in ESWSA, the position change 

based on Equation 3-12. 

 

3.6 METHODOLOGY 

The research developed within this thesis concentrates on approaching score and 

search-based techniques to learn the structure of Bayesian networks from data. The 

thesis proposes novel algorithms and approaches to establishing Bayesian network 

structure learning. In this section, we present the Six methods for  structure learning 

Bayesian network:  

3.6.1 FIRST PROPOSED METHOD 

In this part, we present the novel approach through implementing the Pigeon Inspired 

Optimization (PIO) for structure learning Bayesian network. The proposed method 

uses PIO approach as a search method for structural learning of Bayesian networks. 

The BDeu metric used as a score function for measuring the Bayesian network 

structure. The PIO algorithm is effectively an iterated procedure that consists of a 

population of individuals where every pigeon encodes a potential position and velocity 

in a given space. This space held to be the search space. The proposed method based 

on two techniques. The first technique uses the map and compass operator model 

(discussed in section 3.1.3.1) for local search through the necessary process. It uses 

the first technique map and compass operator model for local search within the 

specified method. The second technique uses a landmark operator model (discussed in 

section 3.1.3.2) as a global search. Figure 3.8 shows the pseudo-code of this technique. 

Once the Pigeons operate, they can use the solutions to their local optimum by 

utilization of a local search method. PIO algorithm’s solution development uses 

another neighbourhood than a local search. The expectation that local search updates 

a solution produced by a Pigeon is high. The Bayesian network structure learning 

solution area is the form for each potential DAGs. A pigeon later examines the 

exploration area for finding the approximately near-optimal or optimal solution, which 

is known as the BDeu score metric. Equation (2-47) used to calculate the BDeu score 

as the goal function of the optimization.  The exploration aims for obtaining a higher 

BDeu score for the network structure. All initial solutions produced through iterative 
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operations. The detailed implementation procedure of PIO for structure learning 

Bayesian network can represent as follows: 

Step 1: according to environmental modelling, starting with an empty structure. 

Step 2: initialize parameters of PIO algorithm, such as solution area dimension D, the 

population size Np, map and compass factor R, the number of iteration Nc1 max and 

Nc2 max for two operators, including Nc2max >Nc1max.  

Step 3: establish all pigeons by a randomized velocity and path. Comparing the fitness 

(BDeu score function) from every pigeon, also discover the current best position 

(location). 

Step 4: execute a map and compass operator. At the first time, update the velocity and 

path of every pigeon by using Equations 3-1 and 3-2. Then compare all the pigeons’ 

fitness (BDeu score function) and get the new best position. 

Step 5: if Nc> Nc1 max, stop the map and compass operator and operate the next 

operator. Otherwise, go to Step 4. 

Step 6: order all pigeons according to their DBeu score values. Half of the pigeons 

whose fitness is low will follow those pigeons with high fitness according to Equation 

3-3 We then find the middle from all pigeons according to Equation 3-5, including this 

centre does the desired goal. Every pigeon will fly to the target by setting its flying 

path according to Equation 3-4. Next, put the best solution parameters and the best 

cost value. 

Step 7: if Nc >Nc2 max, stop the landmark operator, and output the results. If not, go 

to Step 6. 

Starting with a blank graph (G0), the arcs are appended one after another, provided 

that they not included in the current graph solution. If the new solution score function 

is higher than the current result, the new solution also satisfies the DAG constraint.  



  69 

This process continues until the quantity of the arcs equals the quantity defined in 

advance. In the model, the solution starts assigning a population for each operator and 

picks the solution, which has a higher score function. Pigeon continues according to 

the selected operator until the process has performed a maximum number of iterations 

or the BDeu score not increased any more. Typically, the methods hold four separate 

operations in local optimization: Deletion, Addition, Reversion, Movement. The first 

three are simple operations within this domain, involve just replacing an individual 

edge every time from a competitor solution. It allows the inclusion of a comparatively 

small area near the solution. With every movement operation, on the other hand, the 

existing edges change the set of parents which can make a moderately significant 

modification for the current solution. Therefore, if the solution not changed after 

applying simple operators, the move operator may improve it. Flying is the primary 

Algorithm PIOSB (pigeon inspired optimization for structure learning of Bayesian 

network) 

INPUT: - datasets 

NP: number of individuals in pigeon swarm 

D: dimension of the search space 

R: the map and compass factor Search range: the borders of the search space 

Nc1max: the maximum number of generations that the map and compass operation 

carried out 

Nc2max: the maximum number of generations that the landmark operation carried out. 

OUTPUT: - learning and constructed BN 

1. The initialized empty structure and initialize parameters of PIO algorithm (space 

dimension D, the population size Np, map and compass factor R, the number of 

iteration Nc1 max and Nc2 max for two operators, and Nc2 max>Nc1 max. 

2. Set each pigeon with a randomized velocity and position. Comparing the BDeu 

score function of each pigeon, and find the current best position. 

3. Operate map and compass operator. Firstly, we update the velocity and position 

of every pigeon by using Equations (3-1) and (3-2).  

4. Compare all the pigeons’ fitness and find the new best position, by comparing 

the BDe score function of each pigeon. 

5. If Nc2> Nc1 max, stop the map and compass operator and the operate next operator. 

Otherwise, go to Step 3. 

6. Rank all pigeons according totheir fitness values. Half of the pigeons whose 

score function is low will follow those pigeons with a high score according to 

Equation (3-3).  

(1) We then find the center of all pigeons according to Equation (3-5), and 

this center is the desired destination. All pigeons will fly to the 

destination by adjusting their flying direction according to Equation (3-

4).  

(2) Next, store the best solution parameters and the best score value. 

(3) If Nc1> Nc2 max, stop the landmark operator, and output the results. If 

not, go to Step 5. 

7. Return the maximum BDe score. 

Figure 3.8 Pseudo Code of The PIO for Structure Learning Bayesian Network. 

 



  70 

force utilizing the chosen operation in local optimization, which grows further 

widespread while a pigeon approaches the desirable solution. Flying directions, the 

switch with various local optimization operators, expands extra prevalent as a pigeon 

flies continuously near a solution through exploration toward a better one. Therefore, 

the current velocity renewed following either pigeon’s best global or best local solution. 

The velocity of pigeon is regenerated based on the current best position of the pigeon 

in the local search. On the other hand, the global velocity depends on the best global 

solution concerning pigeon in a global search, near a global best position. 

As shown in Fig.3.9, Pigeon G0, which describes a DAG with arcs, tries reversion, 

move, addition, and deletion, and reaches new solutions G1, G2, G3, and G4, 

respectively. Assuming the best score is in G3, it will select, and the pigeon will 

proceed to examine some similar process to get G+3 as the new solution. If the BDeu 

score of G+3 is higher than that of G+1, it will continue to perform the corresponding 

operator. The operations will repeat until the BDeu score stabilizes, or iteration loop 

reaches the maximum. In the process, they have performed operators, i.e., m = Nc2 set 

of starting points in the search space. Addition, deletion, reversion, and move operators 

are four competitor directions for any pigeon to select the Map and compass operator 

pigeon attempts to achieve. 

 

Figure 3.9 Map and compass steps for one Pigeon 
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3.6.2  SECOND PROPOSED A METHOD 

Our second proposed method develops a new algorithm for learning Bayesian 

network structure based on enhanced Artificial Bee optimization algorithm.  All the 

forms that are required to solve the learning problem using this meta-heuristic 

described in section (3-4). The Bees algorithm is a repeated procedure that consists 

of a population of individuals, anyone recognized as a “Bee”.Each Bee encodes a 

possible solution in a given problem space. This space referred to as the search space, 

which includes every explication on the problem at hand. 

Generally, the Bees algorithm applied to spaces that are too large to be exhaustively 

searched (such as those in combinatorial optimization). Solutions to a problem 

encoded in most forms due to certain computational advantages associated with each 

challenge.  

As has been previously addressed, one of the fundamental attributes of Bees algorithm 

is its ability to search the function space from multiple points in parallel. In this 

context, parallelism does not refer to the ability to parallelize the implementation of 

the Bees algorithm; instead, it relates to the ability to represent a vast number of 

potential solutions in the population of a single generation.  

In each production, while some execute from the Bees algorithm, a population of 

solutions survives. The search of the function area proceeds out of these positions; 

Bees interpret those circumstances in parallel. It is in the distinction between other 

searching methods such as hill-climbing, in which it uses an individual element in the 

function space as the basis of the search. We term the capability to explore various 

arrangements for each solution as absolute parallelism.  

Parallelism is desirable for the population to concentrate on comparable solutions. 

Once the population has joined, the facility is very limited during arbitrary exploration 

technique to help in investigating extra pieces of the function space. 

Bees algorithm uses local searches through a necessary rule. Once some Bees should 

realize their solution structure, the solutions can continue on the local optimum 

through utilization from a regular local search. In Bees algorithm, there is a pair of 

significant selection settlements during those foraging procedures:  
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• Selection from a waggle–dancer: the collection executed a purpose of scout-

Bees’ fitnesses essentially while picking a waggle-dancer knowing a 

prosperous exploration area to use is complete.  

• Selection from representative-Bee during every patch: while preparing a 

representative- Bee that recognizing either a famous top state from 

maximization problems space or a lowering into this state of minimization. 

That achieved the area they should declare which through the preferred 

waggle-dancer.  

The goal from Bees’ Simulated Annealing algorithm BSA is to utilize a standard 

annealing procedure through some representative-Bee preferred settlement to escort 

an exploration rule towards a higher optimal solution space, to provide to explore 

condensation to occur. 

Through forming the cooling program of simulated annealing, BSA practitioner can 

apply authority covering the application. Bees algorithm employees no such thought 

about cooling, also its concentration is not easily controlled.  

Local search algorithms experience the difficulty of getting better initial solutions, the 

artificial Bees provided these solutions. For example, simulated annealing uses a time-

consuming method to pause when some cooling action until the distributed balance 

from states is reached. In particular, simulated annealing does not understand whether 

the area we have investigated is a section in the arrangement location or whether a 

field is an excellent site for searching. 

Our proposed method improves Bee optimization by the intermingling of search 

characteristics from BA and SA within unique global principles named Bees’ 

Simulated Annealing (BSA). It supposes the approach to be extra robust and also to 

offer a good experience as a search algorithm. It uses BDeu as a metric to measure the 

score function. The Bees algorithm is a repeated process, and it composes a population 

of individuals, all bees encoding a potential solution inside a presented area. They 

regard the area primarily as the search area. Usually, the Bees algorithm used in areas 

that is big to be exhaustively explored (such as those in combinatorial optimization). 

Solutions to a problem are held encoded in significant patterns for specific 

computational benefits concerning each problem. The proposed approach uses two 

levels. A primary level applies Bee’s algorithm to local search as the necessary method. 

Another level uses Simulated Annealing for global search. The Pseudo-code shows 
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this technique in Figure 3.10. The proposed process needs the parameters from the 

Bees algorithm, in addition to the parameters of simulated annealing. The parameters 

required by BSA are:  

•   The  number of scout Bees (n)  

•   The  number of sites selected out of n visited locations (m)  

•   The number of best sites out of m selected sites (e)  

•    The number of Bees recruited for best e sites (nep)  

•   The number of Bees recruited for the other (m-e) selected sites (nsp)  

•  The initial size of patches (ngh) which includes a site and its neighbourhood  

•    The initial temperature T0  

•    A reduction function for decreasing the value of T at every iteration and stopping 

criterion.  

BSA is initialized by an assigned population n, within the starting area, computes every 

n as scout Bees. Scout Bees are randomly assigned to the search area. The beginning 

temperature T0 initialized in step 1. Figure 3.10 shows the BSA algorithm.  

The BSA calculates the fitness of the sites (i.e. the achievement from those applicant 

solutions) sensed through some scout bees in step 2. The m sites that describe 

encouraging details within a search space are selected as “picked sites” and taken to 

neighbourhood search in step 4.  

In Step 5, BSA manages explorations in the neighbourhood of the picked sites, 

distributing extra Bees to explore near to the best e sites. The Bees can select 

immediately according to the fitnesses among the situations they are visiting. During 

step 6, behind some property of recruited individuals has calculated by using the fitness 

function, each decision whether to use executives on such individuals and manage it 

in this population or permit it to be substituted.  

BSA offers to balance the exploratory nature of the current Bees algorithm 

implementation with search intensification by using annealing approach to choose 

representative-Bee for each patch.  

It is preferably allowing just (in the time) locally more significant recruited-Bee 

through the recruitment procedure. The fresh representative-Bee allowed just while it 
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passes through a ‘fitter’ solution space (fitter than the waggle-dancer that recruited), 

unless, in the state from no fitter Bee determined. This algorithm shall allow the 

highest number of recruited Bees yet while its development on a few optimal solution 

spaces (maybe near to a globally better optimal) probabilistically according to a 

function for the waggle-dancer. The possibility that just local extremum (local top or 

down) all times is less than 1. In this section, the recommended annealing function will 

introduce exploration intensification to the Bees Algorithm. 

The probability for getting higher marks in the exploration space is higher in the 

search's starting (foraging) procedure also reduces while reducing a temperature. The 

outstanding bees in the population distributed randomly throughout the search space 

scouting for different solutions in step 7. That is the important characteristic of the 

Bees algorithm to leave local optimum.  

The colony produces a couple of parts on its current population: representatives of the 

chosen patches, and scout Bees distributed to transfer random searches at the end of 

each iteration. Later, the temperature is decreased by a little amount Δt using the 

decrement function. By harmonizing the decrement amount Δt, the concentration for 

the search rule established. The algorithm iterates those steps until they satisfy a check 

criterion. 

Algorithm BSA (Bee algorithms is local and Simulated Annealing is global search 

(hybrid bee and simulated annealing algorithms)  

INPUT: - datasets  

OUTPUT: - Learned and constructed BN  

1-The initial temperature T0, Initialize population n with random solutions.  

2-Evaluate the fitness of the sites (i.e. the performance of the candidate solutions) 

visited by the scout bees.  

3- loop until less than stopping conditional: -  

3-1 chooses the site solution and evaluates the fitness (Select sites m for 

neighborhood search., Recruit bees for selected sites (more bees for best e sites) 

and evaluate fitness’s.).  

3-2 for loop, compare the best-recruited bee yj with the bee recruited it xj İf 

fitness(yj)-fitness(xj)< 0 then xj=yj  

3-3-the remaining bees in the population are assigned randomly around the 

search space scouting for new potential solutions. It is the key feature of Bees 

algorithm to escape local optimum.  

4- if exp [-(fitness(yj)-fitness(xj)/T] >random [0,1] then xj=yj  

5-the temperature is reduced by a small amount Δt using the decrement functions  

6-Return the maximum score function for BDeu  

7- New population with scout-bees and score function.  

Figure 3.10 Pseudo code of BSA hybrid bee local and simulated annealing 

global search. 
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3.6.3 THIRD PROPOSED METHOD 

  In the previous part, we presented a technique as the structure learning Bayesian 

network using the Bee as a local search and simulated annealing as a global search. In 

this section, we present another different method which also depends on simulated 

annealing and Bee, but different from the previous technique. The name the proposed 

method (SAB) uses Simulated Annealing as local search and Bee as global search 

further it uses BDeu as score function. Figure 3.11 shows the pseudo-code for the 

proposed algorithm. As has been earlier discussed, one of the significant properties of 

the Bees algorithm is its capability to explore the function area of various points in 

correspondence. Within these circumstances; parallelism seems no regard to the 

powers to parallelize the implementation for the Bees Algorithm; instead, it relates to 

experience for representing a vast amount of solutions within one population of a 

particular generation. In each generation through the execution of the Bees algorithm, 

a population of solutions survives. The exploration for some function space proceeds 

to certain circumstances, Bees describe these circumstances in parallel. The proposed 

method initialized with the empty graph and adds the edges one by one depending on 

the score function at each iteration that compares the score between the previous step 

and the selected step. If the score is best, the edge is attached to the graph. Otherwise, 

they stay with the earliest stage until finding the best score. The procedure continues 

until iteration equals a threshold, or there is no alternative to get the best score than the 

previous one. The process for adding, deleting, moving and reversing mentioned in the 

section (3.5.1) and Figure 3.9. SAB starts with a population n, at the start, it would 

count all n as scout Bees. Scout Bees are randomly assigned in the search space. The 

initial temperature T0 initialized in step 1. Figure 3.11 shows the algorithm. The fitness 

of the sites (i.e. the performance for the candidate solutions) sensed by the scout Bees 

are estimated in step 2. Then the temperature is reduced in a small degree for the 

current position. Next, compare the BDeu score function within the current position 

and prior position if the score of the current position is close to the prior one, they stay 

in the current position or the value of (exp-(score of current state)–(score of the 

previous state) >random(0,1)) they return to the prior position for selecting  another 

position in step 3. The fitness function used is problem specific. The m sites that realize 
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assuring points in the search space designated as “selected sites” also accepted for 

neighbourhood search in step 4.  

In Step 5, SAB manages searches in the neighbourhood of the selected sites, 

distributing extra Bees to explore near to the best e sites. They can arrange the Bees 

immediately according to the fitnesses compared among the sites that they are visiting. 

In step 6, the quality of recruited individuals should arrange through using the fitness 

function. The determination for whether to use drivers on the individuals and whether 

to hold that within the population allows us to adjust execution.  

Generating populations from solutions, rather than a particular solution, is an effort to 

control the ability to explore deep areas from the exploration space in a parallelization 

method, as Bees algorithm takes in its previous steps of the exploration. During the 

earlier phases from the search, there does a tremendous amount of difference within 

the areas of the function space that is being simultaneously investigated. While the 

search proceeds, the population serves to concentrate a better solution in the function 

space. The extensive literature about meta-heuristics reports that a hopeful method for 

getting high-quality solutions is to pair a local search algorithm with a mechanism to 

provide initial solutions. Iterated local search algorithm is between the best-performing 

Algorithm SAB (Bee algorithm is global and Simulated Annealing is local search 

(hybrid bee and simulated annealing algorithms)  

INPUT: - datasets  

OUTPUT: - Learned and Constructed BN 1 

-The initial temperature T0, Initialize population n with random solutions.  

2-Evaluate the fitness of the sites (i.e. the performance of the candidate solutions) visited 

by the scout bees.  

3- loop until less than stopping conditional: -  

3-1 the temperature is reduced by a small amount Δt using the decrement 

functions  

3-2 compare the fitness function (BDeu score function) of the current location and 

the previous if it’s better than previous (set current state is best) or (exp - (current 

score state)- exp-(previous score state) >random [0,1] then selected it difference 

between the return to the previous location.  

4- chooses the site solution and evaluates the fitness (Select sites m for neighborhood 

search., Recruit bees for selected sites (more bees for best e sites) and evaluate 

fitness’s.).  

5- the remaining bees in the population are assigned randomly around the search space 

scouting for new potential solutions. It is the key feature of Bees algorithm to escape 

local optimum  

6-Return the maximum score function for BDeu  

7- New population with scout-bees and score function.  

Figure 3.11 Pseudo code SAB (Bee global search and Simulated Annealing is local search). 
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algorithms. They use the local search to original solutions that produced, by presenting 

modifications on any optimal solutions.  

Simulated Annealing algorithm uses local search through the process. Once the Bees 

should finish their solution development, they can use the solutions on their local 

optimum with the utilization for a local search routine. Such a coupling of solution 

development with local search is a hopeful approach. In nature, because the Simulated 

Annealing algorithm’s solution development uses any neighbourhood than local search, 

the possibility that local search develops a solution invented by a simulated Annealing 

is excellent. Global search algorithms experience of the problem of getting useful, new 

solutions, these solutions produce through the artificial Bees. The time-consuming for 

Simulated Annealing they relinquish within several levels of cooling until the 

balancing — simulated Annealing has known the limited section of space that should 

be searching for the right place. For guiding the search, simulated annealing should 

get any information on the whole area of the effects of previous searches. 

It calls an individual approach that combines the Bees algorithm among simulated 

annealing algorithms to produce the combination Bees’ Simulated Annealing. As 

described before, the Bees algorithm begins with a population of arbitrarily created 

competitors and ‘evolves’ towards genuine solutions by implementing local search 

operatives.  

During the standard SA, the algorithm continues iteratively through the beginning for 

an original point produced via chance, while, preferably of repeating with a solution, 

BSA seeks for increase a population of solution for iterative neighbourhood operators.  

The properties of Bees’ simulated annealing are:  

1. The algorithm uses a population of solutions from iterating with single solutions, 

which increases the possibility of leaving from a local optimum and drives to fast 

concentration to the global solution.  

2. BSA can observe a parallel implementation of simulated annealing, which shows its 

agreement for the parallel processing system.  

3. The algorithm is capable of solving complicated problems in huge dimensions that 

have not explained previously. 
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3.6.4 FOURTH PROPOSED METHOD 

In this section, we present, a different approach for Structure Learning Bayesian 

Network depended on the improved Bee optimization algorithm. It used the Bee 

procedure as a search method for learning structural Bayesian network. Apply the 

BDeu metric as the score function. A hybrid method depended on Bee optimization as 

a local search and Greedy as global search has applied the search algorithm primarily 

for solving the optimization problem and uses BDeu as a score function for computing 

the scoring metric. A proposed method offers improved Bee optimization by 

intermixing the search characteristics of Greedy and Bee optimization within an 

individual global principle named Bees’ Greedy algorithms (BLGG). Figure 3.12 

shows the Pseudo-code. The Bees algorithm is a repeated process that is composed of 

a population of individuals; every Bee encodes a solution in an assigned problem 

space. It allocates this space as the exploration space. The Bees algorithm used in areas 

wide to be exhaustively searched (such as those in combinatorial optimization). It 

encodes solutions in best patterns expected to specify computational improvements 

associated with all problems. Once the Bees should finish the structure of the solution, 

the solutions can hold local optimum through performing the local search routine. In 

the solution's structure, a Bee‘ algorithm’ uses several neighbourhoods than local 

search. The probability of developing the structure solution of local searches through 

a Bee is excellent. BLGG start among an assigned population n, in the beginning, it 

would include every n scout Bees. Scout Bees randomly assigned within a search space. 

The beginning population n also picked some arbitrary solutions within step 1. The 

BDeu score function (the fitness value) computed on the node (they evaluate the 

representation from the applicant solutions) visited by the scout Bees during step 2. 

The m sites that describe circumstances within the search space shown as “selected 

sites” also taken for neighbourhood search during step 4. While Step 5, BLGG 

manages searches in the neighbourhood from the selected sites, allowing extra Bees 

expected to seek on the best e sites. The Bees can take immediately regarding the 

fitnesses associated among the sites that they are visiting. The recruited Bee used to 

arrange the solution based on the fitness function during step 6. As well as concerning 

the global search used greedy search to select the random solution from neighborhood 

of the valid solution and check if the new solution it has a better score than the previous 

one or not, if it has better solution, they stay in the new position if not the return back 

to the previous solution in step 7 and 8. 
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 The Bayesian structure learning begins with an empty graph G0 (arcs-less DAG) and 

proceeds by combining an arc at a time.  The production procedure of a BN presented 

in Figure 3.13. Wherever a current state Gc of a Bee is a graph that includes all nodes, 

Xi∈ Xc arcs also no directed cycle. Assume there are (z) applicant directed arcs. Under 

the names from the heuristic information of applicant arcs, some Bee picks the sth arc 

aij since a new element of a solution; thus the original position by combining an arc aij 

can be expressed as Gh+1 = Gc U aij. Earlier, there is no way to get the score of a BN 

construction by combining an arc; the construction process is completed, including the 

Bee preparing its solution Gn. The chosen heuristic is to connect in the diagram the arc 

performing highest in the selected decomposable metric f.  

   ƞij=f (xi, Pa(xi) U {xj}) - f(xi, Pa(xi))                       Equation 3-15  

Algorithm BLGG (Bee algorithm local and Greedy is global search (hybrid Bee and 

Greedy algorithms)  

INPUT: - datasets  

OUTPUT: - Learned and Constructed BN  

1. Initialize population n with random solutions.  

2-Evaluate the fitness of the sites (i.e. the performance of the candidate solutions) 

visited by the scout bees.  

3- loop until less than stopping conditional: -  

3-1 choose the site solution and evaluate fitness. 

3-2 compare the fitness function (BDeu score function) of the current location 

and the previous if it’s better than previous (set current state is best) or (exp-

(current state)- exp-(previous state) >random [0,1] then selected it the 

difference between the return to the previous location. 

4- chooses the site solution and evaluates the fitness (Select sites m for neighborhood 

search., Recruit Bees for selected sites (more bees for best e sites) and evaluate 

fitness’s.).  

5- The Remaining Bees in the population are assigned randomly around the search 

space scouting for new potential solutions.  

6-Return the maximum score function for DBeu.  

7. Randomly generate a new network from the current best network and evaluate it. 

8. If the newly generated solution in step 7 has a higher score than the current best 

network, set the new network as the current best network. 

9. Repeat 7–8. 

10. Stop. 

Figure 3.12 Pseudo code BLGG (Bee local search and Greedy is global search). 
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 The opportunity for choosing a specific food source based on the score function that 

used as a metric score (BDeu) after calculating the score function. Subsequently, if the 

prior score is higher than the new score, hold the old score while they complete the 

searching for a neighbour by attendant Bees and onlookers. The employee Bee can use 

an operator like (deletion, addition, reversion, and move) for the arch in the graph, 

while onlooker picked randomly to manage knowledge for these comfortable operators. 

For deletion of “Xi → Xj ”, we need to evaluate Score(Xj,ΠXj\{Xi}); for adding “Xi 

→ Xj ”, we need to evaluate Score(Xj,ΠXj∪{Xi});  and for reversion of “Xi → Xj ”, 

two local scores Score(Xj , Π Xj \{Xi }) and Score(Xi , Π Xi ∪{Xj }) are to be updated. 

Later they search for getting a different solution based on neighbourhood then compare 

the score metric if it’s greater than prior or the (exp-(current/old) higher than a random 

number [1,0] , the employees transfer to the new location otherwise remain at the same 

location until finding a new solution with a larger score than prior one. After finishing 

this operator, they share information about the new solution. The onlooker chooses a 

suitable solution. If they do not accept the solution of an employee, then the employee 

will leave the solution and changed to be  the scout Bee. The scout Bee may develop 

a new solution based on the heuristic information and then suits an employee again. 

After each repetition the Bee performed, the BLGG algorithm shall carry out the 

updating process, which incorporates local and global updating steps.    

3.6.5 FIFTH PROPOSED METHOD 

In this section, we present the fifth proposed method. The proposed method offers a 

hybrid method between Greedy search and Bee optimization, used greedy as local 

search and Bee as global search also used BDeu as score function to structure learning 

 
 

Figure 3.13 The construction process of a Bayesian Network 
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Bayesian network called (BGGL). The Pseudo-code of BGGL is shown in Figure 3.14. 

As shown in Figure 3.14, they start randomly choosing a solution in step 1 and test the 

solution fitness (score function) for the scout Bee that selected the nodes. Iterate a loop 

until finishing criteria to getting the best score function in the current location by 

comparing to the neighbour node and test it. After picking the new position they 

compare the fitness function (BDeu score function) within the current status and prior 

position. If the BDeu score function in the current score is better than the score from 

the previous position, they pick the current state, and they remain in the same location 

until discovering other sites from the current location. If the fitness (BDeu score) of 

the prior position is better than current or is equal, they cancel the current position and 

return to the prior position. The recruit bee selected the solution and evaluated it; the 

other bee selects the solution randomly in the search space to choose the best score 

function and return the best score at each iteration. The objective for heterogeneous 

Bees’ Greedy algorithm is to utilize a conventional Greedy method after the 

Representative-Bee has decided to execute the search process towards a higher optimal 

solution space. One of the significant properties of the Bees algorithm is its facility to 

search the function space from various points in parallel. Creating a population of 

solutions, rather than an individual solution, is a trial to check the occurrence to explore 

large regions of the search space in a parallelized manner, as Bees algorithm does in it 

earlier stages' of the search. In the earlier stages of the search, there is a vast amount 

of variety in the regions of the function space, which are concurrently explored. As the 

search proceeds, the population tends to concentrate nearby the right solution in the 

function space. They encode solutions in several forms because of certain 

computational advantages associated with each problem. The most representative 

solutions involve binary-based encoding, character-based encoding, real-value 

encoding. In this context, parallelism does not refer to the ability to parallelize the 

implementation for the Bees' Algorithm; instead, it relates to the ability to represent a 

massive number of potential solutions in the population of a single generation. In every 

generation during the execution of the Bees algorithm, a population of solutions exists. 
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The search of the function space proceeds from these points, Bees represent these 

points in parallel.  

This kind of parallelism allows the members of the population to concentrate on very 

similar solutions. Once the population has focused, the experience for random search 

procedure in Bees' algorithm to help investigate new portions of the function space is 

hugely limited. The premature concentration of a population may happen if the 

population grows too homogenous. In the regular Bees algorithm, they should label 

the problem of the early attention, including the trap of a local optimum through the 

random search executed after the process. A structure of the Bayesian network holds 

in four procedures, as shown in Figure 3.13, at every level of performing the algorithm 

(Addition, deletion, revers, and move). An Addition operator first randomly picks two 

Algorithm BGGL (Bee algorithm Global and Greedy is local search (hybrid Bee and 

Greedy algorithms)  

 

INPUT: - datasets  

OUTPUT: - Learned and Constructed BN  

 

1. Initialize population n with random solutions.  

2-Evaluate the fitness of the sites (i.e. the performance of the candidate solutions) 

visited by the scout bees.  

3- loop until less than stopping conditional: -  

3.1 Randomly generate a new network from the current best network and evaluate it. 

3.2 If the newly generated solution in step 3.1 has a higher score than the current 

best network, set the new network as the current best network 

4 choose the site solution and evaluate the fitness. 

5 compare the fitness function (BDeu score function) of the current location and the 

previous if it’s better than previous (set current state is best) or ( exp-(current state)- 

exp-(previous state) >random[0,1] then selected it the difference between the  return 

to the previous location. 

6- chooses the site solution and evaluates the fitness (Select sites m for neighborhood 

search., Recruit bees for selected sites (more bees for best e sites) and evaluate 

fitness’s.).  

7- the remaining bees in the population are assigned randomly around the search space 

scouting for new potential solutions.  

8-Return the maximum score function for DBeu  

Figure 3.14  Pseudo code of BGGL (Bee global search  and Greedy is local search) 
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nodes Xj and Xi where i ≠ j, and Xi ∈ X \ Π(Xj): If adding an arc aij = Xi → Xj seems 

not to produce a directed cycle, then Gc+1 = Gc U {aij}. A second operator is Deletion, 

first chooses an arc aij from nodes Xi to Xj which is already in the Gc, then deletes it 

from the Gc., a new solution, Gc-1= Gc\{aij}; is concerned. The third operator is 

Reversion, randomly selects an arc aij from A, and then turns the direction for the arc 

if the inversion of the arc still forms a DAG. Through this operator, a new solution, 

Gc\{aij } U { aji} is constructed. The last operator is Move for two nodes Xi and Xj 

whose parent sets are not empty, the operator, selects a parent node of these two nodes, 

Xk ∈Π (Xi) and Xl ∈ Π(Xij) (k ≠ l), then changes Xk with Xl if Xl ∈ (X \ Π (Xi) U{Xi})); 

Xk ∈ (X \ Π (Xj) U{Xj})) and this move operator still forms a DAG. Namely, the 

operator simultaneously changes the parent sets of two nodes. 

3.6.6 SIXTH PROPOSED METHOD 

The proposed method uses ESWSA approach as a search method for structural learning of 

Bayesian networks. The BDeu metric used as a score function for assessing the Bayesian 

network structure.  The ESWSA algorithm is effectively an iterated procedure that consists of 

a population of individuals where every elephant encodes a potential position and velocity in 

a given space. This space is held to be the search area. The proposed method depends on two 

techniques. The first technique uses Equation (3-11) for local search through the essential 

process if (rand ≤  p). The second one uses Equation (3-10) for global search through the 

necessary process if (rand > p). Figure 3.15 shows the pseudo code of this technique. ESWSA 

 
 

Figure 3.15 The construction process of a BN 
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algorithm’s solution construction utilizes different neighbourhood than local search. The 

expectation is high that the local search updates a solution formed by an elephant group. 

Structure learning Bayesian network solution area formed for each potential DAG. Every 

elephant group inside the swarm initiates a possible solution which represents as a DAG 

having empty arcs. An elephant later examines the exploration area for finding the 

approximately near-optimal or optimal solution, which is known as the BDeu score. Equation 

(2-34) is used to calculate the BDeu score as the goal function of the optimization.  The 

exploration aims for obtaining a higher BDeu score for the network structure. All initial 

solutions produced through iterative operations. Starting with a blank graph (G0), the arcs are 

appended one after another, provided that they not included in the current graph solution. The 

append operation performs if only if the score function of the new solution is higher than the 

current score and also the new solution satisfies the DAG constraint. This process continues 

until the quantity of the arcs equals the amount defined in advance. In the model, the solution 

starts assigning a population for each operator and picks the solution, which has a higher score 

function. Elephant group continues according to the selected operator until the process has 

performed a maximum number of iterations or the BDeu score does not increase any more. 

Typically, the processes hold four separate operations in local optimization: Deletion, Addition, 

Reversion, Movement. The first three are simple operations within this domain, involve just 

replacing an individual edge every time from a competitor solution. It allows the inclusion of 

a comparatively small area near the solution. With every movement operation, on the other 

hand, the existing edges change the set of parents, which can make a moderately significant 

modification for the current solution. Therefore, if the solution not changed after applying 

simple operators, the move operator may improve it. Walking is the primary force utilizing the 

chosen operation in local optimization, which becomes further widespread while an elephant 

approaches the desirable solution. Walking directions, the switch with various local 

optimization operators, grows extra widespread as an elephant moves continuously from a 

solution through exploration toward a better one. Therefore, the current velocity renewed by 
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either elephant's best global or best local solution based on the (p) value. The ESWSA based 

on the probability value p can switch off from global search into local or from local to global. 

The velocity of ESWSA is renewed based on the current best position of the elephant in the 

local search.  

On the other hand, the global velocity depends on the best global solution concerning elephants 

in a global search, near a global best position. As shown in Figure 3.17, an elephant G0, which 

describes a DAG with arcs, tries reversion, move, addition, and deletion, and reaches new 

solutions G1, G2, G3, and G4, respectively. Assuming the best score is in G3, it will select, 

and the elephant will proceed to examine some similar process to get G+3 as the new solution. 

Algorithm: Structure Learning of Bayesian Network based on elephant swarm water search 

algorithm  

INPUT: - datasets 

 NE: number of Elephant swarm 

D: search space dimension    

P: the switching probability p  

Search range: the search space border 

tmax: maximum number of iteration number; Xmax: upper boundary, and Xmin:- lower 

boundary  

OUTPUT: - learning Bayesian Network 

(1) The initialized empty structure and initialize parameters of ESWSA algorithm 

(dimension space D, size of population NE, the switching probability p, the 

number of iteration number, upper boundary and lower boundary, (𝐺𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡  ). 

and Xmax > Xmin. 

(2) Set the velocity and position for all Elephant randomly. Comparing each 

elephant by BDe score function, and find the best in the current position 

(𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡  ). 

(3) Assign the value of wt according to the weight update using Equations (3-13) 

or (3-14).  

(4) Find a new best position by comparing the BDeu score function of each 

elephant. 

(5) If rand>p, update elephant velocity (Vi, d) using equation (3-10). 

(6) else rand≤ p update elephant velocity using equation (3-11). 

(7) Update the position Xi, d using equation (3-12). 

(8) Evaluate BDeu score function of the new position (𝑋𝑖,𝑑
𝑡 ) 

(9) If current position (𝑋𝑖,𝑑
𝑡  ) is better than the best position (𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑

𝑡  ) then 

update the best position by ((𝑃𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡  )= (𝑋𝑖,𝑑

𝑡  ))  

(10) If ((𝐺𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡  )< current position  then update the best solution for global by 

(𝐺𝑏𝑒𝑠𝑡,𝑖,𝑑
𝑡 =(Xi,d )) 

(11) The best score value and solution saved. 

(12) If Xmin ≥ Xmax, stop the iteration process, and the results are present. If not, 

move into Step 5. 

(13) Return the maximum BDe score. 

Figure 3.16 ESWSA Algorithm for Structure learning Bayesian Network. 
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If the BDeu score of G+3 is higher Than that of G+1, it will continue to perform the 

corresponding operator. The operations will repeat until the BDeu score stabilizes, or iteration 

loop reaches the maximum. In the whole process, the elephant selects among the directions 

using deletion, addition, movement and reversion operations.                                        

 

 

 

 

 

 

 

 

Figure 3.17  Water searching steps for one Elephant [10] 



 

 

87 

 

 

CHAPTER 4 

DATASETS AND EXPERIMENTS 

4.1 DATASETS 

To evaluate algorithms performance, a standard assessment technique utilized by 

employing probabilistic datasets extracted from popular Bayesian networks 

benchmarks. The platform for experiments includes a PC having the following 

properties: Core i3, 2.1GHz CPU, 4GB RAM, Ubuntu 14.04 operating system and 

utilizes Java to implement the algorithms. For the experiments, we used  p=0.7. The 

last ones, tmax =1000 and population size N=50, are fixed parameters of ESWSA 

optimization. The parameters of  Simulated Annealing algorithms are as follows: 

Temperature of Reannealing = 500, cooling factor= 0.8, Initial temperature= 1000. 

Greedy search parameters are as follows:  Recommended minimum networks before 

reboot = 3000, minimum recommended networks after highest score = 1000,  

maximum recommended networks before reboot = 5000, the maximum parent count 

for operations Reboot=5, restart by random network = yes. The parameters of Bee 

algorithms are : Number of Scout Bees n= 200, Number of Sites m out of n visited 

sites=30, Number of best site e out of m selected site =7, Number of Bees recuirted for 

best e site n2=90, Number of Bees recuirted for  the other site (m-e)  (n1)=30, Initial 

size of patches ngh which includes site  randomly selected=200, Number of algorithm 

steps repetitions imax=10000. The Pigeon parameters are Pigeons number (NP=300), 

search space dimension (D=20), the factor of the map and compass (P=0.3), the 

maximum number of iteration number for the map and compass operation 

(Nc1max=5000), the maximum number of iteration number for the landmark operation 

(Nc2max=10000). 



  88 

The algorithms have been implemented in three different execution times: 2 minutes, 

5 minutes and 60 minutes. The datasets that we used in this work are (Alarm, Adult, 

Epigenetics, Heart, Hepatitis, Imports, Letter, Parkinson‘s, Sensors, WDBC, Water, 

win95pts, Andes, Hepar, Hail, static banjo, mushroom, Autos, Soybean,… etc.). The 

number of nodes, arc, the total number of the instance given below :  

• ALARM, It has 37 variables, 46 arcs, Number of parameters 509 and 10000 

instances. 

• EPİGENETİCS, it has 30 variables and no. of instance=72228 

• HAILFINDER, it has 56 variables 66 arcs, and 3000 instances. 

• ASIA, it has 8 variables, 8 arcs, and 3000 instances. 

• INSURANCE, it has 27 variables 52 arcs, and 3000 instances.  

• ADULT it has 16 variables and 30162 instance  

• CHILD, it has 20 variables, 25 arcs and 230 instance=230.  

• PATHFINDER, it has 135 variables, 200 arcs, and 77155 instances.  

• HEPATITIS, has 35 variables and 137 instances. 

• IMPORTS has 22 variables and 205 instances. 

• LETTER, it has 17 variables, and 20000 instances. 

• PARKİNSONS, it has 23 variables, and 195 instances. 

• SENSORS, it has 25 nodes, and 5456 instances. 

• WDBC, it has 9 nodes and 1000 instance. 

• WATER, it has 32 nodes, arcs 66, and 10083 instance.  

• WİN95PTS, it has 76 nodes, no. of arc=112, and 574 instance. 

• ANDES, it has 223 variables, 338 arcs, and 500 instance. 

• HEPAR2, it has 70 variables, 123 arcs, and 350 instance. 

• STATIC BANJO DATASET is the Static Bayesian network with 33 variables 

and 320 instance.  
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• LUCAS is modelling a medical application for the diagnosis, prevention, and 

cure of lung cancer. It has 11 variables and 10000 observations  

• HORSE, it has 23 variables and 126 instances.  

• FLAG has 29 variables and 194 instances. 

• Mushroom, it has 23 variables and 1000 instance. 

• SOYBEAN, it has 35 variables and 307 instances. 

• SPECT.HEART has 22 variables and 267 instances. 

• LUCAP2, it has 143 variables and 10000 instances. 

 

4.2 EXPERIMENTAL RESULTS  

4.2.1 FIRST PROPOSED METHOD 

In this section, we presented the BDeu score function of the first proposed method 

(Bayesian Network Structure learning based on Pigeon Inspired Optimization) and 

compared it to the default Simulated Annealing and Greedy search algorithms using a 

different dataset. As shown in the tables (4.1, 4.2, and 4.3) the score function of the 

first proposed method is better than the other mentioned algorithms. We calculate the 

score function in 3 different times, as shown in the tables. The score produced by the 

first proposed method in 2 minutes is better than the score provided by Simulated 

Annealing and Greedy search in 60 minutes. From this table, it can be  noted that the 

proposed method produces better score values than the default Greedy Search plus 

simulated Annealing Algorithms for all situations. It indicates that the PIO finds the 

best score with the minimum time required. The BDeu score function of the first 

proposed method need not implement the program more time as it  produced a score 

function in 2 minutes while other algorithms needed more time to produce a useful 

score function. So the first proposed method offered a high speed for providing a better 

BDeu score function.  
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Table 4.1 Calculation results of the best of BDeu Score function for PIO 

with Simulated Annealing and Greedy in 2 minutes Execution time 

Dataset PIO Simulated Annealing Greedy 

Hepatitis -1327.73 -1330.4645 -1350.16 

Parkinson’s -1598.91 -1601.2968 -1732.76 

Imports -1811.99 -1828.9059 -1994.15 

Heart -2423.8 -2432.1878 -2576.93 

mushroom -3372.51 -3375.3104 -3734.22 

WDBC -6666.04 -6682.7161 -8089.41 

Water -13269.5 -13290.8278 -14619.1 

win95pts -46779.5 -47085.0996 -83749.3 

Sensors -60343.3 -60710.4985 -69200.3 

Hepar -160095 -161086.4216 -169497 

Letter -175200 -178562.2167 -184307 

Epigenetics -176657 -179910.3328 -225346 

Adult -207809 -211677.7164 -211844 

 

Table 4.2 Calculation results of the best of BDeu Score function for PIO with 

Simulated Annealing and Greedy in 5 minutes Execution time 

Dataset PIO Simulated Annealing Greedy 

Hepatitis -1327.73 -1330.46 -1350.16 

Parkinson’s -1598.91 -1601.3 -1721.16 

Imports -1811.99 -1828.91 -2012.21 

Heart -2423.8 -2423.8 -2560.43 

mushroom -3372.51 -3375.31 -3706.66 

WDBC -6666.04 -6682.72 -7954.65 

Water -13269.5 -13290.8 -14644.7 

win95pts -46779.5 -47085.1 -83150.7 

Sensors -60343.3 -60710.5 -69150 

Hepar -160095 -161086 -169881 

Letter -175200 -178562 -184916 

Epigenetics -176657 -179300 -224172 

Adult -207809 -211678 -211781 

Table 4.3 Calculation results of the best of BDeu Score function for PIO with 

Simulated Annealing and Greedy in 60 minutes Execution time 

Dataset PIO Simulated Annealing Greedy 

Hepatitis -1327.73 -1330.46 -1350.16 

Parkinson’s -1598.91 -1601.3 -1700.36 

Imports -1811.99 -1828.91 -1995.76 

Heart -2423.8 -2432.19 -2527.44 

mushroom -3372.51 -3375.31 -3588.69 

WDBC -6666.04 -6682.72 -7841.35 

Water -13269.5 -13290.8 -14272 

win95pts -46779.5 -47085.1 -81779.5 

Sensors -60343.3 -60710.5 -68364 

Hepar -160095 -161086 -168871 

Letter -175200 -178562 -184118 

Epigenetics -176657 -179300 -217246 

Adult -207809 -211678 -211762 
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4.2.2 SECOND AND THIRD PROPOSED METHODS (BSA AND SAB) 

 

In this section, we present BDeu score function for the hybrid Bee and simulated 

annealing algorithms (Bee algorithm is local and Simulated Annealing is global search 

(BSA)) as second methods and (Simulated Annealing is a local search and Bee is a 

global search (SAB)) as third proposed methods. The result compared with default 

Simulated Annealing as shown in the tables (4.4, 4.5 and 4.6). 

             Table 4.4 Calculation results of the best of BDeu Score function for BSA and 

SAB with Simulated Annealing in 2 minutes Execution time 

Dataset Simulated 

Annealing 

BeeLocal  

SimGlobal 

BeeGlobal  

SimLocal 

spect.heart -2141.4678 -2141.5364 -2140.9118 

soybean -2870.8509 -2859.1344 -2857.2898 

Static banjo -8451.4948 -8449.2862 -8451.8344 

Water -13262.5288 -13262.5288 -13262.5288 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

Alarm -104927.1078 -104927.108 -104927.108 

Lucap2 -112260.5067 -111413.333 -111963.759 

Hail -148192.92 -148179.926 -148187.684 

hepar -161051.6944 -161049.602 -161050.961 

Andes -497353.2663 -477461.481 -492382.845 

 

             Table 4.5 Calculation results of the best of BDeu Score function for BSA and 

SAB with Simulated Annealing in 5 minutes Execution time 

Dataset Simulated 

Annealing 

BeeLocal  

SimGlobal 

BeeGlobal  

SimLocal 

spect.heart -2143.7306 -2141.3482 -2142.5688 

soybean -2857.852 -2847.4824 -2863.8429 

Static banjo -8449.7696 -8445.3556 -8445.411 

Water -13266.0091 -13262.5288 -13262.5288 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

Alarm -104927.1078 -104927.108 -104927.108 

Lucap2 -112217.4215 -110142 -110834.219 

Hail -148188.1576 -148179.325 -148178.645 

hepar -161052.5088 -161048.986 -161052.513 

Andes -489795.7252, -473468.504 -480065.267 
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Table 4.6 Calculation results of the best of BDeu Score function for BSA and 

SAB with Simulated Annealing in 60 minutes Execution time 

Dataset Simulated 

Annealing 

BeeLocal  

SimGlobal 

BeeGlobal  

SimLocal 

spect.heart -2142.2432 -2141.9638 -2141.8104 

soybean -3012.7233 -2984.7118 -2992.9934 

Static banjo -8556.703 -8545.5115 -8552.3736 

Water -13263.7708 -13262.0855 -13262.2007 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

Alarm -105376.7 -105043.762 -105270.67 

Lucap2 -150937.567 -149052.6988 -151160.106 

Hail -152298.908 -151671.6704 -151772.555 

hepar -163418.883 -162412.9857 -163230.937 

Andes -586760.471 -578144.03 -587098.489 

 

The Tables (4.4, 4.5, and 4.6) present the score for each algorithm in the mentioned 

datasets and time values, the results show that the hybrid algorithm produced better 

scores than the default Simulated Annealing algorithm in the most dataset and equals 

in some dataset. The results indicate that using Bee as a local search and simulated 

annealing as a global search(BSA), they produced a better score than the default 

Simulated Annealing algorithm and SAB Algorithm.   

4.2.3 FOURTH AND FIFTH PROPOSED METHODS (BLGG AND BGGL) 

 In this section, we present the BDeu score function for Fourth (Bee as local search 

and Greedy as global search(BLGG)), and Fifth (Greedy as local search and Bee as 

global search(BGGL)) methods. The results are shown in Tables (4.7, 4.8, and 4.9). 

 

Table 4.7 Calculation results of the best of BDeu Score function for BLGG 

and BGGL with default Greedy search in 2 minutes Execution time 

Dataset Greedy Bee Local  

Greedy Global 

Bee Global  

Greedy Local 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

spect.heart -2144.6547 -2144.317 -2141.5364 

Water -13263.7708 -13264.1145 -13262.8093 

Static banjo -8585.2097 -8576.3336 -8570.2096 

soybean -3021.4054 -3025.8652 -3032.1729 

Alarm -105971.754 -106061.1308 -105552.278 

Hail -152649.937 -152099.9767 -152037.997 

hepar -163474.268 -163432.0852 -161050.961 

Lucap2 -151215.276 -150907.7339 -151242.738 

Andes -591870.61 -587911.3992 -589927.223 
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Table 4.8 Calculation results of the best of BDeu Score function for BLGG and 

BGGL with default Greedy search in 5 minutes Execution time 

 

Dataset Greedy BeeLocal  

Greedy 

Global 

BeeGlobal  

SimLocal 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

spect.heart -2142.8904 -2143.1913 -2142.7278 

Water -13265.261 -13264.8021 -13264.4597 

Static banjo -8561.9296 -8556.0676 -8448.2838 

soybean -3011.3836 -3009.4569 -2991.8209 

Alarm -106113.938 -105788.8594 -106170.992 

Hail -153436.041 -151710.6892 -151863.228 

hepar -163536.077 -163257.7531 -163374.811 

Lucap2 -152092.434 -150308.0311 -151912.804 

Andes -588502.538 -587826.2274 -584604.764 

 

Table 4.9 Calculation results of the best of BDeu Score function for BLGG and 

BLGG with default Greedy search in 60 minutes Execution time 

 

Dataset Greedy BeeLocal  

Greedy Global 

BeeGlobal  

SimLocal 

Dynamic data -15935.2861 -15935.2861 -15935.2861 

spect.heart -2142.2432 -2141.9638 -2141.8104 

Water -13263.7708 -13262.0855 -13262.2007 

Static banjo -8556.703 -8545.5115 -8552.3736 

soybean -3012.7233 -2984.7118 -2992.9934 

Alarm -105376.7 -105043.762 -105270.67 

Hail -152298.908 -151671.6704 -151772.555 

hepar -163418.883 -162412.9857 -163230.937 

Lucap2 -150937.567 -149052.6988 -151160.106 

Andes -586760.471 -578144.03 -587098.489 

 

The results in tables present the score for each algorithm in the mentioned datasets and 

time values. From this table, it can be noted that the hybrid algorithms Bee and Greedy 

(BLGG and BGGL) produced better score values than the default Greedy search in 

most of the datasets as shown in the above table or the score is equal in some datasets.  
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4.2.4 SIXTH PROPOSED METHODS (ESWSA) 

In this section, we present the BDeu score function of the Sixth proposed method 

(Bayesian Network Structure learning using Elephant Swarm Water Search Algorithm) 

and compared it to the default Simulated Annealing and Greedy search algorithms 

using a different dataset. As shown in the Tables (4.10, 4.11, and 4.12), it can be noted 

that the proposed method produces better score values than the default Greedy Search 

and Simulated Annealing Algorithms for most situations. It indicates that the ESWSA 

finds the best score with the minimum time required. We calculate the score function 

in 3 different times, as shown in the tables. The score produced by the sixth proposed 

method in 2 minutes is better than the score produced by Simulated Annealing. 

Table 4.10   Score  function  the best of  ESWSA, Simulated Annealing, and 

Greedy in 2 minutes Execution time 

Dataset ESWSA Simulated 

Annealing 

Greedy 

Asia -54849.9 -56340.27 -56340.3 

WDBC -6660.43 -6682.716 -8089.41 

lucas01 -11863.1 -12243.24 -13890.9 

Adult -207809 -211677.7 -211844 

Letter -175200 -178562.2 -184307 

Child -62365.7 -62343.73 -63336.6 

Imports -1811.99 -1828.906 -1994.15 

Heart -2426.42 -2432.188 -2576.93 

Parkinson’s -1486.86 -1601.297 -1732.76 

Mushroom -3160.87 -3375.31 -3745.46 

Sensors -60343.3 -60710.5 -69200.3 

insurance -13895.11 -13872.33 -13904.6 

Epigenetics -176636 -179910.3 -225346 

Water -11562.7 -13290.83 -14619.1 

Static. banjo -8409.42 -8451.495 -8585.21 

Hepatitis -1327.73 -1330.465 -1350.16 

Hail finder -75583.9 -148192.9 -153602 

Hepar -160095 -161086.4 -169497 

win95pts -46779.5 -47085.1 -83749.3 
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Table 4.11   Score  function  the best of  ESWSA, Simulated Annealing, and Greedy in 

5 minutes Execution time 

Dataset ESWSA Simulated Annealing Greedy 

Asia -54849.9 -56340.27 -56340.3 

WDBC -6660.43 -6682.716 -7954.65 

lucas01 -11492.7 -12243.24 -12243.2 

Adult -207258 -211677.7 -211781 

Letter -175200 -178562.2 -184916 

Child -62365.7 -62343.73 -63799.4 

Imports -1811.99 -1828.906 -2012.21 

Heart -2426.42 -2423.804 -2560.43 

Parkinson’s -1439.09 -1601.297 -1721.16 

Mushroom -3160.87 -3375.31 -3709.7 

Sensors -60343.3 -60710.5 -69150 

insurance -13895.11 -13872.33 -13904.6 

Epigenetics -176628 -179300.2 -224172 

Water -11562.6 -13290.83 -14644.7 

Static. Banjo -8409.42 -8449.77 -8561.93 

Hepatitis -1327.73 -1330.465 -1350.16 

Hail finder -75583.9 -148188.2 -153075 

Hepar -160095 -161086.4 -169881 

win95pts -46779.5 -47085.1 -83150.7 

Table 4.12   Score  function  the best of  ESWSA, Simulated Annealing, and Greedy in 

60 minutes Execution time 

Dataset ESWSA Simulated Annealing Greedy 

Asia -29791 -56340.27 -56340.3 

WDBC -6660.43 -6682.716 -7841.35 

lucas01 -11213.8 -12243.24 -12243.2 

Adult -207258 -211677.7 -211762 

Letter -175200 -178562.2 -184118 

Child -62245.7 -62343.73 -63799.4 

Imports -1811.99 -1828.906 -1995.76 

Heart -2426.42 -2432.188 -2527.44 

Parkinson’s -1439.09 -1601.297 -1700.36 

Mushroom -3003.45 3375.31 -3588.69 

Sensors -60343.3 -60710.5 -68364 

insurance -13895.11 -13872.33 -13904.6 

Epigenetics -176628 -179300.2 -217246 

Water -11562.6 -13290.83 -14272 

Static. Banjo -8317.87 -8445.356 -8556.7 

Hepatitis -1327.73 -1330.465 -1350.16 

Hail finder -75583.9 -148182.7 -152299 

Hepar -160095 -161086.4 -168871 

win95pts -46779.5 -47085.1 -83150.7 

Lucap2 -105251 -111274.8 -150938 

Andes -469217 -480491.3 -586760 



  96 

 Annealing and Greedy search in 60 minutes. The BDeu score function of the sixth 

proposed method need implement the program more time to produce a score function 

in 2 minutes while other algorithms needed more time to produce a useful score 

function, so the sixth proposed method offers higher speed for producing a better BDeu 

score function.    

 

4.2.5 COMPARISONS OF THE PROPOSED METHODS. 

In this section, we present the comparison of the all proposed method based on the 

calculation of the score function for all proposed methods in different times (2, 5, and 

60 minutes) and applied different dataset as shown in the tables (4.13, 4.14, 4.15).  The 

results of the proposed method for calculating the score function used different datasets 

has been demonstrated that in most of the situation, the ESWSA better than the other 

methods. 

 

 

Table 4.13 Calculation results of the best of BDeu Score function for all proposed 

methods when time is 2M 

Dataset PIO ESWSA 
Bee Local 
Sim Global 

Bee Global 
SimLocal 

BeeLocal 
Greedy 
Global 

Bee Global 
Greedy 
Local 

Adult -207809 -175200 -211677.716 -211677.716 -211874.6392 -211677.716 

Letter -175200 -175200 -178562.217 -178562.217 -185900.5902 -180657.984 

Imports -1811.99 -1811.99 -1828.9059 -1828.9059 -1999.868 -1898.8428 

Heart -2423.8 -2426.42 -2141.5364 -2140.9118 -2144.317 -2141.5364 

Parkinson’s -1598.91 -1486.86 -1601.2968 -1601.2968 -1744.5766 -1661.0025 

mushroom -3372.51 -3160.87 -3375.3104 -3375.3104 -3798.107 -3421.1133 

Sensors -60343.3 -60343.3 -60710.4985 -60710.4985 -69298.6337 -60710.4985 

Epigenetics -176657 -176636 -186661.63 -185485.803 -229270.6243 -212526.244 

Water -13269.5 -11562.7 -13262.5288 -13262.5288 -13264.1145 -13262.8093 

Hepatitis -1327.73 -1327.73 -1330.4645 -1330.4645 -1350.1589 -1330.4645 

Hepar -160095 -160095 -161049.602 -161050.961 -163432.0852 -161050.961 

win95pts -46779.5 -46779.5 -50011.3542 -47153.2753 -85444.2886 -85313.6634 
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Table 4.14   Calculation results of the best of BDeu Score function for all proposed 

methods when time is 5M 

Dataset PIO ESWSA 

Bee Local 

Sim 

Global 

Bee 

Global 

Sim 

Local 

BeeLocal 

Greedy 

Global 

BeeGlobal 

Greedy 

Local 

Adult -207809 -207258 -211677.716 -211678 -211915 -211674 

Letter -175200 -175200 -178562.216 -178562 -185521 -180581 

Imports -1811.99 -1811.99 -1907.1782 -1828.91 -2003.22 -1914.8 

Heart -2423.8 -2426.42 -2141.348 -2142.57 -2143.19 -2142.73 

Parkinson’s -1598.91 -1439.09 -1601.296 -1601.3 -1738.95 -1633.01 

mushroom -3372.51 -3160.87 -3375.310 -3375.31 -3736.99 -3383.16 

Sensors -60343.3 -60343.3 -60710.4985 -60710.5 -69265.1 -65971.2 

Epigenetics -176657 -176628 -181123.809 -180335 -228900 -208252 

Water -13269.5 -11562.6 -13262.5288 -13262.5 -13264.8 -13264.5 

Hepatitis -1327.73 -1327.73 -1330.4645 -1330.46 -1350.16 -1334.11 

Hepar -160095 -160095 -161048.986 -161053 -163258 -163375 

win95pts -46779.5 -46779.5 -47591.4925 -50011.4 -84426.2 -83033.1 

Table 4.15   Calculation results of the best of BDeu Score function for all proposed 

methods in 60M 

Dataset PIO ESWSA 
Bee Local 

Sim Global 

Bee 
Global 

Sim Local 

Bee Local 
Greedy 
Global 

Bee Global 
Greedy Local 

Adult -207809 -207258 -211677.716 -211677.72 -211720.8765 -211666.444 

Letter -175200 -175200 -178562.217 -178562.22 -183583.4973 -179617.4523 

Imports -1811.99 -1811.99 -1828.9059 -1828.9059 -2000.0022 -1998.973 

Heart -2423.8 -2426.42 -2141.9638 -2141.8104 -2141.9638 -2141.8104 

Parkinson’s -1598.91 -1439.09 -1601.2968 -1601.2968 -1715.6506 -1601.2968 

mushroom -3372.51 -3003.45 -3380.2690 -3374.2690 -3650.2127 -3365.7934 

Sensors -60343.3 -60343.3 -60710.4985 -60710.499 -68182.4056 -65358.2679 

Epigenetics -176657 -176628 -179300.215 -179300.21 -213438.6816 -201690.3021 

Water -13269.5 -11562.6 -13262.0855 -13262.201 -13262.0855 -13262.2007 

Hepatitis -1327.73 -1327.73 -1330.4645 -1330.4645 -1350.1589 -1327.9075 

Hepar -160095 -160095 -162412.986 -163230.94 -162412.9857 -163230.937 

win95pts -46779.5 -46779.5 -47085.0996 -50011.354 -79880.8266 -81091.292 
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4.3  EXPERIMENTAL RESULTS OF CONFUSION MATRICES 

4.3.1 FIRST PROPOSED METHOD 

To evaluate the success of structure discovery, the confusion matrix is commonly used 

in the literatüre [114]. Confusion matrix values can be computed for each algorithm 

and data set using known network structures.  The general idea is to compare the 

known network structure with the produced network. To calculate the confusion matrix, 

first, we need to have a set of predictions network so that it can be compared to the 

actual network. Each row in a confusion matrix represents an actual class, while each 

column represents a predicted class. To test the success of structure discovery, we have 

to compute the confusion matrix for each data set and its known network structure. We 

have calculated the metrics TP, TN, FN, and FP for each network per algorithm and 

the criteria (Sensitivity (SE), Accuracy (Acc), F1_Score, and AHD). The meanings of 

these metrics are as follows: A TP is an arc (vertex or edge) in the right position inside 

the learning network. TN is the arc inside neither the learning network nor the proper 

network. FP is the arc inside the learning network not in the actual network. The FN is 

the arc in the actual however, not in the learning network. The result of the confusion 

matrix for the First proposed method compared with default Simulated Annealing and 

default Greedy search are shown in Table 4.16. From the table, we can compute the 

evaluation criteria values. The first one is the sensitivity calculated by using the 

Equation (2-51) and shown in Figure 4.1. It can be seen that show that the PIO 

produces better sensitivity values than the Simulated Annealing and Greedy Search in 

most datasets. Figure 4.2 shows the accuracy of PIO, Simulated Annealing and Greedy 

search, which are calculated as explained in the section (2.5.2.1). This criterion present 

demonstrates that the proposed method is better than Simulated Annealing and Greedy 

search in the most dataset, as shown in Figure 4.2. Similarly, the PIO method in the 

most dataset has higher accuracy values than the Simulated Annealing and Greedy 

algorithms, as shown in Figure 4.2. The proposed PIO Learning Algorithm performs 

well in finding the appropriate structure. As a result, from the point of prediction 

accuracy, the Iterative PIO algorithm is the best algorithm compared to other 

algorithms in most datasets, and from the point of construction times also the PIO is 

better than the other algorithms. The proposed PIO Learning Algorithm performs well 

in finding the appropriate structure and presented a relatively low time complexity 

because the global search decreases by half the number of pigeons. 
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The F1- score, Precision, and Recall are used to evaluate the performance of the 

proposed algorithm. In these circumstances, Precision is the number of directed edges  

 Table 4.16 Confusion Matrix of PIO, Simulated Annealing and Greedy  
Algorithm TP TN FN FP 

W
a
te

r
 Simulated Annealing 24 15 27 22 

Greedy 25 15 26 21 

PIO 22 22 22 22 

S
ta

ti
c 

b
a
n

jo
 Simulated Annealing 28 2 7 6 

Greedy 17 6 22 21 

PIO 29 4 4 4 

A
la

rm
 

Simulated Annealing 40 11 16 5 

Greedy 40 11 16 5 

PIO 40 9 14 14 

H
a
il

 Simulated Annealing 43 30 53 41 

Greedy 35 19 50 41 

PIO 46 25 45 45 

h
ep

a
r Simulated Annealing 70 31 22 9 

Greedy 42 38 43 27 

PIO 63 35 25 25 

w
in

9
5
p

ts
 

Simulated Annealing 81 99 130 130 

Greedy 88 85 109 109 

PIO 8 25 129 129 

A
n

d
es

 

Simulated Annealing 204 55 188 108 

Greedy 28 97 212 65 

PIO 285 110 162 141 

L
u

ca
s0

1
 

Simulated Annealing 12 4 4 0 

Greedy 12 5 5 0 

PIO 12 0 0 0 

 

 

 

Figure 4.1 Sensitivity of PIO and Simulated Annealing and Greedy 
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that are found correctly divided by the number of all edges in the expected BN. The 

Recall represents the division of the number of directed edges that are found by the 

number of edges in the actual BN. F1-score is the harmonic mean of precision and 

recall, which always vary between 0 and 1. An F1 score reaches its best value at 1 

and the worst score at 0. Figure 4.3 shows the F1_scores of the PIO compared with 

 

Figure 4.3 F1_Score of PIO and Simulated Annealing and Greedy 

Figure 4.2 Accuracy of PIO and Simulated Annealing and Greedy 
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Simulated Annealing, and Greedy Search, which are calculated using the Equation (2-

55) Figure4.3 also shows that the proposed method is better than other mentioned 

algorithms in most data sets.  

Figure 4.4 presents AHD for PIO and Simulated Annealing and Greedy search. The 

average Hamming distance calculated by   

AHD= 
𝑭𝑷+𝑭𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
      Equation 4-1 

 The proposed algorithm is also preferable based on the Hamming distances, which are 

always considerably lower than the ones obtained by using the DAG space. Hamming 

distances is one of the most widely used evaluation metrics for BN structure learning, 

which directly matches the structure of learners and actual networks also they are 

directed entirely towards exploration rather than inference. Figure 4.4 shows the 

Average Hamming Distances for the mentioned algorithms. The results demonstrate 

that the proposed method produces better performance values than the other methods 

that we have considered. Hamming distance is also commonly used for error correction.  

4.3.2 SECOND AND THIRD PROPOSED METHODS (BSA AND SAB) 

This section presents the result of the confusion matrix for the Second and Third 

proposed methods (BSA and SAB) compared with Simulated Annealing. As shown in 

Table 4.17, the proposed methods are very close or better than simulated Annealing in 

most datasets. 

 

Figure 4.4 AHD of PIO and Simulated Annealing and Greedy 
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Table 4.17 Confusion matrix of BSA, SAB, and Simulated Annealing 

 Methods TP TN FN FP 

W
a

te
r
 Simulated Annealing 24 14 28 23 

BeeLocal SimGlobal 24 17 25 20 

BeeGlobal SimLocal 24 18 24 18 

S
ta

ti
c 

b
a

n
jo

  Simulated Annealing 28 2 7 6 

BeeLocal SimGlobal 30 2 5 4 

BeeGlobal SimLocal 29 2 6 5 

A
la

rm
 Simulated Annealing 40 11 16 5 

BeeLocal SimGlobal 40 11 16 5 

BeeGlobal SimLocal 40 11 16 5 

H
a

il
 Simulated Annealing 46 32 52 42 

BeeLocal SimGlobal 46 34 54 42 

BeeGlobal SimLocal 45 33 54 43 

h
ep

a
r
 Simulated Annealing 69 27 81 124 

BeeLocal SimGlobal 72 33 18 9 

BeeGlobal SimLocal 76 29 18 10 

A
n

d
es

 Simulated Annealing 244 81 174 103 

BeeLocal SimGlobal 220 58 175 91 

BeeGlobal SimLocal 238 53 152 69 

From the confusion matrix as shown in the table 4.17, we can calculate the following 

criteria (Positive Predictive Value(PPV), Sensitivity(Sen), Accuracy(Acc), F1_Score, 

and Average Hamming Distance (AHD)). The PPV calculated by using the Equation: 

positive predictive value =  
𝑻𝑷

𝑻𝑷+𝑭𝑷
     Equation 4-2 
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 Figure 4.5 PPV for BSA, SAB, and Simulated 

Annealing 



  103 

 As the results in Figure 4.5 shows, the proposed methods give better ppv values than 

Simulated Annealing. The sensitivity values calculated using Equation (2-63) are 

shown in Figure 4.6. The sensitivity measures the proportion of actual positives that 

correctly identified. Figure 4.6 demonstrates that the proposed methods (BSA and SAB) 

are better than the Simulated Annealing. Figure 4.7 shows the Accuracy of the BSA, 

SAB, and Simulated Annealing; they calculated by using the details of the section 

(2.5.2.1). The Accuracy result in this figure shows that the BSA and SAB have better 

values than Simulated Annealing for the most dataset. The F1_score and Average 

Hamming Distance also calculated using equations (2-55 and 4-1) respectively, the 

results shown in Figures 4.8 and 4.9. demonstarate that the BSA and SAB values for 

most data sets are better than Simulated Annealing.  
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Figure 4.6 Sensitivity for BSA, SAB, and Simulated Annealing 

 

Figure 4.7 Accuracy for BSA, SAB, and Simulated Annealing 
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Figure 4.8 F1 Score for BSA, SAB, and Simulated Annealing 
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4.3.3 FOURTH AND FIFTH PROPOSED METHODS (BLGG AND BGGL) 

In this part, the evaluation of the fourth and fifth (BLGG and BGGL) proposed 

methods using the confusion matrix calculation are presented, and the results are 

compared with the default greedy search method. As shown in Table 4.18 that the 

proposed method is better than the greedy search in most of the datasets. 

Table 4.18 Confusion matrix of BLGG, BGGL, and Greedy 

dataset Methods TP TN FN FP 

W
a
te

r
 Greedy 23 17 26 21 

BeeLocal Greedy Global 24 16 26 21 

BeeGlobal Greedy Local 24 18 24 18 

S
ta

ti
c 

b
a
n

jo
 Greedy 18 3 18 17 

BeeLocal Greedy Global 19 1 15 14 

BeeGlobal Greedy Local 29 1 5 4 

A
la

rm
 Greedy 35 15 25 18 

BeeLocal Greedy Global 37 16 24 16 

BeeGlobal Greedy Local 40 21 26 18 

H
a
il

 Greedy 35 20 51 38 

BeeLocal Greedy Global 35 21 52 41 

BeeGlobal Greedy Local 37 18 47 35 

h
ep

a
r Greedy 45 36 42 28 

BeeLocal Greedy Global 47 37 39 24 

BeeGlobal Greedy Local 69 33 21 8 

A
n

d
es

 Greedy 34 106 197 50 

BeeLocal Greedy Global 39 99 199 52 

BeeGlobal Greedy Local 39 99 199 51 
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In this part, we present the Positive Predictive Values (PPV) in Figure 4.10, 

Sensitivity(Sen) values in Figure 4.11, and Accuracy values in Figure 4.12.  Figure 

4.13 shows the F1_scores for BLGG, BGGL, and greedy search. The section (2.5.2.3) 

describes in detail the definition and calculation of F1_score. The results of Figure 

4.13 show the proposed methods had an excellent F1_score result compared with the 

default greedy search. The last criterion presented in this section is Average Hamming 
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 Figure 4.11 Sensitivity for BLGG, BGGL and Greedy 
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 Figure 4.10 PPV for BLGG, BGGL and Greedy 
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Distance (AHD). The number of a different edge between the learned network and the 

original network is called Hamming Distance.  
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 Figure 4.13 F1_Score for BLGG, BGGL and Greedy 
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Figure 4.14 shows the result of the AHD for BLGG, BGGL and greedy. The result 

shows the proposed methods decreased the AHD based on the greedy search. 

Depended on Figure 4.14 by using the proposed method can reduce the AHD.  

4.3.4 SIXTH PROPOSED METHODS (ESWSA)  

 To evaluate algorithm performance (ESWSA), a standard assessment technique has 

been utilized by using probabilistic datasets from popular Bayesian network 

benchmarks. We investigated the properties of the proposed algorithm in several 

datasets. We compared the results with Simulated Annealing and Greedy Search 

methods by using corresponding metrics for the datasets. After defining the parameters 

of the ESWSA algorithm, local and global search are applied to the datasets. In EWSA, 

we use three parameters to control exploration performance. We randomly choose the 

first parameter inertia weight (wt), which shows the speed of inertia at the current 

iteration. The second one is switching probability p, which is implemented as a 

constant parameter i.e., the value remains constant during the entire search. This choice 

suggests that local and global water exploration can change based on the value of the 

parameter p. For the experiments, we use p=0.7. It also fixes the last ones, tmax and 

population size N parameters of ESWSA optimization. As shown in Table 4.19, the 

result has shown the proposed method is better than the greedy search in most of the 

datasets. 
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To evaluate the success of structure discovery, we have computed the confusion matrix 

for each data set and its known network structure and calculated the metrics TP, TN, 

FN, and FP for each network per algorithm and the criteria; Sensitivity (SE), Accuracy 

(Acc), F1_Score, and AHD.  

The Sensitivity results for ESWSA, Simulated Annealing and Greedy, are shown in 

Figure 4.15. The proposed method produces better values than the Simulated 

Annealing and Greedy in the different datasets. 

Table 4.19 Confusion matrix of ESWSA, Simulated Annealing, and Greedy 

dataset Methods TP TN FN FP 

ad
u

lt
 Simulated  Annealing 8 22 32 31 

Greedy 10 20 18 17 

ESWSA 8 21 31 31 

C
h
il

d
 Simulated Annealing 23 2 4 4 

Greedy 16 15 24 23 

ESWSA 23 2 4 4 

in
su

ra

n
ce

 Simulated  Annealing 40 6 6 5 

Greedy 21 7 38 35 

ESWSA 41 6 5 5 

W
a
te

r
 Simulated  Annealing 24 15 27 22 

Greedy 25 15 26 21 

ESWSA 22 20 24 24 

S
ta

ti
c 

b
a
n

jo
 Simulated  Annealing 28 2 7 6 

Greedy 17 6 22 21 

ESWSA 29 4 4 4 

A
la

rm
 Simulated  Annealing 40 11 16 5 

Greedy 37 16 24 15 

ESWSA 40 8 13 13 

H
a
il

 Simulated  Annealing 43 30 53 41 

Greedy 35 19 50 41 

ESWSA 46 19 39 39 

h
ep

a
r Simulated  Annealing 70 31 22 9 

Greedy 42 38 43 27 

ESWSA 74 35 14 14 

w
in

9
5

p
ts

 Simulated  Annealing 81 88 119 119 

Greedy 8 22 126 126 

ESWSA 88 85 109 109 

A
n

d
es

 Simulated  Annealing 204 55 188 108 

Greedy 28 97 212 65 

ESWSA 285 88 140 140 
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Similarly, the proposed method in most dataset has high accuracy values than the 

Simulated Annealing and Greedy algorithms, as

shown in Figure 4.16. The proposed ESWSA Learning Algorithm performs well in 

finding the appropriate structure. As a result, from the point of prediction accuracy, the 

Iterative ESWSA algorithm is the best algorithm compared to other algorithms in most 

datasets, and from the point of construction times also the ESWSA is better than the 

other algorithms. For performance metrics, in addition to the best score in Bayesian 

results, we used F1 as a metric of the model's accuracy.  
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Figure 4.16. Accuracy for ESWSA, Simulated Annealing and Greedy. 

 

Figure 4.15. Sensitivity for ESWSA, Simulated Annealing and Greedy. 
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The F1- score, Precision, and Recall are used to evaluate the performance of the 

proposed algorithm. In these circumstances, Precision is the number of directed edges 

that are found correctly divided by the number of all edges in the expected BN. The 

Recall represents the division of the number of directed edges that are found by the 

number of edges in the actual BN. We know that F1 is the harmonic average of 

accuracy and Recall. Figure 4.17 presents a comparison between the ESWSA, 

Simulated Annealing, and Greedy search.  As shown in Figure 4.17, the proposed 

methods are successful than the Greedy search and Simulated Annealing Methods. 

Furthermore, the ultimate purpose of the model is to present a convenient 

representation of the real world, so accuracy is a useful measure of model performance 

evaluation. The proposed algorithm is also preferable from the Hamming distances, 

which are always considerably lower than the ones obtained by using the DAG space. 

Hamming distances is one of the most widely used evaluation metrics for BN structure 

learning, which directly matches the structure of learners and local networks also are 

directed entirely towards exploration rather than inference. 

Figure 4.18 shows the Average Hamming Distances for the mentioned algorithms. The 

results demonstrate that the proposed method produces better performance values than 

the other methods that we have considered.  
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Figure 4.17. F1 Score for ESWSA, Simulated Annealing Greedy. 
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4.3.5 COMPARISONS AMONG PROPOSED METHODS. 

To evaluate the success of structure discovery, the confusion matrix has been 

computed for each data set and its known network structure. The metrics TP, TN, FN, 

and FP, have been calculated for each network per algorithm as well as the criteria; 

Sensitivity (SE), Accuracy (Acc), F1 Score, and AHD. Table 4.20 presents the result 

of the proposed method using dataset mentioned in the section (4.1). Table 4.20 shows 

the result of a confusion matrix for the proposed methods.  

Figures 4.19 and 4.20 show the Sensitivity and Accuracy of the proposed methods. In 

most datasets, the ESWSA is better than other proposed methods, the second-best is 

PIO. Figure 4.21 shown the F1_Score of the proposed methods. The result 

demonstrated that in most datasets, the Hybrid between Bee and Simulated Annealing 

is better than other proposed methods. Figure 4.22 shown the AHD of the proposed 

methods. Figure 4.22 shows that the ESWSA is better than other proposed methods. 
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Figure 4.18. AHD for ESWSA, Simulated Annealing Greedy. 
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Table 4.20 Confusion matrix of All proposed methods 

dataset Methods TP TN FN FP 

W
a
te

r
 

ESWSA 22 20 24 24 

PIO 22 22 22 22 

BeeLocal SimGlobal 24 17 25 20 

BeeGlobal SimLocal 24 18 24 18 

BeeLocal Greedy Global 24 16 26 21 

BeeGlobal Greedy Local 24 18 24 18 

S
ta

ti
c 

b
a
n

jo
 ESWSA 29 4 4 4 

PIO 29 4 4 4 
BeeLocal SimGlobal 30 2 5 4 
BeeGlobal SimLocal 29 2 6 5 

BeeLocal Greedy Global 19 1 15 14 
BeeGlobal Greedy Local 29 1 5 4 

A
la

rm
 

ESWSA 40 8 13 13 

PIO 40 9 14 14 

BeeLocal SimGlobal 40 11 16 5 

BeeGlobal SimLocal 40 11 16 5 

BeeLocal Greedy Global 37 16 24 16 

BeeGlobal Greedy Local 40 21 26 18 

H
a
il

 

ESWSA 46 19 39 39 
PIO 46 25 45 45 

BeeLocal SimGlobal 46 34 54 42 

BeeGlobal SimLocal 45 33 54 43 

BeeLocal Greedy Global 35 21 52 41 

BeeGlobal Greedy Local 37 18 47 35 

h
ep

a
r 

ESWSA 74 35 14 14 

PIO 63 35 25 25 

BeeLocal SimGlobal 72 33 18 9 

BeeGlobal SimLocal 76 29 18 10 

BeeLocal Greedy Global 47 37 39 24 

BeeGlobal Greedy Local 69 33 21 8 

A
n

d
es

 

ESWSA 285 88 140 140 

PIO 285 110 162 141 
BeeLocal SimGlobal 220 58 175 91 
BeeGlobal SimLocal 238 53 152 69 

BeeLocal Greedy Global 39 99 199 52 
BeeGlobal Greedy Local 39 99 199 51 
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 Figure 4.20 Accuracy of the proposed methods 

 

Figure 4.19 Sensitivity of the proposed methods 
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Figure 4.21 F1_Score of the proposed methods 

 

Figure 4.22 AHD of the proposed methods 
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

5.1 CONCLUSIONS 

The learned structure of Bayesian networks can be used for guiding future action and 

understanding the causal mechanisms of a system if structure learning algorithms can 

learn the fundamental structure of the network, and if certain assumptions are met. 

In this dissertation, we studied the structure learning of Bayesian networks based on 

score and search method using the BDeu score function. Swarm intelligence has 

always been an inspiration for the researcher. We attempt five algorithms for this 

dissertation based on a meta-heuristic search and also compared the results with the 

default Simulated Annealing and Greedy search. The Pigeon Inspired Optimization 

has opened a new horizon for the researchers and it will provide a platform for future 

research in this field. The PIO has a robust problem-solving potential that can be 

applied in fields like the travelling salesman problem, Polynomial identity testing, the 

shortest path problem, and other optimization problems. However, any optimization 

technique cannot say the best or worst based on one application. For some applications, 

one may be better than the others.  

The Bees Algorithm is a swarm-based algorithm that mimics the natural food foraging 

behaviour of honey bees. The algorithm involves both random exploration of the 

solution space and more focused exploitation of promising local search sites.  A basic 

version of the Bees Algorithm has been applied to function optimization problems. It 

can characterize BA as being a distributed, stochastic search method based on the 

communications of a colony of ‘artificial Bees’, mediated by ‘artificial waggle dances’. 

The waggle dance serves as a distributed information used by the Bees to construct 

solutions to the problem under consideration. 

The Pigeon Inspired Optimization (PIO) is the first proposed method to structure 

learning Bayesian network. The comparative simulation results show that the proposed 

PIO algorithm is a workable and effective algorithm to structure learning Bayesian 

network while compared with Simulated Annealing and Greedy search. It provides an 

alternate approach of problem-solving different from the traditional techniques in use. 

We can describe PIO as comprising, a stochastic search technique depending on the 
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information accumulated and shared by pigeons. A PIO is a usual method for searching 

a discrete solution space. The PIO could miss any promising regions of the search 

space that the local/global search and switching mechanism operated earlier. A PIO is 

a common framework that can adjust to suit for any application region. The PIO 

concentration control to optimal global by allowing to fly in short solution space, the 

probability in the position to be the right solution space by an extra control through 

pigeon parameter to leave out the different scale. Our proposed method has more 

competence for searching, and it can detect good structure solutions, calculate higher 

score function and excellent approximation to the network. The algorithms improve 

the global search and lead rapidly to global convergence.  

This thesis incorporates enhanced versions of Bees Algorithm(BA), first by 

implementing simulated annealing approach to the selection of local search sites, and 

then BA for global search, also, BA as local and Simulated Annealing as global search 

as the second and third proposed method. We propose BA with a Greedy search in 

fourth and fifth proposed methods, by search intensification through controlling of the 

random search by BA after the local search phase. This thesis presents the results 

obtained from NP-hard problems to show the robustness and speeding up the ability 

of the Bees Algorithm variants. 

There is a vast literature to solve NP-hard problems, but there are some problems 

associated with these methods: 

1. Some algorithms use fixed-length problem representation; this limitation will 

affect the problem solutions when those problems get larger dimensions. 

2. Most algorithms require a large population to attain an optimal solution due to 

the inconsistency in using inappropriate problem-specific local search 

mechanisms. 

An exchange neighbour operator is used with structure learning the Bayesian network, 

because of its simplicity and robustness. It uses a modification to the stepping stone 

method with the classical transportation problem to establish an appropriate local 

search operator which has the strength required to hold the problem constraints. 

From our work, several conclusions can be drawn for applying Bee in structure 

learning Bayesian networks: 
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1. All the BA variants include strong exploitation of the best solutions found during 

the search. The most successful ones add specific features to avoid premature 

stagnation of the search. The main differences between the various BA extensions 

comprise the technique used to control the search process. Experimental results show 

that for structure learning Bayesian network, these variants make a better and faster 

performance gains than classical BA. 

2. BA is a general method for searching discrete solution space in a way like Bees 

foraging process. BA could miss some promising areas of the search space if the 

local/global search switching mechanism performed earlier than it’s supposed to be. 

SBA presents an advantage over BA by equipping with a switching strategy that allows 

the systematic determination of the transition for the local to global search, this avoids 

computationally expensive earlier transition in advance and makes up a major benefit 

of the proposed methods. It is earlier switching in BA required more iteration and time 

to get the algorithm back in a track to the promising optimal or near-optimal search 

space if it gets back at all. 

3. BSA and SAB constitute a general framework that can change to suit any application 

area. The simulated annealing method suffers from slow convergence for its random 

nature of movements. Simulated annealing also suffers from the difficulty in getting 

some required accuracy, although it may approach the neighbourhood of the global 

minimum. By manipulating the cooling schedule of simulated annealing, BSA and 

SAB practitioners can exercise control over convergence. Bees algorithm employees 

no such concept of cooling, and its convergence is not controlled. Convergence control 

in BSA and SAB provides rapid convergence to global extremum by allowing Bees to 

move to less profitable solution space probabilistically to get nearer to more profitable 

solution space that provides the speedier version of SA and more controlled BA since 

the extra control provided by introducing a temperature allows separating problems on 

different scales. 

4. BLGG and BGGL combine the advantages of both BA and Greedy search into a 

hybrid algorithm which applies and has a better searching ability and power to reach a 

near-optimal solution by achieving an appropriate balance between the exploitation of 

the search experience gathered so far, and the exploration for unvisited or unexplored 

search space regions. It leads to the development of a fast convergence controlled 

method to solve complicated types of optimization problems. 
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5. When using local search, it suffices to apply a small constant number of Bees to 

achieve high performance. Experimental results suggest that in this case, the role 

played by heuristic information becomes much less important. Besides the choice of 

the right parameters made, that shows the usage of the smaller population achieves 

faster convergence and more time reduction. 

6. Combinatorial optimization problems arise in many practical and theoretical 

problems. Often, these problems are very hard to solve to optimality. Structure learning 

Bayesian network was the combinatorial optimization problem to attack by BA and its 

variants. Under low conditions (small-sized instance), all the algorithms tested have 

similar performance. Here, it is hard to assess if an algorithm is significantly better 

than another. 

7. The Bee Algorithm is a swarm-based algorithm that imitates the natural food 

foraging behaviour of honey bees. The algorithm includes both random explorations 

of the solution space and more focused exploitation of promising local search sites. A 

basic version of the Bees Algorithm is used in optimization problems. It can 

characterize BLGG as being a divided, stochastic search method based on the 

communication of a colony of ‘artificial Bees’, arbitrated by ‘artificial waggle dances. 

The waggle dance works as a distributed information used by the Bees to construct 

solutions to the problem under consideration. BLGG is a common method for 

searching discrete solution space in a way related to Bees foraging process. BLGG can 

drop any promising areas of the search space if they do earlier the local/global search 

switching mechanism than it's assumed to be. GLBG is a common core that can adjust 

to suit any application area. By managing the neighbourhood schedule of greedy, the 

GLBG practitioner can apply control over convergence. Bees algorithm employes no 

such idea of the neighbourhood and its concentration is not checked. Concentration 

check in GLBG presents speedy concentration to the global extreme by providing Bees 

to move to tiny beneficial solution space to get nearer to extra valuable solution space 

that presents a quicker version of greedy and more controlled Bee algorithm. The 

proposed method has a higher performance for searching; this means it can get great 

structure solution, calculate higher score function and examine the network proposed. 

Develops the solution for local search to the global search and drive to the global 

convergence. The proposed approach can be viewed as the parallel implementation of 

Greedy, which shows the stability for parallel processing. 
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8. Distributed computing is a promising approach to meet the ever-increasing 

computational requirements. Scheduling is the most important issue in the distributed 

system because the effectiveness directly corresponds to the parallelization obtained. 

With inappropriate scheduling, mechanisms can fail to exploit the true potential of the 

distributed system. The schedule has the dual responsibility of minimizing the 

execution time of the resulting schedule and balancing the load among the processor. 

BA and all of its variants handle this problem by finding optimal and near-optimal 

schedules in a reasonable amount of time. 

9. The Elephant Swarm Water Search Algorithm is an optimization technique that has 

adopted. For implementing an elephant, swarm behavior was a challenging task, 

therefore in status for the implement that response in real-time protocol improvement. 

ESWSA is a method for searching a discrete solution space and it can be adjusted to 

suit for any application area. Concentration control in ESWSA presents quickened 

concentration to the global extremum by allowing the elephant to move to the shortest 

useful solution space.  The proposed method has a higher ability for searching, which 

shows it can detect better structure solution, calculate higher score function and 

excellent approximation to the network structure and the results are more accurate. 

The algorithms improve the global search and lead rapidly to global convergence.  

Considering the performance of elephant swarm water search in nature, a novel 

swarm-based heuristic search approach, called ESWSA proposed ESWSA to solving 

optimization score and search technique for structure learning Bayesian network. At 

the initial phase, the position and speed for each elephant will generate randomly. At 

the new stage of ESWSA, each elephant in the group has renewed the position also 

speed through using group information by updating the operator.  

The Elephant Swarm Optimization technique presented during the research facilitates 

as an optimized search method to get an increasing enhanced system performance. 
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5.2 SUGGESTION FOR FUTURE WORK 

 The algorithms presented in this thesis are still being developed; the next step 

would test them on a greater variety of problems with different parameters, 

stopping criteria, and problem-specific neighbourhood operators. 

 Keep in mind that care must be taken in applications as much as implementation 

since different choices such as the selection for local search operator and other 

problem parameters determine the actual efficiency of any procedure 

(algorithm). 

 It is controlling the randomization of the initial population by using seeds in the 

initial population to improve the BA and its variants further. 

 Using another heuristic search to structure learning Bayesian network based 

hybrids between PIO and Bee algorithm, Bat Algorithm, hybrid PIO and Bat 

Algorithm. 

 Using PIO for optimizing other problems like 4 mapping colour and job 

schedules. 

 Elephant herding optimization algorithm (EHO) is one of the recent swarms’ 

intelligence algorithms, which can be used for structure learning Bayesian 

networks. 

 Another possibility is using ESWSA for the optimization algorithm for support 

vector machine parameter tuning. 

 Apply ESWSA approach for the energy-based positioning problem 

 Compare the elephant swarm optimization technique with other evolutionary 

computing based optimization techniques like Modified Interactive based 

Evolutionary Computing (MIEC) techniques with the behaviour of elephant 

herding idealize into clan updating operator and separating the operator. 
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